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Given a Markov process associated with a su�ciently general semigroup (Pt), we
consider some stable subspaces of Hp(P µ), where p ≥ 1 and µ is an arbitrary law
on the state space. We give a su�cient condition for these spaces to coincide with
Hp(P µ), and apply this result to the study of the carré du champ operator and
to the construction of Lévy systems.
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1. INTRODUCTION

The well known theorem of Kunita [3] (see also [1, XV, 26]), concerning

the existence of the carré du champ operator on the extended domain for a

general class of semigroups, as well as the theorem of Dellacherie-Meyer [1, XV,

30, 35] concerning the existence of Lévy systems for the processes associated

with general Ray semigroups, contain in their proofs an important technical

result due to Kunita and Watanabe [4] and extended then in [1, XV, 25]. It

deals with stable subspaces of some topological spaces of martingales H1(H1
loc)

associated with a Markov process.

We think that in establishing this last result, some di�culties occur (see

the proof in [1]) and, in addition, the manner of its use seems to be not quite

clear (because of the topologies involved).

The purpose of this paper is to improve this result. Our second result,

Theorem 2.1, deals with stable subspaces of Hp for p ≥ 1. But we �rst give

in Theorem 1.2 a general result concerning stable subspaces, that is suggested

by an interesting result on extremality for probabilities [1, VIII, 57], the sto-

chastic version of a measure theoretic theorem of Douglas [2]. In Section 1

we recall some general facts concerning stable subspaces of martingales and,

in addition, consider martingales with respect to signed probabilities, that is,

signed measures Q on Ω such that Q(Ω) = 1.
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2. MARTINGALES WITH RESPECT TO

SIGNED PROBABILITIES

On a probability space (Ω,F , P ) endowed with a �ltration (Ft)t≥0,
F0− = F0, F = F∞−, satisfying the usual conditions (that is, (Ft) is right
continuous and F0 contains all P -null sets), for 1 ≤ p ≤ ∞ we consider the
spaces Hp (maximal) of all r.c.l.l. martingales (Xt) such that

‖X‖Hp := ‖X∗‖Lp < ∞,

where X∗ = sup
t≥0

|Xt|, and we denote by ‖ ‖Hp the corresponding norm. We

notice that in fact the elements of the above spaces are classes of indistinguish-
able martingales that are uniformly integrable. We often identify an element
of Hp with a representative of its class, when no cofusion is possible. We recall
that for (Xt) ∈ Hp, (Yt) ∈ Hq, with 1

p + 1
q = 1, 1 ≤ p ≤ ∞, we say that

(Xt) is orthogonal to (Yt) if the (uniformly integrable) process (XtYt) also
is a martingale that is null at 0. We denote by × this relation. The map-
ping (Xt) → X∞ = lim

t→∞
Xt de�nes an imbedding of Hp into Lp, which is an

isomorphism for 1 < p < ∞. If (Xt) ∈ Hp, (Yt) ∈ Hq, then

((Xt), (Yt)) → E[X∞Y∞]

de�nes the duality between the Banach spaces Hp and Hq, which is complete
for 1 < p < ∞. If E[X∞Y∞] = 0, we say that (Xt) is ordinarily orthogonal to
(Yt) and we denote by ⊥ this relation. Of course, (Xt) × (Yt) ⇒ (Xt) ⊥ (Yt).
If V is a subset of Hp, we denote by V × (resp. V ⊥) the set of elements of Hq

which are orthogonal (resp. ordinarily orthogonal) to each element of V . A
stable subspace of Hp is a closed linear subspace G of Hp that is closed under
stopping (X ∈ G, T stopping time ⇒ XT ∈ G) and under multiplication
by IB, B ∈ F0 : X ∈ G ⇒ IB · X ∈ G. If V is a subset of Hp, the stable
space generated by V is the smallest stable subspace of Hp containing V , and
is denoted by σ(V ).

We state without proof Theorem 1.1 below. It is proved in [1, VIII, 49]
for p = 2, a result due to Kunita-Watanabe, and for p = 1. For 1 < p < ∞,
the proof is exactly the same as for p = 2.

Theorem 1.1. Let V be an arbitrary subset of Hp, 1 ≤ p < ∞. Then

σ(V ) = (V ×)⊥ = V ××.

If Q is a signed measure on F , then we say that a real, (Ft) adapted
process (Xt)t≥0 on Ω is a martingale with respect to Q, relatively to (Ft), if
Xt is integrable with respect to |Q| (the variation of Q) for any t ≥ 0, and
the martingale property holds in the obvious manner with respect to Q. The
situation we consider in this paper is as follows: P is a �xed probability on F ,
Q = Y∞ · P , where Y∞ ∈ Lq(P ), and (Xt) is a process which initially is an
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element of Hp(P ). The following remark is fundamental for the sequel: (Xt)
is a martingale with respect to Q i� the process (XtYt) is a martingale with
respect to P (relatively to ((Ft)), where Yt = E[Y∞|Ft].

