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ABSTRACT 

We show that a sequentially (r)-complete topological vector lattice Xr is isomorphic to some L 1 (#), 
if and only if the positive cone can be written as X+ = R+B for some convex, (r)-bounded, and 
(r)-closed set B C X+ \ {0}. The same result holds under weaker hypotheses, namely the Riesz 
decomposition property for X (not assumed to be a vector lattice) and the monotonic cr-completeness 
(monotonic Cauchy sequences converge). The isometric part of the main result implies the well-known 
representation theorem of Kakutani for (AL)-spaces. As an application we show that on a normed 
space Y of infinite dimension, the "ball-generated" ordering induced by the cone Y+ = Ii~+ B(u, 1) (for 
Ilu II > 1) cannot have the Riesz decomposition property. A second application deals with a pointwise 
ordering on a space of multivariate polynomials. 

1. INTRODUCTION 

As for prerequisites, the reader is expected to be familiar with notions, basic 
properties, and some results on ordered vector spaces from [1,3-5,7]. Following [1], 
we will use the notation X~ for an ordered vector space X endowed with a 
linear topology r. If  two such spaces X~ and Y0 are isomorphic (algebraically, 
topologically, and as ordered sets), we write this as X~ ~- Y0. 
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Any L J-space is a Banach lattice (X, ]l II) having in particular the following three 
properties: 

(a) X is directed (X = X+ - X+) and has the Riesz decomposition property 
(meaning that [0, x + y] = [0, x] + [0, y] for all x, y 6 X+, the segments being 
considered in the order sense). 

(b) The topology r of  X is locally solid and a-monotonically complete (that is, 

monotonic (r)-Cauchy sequences are (r)-convergent). 
(c) We have X+ = R+B for some convex, (r)-bounded, and (r)-closed set B C 

x+ \ [0}. 

The above property (c) holds in particular for the set B := {x 6 X+ I IIx II = 1 }. 
In this paper we show (Theorem 14 and its corollaries) that any Hausdorff 

topological ordered vector space having these three properties is a Dedekind 
complete vector lattice, isomorphic as a topological vector lattice to some L l_space. 
In particular, so is any sequentially (r)-complete topological vector lattice X~ with 
the property (c). 

From now on, Xr denotes a (real) Hausdorff topological vector space endowed 
with a directed linear ordering '% ", such that the above property (c) holds. 

2. GENERAL PROPERTIES 

Proposition 1. The topology r is locally full and the positive cone X+ is (r)-  

closed. 

Proof. Let us first show that r is a locally full topology. Fix a neighborhood W 
V~ (0) (of 0 in Xr) and choose a balanced W0 6 1,'~ (0), such that W0 + W0 C W M 
(X \ B). As B is (r)-bounded, we have eB C Wo for some e 6 ]0, 1]. For the full 
neighborhood 

v := e [(Wo + X+) n (Wo - X+)] ~ 1;~ (0), 

we claim that V C W. To prove this, fix x ~ V. Thus, x = e(wl + O t l b l )  = e ( w 2  - 

otzb2) for  some Wl, w2 e Wo, bl, b2 E B, and oh, ot2 E ]~+. Hence w2 - Wl = ~lbl + 
otzb2 E Otl B + ot2B =(Ot l  + ot2)B, which yields (Wo + W0) N (oq + ot2)B 5& 13. A s  

(Wo + W0) A B = 0 and Wo is balanced, we must have Ul + Ot2 < 1. It follows that 
x = e(Wl + Otlbl) ~ e(Wo + oqB) C eWo + oq Wo C Wo + Wo C W. We thus get 
V C W. We conclude that r is a locally full topology. 

