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In the frame of a filtered probability space, we consider some processes with finite
variation which “approximate” the processes with bounded mean oscillation. Also,
in the frame of a Ray process, we consider increasing processes which generate
the supermartingales of class (D).
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1. INTRODUCTION

The importance of increasing processes in probability is well known. The
purpose of this paper is to add some complements to the applications of in-
creasing processes and potentials (resp. the left potentials) that they generate.
First, we consider the case of left potentials in the general frame of a filtered
probability space, in the study of the space BMO of martingales with bounded
mean oscillation, which occurs essentially in establishing the equivalence be-
tween the maximal and the quadratic norms on martingales (the inequality of
Davis, from which one derives the inequality of Burkholder on Hp for p > 1).

Second, we consider the frame of a Markovian Ray process on a compact
metric space and give a result concerning to the representation of (positive)
supermartingales of class (D) in connection with the well known representation
of potentials (excessive functions) by additive functionals. We assume that the
reader is familiar with general martingale theory and general theory of Markov
processes, as exposed in [1].

1. Let (Ω,Ft,F , P ) be a filtered probability space such that the filtration
(Ft) satisfies the usual conditions. We recall that the potential (resp. – left
potential) generated by an increasing and right continuous, predictable and
null at 0 (resp. optional, positive but not necessarilly null at 0) process (At)
on [0,∞], is the process

Zt = E[A∞ | Ft] − At (resp. Zg
t = E[A∞ | Ft] − At−),
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where E[A∞ | Ft] is a r.c.l.l. version of the martingale on [0,∞] (continuous
at ∞ !) taking the value A∞ at ∞, which dominates the process (At).

Of course, the supermartigales (Zt) and (Zg
t ) of class (D) (the second is

not right continuous but is still optional) are properly potentials iff (At) does
not jump at ∞, and each of them determines the corresponding (At).

We define the (vector) spaces B̃MOp for p > 0 as follows: a r.c.l.l. on
[0,∞] and (Ft) adapted real process (Xt) belongs to B̃MOp iff there exists
some constant a > 0 such that

E[|XS − XT−|P | FT ] ≤ aP

for any stopping times T, S such that T ≤ S. One can see that considering the
smallest constant as above, one defines a norm ‖ ‖

B̃MOp
on (the set of classes

up to evanescence of) B̃MOp, and it is known (see [1, VI, (109.7)]) that the
spaces B̃MOp coincide for p ≥ 1 in the sense that the corresponding norms are
equivalent. We write B̃MO instead of B̃MO1.

Theorem 1.1. Let (Xt)0≤t≤∞ be a real r.c.l.l. and (Ft) adapted pro-
cess. Then (Xt) belongs to B̃MO iff it admits a decomposition Xt = Ut + Kt,
where (Ut) is a process (r.c.l.l. on [0,∞] and (Ft)-adapted) with finite vari-
ation such that its variation generates a bounded left potential, and (Kt) is
a bounded process. Moreover, if a denotes the B̃MO1 norm of (Xt), one can
find a decomposition of Xt as above such that the left potential generated by
the variation of Ut is bounded by 6a, and |Kt| ≤ 2a on [0,∞].

Proof. The implication “⇐” is almost obvious by using the relations
(S, T stopping times, S ≥ T )

|US − UT−| ≤
∫

[T,S]
|dUs| ≤

∫
[T,∞]

|dUs|.

For the converse, we may assume that X∞ = X∞− by removing the
bounded jump of (Xt) at ∞, which will be assigned to (Ut) or (Kt), as we
wish, and we work in the rest of the proof with processes on [0,∞). Denote
by a the B̃MO1 norm of (Xt) and fix a constant c > a.

Let the sequence (Tn) of stopping times defined as

(1.1) T0 = 0, Tn+1 = inf{t > Tn : |Xt − XTn | > c}
(of course we put inf ∅ = ∞), the increasing process

(1.2) At =
∑
n≥0

I{Tn≤t}, A∞ = lim
t→∞At
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and, finally,

(1.3) Ut = X0 +
∑
n≥1

(XTn − XTn−1)I{Tn≤t}, U∞ = lim
t→∞Ut.