If V is a subset of Hp, we denote by M̄(V ) the set of all signed measures
Q absolutely continuous with respect to P on F , such that dQ/dP ∈ Lq(P )
and

i) Q = P on F0;
ii) any element (Xt) of V also is a martingale with respect to Q.

Theorem 1.2. Let V be a subset of Hp, 1 ≤ p < ∞, such that 1 ∈ V .

Then σ(V ) = Hp i� the set M̄(V ) reduces to the element P .

Proof. We consider V × as a linear subspace of Hq (H∞ = L∞). If we
also consider the set N̄(V ) = {Q : Q is a signed measure absolutely continuous
with respect to P on F , dQ/dP ∈ Lq(P ), Q = 0 on F0 and any element
of V is a martingale with respect to Q} then, obviously, N̄(V ) is a linear
space consisting of signed measures. Moreover, we have M̄(V ) = P + N̄(V ),
therefore M̄(V ) reduces to the element P i� N̄(V ) is the null space. Next,
remark that V × consists of uniformly integrable martingales. If we identify
such a martingale (Yt) with Y∞, and any signed measure from N̄(V ) with its
derivative with respect to P , then using the fact that 1 ∈ V and the remark
above, it follows that N̄(V ) is isomorphic to V × in an obvious manner, since
any element of V × is a martingale null at 0. Using then Theorem 1.1, the
proof is complete. �

Remark 1.3. In the case p = 1, the fact that M̄(V ) reduces to the element
P is equivalent to the fact that P is extremal in the convex set M(V ) consisting
of the positive elements of M̄(V ) (that is, of genuine probabilities), and we
recover [1, VIII, 57]. Indeed, if M̄(V ) does not reduce to {P}, then we can
pick an element L 6= 0 belonging to the linear space N̄(V ) de�ned in the above
proof. Then because L∞ is bounded (excepting on a P -null set), if c is some
constant exceeding |L∞|, then the elements

Q = (1− L∞/c) · P, R = (1 + L∞/c) · P

belong to M(V ), so that P is not extremal in M(V ). Conversely, if P is not
extremal in M(V ), it is not alone in M(V ) and so neither in M̄(V ).

However, we note that in the rest of our paper the case p = 2 will be of
special interest for us.

3. GENERATORS FOR SOME HP SPACES

On a compact metric space F we consider a Ray Markovian semigroup
(Pt)t≥0, and denote by N the set of nonbranching points for the Ray resolvent
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(Up)p>0 associated with (Pt). We note that in general P0 6= Id (or equiva-
lently N 6= F ), the case P0 = Id characterizing the Feller semigroups. Let
(Ω,F ,Ft,Θt, Xt, P

×) be the canonical Ray process with transition semigroup
(Pt). Here, Ω consists of all mappings ω : [0,∞) → N which are right contin-
uous, ω(t−) exists in F for any t > 0, and Xt(ω) = ω(t). In most cases there
exists some distinguished point ∆ absorbent relatively to (Pt), called cemetery,
and we may reduce Ω to the paths with lifetime, that is, ω(t) = ∆ after some
time t.

We can consider (Up) as a resolvent of bounded operators (p-contractions)
on the Banach space b(βu(F ))) of all bounded universally measurable functions
on F . We recall that given f, g ∈ b(βu(F )), one says that f belongs to the
domain D(L) of (Pt) and Lf = g if f = Up(pf − g) for some p > 0 or, equiva-
lently, for any p > 0 by the resolvent equation. Obviously, D(L) coincides with
the image of the resolvent, which generates a σ-�eld denoted by E . Recalling
that a universally measurable set A is said to be negligible if Up(1A) = 0, it
follows from a result of Mokobodzki [1, XII, 56] that, given f , Lf is unique up
to a negligible set and, moreover, we can take Lf = lim inf

n→∞
n(nUnf − f).

It is well known that the processes

Mp,f
t = e−ptf ◦Xt +

∫ t

0
e−ps(pf − g) ◦Xsds

de�ned on Ω, for f ∈ D(L) and p > 0, are bounded r.c.l.l. martingales with
respect to any Pµ, where µ is a law on F .

We say that a subset B of b(βu(F )) is almost total if the measure η = 0
is the only signed measure η on F not charging the negligible sets such that
η(h) = 0 for any h ∈ B.

We say that a subset P of (0,∞) inverts the Laplace transform if∫ ∞

0
e−psu(s)ds = 0 for p ∈ P ⇒ u = 0,

for any bounded r.c. function u on [0,∞).
Finally, if P is as above, a subset A of D(L) is said to be P -full if for any

p ∈ P the sets Bp = {pf − g; f ∈ A} are almost total.