Now let us prove that the positive cone X+ is (r)-closed. Fix x 6 X+ \ {0}. There 

exist two nets (c~a)~e~ C ]0, 0o[ and (ba)~czx C B, such that (r)-lim~ezx(ot~ba) = x. 
By taking subnets if necessary, we may assume that lim~e~ c~ = ot ~ [0, ~ ] .  
We must have c~ ~ ] 0 , ~ [ .  Indeed, for u = ~ we get 0 = (r)-lim~e~ ~b~ = ot$ 
(r)- limaezx b~ E B = B, a contradiction. For ~ = 0, since B is (r)-bounded we get 

0 = (r)- lim~eix(u~ba) = x ~ 0, another contradiction. I f u  ~ ]0, ~ [ ,  then 

x (r)- l im a~b~ (r)- limb~ E B B 
Ot ~cA Ot~ ~ A  

yields x c ~B C X+. We thus conclude that X+ is (r)-closed. [] 
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The strictly positive functional f from the next lemma will characterize the norm 

of  the Ll-space from our representation theorem. 

Lemma 2. There is a linear functional f : X ~ R, having the following two 
properties: l 

(i) The restriction f ix+ : X+ ~ IR & continuous at O. 
(ii) For every neighborhood W c Vr(0), there exists e E]0, ~ [ ,  such that x ~ W 

whenever x ~ X+ and f (x) < e. 

Any such functional also has the property 

(iii) For every lower (or upper) bounded subset A C X, we have the equivalence 

A is (r)-bounded ,~ ~ f ( A )  is bounded. 

Proof. As X+ = R+B and 0 ~ B, the set {o~ 6 R+ Ix c orB} is nonempty and 
bounded in ~ for every x E X+. Hence the map 

(1) q : X + - - + R + ,  q ( x ) = s u p { a E ] K + l x E e t B  }, 

is well-defined. It is easy to check that q is supralinear ( - q  is sublinear), since B 

is convex. By the properties of B we deduce that the set H := co(B U ( - B ) )  is 

absorbing, (r)-bounded, and convex. Therefore, the Minkowski functional 

(2) II IIH : x - +  ~+,  IlxllH =inf{ot E]0, cx~[Ix 6uH}, 

is a norm. Let us choose first a balanced neighborhood Wf E V~ (0) with WZ c 
X \ B, and then a number # E ]0, cx~[, such that H C # W f .  We claim that 

(3) q(x )~# l l x l lH  for every x E X+. 

Fix x E X+ and/3 > ][xJlH. Hence x c etH for some c~ ~]0,/3[, by (2). For every 
y/> a # ,  we have 

1 o~ ~iz 
--X ~ --H C - - W f  C Wf C X \ B ,  
Y Y Y 

and so x ~ vB.  By (1) it follows that q(x) ~< oqz < 3/z. Since i3 > ]]xll/-/ was 
arbitrary, we conclude that q(x) <<. Iz llx II/-/. We thus have proved (3). By Bonsall's 
theorem, there exists a linear functional f : X ~ JK, such that q(x) <<. f ( x )  for 

x 6 X+ and f ( x )  <<./zl]xll/4 for x c X. We next show that f has the required 
properties. 

1 (i) Fix x 6 Wf ["1X+. For every y >/1, we have -~x ~ WT c X \ B, and so x 
vB. Consequently, there exists o~ c [0, 1[, such that x c o~B C otH. It follows that 

1 The property (ii) below yields f(x) > 0 for x ~ X+ \ {0}, as well as the (r)-boundedness of  Bf := 
f - l ({1})  M X+. 
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f (x)  <<. ~llxllH ~ ~ot < ~. Hence f ( W f  N X+) C [0,/z[. Clearly, the boundedness 
of f ( W f  N X+) yields the continuity of f ix+ at 0. 

(ii) Fix a balanced neighborhood W 6 1)r (0). As B is (r)-bounded, we have eB C 
W for some e 6]0, c~[. Let x e X+, such that f (x)  < e. Since q(x) <~ f (x )  < e, 
by (I) we deduce that x e t~B for some ot~ [0, el. We thus get x ~ aB C ~ W C W. 

(iii) After assuming that A C X+ (otherwise we apply a translation and, if  
necessary, we multiply the resulting set by - 1), the proof is straightforward. [] 

Remark  3. For a topological ordered vector space Y~ with locally solid topology 
and closed positive cone, the property (c) from the Introduction is equivalent to 

(c') There is a functional f 6 Y~ satisfying the requirement (ii) from Lemma 2. 

