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Abstract -
Given a (submarkovian) Ray semigroup (F,) on a locally compact metric

space E. we consider under some additional hypotheses the nonlocal part of

the generator of (£;), given by a kernel { (z,-), and we establish a relation be-

tween [(z,-) and the point process of the jumps of the canonical Ray process

with ”transition” semigroup (F;).
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1. INTRODUCTION

It seems to be almost classical that a r.c.l.l. Markov process with tran-
sition semigroup (F;) is in fact continous iff the (infinitesimal) generator of
the semigroup (F;) is a local operator.

In the well known case of process with independent and homogenous in-
crements, the celebrated Levy measure is used to "measure” the jumps of the

process, leading to an explicit continous representation for the ”predictable




- compensator” of the point process of the jumps of the original process (see
31, 18)).

A generalization of this representation is also given in [2], (4] by mean of
Lévy kernel in the general frame given by a Feller (Ray) semigroup (P;) on
a compact metric space.

We think that the ”identification” of the Lévy kernel as the ”nonlocal
part” of the generator of the semigroup is not quite clear in this general
frame. We consider our main result, theorem 3.3, as a step in direction of
establishing this rela.tionship,v under some additional hypotheses of course,
more general than in [4, XV, 37] which represented the start point for our

paper.
2. PRELIMINARIES

On a locally compact space £ with countable base we consider a sub-
markovian Borel semigroup (P;) with associated resolvent (U,). We adjoin a
point A to E, which is the Alexandrov point if E is not compact, we denote
F'= EU{A}, and we consider on F the markovian canonical extension (P)
(resp. (U,)) of (B,) (resp. (U,)). We assume that (U,) is a Ray resolvent
on F, with associated Ray semigroup (P;). For general properties of Ray
resolvents (semigroups, processes) we refer the reader to [4] and [5].

We denote by NV the set of nonbranching points for (Up) less A, which
is known to be a G5 subset of E, and moreover E \ N is negligible for (B,),
that is P(1gp\n) = 0 for any p > 0. In the sequel we identify the functions
on E to the functions on F null at A.

It f,g are continous on F, and null at A, we say that f belongs to the
continous domain D¢(L) of (F;) and Lf = g if for any £ € N we have

f(z) = Up(pf — 9)(=)
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for any p > 0 (using the resolvent equation, it suffices to check this for a
single p > 0), which is in fact equivalent to saying that f = Uy(pf — g)
identically on N if we consider the restriction of (U,) to the absorbent set

N, and also the restrictions of f, g to N.

REMARK 2.1. If f € D°(L) and Lf = g, then the following relation
holds:

o(z) = Iim (P f(z) ~ f(2)), for any z € N

Conversely, if f, g are continous on F', null at A, if above relation holds,

and moreover the following relation is true:
t
P flxy = f(z) —i—/Psg(x)ds, for any x € N,
0

then f € D%(L) and Lf = g (fhis is the case for example if the mapping
t — P;f(z) is derivable on (0,00) for any z € N and moreover the (right)
derivative at 0 exists in the sense of uniformly bounded pointwise conver-
gence).

We let to the reader the proof, noting for the converse that even if
%Pt f(z) = Pg(x) as right derivative for any £ > 0, the above analogous

of Leibniz-Newton formula does not follow necessarily from this.

For the sequel we consider a (fixed) algebra A C D¢(L) such that A is
dense in Cy(E), and moreover the following property of Urdsohn type holds:
for any compact K C E and for any z € (E'\ K) N N, there exists h € A,
0 < h <1, such that h(z) =0 and h =1 on K. (for example in the case of
Brownian semigroup on R™ one takes A = C°).

Using the above hypothesis, it follows easily that the mapping f —
1i_1’]% %Pt f(z) defined on ANCo(E \ {z}) extends to a (positive) Radon mea-
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sure on F \ {z}, for any = € E. We denote by I(z, -) this measure, which we

consider on F, null on {z}.

PROPOSITION 2.2. Suppose that F is a group with unit element e € N ,
and A is invariant under translation. Then the mapping z — I(z,-) is a
kernel from (N, B(N)) to (E, B(E)).

