An isomorphic characterization of L^1 -spaces *

by Vlad Timofte^a

^a Institute of Mathematics "Simion Stoilow" of the Romanian Academy, P.O. Box 1-764, RO-014700, Bucharest, Romania

Communicated by Prof. J.J. Duistermaat at the meeting of September 24, 2007

ABSTRACT

We show that a sequentially (τ) -complete topological vector lattice X_{τ} is isomorphic to some $L^{1}(\mu)$, if and only if the positive cone can be written as $X_{+} = \mathbb{R}_{+}B$ for some convex, (τ) -bounded, and (τ) -closed set $B \subset X_{+} \setminus \{0\}$. The same result holds under weaker hypotheses, namely the Riesz decomposition property for X (not assumed to be a vector lattice) and the monotonic σ -completeness (monotonic Cauchy sequences converge). The isometric part of the main result implies the well-known representation theorem of Kakutani for (AL)-spaces. As an application we show that on a normed space Y of infinite dimension, the "ball-generated" ordering induced by the cone $Y_{+} \approx \mathbb{R}_{+} \overline{B}(u, 1)$ (for ||u|| > 1) cannot have the Riesz decomposition property. A second application deals with a pointwise ordering on a space of multivariate polynomials.

1. INTRODUCTION

As for prerequisites, the reader is expected to be familiar with notions, basic properties, and some results on ordered vector spaces from [1,3–5,7]. Following [1], we will use the notation X_{τ} for an ordered vector space X endowed with a linear topology τ . If two such spaces X_{τ} and Y_{η} are isomorphic (algebraically, topologically, and as ordered sets), we write this as $X_{\tau} \simeq Y_{\eta}$.

MSC: Primary 46A40, Secondary 46E30, 46B03

Key words and phrases: L^1 space, Banach lattice, Ordered vector space, Riesz space, Isomorphism, Representation

^{*} This research was partially supported by grant no. 2-CEx06-11-34 of the Romanian Government. E-mail: vlad.timofte@imar.ro (V. Timofte).

Any L^1 -space is a Banach lattice (X, || ||) having in particular the following three properties:

- (a) X is directed $(X = X_+ X_+)$ and has the Riesz decomposition property (meaning that [0, x + y] = [0, x] + [0, y] for all $x, y \in X_+$, the segments being considered in the order sense).
- (b) The topology τ of X is locally solid and σ -monotonically complete (that is, *monotonic* (τ)-Cauchy sequences are (τ)-convergent).
- (c) We have $X_+ = \mathbb{R}_+ B$ for some convex, (τ) -bounded, and (τ) -closed set $B \subset X_+ \setminus \{0\}$.

The above property (c) holds in particular for the set $B := \{x \in X_+ \mid ||x|| = 1\}$.

In this paper we show (Theorem 14 and its corollaries) that any Hausdorff topological ordered vector space having these three properties is a Dedekind complete vector lattice, isomorphic as a topological vector lattice to some L^1 -space. In particular, so is any sequentially (τ) -complete topological vector lattice X_{τ} with the property (c).

From now on, X_{τ} denotes a (real) Hausdorff topological vector space endowed with a directed linear ordering " \leq ", such that the above property (c) holds.

2. GENERAL PROPERTIES

Proposition 1. The topology τ is locally full and the positive cone X_+ is (τ) -closed.

Proof. Let us first show that τ is a locally full topology. Fix a neighborhood $W \in \mathcal{V}_{\tau}(0)$ (of 0 in X_{τ}) and choose a balanced $W_0 \in \mathcal{V}_{\tau}(0)$, such that $W_0 + W_0 \subset W \cap (X \setminus B)$. As B is (τ) -bounded, we have $\varepsilon B \subset W_0$ for some $\varepsilon \in]0, 1]$. For the full neighborhood

$$V := \varepsilon \left[(W_0 + X_+) \cap (W_0 - X_+) \right] \in \mathcal{V}_\tau(0),$$

we claim that $V \subset W$. To prove this, fix $x \in V$. Thus, $x = \varepsilon(w_1 + \alpha_1 b_1) = \varepsilon(w_2 - \alpha_2 b_2)$ for some $w_1, w_2 \in W_0, b_1, b_2 \in B$, and $\alpha_1, \alpha_2 \in \mathbb{R}_+$. Hence $w_2 - w_1 = \alpha_1 b_1 + \alpha_2 b_2 \in \alpha_1 B + \alpha_2 B = (\alpha_1 + \alpha_2) B$, which yields $(W_0 + W_0) \cap (\alpha_1 + \alpha_2) B \neq \emptyset$. As $(W_0 + W_0) \cap B = \emptyset$ and W_0 is balanced, we must have $\alpha_1 + \alpha_2 < 1$. It follows that $x = \varepsilon(w_1 + \alpha_1 b_1) \in \varepsilon(W_0 + \alpha_1 B) \subset \varepsilon W_0 + \alpha_1 W_0 \subset W_0 + W_0 \subset W$. We thus get $V \subset W$. We conclude that τ is a locally full topology.