A large amount of known results on topological ordered vector spaces still hold 
if we replace the usual topological completeness by the monotonic completeness 
defined in [6]: 

Definition 4 (Monotonic completeness). The topology r of  X is said to be 
monotonically complete, if  and only if every monotonic (r)-Cauchy net in X 
is (r)-convergent. In the same way we define monotonic a-completeness, by 
considering sequences instead of  nets. 

Monotonic completeness is strictly weaker than the usual completeness of the 
topology: 

Example 5. The vector space X = BV([0, 1])  = {x : [0 ,  1] ~ l~lx has bounded 
variation} is a Dedekind complete vector lattice with respect to the usual ordering 
" _ "  defined by the cone 

X+ = {x • [0, 1] --+ ~+ Ix is increasing}. 

The L ~ norm II IIoo considered on X is monotonically complete and additive on X+, 
but neither complete nor solid. Nonetheless, Theorem 14 (stated with the weaker 
monotonic ~r-completeness) may be applied for the space (X, _.5, II I1~). 

Proposition 6. We have the following: 

(i) Any (r)-bounded monotonic net from X is (r)-Cauchy. 
(ii) For r, monotonic completeness is equivalent to monotonic a-completeness. 

Proof. Let us choose a linear functional f : X --+ ~ as in Lemma 2 and a 
neighborhood Wf ~ V~(O), such that f (Wf M X+) is bounded. 

(i) Let (x~)~ea C X be a (r)-bounded increasing net and let W E 193(0). Choose 
a balanced neighborhood Wo ~ )2~ (0), such that W0 + Wo c W. By Lemma 2(ii) 
we can find e ~ ]0, co[, such that x ~ W0 whenever x ~ X+ and f (x)  < e. Choose 
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3o ~ A. Since (x~)~>~ o C X+ is a (r)-bounded increasing net, by Lemma 2(iii) 

we deduce that (f(xs))~>>.8o c ]I~ is an upper bounded increasing net. Let ot := 

V~>~o f(x~) and 8w/> 80, such that ot - e < f(xav¢) <<. ~. For every 8/> 8w we have 
f(x~ - xa w) < e, and so x~ - x~ W 6 Wo. Consequently, for arbitrary 8', 8" >1 8w we 
have xs, - x~,, ~ Wo - Wo C W. We conclude that (x~)8~zx is a (r)-Cauchy net. 

(ii) Assume r is monotonically a-complete and let (xs)8~,x c X be an increasing 
(r)-Cauchy net. Thus, there exists 8' ~ A, such that (x~ - x8,)8~>~, C Wf N X+. Ac- 

cording to Lemma 2(iii), the net (xs)8>j C X is (r)-bounded. Also, ( f(xs))8>f C 
R is an upper bounded increasing net. For ot := ~/~>~, f(x~),  let us choose an 

increasing sequence (3n)neN C A, such that 80 >/8' and l i m n ~  f(x~,)  = a. The 

sequence (x~,)~N C X+ is increasing and (r)-bounded, and hence (r)-Cauchy, 
by (i). As r is monotonically ~r-complete, the limit (r)- l i m , ~  x~, =: x e X exists. 
We claim that 

(4) (r)-  lim x~ = x. 
8c A 

To prove this, fix W 6 ~;r (0) and choose W0 e V~ (0), such that Wo + W0 c W. 
By Lemma 2(ii), there exists e 6 ]0, ~ [ ,  such that z 6 Wo whenever z 6 X+ and 

f ( z )  < e. Now choose m ~ N, such that f(x~m) > ot - e and x~,, - x 6 Wo. Let 

8 >/3m. We have ot - e < f(Xam) <~ f(x~) <~ or, hence f(x8 - x~,,) < e, which forces 

x~ - x~ m ~ Wo. It follows that 

x8 - x = (x8 - x~,,) + (x~,, - x) ~ Wo + Wo C W. 