We show first that, with A0− = 0 by definition,

(1.4) E[A∞ − AT− | FT ] ≤ c/(c − a)

for any stopping time T (which means that (At) is an integrable increasing
process with bounded left potential). Hence it will then follow that

(1.5) E
[ ∫

[T,∞]
|dUs| | FT

]
≤ c(c + a)/(c − a)

for any stopping time T because of the relation

(1.6) |dUs(ω)| ≤ (c + a)dAs(ω), ω ∈ Ω,

obviously implied by the inequality

(1.7) |XTn − XTn+1 | ≤ c + a, n ∈ N∗,

consequence of the construction of (Tn) and the fact that |∆Xt| ≤ a by hy-
pothesis (|X0| ≤ a, too!).

So, returning to show (1.4), we fix a stopping time T , remark that Tn →
∞ since (Xt) has (finite) left limits by hypothesis, and consider the random
variable nT = inf{n : T ≤ Tn}. If we put Sn = TnT +n(T∞ = ∞), one can
easily see that (Sn) is an increasing sequence of stopping times. From the
construction of (Tn) we deduce

(1.8) cI{Sn+1<∞} ≤ |XSn+1 − XSn |(≤ c + a), n ∈ N∗,

and since the hypothesis implies the relation

(1.9) E[|XV − XU | | FU ] ≤ a

for any stopping times U, V such that U ≤ V (we apply the hypothesis to
U + 1

n , V + 1
n and let n → ∞) we can write

(1.10) cE[Sn+1 < ∞ | FSn ] ≤ E[|XSn+1 − XSn | | FSn ] ≤ aI{Sn<∞}
for any n ∈ N∗. By inverse recurrence we get

(1.11) E[Sn+1 < ∞ | FS0 ] ≤ (a/c)n, n ∈ N∗.

We remark that A∞ − AT− =
∑

n≥0 I{Sn<∞}, hence

(1.12) E[A∞ − AT− | FT ] =
∑
n≥−

E[Sn < ∞ | FT ] ≤ c/(c − a).

Finally, it follows by the construction of (Ut) that |Xt − Ut| is a process
bounded by c, which completes the proof by taking c = 2a. �
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Corollary ([1, VI, 109]). The norms ‖ ‖
B̃MOp

on B̃MO are all equiv-
alent for p ≥ 1.

New proof. Since clearly ‖ ‖
B̃MOp

≥ ‖ ‖
B̃MOq

for p > q by Jensen’s
inequality, it suffices to show that for any n ∈ N there exists some constant
Cn > 0 such that ‖ ‖

B̃MOn
≤ Cn‖ ‖

B̃MO1
.

Let (Xt) ∈ B̃MO, denote a = ‖X‖
B̃MO1

and consider a decomposition
Xt = Kt + Ut such that |Kt| ≤ 2a and E[

∫
[T,∞] |dUs| | FT ] ≤ 6a for any

stopping time T . Denote for simplicity Bt =
∫
[0,t] |dUs|, which is an increasing

process with bounded left potential, and fix T as above. For any n ∈ N
we have

(1.13)

E

[(
sup
s≥T

|Xs − XT−|
)n

| FT

]
≤

≤ E

[(
sup
s≥T

|Ks − KT−| +
∫

[T,∞]
|dUs|

)n

| FT

]
≤

≤ E

[
n∑

k=0

Ck
n(4a)k(B∞ − BT−)n−k | FT

]
.

But it is well known and “classical” (see [1, VI, 106 c)]) that relatively
to the increasing process (Bt) we have

(1.14) E[(B∞ − BT−)m | FT ] ≤ m!(6a)m, m ∈ N.

Returning to (1.13), we see that there exists some constant C ′
n (for

each n) such that

(1.15) E
[(

sup
s≥T

|Xs − XT−|
)n | FT

]
≤ C ′

nan,

which implies of course the desired conclusion. In addition, for n = 1, the
above relation implies that the increasing process At = sups≤t |Xs| generates
a bounded left potential. �

Remarks. We recall that the subspace of B̃MOp consisting of uniformly
integrable martingales continuous at ∞ is known as BMOp, and BMO1 is
isomorphic to the dual of the Banach space H1∗ (with maximal norm), subject
to a theory essentially due to Herz and Lepingle, developped in [1, VII, 70–80].
It follows from this theory that the set {X∞ : (Xt) ∈ BMO} coincides with
the set {A∞ : (At) is a process with finite variation on [0,∞] (r.c.l.l. and (Ft)
adapted) whose variation generates a bounded left potential}, which coincides
according to our result to the set {X∞ : (Xt) ∈ B̃MO}.
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We note that the martingale property of elements of BMO occurs “dis-
cretely” in establishing the duality between H1∗ and BMO by above quoted
“maximal” theory, where the set {X∞ : (Xt) ∈ BMO} is of interest. But when
establishing the equivalence between maximal and quadratic norms on H1 (the
inequality of Davis) one considers BMO2 (which is isomorphic to BMO1) as
imbeded in the space H2 of square integrable martingales, where the square
bracket [, ] is defined and the equations below hold (for any (Xt) ∈ H2):