Now let us prove that the positive cone X_+ is (τ) -closed. Fix $x \in \overline{X_+} \setminus \{0\}$. There exist two nets $(\alpha_{\delta})_{\delta \in \Delta} \subset]0, \infty[$ and $(b_{\delta})_{\delta \in \Delta} \subset B$, such that (τ) -lim $_{\delta \in \Delta}(\alpha_{\delta}b_{\delta}) = x$. By taking subnets if necessary, we may assume that $\lim_{\delta \in \Delta} \alpha_{\delta} = \alpha \in [0, \infty]$. We must have $\alpha \in]0, \infty[$. Indeed, for $\alpha = \infty$ we get $0 = (\tau)$ -lim $_{\delta \in \Delta} \frac{\alpha_{\delta}b_{\delta}}{\alpha_{\delta}} = (\tau)$ -lim $_{\delta \in \Delta} b_{\delta} \in \overline{B} = B$, a contradiction. For $\alpha = 0$, since B is (τ) -bounded we get $0 = (\tau)$ -lim $_{\delta \in \Delta}(\alpha_{\delta}b_{\delta}) = x \neq 0$, another contradiction. If $\alpha \in]0, \infty[$, then

$$\frac{x}{\alpha} = (\tau) - \lim_{\delta \in \Delta} \frac{\alpha_{\delta} b_{\delta}}{\alpha_{\delta}} = (\tau) - \lim_{\delta \in \Delta} b_{\delta} \in \overline{B} = B$$

yields $x \in \alpha B \subset X_+$. We thus conclude that X_+ is (τ) -closed. \Box

The strictly positive functional f from the next lemma will characterize the norm of the L^1 -space from our representation theorem.

Lemma 2. There is a linear functional $f : X \to \mathbb{R}$, having the following two properties:¹

- (i) The restriction $f|_{X_+}: X_+ \to \mathbb{R}$ is continuous at 0.
- (ii) For every neighborhood $W \in \mathcal{V}_{\tau}(0)$, there exists $\varepsilon \in]0, \infty[$, such that $x \in W$ whenever $x \in X_+$ and $f(x) < \varepsilon$.

Any such functional also has the property

(iii) For every lower (or upper) bounded subset $A \subset X$, we have the equivalence

A is (τ) -bounded $\iff f(A)$ is bounded.

Proof. As $X_+ = \mathbb{R}_+ B$ and $0 \notin B$, the set $\{\alpha \in \mathbb{R}_+ | x \in \alpha B\}$ is nonempty and bounded in \mathbb{R} for every $x \in X_+$. Hence the map

(1)
$$q: X_+ \to \mathbb{R}_+, \quad q(x) = \sup\{\alpha \in \mathbb{R}_+ \mid x \in \alpha B\},\$$

is well-defined. It is easy to check that q is supralinear (-q is sublinear), since B is convex. By the properties of B we deduce that the set $H := co(B \cup (-B))$ is absorbing, (τ) -bounded, and convex. Therefore, the Minkowski functional

(2)
$$|| ||_H : X \to \mathbb{R}_+, \quad ||x||_H = \inf\{\alpha \in]0, \infty[|x \in \alpha H\},$$

is a norm. Let us choose first a balanced neighborhood $W_f \in \mathcal{V}_{\tau}(0)$ with $W_f \subset X \setminus B$, and then a number $\mu \in]0, \infty[$, such that $H \subset \mu W_f$. We claim that

(3)
$$q(x) \leq \mu ||x||_H$$
 for every $x \in X_+$.

Fix $x \in X_+$ and $\beta > ||x||_H$. Hence $x \in \alpha H$ for some $\alpha \in]0, \beta[$, by (2). For every $\gamma \ge \alpha \mu$, we have

$$\frac{1}{\gamma}x\in\frac{\alpha}{\gamma}H\subset\frac{\alpha\mu}{\gamma}W_f\subset W_f\subset X\setminus B,$$

and so $x \notin \gamma B$. By (1) it follows that $q(x) \leq \alpha \mu < \beta \mu$. Since $\beta > ||x||_H$ was arbitrary, we conclude that $q(x) \leq \mu ||x||_H$. We thus have proved (3). By Bonsall's theorem, there exists a linear functional $f: X \to \mathbb{R}$, such that $q(x) \leq f(x)$ for $x \in X_+$ and $f(x) \leq \mu ||x||_H$ for $x \in X$. We next show that f has the required properties.

(i) Fix $x \in W_f \cap X_+$. For every $\gamma \ge 1$, we have $\frac{1}{\gamma}x \in W_f \subset X \setminus B$, and so $x \notin \gamma B$. Consequently, there exists $\alpha \in [0, 1[$, such that $x \in \alpha B \subset \alpha H$. It follows that

¹ The property (ii) below yields f(x) > 0 for $x \in X_+ \setminus \{0\}$, as well as the (τ) -boundedness of $B_f := f^{-1}(\{1\}) \cap X_+$.

 $f(x) \leq \mu ||x||_H \leq \mu \alpha < \mu$. Hence $f(W_f \cap X_+) \subset [0, \mu]$. Clearly, the boundedness of $f(W_f \cap X_+)$ yields the continuity of $f|_{X_+}$ at 0.

(ii) Fix a balanced neighborhood $W \in \mathcal{V}_{\tau}(0)$. As *B* is (τ) -bounded, we have $\varepsilon B \subset W$ for some $\varepsilon \in]0, \infty[$. Let $x \in X_+$, such that $f(x) < \varepsilon$. Since $q(x) \leq f(x) < \varepsilon$, by (1) we deduce that $x \in \alpha B$ for some $\alpha \in [0, \varepsilon[$. We thus get $x \in \alpha B \subset \frac{\alpha}{\varepsilon} W \subset W$.