We thus have proved (4). We conclude that (r) is monotonically complete. [] 

The following proposition is a useful shortcut for proving Dedekind complete- 
ness, since directed upwards/downwards sets may be viewed as monotonic nets. 
Such nets are more convenient and fit well with monotonic completeness in 

topological ordered vector spaces. 

Proposition 7. For a directed ordered vector space Y with the Riesz decomposi- 
tion property, the following three statements are equivalent: 

(D) Y is a Dedekind complete vector lattice. 
(D+) supA exists for any nonempty upper bounded A C Y+ with a directed 

downwards set of  upper bounds M A : =  Naea (a + Y+ ). 
(D- )  infA exists for any nonempty lower bounded A C Y+ with a directed upwards 

set of  lower bounds m a : =  Aa~a (a - Y+ ). 

Proofi (D) =~ (D+) ¢~ (D_) are obvious. In order to show the implication 

(D+) =~ (D), let us first consider a nonempty upper bounded finite subset Ao C Y+. 

As Y has the Riesz decomposition property, the se t  Mao is directed downwards. 

Hence sup Ao exists, by (D+). It follows that Y is a vector lattice. Now fix a 

nonempty upper bounded A C Y+. Since Y is a vector lattice, the set MA is 
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directed downwards. Hence sup A exists, by (D+). We conclude that Y is Dedekind 
complete. [] 

In the presence of  topological monotonic completeness, the Riesz decomposition 

property turns X~ into a Dedekind complete vector lattice with order continuous 
topology: 2 

Proposition 8. I f  X has the Riesz decomposition property and (r) is monotonically 
~r-complete, then X is a Dedekind complete vector lattice and r is order continuous. 

Proof. Let us first prove that X is a Dedekind complete vector lattice. Fix a 
nonempty lower bounded A C X+ with a directed upwards set of  lower bounds 

ma ~- NaeA(a  -- X+). Thus, we may consider ma D ma N X+ a s  an increasing 

upper bounded (by any element of  A) net in X. By Proposition 6, we deduce that 

ma (q X+ is (r)-Cauchy, and that r is monotonically complete. Hence the limit 

(r)-lim(mA A X+) = (r)-limmA =: x ~ X 

exists. Since X+ is (r)-closed, for arbitrary a ~ A and b E mA we have b ~< 
( r ) - l imma ~< a, that is, b ~< x ~< a. It follows that x = maxma = infA. By 

Proposition 7 we conclude that X is a Dedekind complete vector lattice. 

Let us show that r is order continuous. Fix a decreasing net (xs)a~a C X, 
such that /~8~/, x~ = 0. Since the positive cone X+ is (r)-closed, as for ma we 

deduce that the limit z = (r)-lima~A xa exists and / ~ A  X~ = Z. We conclude that 

(r)-l im~Ax~ = 0. [] 

3. THE ASSOCIATED LOCALLY SOLID TOPOLOGY 

Let us recall that a subset A of  a directed ordered vector space Y is called solid, if  

and only i fA = Uy~ANY+ [--Y, Y]" Then a linear topology 11 on Y is said to be locally 
solid, if  and only if every neighborhood W 6 V~ (0) contains a solid V ~ V~ (0). 
A seminorm p : Y --+ IK+ is called solid, if  and only if p(y) = infx~>+y p(x) for 
every y 6 Y. 

The following theorem associates to the original topology r a locally solid 
stronger topology ~, defined by a solid norm which is additive on the positive cone. 

Proposition 12 will show that several monotonicity-related properties are the same 

for ~ and r. 