Proor. Let (K,) be an increasing sequence of compact sets of E such

that UK" =FE. Foranyn € N, let h, € A, 0 < h, < 1suchthat h,(e) =0,

h, = ? on K,, and put g,(z,y) = h,(y —x). We can now perform an obvious
approximation using the above sequence (g,), and the definition of I(z,-) as
acting on elements of A, to get the desired conclusion. W

Another situation where the above conclusion holds is given in [4, XV,
37]. The additional hypotheses in above proposition will not be used in the
sequel, and in order to avoid a loss of generality, from now on will be in force
the assumption that = — [(z,-) is a kernel from (N, &) to (E, 8(E)), where
& denotes the o-algebra generated by the (universally measurable) exccesive
functions. We denote by [ the kernel from (N, £) to (Ex N, B(E) x £) defined
by U(z, f) = U(z, f(-,2))

Let (W, G, G, Y:, Q) be a right continous Markov process with states space
N U {A} and transition semigroup (P;), such that the filtration (G,) is right
continous, the left limit Y;_ exists in F for any ¢ > 0, and A is a death
point for (Y;), that is Y;(w) = A after some first moment £(w). We suppose
moreover that Yy € E, that is £ > 0. The proof of the next result is essentially
contained in the proof of [4, XV, 37]. However our frame is more general,
and we give only the statement, letting to the reader the adaptation of this
proof to our situation (C2° should be replaced by A, X; by Y;, P* by Q).




For any z € F' and € > 0 we denote U, , = {y € E,;d(z,y) > €}, where d is
a distance on F' defining the topology. If f is a function on F' x E, we put

fe(z,y) = f(z,9) Ljayydey>2e)- Finally we put I(A,-) = 0, as measure on
E.

LeMMA 2.3. For any positive predictable process (g:) on W, for any
positive Borel function f on F x E, the following relation holds for any

zeF, e>0,p>0:

Ty
(21) EQ [gTU I{0<Tu}e—pTUfe(YTU_7YEFu)] = EQ /gse—PSZ(l/s, fs)ds

o] 4

I

where we denoted U = U, for simplicity, and Ty denotes the hitting time
of U.

We note that in fact Ty < £ if Ty < oo, and we do not exclude the
possibility that Y7, = A in this case.

3. THE MAIN RESULT

From now on we consider the canonical Ray process (2, F, F, ©;, X;, P®)
with transition semigroup (P;) on the states space NU{A}, such that X;_ ex-
ists in F', for any t > 0 (see [4]). If T is a fixed stopping time, we denote Y; =
Xry: as defined on {T' < oo}, where we also consider the filtrations F'; =
o(Yy;s < t) for 6 <t < oo, and finally F'; the completion of F'%in F2, with
respect to all P*, where p is a law on N. If {S'y}yE NUIA] and S are stopping
times with respect to (F";) such that Sy = .S on {¥;, = y} for any y € NU[A],

we say that {Sy},c Nufa) 18 2 collection of stopping times represented by S.

We remark now that for any 0 < t < 0o, the mapping

G — G o Or |{r<co}
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is a linear bijection from b(F?) to b(F'7). This follows from the fact that
07! {F2} = F*{, a consequence of the monotone class theorem (starting from
the products f10Y;, ... f,0Y;, ), and using the hypothetis that O7 {T < co} =

Q. For any z € NU[A], the probability P’ on {T' < co} endowed with F'2_,
defined by

(3.1) E"[G 0 ©7] = E*[C)]

is well defined, and taking in particular G = fi0 X, ... f,0 X, , one can see
that the process (Y;) is Markovian with respect to P"*, and with transition

semigroup (P,). Moreover P> {Y; =z} = 1.

PROPOSITION 3.1. Let (H}), (H?) be two positive processes on {T' < oo},
measurable with respect to S(R..) x F5,, and let {Sy}, nua) be a collection

of stopping times represented by S. Suppose that ©r {T < oo} = 2, and
(32) Y] = E[HY)

for any z € N U [A]. Then we have

(3.3) E*[HLU;T < o] = E*[H3U; T < o)

for any positive random variable U measurable with respect to Fr, and for
any z € N U [A].

PROOF. Suppose first that U is Fr measurable and bounded on {T" < oo}.
We remark that for any law v on N U [A], we have

(3.4) E'G'U;T < oo] = E" [E*T[GU; T < oo]

(we assume that G’ is extended somehow on {7'= oo} to the left side).