(iii) After assuming that $A \subset X_+$ (otherwise we apply a translation and, if necessary, we multiply the resulting set by -1), the proof is straightforward. \Box

Remark 3. For a topological ordered vector space Y_{η} with locally solid topology and closed positive cone, the property (c) from the Introduction is equivalent to

(c') There is a functional $f \in Y_n^*$ satisfying the requirement (ii) from Lemma 2.

A large amount of known results on topological ordered vector spaces still hold if we replace the usual topological completeness by the monotonic completeness defined in [6]:

Definition 4 (Monotonic completeness). The topology τ of X is said to be *monotonically complete*, if and only if every monotonic (τ)-Cauchy net in X is (τ)-convergent. In the same way we define *monotonic* σ -completeness, by considering sequences instead of nets.

Monotonic completeness is strictly weaker than the usual completeness of the topology:

Example 5. The vector space $X = BV([0, 1]) = \{x : [0, 1] \rightarrow \mathbb{R} \mid x \text{ has bounded variation}\}$ is a Dedekind complete vector lattice with respect to the usual ordering " \leq " defined by the cone

 $X_+ = \{x : [0, 1] \to \mathbb{R}_+ \mid x \text{ is increasing}\}.$

The L^{∞} norm $|| ||_{\infty}$ considered on X is monotonically complete and additive on X_+ , but neither complete nor solid. Nonetheless, Theorem 14 (stated with the weaker monotonic σ -completeness) may be applied for the space $(X, \leq, || ||_{\infty})$.

Proposition 6. We have the following:

- (i) Any (τ) -bounded monotonic net from X is (τ) -Cauchy.
- (ii) For τ , monotonic completeness is equivalent to monotonic σ -completeness.

Proof. Let us choose a linear functional $f: X \to \mathbb{R}$ as in Lemma 2 and a neighborhood $W_f \in \mathcal{V}_{\tau}(0)$, such that $f(W_f \cap X_+)$ is bounded.

(i) Let $(x_{\delta})_{\delta \in \Delta} \subset X$ be a (τ) -bounded increasing net and let $W \in \mathcal{V}_{\tau}(0)$. Choose a balanced neighborhood $W_0 \in \mathcal{V}_{\tau}(0)$, such that $W_0 + W_0 \subset W$. By Lemma 2(ii) we can find $\varepsilon \in]0, \infty[$, such that $x \in W_0$ whenever $x \in X_+$ and $f(x) < \varepsilon$. Choose $\delta_0 \in \Delta$. Since $(x_{\delta})_{\delta \ge \delta_0} \subset X_+$ is a (τ) -bounded increasing net, by Lemma 2(iii) we deduce that $(f(x_{\delta}))_{\delta \ge \delta_0} \subset \mathbb{R}$ is an upper bounded increasing net. Let $\alpha := \bigvee_{\delta \ge \delta_0} f(x_{\delta})$ and $\delta_W \ge \delta_0$, such that $\alpha - \varepsilon < f(x_{\delta_W}) \le \alpha$. For every $\delta \ge \delta_W$ we have $f(x_{\delta} - x_{\delta_W}) < \varepsilon$, and so $x_{\delta} - x_{\delta_W} \in W_0$. Consequently, for arbitrary $\delta', \delta'' \ge \delta_W$ we have $x_{\delta'} - x_{\delta''} \in W_0 - W_0 \subset W$. We conclude that $(x_{\delta})_{\delta \in \Delta}$ is a (τ) -Cauchy net.

(ii) Assume τ is monotonically σ -complete and let $(x_{\delta})_{\delta \in \Delta} \subset X$ be an increasing (τ) -Cauchy net. Thus, there exists $\delta' \in \Delta$, such that $(x_{\delta} - x_{\delta'})_{\delta \geq \delta'} \subset W_f \cap X_+$. According to Lemma 2(iii), the net $(x_{\delta})_{\delta \geq \delta'} \subset X$ is (τ) -bounded. Also, $(f(x_{\delta}))_{\delta \geq \delta'} \subset \mathbb{R}$ is an upper bounded increasing net. For $\alpha := \bigvee_{\delta \geq \delta'} f(x_{\delta})$, let us choose an increasing sequence $(\delta_n)_{n \in \mathbb{N}} \subset \Delta$, such that $\delta_0 \geq \delta'$ and $\lim_{n \to \infty} f(x_{\delta_n}) = \alpha$. The sequence $(x_{\delta_n})_{n \in \mathbb{N}} \subset X_+$ is increasing and (τ) -bounded, and hence (τ) -Cauchy, by (i). As τ is monotonically σ -complete, the limit (τ) -lim $_{n \to \infty} x_{\delta_n} =: x \in X$ exists. We claim that

(4)
$$(\tau) - \lim_{\delta \in \Delta} x_{\delta} = x.$$

To prove this, fix $W \in \mathcal{V}_{\tau}(0)$ and choose $W_0 \in \mathcal{V}_{\tau}(0)$, such that $W_0 + W_0 \subset W$. By Lemma 2(ii), there exists $\varepsilon \in]0, \infty[$, such that $z \in W_0$ whenever $z \in X_+$ and $f(z) < \varepsilon$. Now choose $m \in \mathbb{N}$, such that $f(x_{\delta_m}) > \alpha - \varepsilon$ and $x_{\delta_m} - x \in W_0$. Let $\delta \ge \delta_m$. We have $\alpha - \varepsilon < f(x_{\delta_m}) \le f(x_{\delta}) \le \alpha$, hence $f(x_{\delta} - x_{\delta_m}) < \varepsilon$, which forces $x_{\delta} - x_{\delta_m} \in W_0$. It follows that

$$x_{\delta} - x = (x_{\delta} - x_{\delta_m}) + (x_{\delta_m} - x) \in W_0 + W_0 \subset W.$$

We thus have proved (4). We conclude that (τ) is monotonically complete. \Box

The following proposition is a useful shortcut for proving Dedekind completeness, since directed upwards/downwards sets may be viewed as monotonic nets. Such nets are more convenient and fit well with monotonic completeness in topological ordered vector spaces.