Theorem 9. For linear f : X -+ ]~ as in Lemma 2, let us consider B f = 

{x ~ X+ [ f ( x )  = 1} and Hf  = co(Bf U ( - B f ) ) .  Then 

(5) [[ [If : X--+ R+, [[x[[f=inf{ot6]O, oo[[x6otHf},  

2 That is, for every increasing net (x,~)~eA C X wi th  ~/~zx x~ = x,  we have ( r ) - l im~e~  x~ = x. 
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is a solid norm and Ilxllf = f (x )  for every x ~ X+. This norm defines on X the 
weakest locally solid topology ~ >>. r. We also have If(x)[  ~< Ilxll f for every x E X, 
and hence f e X*~. T 

Proof .  Since f ( B f )  = {1}, by Lemma 2(i,iii) it follows that Bf C X+ is ( r ) -  
bounded and 0 ~ By. Hence Hf is (r)-bounded.  As X is directed and X+ = R+Bf, 
the set Hf is absorbing. Consequently, the Minkowski functional II Ilf defined in (5) 

is a norm. It is easily seen that Ilxllf = f (x )  for every x e X+. We claim that 

(6) Hf= U [-x,x]= U [-x,x]. 
xEBf xEHfNX+ 

As n f  f) X+ = [0, 1] • B f,  the second above equality holds. We next prove the first 

above equality. 
" c " .  For y ~ Hf, we have y --- (1 - ~.)u - ~.v for some u, v e By and ~. 6 [0, 1]. 

Since By is convex, it follows that x := (1 - )~)u + )~v 6 By and y E [ - x ,  x]. 

"D".  I f x  e By and y ~ [-x ,x]  \ { -x ,x} ,  then x -4- y 6 X+ \ {0}, and so f (y )  
x+y y-x 

] - 1, 1[, by Lemma 2(ii). We thus get u := l+f(y) E By and v := l - f (y)  E - B y ,  

and hence y = ~ u + 1- f (Y~ v E n f . 

We thus have proved (6). It follows that Hf Q X is a solid set, and hence that 

II IIf is a solid norm. Therefore, the topology ~" defined by II hlf is locally solid. As 
Hf is (r)-bounded, we have r ~< ~. Now let X be a locally solid topology on X, 

such that r ~< X. We need to show that ~ <~ X. Since ~ is defined by the norm II II f ,  it 
suffices to show that Hf ~ V for some V 6 V x (0). Choose a balanced neighborhood 

W e Y~ (0), such that W c X \ By. Thus, W M X+ C [0, I[.Bf C Hf 0 X+. As X is 
locally solid and r ~< X, there is a solid neighborhood V ~ Y X (0), such that V c W. 

We thus get 

xEVNX+ xEWNX+ xEHfNX+ 

Hence ~ ~< X. The last conclusion on f follows from f ( H f )  = co(f  (B f)  U 

f ( - B f ) )  = [ - 1 ,  1]. [] 

Example  10. Let (X, ~ ,  II I1~) be the space from Example 5. The requirements 
(i) and (ii) from Lemma 2 are fulfilled by the linear functional f (x )  = x(1). The 
topology ~ is defined by the norm 3 Ilxlif = f ( Ix l )  = Lx(0)I + Wart0,1]x, which is the 
standard solid norm on B V ([0, 1 ]). 

R e m a r k  11. For any directed ordered normed space (Y, II II) whose norm is solid 

and additive on Y+ (hence also for (AL)-spaces),  we have II II = II IIf for the linear 
functional defined by 

f :Y"->~, f(u-v)=llull-Ilvll forallu, v~Y+. 

3 For every x e BV([0, 1]), we have Ixl(t) = Ix(0)l + Var[o.t]x for t e [0, 1]. 
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Several monotonicity-related properties transmit from the original topology r to 
the stronger ~. 

Proposition 12. We have the following: 

(i) A monotonic net in X is (~)-Cauchy, i f  and only i f  it is (r)-Cauchy. 
(ii) A monotonic net in X is (~)-convergent, i f  and only i f  it is (r)-convergent. 

(iii) The topology ~ is order continuous, i f  and only i f  so is r. 
(iv) The topology ~ is monotonically complete, i f  and only i f  so is r. 
(v) A lower (or upper) bounded subset o f  X is (~)-bounded, i f  and only i f  it is 

( r )-bounded. 

Proof. Let II IIf be the norm defined by (5). (v) follows easily from Lemma 2(iii), 

since Ilxllf = f ( x )  for every x E X+. Also, (iii) and (iv) will follow if we prove (i) 
and (ii). Since r ~< ~, the implications " ~ "  hold for both (i) and (ii). We next prove 
the remaining converse implications "¢=". 