Indeed, if G’ = G o ©r, where G € b(FJ), the above relation expresses the
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strong Markov property, by using (3.1). Moreover (3.4) holds if G’ is F'
measurable by using a standard close framing from above and from below
(consider first the case where U is positive). Finally (3.4) still holds if U and

G’ are taken positive (instead of bounded) by monotone convergence. We

can write now:

E*[H3U;T < o] = E* [E*T[H3U;T < oo] =

(35) =E* [E’XT =L, JU;T < oo] = E° [E’XT (HE, U T < oo] =
= E= [EXT[H2U;T < oo = E*[HEU;T < oo,

using the fact that H: is F',, measurable for 1 = 1,2 and for any stopping
time L with respect to (F";), (3.4), and hypothesis (3.2) to the second line.
The second and the fourth equality follow since P {Y; =y} = 1 for any

y € NU[A] and S, = S on {Y; = y} by hypothetis on these stopping times.
|

REMARK 3.2. Relation (3.4) from above represents a slight extension
and precisation of the well known strong Markov property, concerning to
the measurability of G': if G is F = F,, measurable, then G’ = G 0 Or is
F' s measurable. The price paid was to consider the additional hypothesis

Or {T < oo} = Q, which enables us to consider the probabilities P'=.

THEOREM 3.3. For any positive Borel function a(t) on [0, c0), for any

positive Borel function f on F'x E| and for any z € N, the following relation
holds:

3

(36) E° {Za(s)f(Xs_,Xs) I{x,_#(,}]_:EI / a()I(X,, f)ds

<€ 0
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Proor. We fix z € N, and we consider first a stopping time 7' with
respect to (F;) such that P* {T < £} > 0, It is well known from the strong
Markov property that the process ({T < &}, F, Frat, X14t, P*) satisfies the
conditions prior to lemma 2.3; of course we consider the traces of 7 and Fry
on {T < ¢}, and P” should be normalized if P* {T' < £} # 1. We keep the no-
tation Y; = X7, and for any £ > 0 we define S; = inf {t > 0;Y; € E, d(¥;,Ys) > €}
on {T" < £}, which is a stopping time with respect to (F9). If we assume in
addition that Or {T < co} = 2, we claim that the following relation holds:

(3.7)

>

Se 'l
E= (T + ;S';)e”psffe(ygs_ Yo i T <€) =FE° /a(T + 8)eP(Y,, fe)ds;T < £
0

Indeed, we may first reduce to the case where a and f are bounded, and
then using the monotone class theorem we may reduce to the case where
a(t) = e %, g > 0. In this case, relation (3.7) becomes

(3.8)
Se

E* [0S f (Vs Y5,)e ;T < €] = EF / e DUV, fo)ds | e T < €
. 0
If we take into account lemma 2.3, we can apply proposition 3.1, by taking

Sy=1Ty,,,S=5,U= e T I{r<¢), and finally
t
H} = @+t (Y, Y,), H? = / ey, f)ds.
0

Therefore {3.7) is now established. We put S? = 0, we define S! to be S, as
above in the case T' = 0, and we define recurrently (as in [4]) for n > 1:
Sptl = ST + 5% 0 Ogn.

We remark that in fact S? < ¢ if S < oo, and then S?* =
= inf {t > Sp; X; € E,d(X;, Xs») > €}. If we apply now (3.7) for T = S
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and we let p — 0, it follows that for any n > 1 the following relation is valid:
(3.9)
S;\+1

E* [a(52+1)f€(xsni-l,xsg+l); St < f] = E* / a(s)(Xs, f)ds; ST < &
sz

and the desired result follows by summation over n > 0 and letting then

e — 0. We note that [(X,, f) = 0 for s > € and lim S? > £ by construction,

because of the existence of the left limits (X;..). B

REMARKS AND COMMENTS

We make express reference to [4, XV, 37],. Apparently our result theorem
3.3 looks weaker than refered (37.2) because we considered only the case
where (g;) is a Borel function on [0,00), letting aside the general caée, for
(g:) predictable with respect to (F;). However, a careful examination of the
proof of refered (37.2) shows that it is not clear how the passing from refered
(37.3) to refered (37.6) is done, because of the difficulty which arises: Xgn is
no longer equal to z almost surely P if the starting point is fixed, unless if
n = 0.

We think that the problem is how to exploit our lemma 2.3 for Y; = Xgn 4.,
and suitable choice of the other variables which occur in (2.1), namely @
and g. Considering the case of a Borel function a(t), we can reduce to
the case where the transported process a(SZ + t) splits in a product of a
Fs» measurable factor and a (F';) predictable factor, making possible to
apply proposition 3.1 (together of course with lemma 2.3). We consider
an open question if relation (3.6) still holds if a is replaced by a general
predictable process g (with respect to (F;)). It is not difficult to see that
this is equivalent to establish the analogous for (3.9) with a replaced by g
(replace a by g Ign gn+1) and f by fe in (3.6)).
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