Proposition 7. For a directed ordered vector space Y with the Riesz decomposition property, the following three statements are equivalent:

- (D) Y is a Dedekind complete vector lattice.
- (D₊) sup A exists for any nonempty upper bounded $A \subset Y_+$ with a directed downwards set of upper bounds $M_A := \bigcap_{a \in A} (a + Y_+)$.
- (D_) inf A exists for any nonempty lower bounded $A \subset Y_+$ with a directed upwards set of lower bounds $m_A := \bigcap_{a \in A} (a Y_+)$.

Proof. (D) \Rightarrow (D₊) \Leftrightarrow (D₋) are obvious. In order to show the implication (D₊) \Rightarrow (D), let us first consider a nonempty upper bounded finite subset $A_0 \subset Y_+$. As Y has the Riesz decomposition property, the set M_{A_0} is directed downwards. Hence sup A_0 exists, by (D₊). It follows that Y is a vector lattice. Now fix a nonempty upper bounded $A \subset Y_+$. Since Y is a vector lattice, the set M_A is

directed downwards. Hence sup A exists, by (D_+) . We conclude that Y is Dedekind complete. \Box

In the presence of topological monotonic completeness, the Riesz decomposition property turns X_{τ} into a Dedekind complete vector lattice with order continuous topology:²

Proposition 8. If X has the Riesz decomposition property and (τ) is monotonically σ -complete, then X is a Dedekind complete vector lattice and τ is order continuous.

Proof. Let us first prove that X is a Dedekind complete vector lattice. Fix a nonempty lower bounded $A \subset X_+$ with a directed upwards set of lower bounds $m_A = \bigcap_{a \in A} (a - X_+)$. Thus, we may consider $m_A \supset m_A \cap X_+$ as an increasing upper bounded (by any element of A) net in X. By Proposition 6, we deduce that $m_A \cap X_+$ is (τ) -Cauchy, and that τ is monotonically complete. Hence the limit

 $(\tau)-\lim(m_A \cap X_+) = (\tau)-\lim m_A =: x \in X$

exists. Since X_+ is (τ) -closed, for arbitrary $a \in A$ and $b \in m_A$ we have $b \leq (\tau)$ -lim $m_A \leq a$, that is, $b \leq x \leq a$. It follows that $x = \max m_A = \inf A$. By Proposition 7 we conclude that X is a Dedekind complete vector lattice.

Let us show that τ is order continuous. Fix a decreasing net $(x_{\delta})_{\delta \in \Delta} \subset X$, such that $\bigwedge_{\delta \in \Delta} x_{\delta} = 0$. Since the positive cone X_+ is (τ) -closed, as for m_A we deduce that the limit $z = (\tau)$ -lim_{$\delta \in \Delta$} x_{δ} exists and $\bigwedge_{\delta \in \Delta} x_{\delta} = z$. We conclude that (τ) -lim_{$\delta \in \Delta$} $x_{\delta} = 0$. \Box

3. THE ASSOCIATED LOCALLY SOLID TOPOLOGY $\check{\tau}$

Let us recall that a subset A of a directed ordered vector space Y is called *solid*, if and only if $A = \bigcup_{y \in A \cap Y_+} [-y, y]$. Then a linear topology η on Y is said to be *locally solid*, if and only if every neighborhood $W \in \mathcal{V}_{\eta}(0)$ contains a solid $V \in \mathcal{V}_{\eta}(0)$. A seminorm $p: Y \to \mathbb{R}_+$ is called solid, if and only if $p(y) = \inf_{x \ge \pm y} p(x)$ for every $y \in Y$.

The following theorem associates to the original topology τ a locally solid stronger topology $\check{\tau}$, defined by a solid norm which is additive on the positive cone. Proposition 12 will show that several monotonicity-related properties are the same for $\check{\tau}$ and τ .

Theorem 9. For linear $f : X \to \mathbb{R}$ as in Lemma 2, let us consider $B_f = \{x \in X_+ | f(x) = 1\}$ and $H_f = \operatorname{co}(B_f \cup (-B_f))$. Then

(5) $|| ||_f : X \to \mathbb{R}_+, ||x||_f = \inf\{\alpha \in]0, \infty[|x \in \alpha H_f\},$

² That is, for every increasing net $(x_{\delta})_{\delta \in \Delta} \subset X$ with $\bigvee_{\delta \in \Delta} x_{\delta} = x$, we have $(\tau) - \lim_{\delta \in \Delta} x_{\delta} = x$.

is a solid norm and $||x||_f = f(x)$ for every $x \in X_+$. This norm defines on X the weakest locally solid topology $\check{\tau} \ge \tau$. We also have $|f(x)| \le ||x||_f$ for every $x \in X$, and hence $f \in X_{\check{\tau}}^*$.