(i) Let us fix an increasing (r)-Cauchy net (x~)se~ c X and e 6 ]0, o~[. By 
Lemma 2(i), choose a neighborhood W ~ Vr(0), such that f ( W  n X+) c [0, ~[. 
As (xs)aca is (r)-Cauchy, there exists 80 ~ A, such that xa - xa 0 ~ W n X+ for 
every ~/> 80. For arbitrary g,  g '  ) ~0, we have 

IIXs, - -  Xrtt 11 f ~ Ilxa, - XSo II f + Ilxa,, - xa0 II f 
E 8 

= f(xs '  - x~ o) + f (xy ,  - xa o) < -~ + -~ = e. 

Hence (x8)~6 is (~)-Cauchy. 
(ii) Let us fix an increasing net (x6)~zx c X, such that (r)- l im~a x~ = x. As the 

positive cone X+ is (r)-closed, we have/kava xs = x, and so (x - x~)8~zx C X+. By 
Lemma 2(i) it follows that limaezx IIx - xa IIf = lim~zx f ( x  - xa) = f (0)  = 0, hence 
that (~)-lirr~e/,x~ = x .  [] 

Since our representation theorem will deal with the space X~, we next give a 
coincidence criterion for the topologies r and ~. 

Proposition 13. The topology r is locally solid (r = ~), i f  and only i f  Xr is a 
bornological locally convex space with the property 

(S) For every (r)-bounded subset A C X, there is another (r)-bounded Ao C X+, 
such that A c Ao - Ao. 

Proof. "=,".  By Theorem 9, the topology r = ~ is normable, hence also bornolog- 
ical. Let us fix a (r)-bounded A C X. As r = ~, we have A C eHf  for some 
e ~ ]0, o~[. It follows that 

A C s .  co (Bf  U ( - B f ) )  C s([0, 11. Bf  - [0, 1]. B f) .  
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Since [0, 1]. Bf is (r)-bounded, we conclude that the property (S) holds. 
"¢=". It suffices to show that Hf 6 V~ (0). Clearly, Hf is a balanced convex set. 

We claim that Hf absorbs any (r)-bounded subset of  X. To prove this, fix a (r)- 
bounded A C X. According to the property (S), we have A C A0 - Ao for some 
(r)-bounded Ao C X+. By Proposition 12(v) we deduce that A C Ao - Ao is (~)- 
bounded, since so is Ao. Hence Hf absorbs A. Our claim is proved. Since Xr is a 
bornological space, it follows that Hf 6 1;3 (0). We thus conclude that the topology 
r = ~ is locally solid. [] 

4. THE REPRESENTATION THEOREM 

Let us recall that a (KB)-space is a Dedekind complete normed lattice with order 
continuous norm (topology), such that every normly bounded increasing sequence 
is upper bounded. Any (KB)-space is also a Banach space (see for instance [1], 
Chapter VII, §2, Proposition 1). 

We can now prove our main result providing an isomorphic characterization of  
L 1-spaces. Let us recall that the property (c) from the Introduction is assumed to 
hold for Xr. 

Theorem 14 (Representation). Assume that Xr has the Riesz decomposition 
property, and that r is monotonically a-complete. Then (X, II IIf) -~ LI(/z) as 
normed lattices for some measure space (T, T,  #). I f  in addition the topology r 
is locally solid, then Xr ~- L 1 (Iz) as topological vector lattices. 