Example 1. If Λ is a subset of D(L) such that Λ∪L(Λ) is almost total in
b((βu(F )) (this is the case in [1, XV, 24.1]), then the set A = Λ∪{Upf ; f ∈ Λ,
p ∈ P} is P -full in our sense for any given P as above.

Example 2. If B is almost total in b((βu(F )), then the set A =
⋃

p∈P Up(B)
is P -full in our sense for any given P as above.

Theorem 2.1. Let A ⊂ D(L) be a P -full set such that 1 ∈ A. Then

for any law µ on F , and for any a ≥ 1, r > 0, the stable space generated in

Ha(Pµ) by the set V = {(M r,f ), f ∈ A} coincides with Ha(Pµ).
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Proof. Fix a ≥ 1, r > 0 and µ. First, we enlarge the set V by taking an
arbitrary r > 0, thanks to the equation

Mp,f
t =

∫ t

0
e−(p−r)sdM r,f

s , p > 0,

and using an obvious extension of [1, VIII, 47] for any a ≥ 1. According to
Theorem 1.2, applied in the frame of (Ω,Fµ,Fµ

t , Pµ), where (Fµ
t ) satis�es the

usual conditions, we have to check that any signed measure Q ∈ M̄(Pµ) is
equal to Pµ. We claim that this is equivalent to

(2.1) EQ[1A · h ◦Xs+t] = EQ[1A · Pth ◦Xs]

for any s ≥ 0, t > 0, A ∈ F◦s , and any bounded Borel function h on F . Indeed, if
(2.1) holds, let 0 = t0 < t1 < · · · < tn and let h0, h1, . . . , hn be bounded Borel
functions on F . Since (Xt) is Markovian with respect to Pµ, by induction,
using the fact that Q = Pµ on F◦0 ⊂ Fµ

0 , we have

(2.2) EQ[h0 ◦X0 . . . hn ◦Xtn ] = EP µ [h0 ◦X0 . . . hn ◦Xtn ],

and the monotone class theorem implies that Q = Pµ, �rst on F◦ and then on
Fµ, because Q � Pµ.

Next, remark that both sides of (2.1) are signed measures depending on
h, so we may only consider continuous functions. As usual, by appling the
Laplace transform, (2.1) becomes

(2.3) ηp
s(h) def= EQ

[
1A

( ∫
[s,∞)

e−puh ◦Xudu− e−psUp(h) ◦Xs

)]
= 0

for any p ∈ P . Now, remark that all measures ηp
s do not charge the negligible

sets, because Q � Pµ. Since A is P -full by hypothesis, to show that ηp
s = 0 it

su�ces to show that ηp
s(h) = 0 for any h ∈ Bp (such an h is not necessarilly

continuous), which is equivalent to prove that (Mp,f )t are martingales with
respect to Q for any p ∈ P and any f ∈ A. But this property holds for p > 0
since Q ∈ M̄(Pµ). The proof is complete. �

4. REMARKS AND APPLICATIONS

We recall that the processes

Cp,f
t = e−ptf ◦Xt − f ◦X0 +

∫ t

0
e−ps(pf − g) ◦Xsds,

Cf
t = f ◦Xt − f ◦X0 −

∫ t

0
g ◦Xsds, p > 0,

de�ne the �fundamental� martingales (in addition, (Cf
t ) is an additive func-

tional in a larger sense, which is its main quality).
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Referring now to [1, XV, 26, 30], let us show how the proofs of these
results can be adapted to our approach. For a given P -full subset A of D(L),
let p > 0 be �xed. We pass from (Cf

t ) to (Mp,f
t ) through the stochastic integral

transform Cp,f
t =

∫ t
0 e−psdCf

s followed by the addition of the constant process
f ◦X0, and this way may be reversed. Next, we remark that both linear spaces

G = {M ∈ H2(Pµ) : d〈M,M〉t � dt on (0,∞)}
and

G′ = {M ∈ H2(Pµ) : d〈M,M〉ct � dHt on [0,∞)}
are stable subspaces of H2(Pµ), where 〈 , 〉 denotes the angle bracket, and 〈 , 〉c
its continuous part as an increasing process. We then can apply Theorem 2.1
for a = 2, which implies that G and G′ coincide with H2(Pµ). This su�ces
since by the above transform d〈Cf , Cf 〉t is equivalent to d〈Mp,f ,Mp,f 〉t on
(0,∞) while d〈Cf , cf 〉ct is equivalent to d〈Mp,f ,Mp,f 〉ct on [0,∞). These are
consequences of [1, VIII, 22] and general properties of the angle bracket.
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