Proof. Since $f(B_f) = \{1\}$, by Lemma 2(i,iii) it follows that $B_f \subset X_+$ is (τ) -bounded and $0 \notin \overline{B_f}$. Hence H_f is (τ) -bounded. As X is directed and $X_+ = \mathbb{R}_+ B_f$, the set H_f is absorbing. Consequently, the Minkowski functional $|| ||_f$ defined in (5) is a norm. It is easily seen that $||x||_f = f(x)$ for every $x \in X_+$. We claim that

(6)
$$H_f = \bigcup_{x \in B_f} [-x, x] = \bigcup_{x \in H_f \cap X_+} [-x, x].$$

As $H_f \cap X_+ = [0, 1] \cdot B_f$, the second above equality holds. We next prove the first above equality.

"C". For $y \in H_f$, we have $y = (1 - \lambda)u - \lambda v$ for some $u, v \in B_f$ and $\lambda \in [0, 1]$. Since B_f is convex, it follows that $x := (1 - \lambda)u + \lambda v \in B_f$ and $y \in [-x, x]$.

"⊃". If $x \in B_f$ and $y \in [-x, x] \setminus \{-x, x\}$, then $x \pm y \in X_+ \setminus \{0\}$, and so $f(y) \in [-1, 1]$, by Lemma 2(ii). We thus get $u := \frac{x+y}{1+f(y)} \in B_f$ and $v := \frac{y-x}{1-f(y)} \in -B_f$, and hence $y = \frac{1+f(y)}{2}u + \frac{1-f(y)}{2}v \in H_f$.

We thus have proved (6). It follows that $H_f \subset X$ is a solid set, and hence that $\| \|_f$ is a solid norm. Therefore, the topology $\check{\tau}$ defined by $\| \|_f$ is locally solid. As H_f is (τ) -bounded, we have $\tau \leq \check{\tau}$. Now let χ be a locally solid topology on X, such that $\tau \leq \chi$. We need to show that $\check{\tau} \leq \chi$. Since $\check{\tau}$ is defined by the norm $\| \|_f$, it suffices to show that $H_f \supset V$ for some $V \in \mathcal{V}_{\chi}(0)$. Choose a balanced neighborhood $W \in \mathcal{V}_{\tau}(0)$, such that $W \subset X \setminus B_f$. Thus, $W \cap X_+ \subset [0, 1[\cdot B_f \subset H_f \cap X_+.$ As χ is locally solid and $\tau \leq \chi$, there is a solid neighborhood $V \in \mathcal{V}_{\chi}(0)$, such that $V \subset W$. We thus get

$$V = \bigcup_{x \in V \cap X_+} [-x, x] \subset \bigcup_{x \in W \cap X_+} [-x, x] \subset \bigcup_{x \in H_f \cap X_+} [-x, x] = H_f.$$

Hence $\check{\tau} \leq \chi$. The last conclusion on f follows from $f(H_f) = \operatorname{co}(f(B_f) \cup f(-B_f)) = [-1, 1]$. \Box

Example 10. Let $(X, \leq, || ||_{\infty})$ be the space from Example 5. The requirements (i) and (ii) from Lemma 2 are fulfilled by the linear functional f(x) = x(1). The topology $\check{\tau}$ is defined by the norm³ $||x||_f = f(|x|) = |x(0)| + \operatorname{Var}_{[0,1]}x$, which is the standard solid norm on BV([0, 1]).

Remark 11. For any directed ordered normed space (Y, || ||) whose norm is solid and additive on Y_+ (hence also for (AL)-spaces), we have $|| || = || ||_f$ for the linear functional defined by

$$f: Y \to \mathbb{R}, \quad f(u-v) = ||u|| - ||v|| \quad \text{for all } u, v \in Y_+.$$

³ For every $x \in BV([0, 1])$, we have $|x|(t) = |x(0)| + \operatorname{Var}_{[0, t]}x$ for $t \in [0, 1]$.

Several monotonicity-related properties transmit from the original topology τ to the stronger $\check{\tau}$.

Proposition 12. We have the following:

- (i) A monotonic net in X is $(\check{\tau})$ -Cauchy, if and only if it is (τ) -Cauchy.
- (ii) A monotonic net in X is $(\check{\tau})$ -convergent, if and only if it is (τ) -convergent.
- (iii) The topology $\check{\tau}$ is order continuous, if and only if so is τ .
- (iv) The topology $\check{\tau}$ is monotonically complete, if and only if so is τ .
- (v) A lower (or upper) bounded subset of X is $(\check{\tau})$ -bounded, if and only if it is (τ) -bounded.

Proof. Let $||||_f$ be the norm defined by (5). (v) follows easily from Lemma 2(iii), since $||x||_f = f(x)$ for every $x \in X_+$. Also, (iii) and (iv) will follow if we prove (i) and (ii). Since $\tau \leq \check{\tau}$, the implications " \Rightarrow " hold for both (i) and (ii). We next prove the remaining converse implications " \Leftarrow ".