Proof. We claim that (X, II IIf) is a (KB)-space. By Theorem 9, II Ilf is a solid 
norm. According to Propositions 6(ii) and 8, X is a Dedekind complete vector 
lattice, and the topology r is order continuous and monotonically complete. By 
Proposition 12(iii), ~ is order continuous. Let us fix an increasing (~)-bounded se- 
quence (Xn)n~r~ C X+. By Propositions 6(i) and 12(v), the sequence is (r)-Cauchy. 
Hence the limit (r)-limn--,~ xn =: x ~ X exists, since r is monotonically complete. 
As X+ is (r)-closed, we have VncNXn = x. Our claim is proved. Consequently, 
(X, II [If) is a Banach lattice. Since II IIf is additive on X+, by the representation 
theorem of  Kakutani for (AL)-spaces (see [2]) we conclude that (X, II IIf) -~ t l ( # )  
as normed lattices for some measure space (T, T,/z).  [] 

Remark  15. The first (isometric) part of  Theorem 14 implies the well-known 
representation theorem of Kakutani for (AL)-spaces. Indeed, for such a space 

(Y, II II) we have II II = II tlf for the linear functional f ( y )  = Ily+ II - Ily-II, according 
to Remark 11. By Theorem 14, the Banach lattice (Y, II IIf) is isomorphic to some 
Ll(/z). By Theorem 14 we also see that in Kakutani's theorem the completeness 
hypothesis may be replaced by that (weaker) of  monotonic a-completeness. 

The following two corollaries are not consequences of  Kakutani's result, but 
follow easily from Theorem 14. 
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Corollary 16. Assume that Xr is a sequentially (r)-complete topological vector 

lattice. Then Xr "~ Ll(/-t) as topological vector lattices for some measure space 
(T, T,  ~z). 

Proof. By definition, the topology of  any topological vector lattice is assumed to 
be locally solid. As r = ~, the conclusion follows by Theorem 14. [] 

Corollary 17. Assume that X~ is a vector lattice and a FrOchet space (metrizable 

and complete). Then Xr ~- L 1 (lz) as topological vector lattices for some measure 
space (T, T,  Iz). 

Proofi By Theorem 14, we have the conclusion for X~. As r <~ ~ and both r and 
{ are metrizable and complete, we must have r = ~. The conclusion follows by 
Theorem 14 or by Corollary 16. [] 

Example 18. Let (T, T,/z) be a measure space. On the Dedekindcomplete vector 

lattice L~(/z), the L 1 norm IIx II1 = fT Ix(t)ldlz(t) is solid, but not monotonically 
a-complete. Hence the a-completeness condition from Theorem 14 cannot be 
removed. 

5. APPLICATIONS 

For any abstract real normed space (Y, El II) without a "built-in" (natural) ordering, 
there is a standard method for obtaining one: by "projecting" from the origin of the 
space a translated closed unit ball. More precisely, for fixed u E Y with Ilu [I > 1, let 
us consider the closed convex cone 

(7) Y+ := R+-By(u, 1), 

and the associated linear ordering: x ~< y ~, ',, y - x 6 Y+. Then Y becomes an 
ordered normed space. A natural question arises: how "good" can such an ordering 
be? Is it possible to obtain a vector lattice in this way? In infinite dimension, the 
answer is negative. 

Theorem 19. Let Y be a real normed space. I f  the ordering induced by the cone 
(7) has the Riesz decomposition property, then Y has finite dimension. 

Proof. Suppose that (Y, ~<) has the Riesz decomposition property. Set B := 

Br(u,  1). Let (Y, [I II) denote the completion of the normed space (Y, II II). For any 
subset A C Y, let X denote the closure of A in Y. Clearly, B is a convex bounded 
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closed subset of Y and ~+ = R+B. Let " _ "  denote the linear ordering defined on 
by the cone P := Y+. We have divided our proof into two steps. 

Step 1. We show that (Y,  ~_) is a vector lattice. Fix Yl, 22 6 Y and set M0 := (Yl + 
P) N (22 q- P) ¢ 0. 

Claim 1. The set  M := ]0, oo[.u q- Mo = Uee ]o,oo[( ~u 4- Mo) is directed downwards. 

To prove this, fix yl, ;?2 E M. Choose e c ]0, oe[, such that yj e 3eu + M0, that is, 

X i - k - 3 6 U - < ; ? j  for i, j = 1,2. 