(1.16) E[(X∞ − XT−)2 | FT ] = E[[X,X]∞ − [X,X]T− | FT ]

for any stopping time T , and

(1.17) E[M∞X∞] = E[[M,X]∞]

for any (Mt) ∈ H2. In fact, the second equation follows from the first by taking
T = 0 and polarization. The reader could check the role of above relations for
(Xt) ∈ BMO in different proofs of the inequality of Davis (see for example [1,
VII, 90]). The right hand of 1.16 suggests to consider the “quadratic” BMO
norm. See, for example, [3] for an extension of the “quadratic” theory.

2. On a compact metric space F we let (Pt)t≥0 be a Ray semigroup
which is supposed to be Markovian (Pt1 = 1). We consider the canonical
Ray Markovian process (Ω,Ft,F ,Θt,Xt, P

x) on F with transition semigroup
(Pt). We refer the reader for definition and theory of Ray semigroups and
Ray processes to [1, XIV] and [2]. Here, we recall that P0 	= Id in general
(P0 = Id characterizes the Feller semigroups) and if N denotes the set of
nonbranch points of F , then the “path space” Ω is the set of right continuous
mappings ω : [0,∞) → N such that ω(t−) exists in F for any t > 0; we
put Xt(ω) = ω(t) for t ≥ 0. In most situations, there exists a distinguished
absorbing point (relatively to (Pt)) ∆ ∈ F called “death point” or “cemetery”.
Clearly, ∆ ∈ N , and in this case the subset of Ω consisting of paths with “life
time” carries all probabilities P x

x∈N and can be also considered a path space.

Theorem 2.1. Let (Yt) be a positive and finite r.c.l.l. and (Ft)-adapted
process on Ω such that (Yt) is a supermartingale of class (D) with respect to
P x for any x ∈ N . Then there exists an increasing r.c. and (Ft)-adapted
process (At), predictable and null at 0, unique up to evanescence such that for
any x ∈ N it is integrable with respect to P x and we have

(2.1) Yt = Ex[A∞ − At | Ft] + Ex[Y∞ | Ft] P x-a.s.,

where Y∞ = lim inft→∞ Yt.

Proof. We first note that Y∞ is integrable with respect to any P x because
(Yt) is a positive supermartingale and, moreover, Y∞ = limt→∞ Yt P x-a.s.
(see [1, VI, 6]).
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Fix x ∈ N . The process Y ′
t = Yt − Ex[Y∞ | Fx

t ], where (Ex[Y∞ | Fx
t ])

is considered as a r.c.l.l. martingale dominated by (Yt), is a potential of class
(D) with respect to P x. It is then well known (see [1, VII, 8]) that there
exists a unique P x integrable increasing predictable process (Bx

t ) null at 0,
r.c., (Fx

t )-adapted, such that

(2.2) Yt = Ex[Bx
∞ − Bx

t | Fx
t ] + Ex[Y∞ | Fx

t ] P x-a.s.

We look to find a common version of all processes (Bx
t ) over x ∈ N ,

which should be increasing, null at 0, r.c., (Ft) adapted. For this purpose we
first use the standard approach (see [1, VII, 22]) by “close Laplacians”

(2.3) ∆n
t = nEx[Y ′

t − Y ′
t+ 1

n

| Fx
t ] = nEx[Yt − Yt+ 1

n
| Fx

t ].

In fact, (∆n
t ) is the difference between the supermartingale (nYt) and a r.c.l.l.

version of the supermartingale (nEx[Yt+ 1
n
| Fx

t ]) dominated by (nYt), so that
(∆n

t ) is a positive, r.c.l.l. and (Fx
t ) adapted process. As in [1, VII, 22], we take

(2.4) Bn
t =

∫
[0,t]

∆n
s ds

which converges to Bx
t in the weak topology σ(L1, L∞) with respect to P x.