(i) Let us fix an increasing (τ) -Cauchy net $(x_{\delta})_{\delta \in \Delta} \subset X$ and $\varepsilon \in]0, \infty[$. By Lemma 2(i), choose a neighborhood $W \in \mathcal{V}_{\tau}(0)$, such that $f(W \cap X_{+}) \subset [0, \frac{\varepsilon}{2}[$. As $(x_{\delta})_{\delta \in \Delta}$ is (τ) -Cauchy, there exists $\delta_0 \in \Delta$, such that $x_{\delta} - x_{\delta_0} \in W \cap X_{+}$ for every $\delta \ge \delta_0$. For arbitrary $\delta', \delta'' \ge \delta_0$, we have

$$\begin{aligned} \|x_{\delta'} - x_{\delta''}\|_{f} &\leq \|x_{\delta'} - x_{\delta_{0}}\|_{f} + \|x_{\delta''} - x_{\delta_{0}}\|_{f} \\ &= f(x_{\delta'} - x_{\delta_{0}}) + f(x_{\delta''} - x_{\delta_{0}}) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon. \end{aligned}$$

Hence $(x_{\delta})_{\delta \in \Delta}$ is $(\check{\tau})$ -Cauchy.

(ii) Let us fix an increasing net $(x_{\delta})_{\delta \in \Delta} \subset X$, such that (τ) -lim $_{\delta \in \Delta} x_{\delta} = x$. As the positive cone X_+ is (τ) -closed, we have $\bigwedge_{\delta \in \Delta} x_{\delta} = x$, and so $(x - x_{\delta})_{\delta \in \Delta} \subset X_+$. By Lemma 2(i) it follows that $\lim_{\delta \in \Delta} ||x - x_{\delta}||_f = \lim_{\delta \in \Delta} f(x - x_{\delta}) = f(0) = 0$, hence that $(\check{\tau})$ -lim $_{\delta \in \Delta} x_{\delta} = x$. \Box

Since our representation theorem will deal with the space $X_{\check{\tau}}$, we next give a coincidence criterion for the topologies τ and $\check{\tau}$.

Proposition 13. The topology τ is locally solid ($\tau = \check{\tau}$), if and only if X_{τ} is a bornological locally convex space with the property

(S) For every (τ) -bounded subset $A \subset X$, there is another (τ) -bounded $A_0 \subset X_+$, such that $A \subset A_0 - A_0$.

Proof. " \Rightarrow ". By Theorem 9, the topology $\tau = \check{\tau}$ is normable, hence also bornological. Let us fix a (τ) -bounded $A \subset X$. As $\tau = \check{\tau}$, we have $A \subset \varepsilon H_f$ for some $\varepsilon \in]0, \infty[$. It follows that

$$A \subset \varepsilon \cdot \operatorname{co}(B_f \cup (-B_f)) \subset \varepsilon([0,1] \cdot B_f - [0,1] \cdot B_f).$$

Since $[0, 1] \cdot B_f$ is (τ) -bounded, we conclude that the property (S) holds.

"⇐". It suffices to show that $H_f \in \mathcal{V}_{\tau}(0)$. Clearly, H_f is a balanced convex set. We claim that H_f absorbs any (τ) -bounded subset of X. To prove this, fix a (τ) -bounded $A \subset X$. According to the property (S), we have $A \subset A_0 - A_0$ for some (τ) -bounded $A_0 \subset X_+$. By Proposition 12(v) we deduce that $A \subset A_0 - A_0$ is $(\check{\tau})$ -bounded, since so is A_0 . Hence H_f absorbs A. Our claim is proved. Since X_{τ} is a bornological space, it follows that $H_f \in \mathcal{V}_{\tau}(0)$. We thus conclude that the topology $\tau = \check{\tau}$ is locally solid. \Box

4. THE REPRESENTATION THEOREM

Let us recall that a (KB)-space is a Dedekind complete normed lattice with order continuous norm (topology), such that every normly bounded increasing sequence is upper bounded. Any (KB)-space is also a Banach space (see for instance [1], Chapter VII, §2, Proposition 1).

We can now prove our main result providing an isomorphic characterization of L^1 -spaces. Let us recall that the property (c) from the Introduction is assumed to hold for X_{τ} .

Theorem 14 (Representation). Assume that X_{τ} has the Riesz decomposition property, and that τ is monotonically σ -complete. Then $(X, || ||_f) \simeq L^1(\mu)$ as normed lattices for some measure space (T, \mathcal{T}, μ) . If in addition the topology τ is locally solid, then $X_{\tau} \simeq L^1(\mu)$ as topological vector lattices.

Proof. We claim that $(X, || ||_f)$ is a (KB)-space. By Theorem 9, $|| ||_f$ is a solid norm. According to Propositions 6(ii) and 8, X is a Dedekind complete vector lattice, and the topology τ is order continuous and monotonically complete. By Proposition 12(iii), $\check{\tau}$ is order continuous. Let us fix an increasing $(\check{\tau})$ -bounded sequence $(x_n)_{n\in\mathbb{N}} \subset X_+$. By Propositions 6(i) and 12(v), the sequence is (τ) -Cauchy. Hence the limit (τ) -lim_{$n\to\infty$} $x_n =: x \in X$ exists, since τ is monotonically complete. As X_+ is (τ) -closed, we have $\bigvee_{n\in\mathbb{N}} x_n = x$. Our claim is proved. Consequently, $(X, || ||_f)$ is a Banach lattice. Since $|| ||_f$ is additive on X_+ , by the representation theorem of Kakutani for (AL)-spaces (see [2]) we conclude that $(X, || ||_f) \simeq L^1(\mu)$ as normed lattices for some measure space (T, \mathcal{T}, μ) . \Box

Remark 15. The first (isometric) part of Theorem 14 implies the well-known representation theorem of Kakutani for (AL)-spaces. Indeed, for such a space (Y, || ||) we have $|| || = || ||_f$ for the linear functional $f(y) = ||y_+|| - ||y_-||$, according to Remark 11. By Theorem 14, the Banach lattice $(Y, || ||_f)$ is isomorphic to some $L^1(\mu)$. By Theorem 14 we also see that in Kakutani's theorem the completeness hypothesis may be replaced by that (weaker) of monotonic σ -completeness.