Let us observe that in Y any order segment [fi, fi + u] contains the open ball BF(fi + 
a2, ½)' thus having nonempty interior. Therefore, for i, j -- 1, 2 we have 

xi  q- e u  -< x i ~. x i  -Jr- 2 e u ,  ;?j - -  e u  -< y j  -< ;?j, 

for some xi, y j  c Y. It follows that yj  --  X i ~ ; ? j  - -  2 i - -  3eu ~_ 0, hence that yj  --  

xi ~ P n Y = Y+ for i, j = 1, 2. As Y has the Riesz decomposition property, we 
have xi <~ y ~ y j  (i, j = 1, 2) for some y E Y. We thus get y ~ eu + Mo C M and 
y __% ;?l, ;?2. Our first claim is proved. 

Claim 2. infM exists in (Y,  ±).  For fixed a E M, set Ma := M n (a - P). As M ~ 0 
is directed downwards, we can consider - M  D - M a  as increasing nets in Y. The 
set Ma is normly bounded, since it is order bounded and the topology of Y is 
locally full, according to Proposition 1. By Proposition 6(i) we deduce that -Ma  
in a Cauchy net, hence that the limit 

l im(-Ma) = l im(-M) =: ~ ~ 

exists in the Banach space (7, I[ ID. Since the positive cone P is normly closed, it 
follows that ~ = sup(-M) -- - infM. We thus get - ~  = infM, which proves our 
second claim. 

Claim 3. We have 21 v Yc2 = - ~  in (7, _~). Let z 6 M0. For every e 6 ]0, oo[ we have 

z + eu ~ M,  and so - ~  ~_ z + eu II II z as e $ 0. As P is normly closed, we have 
- ~  _ z. We conclude that - ~  = min M0 = 21 v 22. This proves our third claim, as 
well as the statement from Step 1. 

Step 2. We show that Y has finite dimension. According to Corollary 17, (7, II [I) is 
isomorphic as topological vector lattice to some L 1(#). Hence the positive cone 
Ll(/z)+ has nonempty interior, since P -- ~+ contains the open ball B~(u, 1). 
It follows that the measure Iz is purely atomic and has finitely many atoms. 
Consequently, Y has finite dimension and Y = Y. [] 

Our second application deals with a pointwise ordering on a space of homoge- 
neous polynomials. 
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Theorem 20. Let Pa n denote the vector space of  all real polynomials of  degree at 
most d >>. 2 in n >~ l indeterminates, endowed with the ordering "~<" induced by the 
cone 

(Pan)+ := {pePen Ip(x) />0 forevery x 6R~}.  

Then the ordered vector space (Pd n , <.) does not have the Riesz decomposition 
property, and hence is not a vector lattice. 

Proof. Suppose the conclusion false. For abbreviation, set X := Tff and q := 
dim X. We claim that X is a vector lattice isomorphic to ~q. Let us consider on 
X the linear functional f and the norm II II defined by 

f(p)= f p(x)dx, Ilpll = f Ip(x)ldx. 
[0,1] n [0,1]n 

As X has finite dimension, the above norm is complete and defines the unique 
Hausdorff linear topology r of X. Clearly, the positive cone X+ is (r)-closed, 
since r coincides with the pointwise convergence topology. Hence the convex 
(r)-bounded set By :=  {p • X+ I f (P)  = 1} is (r)-closed. We see that 0 ¢ By and 
X+ = N+Bf .  By Theorem 14 we deduce that (X, II IIf) -~ (]~q, II lid as Banach 
lattices. Our claim is proved. Consequently, the set E := ext(Bf) of all extremal 
points of the convex set By is finite, since the same is true for {y • •q I IlYlI1 = 1}. 
We have By = c o ( E ) .  We next show that 

(8) R~_ C U e-l({O})" 
eeE 

n X --  For fixed ~ • R~_, consider p • X+ \ {0} defined by p(x) := ~ i = l  ( i ~i)2.  Since 
p(~) = 0 and ~ .  p c By = co(E), we must have e(~) = 0 for some e • E. This 
proves the claimed inclusion. But (8) is contradictory, since E is finite and every 
e -1({0}) from the union is a negligible set. [] 
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