Using now a slight modification of the selection lemma [1, XV, 2b)] applied to
Bx

t (x ∈ N) for fixed t, we can find a (Ft)-measurable random variable Bt such
that Bt = Bx

t P x-a.s. for any x ∈ N , if we are able to show that the mapping

x → Ex[ϕBn
t ]

is universally measurable for any (fixed) bounded F◦
t -measurable function ϕ

and for any n ∈ N . We have

(2.5)
Ex[Bn

t ϕ] = Ex

[( ∫
[0,t]

∆n
s ds
)
ϕ

]
=
∫

[0,t]
Ex[∆n

s ϕ]ds

n

∫
[0,t]

Ex[Ex[Ys−Ys+ 1
n
| F◦

s ]ϕ]ds=n

∫
[0,t]

Ex[(Ys−Ys+ 1
n
)Ex[ϕ|F◦

s ]]ds.

Using the monotone class theorem, in order to check the (universal)
measurability in x of the last expression, we may consider just the case where
ϕ = f1 ◦ Xt1f2 ◦ Xt2 · · · fn ◦ Xtn , 0 ≤ t1 < t2 · · · < tn = t, with fi Borel and
bounded on N for i = 1, 2, . . . , n. Using now the Markov property, we have

(2.6)
∫

[0,t]
Ex[(Ys − Ys+ 1

n
)Ex[ϕ | F◦

s ]]ds =

=
n−1∑
k=0

∫
[tk,tk+1)

Ex[(Ys − Ys+ 1
n
)Ex[ϕ | F◦

s ]]ds =
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=
n−1∑
k=0

∫
[tk ,tk+1)

Ex[(Ys − Ys+ 1
n
)f1 ◦ Xt1 . . . fk ◦ XtkPtk+1−sgk(Xs)]ds,

where gn−1 = fn, and for k = 0, 1, . . . , n − 2 we put

gk(·) = fk+1(·)Ptk+2−tk+1
(·, dxk+2) . . . Ptn−tn−1(xn−1, dxn)fk+2(xk+2) . . . fn(xn).

Of course, all gk are Borel bounded functions on N . Next, we remark that
for any bounded, Borel function g on N and u ≥ 0, the function Pu−sg(Xs(ω))
on [0, u]×Ω is β[0, u]×F◦

u measurable. Indeed, using the monotone class the-
orem, we may consider just the case where g is the trace on N of a continuous
function on F , and using the right continuity of the semigroup (Pt) we have
the approximation

Pu−sg(Xs(ω)) = lim
n

hn(s, ω),

where hn(s, ω) = Pu− ku
2n

g(Xs(ω)) for ku
2n ≤ s < (k+1)u

2n .
The measurability claimed above being now clear, we return to (2.6).

For each k = 0, . . . , n − 1, the function

1[tk,tk+1)(s)(Ys − Ys+ 1
n
)(ω)f1 ◦ Xt1(ω) . . . fk ◦ Xtk(ω)Ptk+1−sgk(Xs(ω))

is β[0,∞) ×F-(in fact β[0,∞) ×Ftk+1+ 1
n
-) measurable.

Taking their sum, by Fubini theorem and the well known fact that
the mapping x → Ex�H� is universally measurable for any F-measurable
(bounded or positive) random variable H, the universal measurability of the
mappings x → Ex[ϕBn

t ] considered above is now clear. Finally, it remains to
make a standard regularization of the “process” (Bt) by considering

a1
r = sup

s rational
s≤r

Bs

for rational r ≥ 0, and

a2
t = a1

t+ (right limit along the rationals > t),

At = a2
t for any t ≥ 0 if a2

0 = 0, At = 0 for any t ≥ 0 if a2
0 	= 0.

The process (At) is r.c., (Ft)-adapted (we used the fact that (Ft) is right
continuous) and P x-indistinguable from (Bx

t ) for any x ∈ N , which completes
the proof. �

Remarks. Our result implies the first half of the well known result con-
cerning the representation of finite p-potentials of class (D) by p-additive func-
tionals (see [1, XV, 2]). It points out that the p-additivity of the process (At)
is exclusively a consequence of the p-homogeneity of the process (Yt), namely
that Yt = e−ptf ◦ Xt, where f is a p-excessive finite function on F . Another
application of our result is the extension of [1, XV, 7b)] to the case of Ray
semigroups, by the possibility to represent supermartingales Yt = f ◦ XT

t ,
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where f is a finite excessive function and T is a stopping time relative to (Ft)
such that (Yt) is a supermartingale of class (D) (relative to P x for any x ∈ N).
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