The following two corollaries are not consequences of Kakutani's result, but follow easily from Theorem 14.

Corollary 16. Assume that X_{τ} is a sequentially (τ) -complete topological vector lattice. Then $X_{\tau} \simeq L^{1}(\mu)$ as topological vector lattices for some measure space (T, \mathcal{T}, μ) .

Proof. By definition, the topology of any topological vector lattice is assumed to be locally solid. As $\tau = \check{\tau}$, the conclusion follows by Theorem 14. \Box

Corollary 17. Assume that X_{τ} is a vector lattice and a Fréchet space (metrizable and complete). Then $X_{\tau} \simeq L^{1}(\mu)$ as topological vector lattices for some measure space (T, \mathcal{T}, μ) .

Proof. By Theorem 14, we have the conclusion for $X_{\tilde{\tau}}$. As $\tau \leq \tilde{\tau}$ and both τ and $\tilde{\tau}$ are metrizable and complete, we must have $\tau = \tilde{\tau}$. The conclusion follows by Theorem 14 or by Corollary 16. \Box

Example 18. Let (T, \mathcal{T}, μ) be a measure space. On the Dedekind complete vector lattice $L^{\infty}(\mu)$, the L^1 norm $||x||_1 = \int_T |x(t)| d\mu(t)$ is solid, but not monotonically σ -complete. Hence the σ -completeness condition from Theorem 14 cannot be removed.

5. APPLICATIONS

For any abstract real normed space (Y, || ||) without a "built-in" (natural) ordering, there is a standard method for obtaining one: by "projecting" from the origin of the space a translated closed unit ball. More precisely, for fixed $u \in Y$ with ||u|| > 1, let us consider the closed convex cone

(7)
$$Y_+ := \mathbb{R}_+ \overline{B}_Y(u, 1),$$

and the associated linear ordering: $x \le y \iff y - x \in Y_+$. Then Y becomes an ordered normed space. A natural question arises: how "good" can such an ordering be? Is it possible to obtain a vector lattice in this way? In infinite dimension, the answer is negative.

Theorem 19. Let Y be a real normed space. If the ordering induced by the cone (7) has the Riesz decomposition property, then Y has finite dimension.

Proof. Suppose that (Y, \leq) has the Riesz decomposition property. Set $B := \overline{B}_Y(u, 1)$. Let $(\widetilde{Y}, || ||)$ denote the completion of the normed space (Y, || ||). For any subset $A \subset \widetilde{Y}$, let \widetilde{A} denote the closure of A in \widetilde{Y} . Clearly, \widetilde{B} is a convex bounded

closed subset of \widetilde{Y} and $\widetilde{Y_+} = \mathbb{R}_+ \widetilde{B}$. Let " \preceq " denote the linear ordering defined on \widetilde{Y} by the cone $P := \widetilde{Y_+}$. We have divided our proof into two steps.

Step 1. We show that (\widetilde{Y}, \preceq) is a vector lattice. Fix $\overline{x}_1, \overline{x}_2 \in \widetilde{Y}$ and set $M_0 := (\overline{x}_1 + P) \cap (\overline{x}_2 + P) \neq \emptyset$.

Claim 1. The set $M :=]0, \infty[\cdot u + M_0 = \bigcup_{\varepsilon \in]0, \infty[} (\varepsilon u + M_0)$ is directed downwards. To prove this, fix $\bar{y}_1, \bar{y}_2 \in M$. Choose $\varepsilon \in]0, \infty[$, such that $\bar{y}_j \in 3\varepsilon u + M_0$, that is,

$$\bar{x}_i + 3\varepsilon u \leq \bar{y}_j$$
 for $i, j = 1, 2$.

Let us observe that in \widetilde{Y} any order segment $[\overline{a}, \overline{a} + u]$ contains the open ball $B_{\widetilde{Y}}(\overline{a} + \frac{u}{2}, \frac{1}{2})$, thus having nonempty interior. Therefore, for i, j = 1, 2 we have

$$\bar{x}_i + \varepsilon u \leq x_i \leq \bar{x}_i + 2\varepsilon u, \qquad \bar{y}_j - \varepsilon u \leq y_j \leq \bar{y}_j,$$

for some $x_i, y_j \in Y$. It follows that $y_j - x_i \geq \overline{y}_j - \overline{x}_i - 3\varepsilon u \geq 0$, hence that $y_j - x_i \in P \cap Y = Y_+$ for i, j = 1, 2. As Y has the Riesz decomposition property, we have $x_i \leq y \leq y_j$ (i, j = 1, 2) for some $y \in Y$. We thus get $y \in \varepsilon u + M_0 \subset M$ and $y \leq \overline{y}_1, \overline{y}_2$. Our first claim is proved.

Claim 2. inf *M* exists in (\tilde{Y}, \leq) . For fixed $a \in M$, set $M_a := M \cap (a - P)$. As $M \neq \emptyset$ is directed downwards, we can consider $-M \supset -M_a$ as increasing nets in \tilde{Y} . The set M_a is normly bounded, since it is order bounded and the topology of \tilde{Y} is locally full, according to Proposition 1. By Proposition 6(i) we deduce that $-M_a$ in a Cauchy net, hence that the limit

$$\lim(-M_a) = \lim(-M) =: \xi \in \widetilde{Y}$$

exists in the Banach space $(\tilde{Y}, || ||)$. Since the positive cone *P* is normly closed, it follows that $\xi = \sup(-M) = -\inf M$. We thus get $-\xi = \inf M$, which proves our second claim.

Claim 3. We have $\bar{x}_1 \vee \bar{x}_2 = -\xi$ in (\tilde{Y}, \preceq) . Let $z \in M_0$. For every $\varepsilon \in]0, \infty[$ we have $z + \varepsilon u \in M$, and so $-\xi \preceq z + \varepsilon u \xrightarrow{\|\|}{\longrightarrow} z$ as $\varepsilon \downarrow 0$. As *P* is normly closed, we have $-\xi \preceq z$. We conclude that $-\xi = \min M_0 = \bar{x}_1 \vee \bar{x}_2$. This proves our third claim, as well as the statement from Step 1.

Step 2. We show that Y has finite dimension. According to Corollary 17, $(\widetilde{Y}, || ||)$ is isomorphic as topological vector lattice to some $L^1(\mu)$. Hence the positive cone $L^1(\mu)_+$ has nonempty interior, since $P = \widetilde{Y}_+$ contains the open ball $B_{\widetilde{Y}}(u, 1)$. It follows that the measure μ is purely atomic and has finitely many atoms. Consequently, \widetilde{Y} has finite dimension and $Y = \widetilde{Y}$. \Box

Our second application deals with a pointwise ordering on a space of homogeneous polynomials.

Theorem 20. Let \mathcal{P}_n^d denote the vector space of all real polynomials of degree at most $d \ge 2$ in $n \ge 1$ indeterminates, endowed with the ordering " \leqslant " induced by the cone

$$\left(\mathcal{P}_n^d\right)_+ := \left\{ p \in \mathcal{P}_n^d \mid p(x) \ge 0 \text{ for every } x \in \mathbb{R}_+^n \right\}.$$

Then the ordered vector space (\mathcal{P}_n^d, \leq) does not have the Riesz decomposition property, and hence is not a vector lattice.

Proof. Suppose the conclusion false. For abbreviation, set $X := \mathcal{P}_n^d$ and $q := \dim X$. We claim that X is a vector lattice isomorphic to \mathbb{R}^q . Let us consider on X the linear functional f and the norm || || defined by

$$f(p) = \int_{[0,1]^n} p(x) \, \mathrm{d}x, \quad \|p\| = \int_{[0,1]^n} |p(x)| \, \mathrm{d}x.$$

As X has finite dimension, the above norm is complete and defines the unique Hausdorff linear topology τ of X. Clearly, the positive cone X_+ is (τ) -closed, since τ coincides with the pointwise convergence topology. Hence the convex (τ) -bounded set $B_f := \{p \in X_+ | f(p) = 1\}$ is (τ) -closed. We see that $0 \notin B_f$ and $X_+ = \mathbb{R}_+ B_f$. By Theorem 14 we deduce that $(X, || ||_f) \simeq (\mathbb{R}^q, || ||_1)$ as Banach lattices. Our claim is proved. Consequently, the set $E := \operatorname{ext}(B_f)$ of all extremal points of the convex set B_f is finite, since the same is true for $\{y \in \mathbb{R}^q_+ | ||y||_1 = 1\}$. We have $B_f = \operatorname{co}(E)$. We next show that

(8)
$$\mathbb{R}^n_+ \subset \bigcup_{e \in E} e^{-1}(\{0\}).$$

For fixed $\xi \in \mathbb{R}^n_+$, consider $p \in X_+ \setminus \{0\}$ defined by $p(x) := \sum_{i=1}^n (x_i - \xi_i)^2$. Since $p(\xi) = 0$ and $\frac{1}{f(p)} \cdot p \in B_f = co(E)$, we must have $e(\xi) = 0$ for some $e \in E$. This proves the claimed inclusion. But (8) is contradictory, since E is finite and every $e^{-1}(\{0\})$ from the union is a negligible set. \Box

REFERENCES

- Cristescu R. Topological Vector Spaces, Editura Academiei/Noordhoff International, Bucharest/Leyden, 1977 (translated from Romanian).
- [2] Kakutani S. Concrete representation of abstract (L)-spaces and the mean ergodic theorem, Ann. of Math. (2) 42 (1941) 523-537.
- [3] Lacey H.E. The Isometric Theory of Classical Banach Spaces, Die Grundlehren der Mathematischen Wissenschaften, Band 208, Springer, New York, 1974.
- [4] Luxemburg W.A.J., Zaanen A.C. Riesz Spaces, vol. I, North-Holland Mathematical Library, North-Holland/American Elsevier, Amsterdam/New York, 1971.
- [5] Schaefer H.H. Banach Lattices and Positive Operators, Die Grundlehren der Mathematischen Wissenschaften, Band 215, Springer, New York, 1974.
- [6] Timofte V. Representation of a class of locally convex (M)-lattices, Indag. Math., in press.
- [7] Zaanen A.C. Riesz Spaces, vol. II, North-Holland Mathematical Library, vol. 30, North-Holland, Amsterdam, 1983.

(Received September 2006)