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Abstract. For a submarkovian resolvent U = (Uα)α>0 with bounded initial kernel U0 on a Radon
space X, we construct a minstable cone of potentials C on a compact metrizable space Y ⊃ X such
that U extends to a subordonated (to C) resolvent on Y .
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1. Introduction

It is an old problem in Potential Theory, to find the most convenient axiomatic
system containing the gist of the potentialist structure, permetting an elegant devel-
opment of the most classical results. In 1970, Mokobodzky introduced the “cones
of potentials” [2], a very simple and general setting, but full in resources: devel-
opping the classical carrier theory due to M-me Hervé, Mokobodzky considered
the subordonated resolvent of kernels assigned to a cone of potentials, and to a
fixed element of this cone. Also, the theory of resolvent (with or without reference
measure) have an amazing development. But resolvents come also from other areas
of mathematics: Markov processes, analysis, etc. The aim of this note is to establish
the converse of the Mokobodzky’s result: under very general conditions of regu-
larity, any submarkovian resolvent of positive kernels on a measurable space with
proper initial kernel, comes from a subordonated resolvent assigned to a minstable
cone of potentials (Theorem 1).

2. Preliminaries and Main Result

Let A be a set and let M be a set of numerical functions on A. For any s1, s2 ∈ M,
we consider the numerical function (inf denotes pointwise infimum)

RM(s1 − s2)
def= inf{t ∈ M : t + s2 � s1}

supposing the set in braces nonvoid.
A positive convex cone C of finite functions on a set A is called a cone of

potentials ([2]) if the following axioms are satisfied:

(1) RC(s1 − s2) ∈ C, for any s1, s2 ∈ C.
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(2) s1 − RC(s1 − s2) ∈ C, for any s1, s2 ∈ C.

Let now K be a Hausdorff compact space (not necessary metrizable) and con-
sider a cone of potentials C consisting of continuous functions on K, containing
the constants, separating the points of K, and closed with respect to uniform norm
on C(K).

Fix an element c ∈ C. Under these conditions, it can be shown ([2]) that there
exists an unique positive regular kernel V on β(K) with following properties:

(a) V 1 = c

(b) f ∈ C+(K) ⇒ Vf ∈ C

(c) δC(Vf ) ⊂ suppf , for any f ∈ C+(K), where suppf = {f > 0},
where for any upper semicontinuous, upper bounded function ϕ on K, we denote
by δC(ϕ) the Choquet boundary of K with respect to the convex cone of lower
semicontinuous, lower bounded functions on K:

Cϕ = {s − αϕ : s ∈ C, α � 0}.
Moreover, the elements of C are V dominant (we recall that a positive finite Borel
function u on K is called V dominant if for any two bounded positive Borel
functions on K, the following implication is valid:

u+ Vf � Vg on {g > 0} ⇒ u+ Vf � Vg on K).

This follows from (c). The kernel V is called subordonated to C, and the unique
submarkovian resolvent of continuous, regular positive kernels on (K, β(K)) pos-
sesing V as initial kernel is called the subordonated resolvent assigned to C and c.

Given an arbitrary resolvent V = (Vα)α>0 on a measurable space (X,X), we
say that V posseses a Ray basis if there exists a countable set D consisting of
bounded supermedian functions on X, which separates the points of X, and such
that X ⊂ (σ (D))∗ (the universal completion of the σ algebra σ (D)). We recall
that a set A ∈ X∗ is called absorbent if the following implication is valid:

x ∈ A ⇒ Vα(x,X\A) = 0, for any α > 0

(it suffices for one α > 0). In this situation, it is well known that the family of
kernels UA = (UA

α )α>0 defined on the measurable space (A,XA) by the relations

x ∈ A, UA
α f (x) = Uαf̄ (x), for any α > 0

(where XA is the trace of X on A and f̄ is a measurable extension of f on X), is
a resolvent on A, called the restriction of U on the absorbent set A.

THEOREM 1. Let X be a Radon space, and V = (Vα)α>0 be a submarkovian
resolvent of positive kernels on (X, (β(X))∗) with bounded initial kernel V = V0.
Then V possesses a Ray basis iff V is the restriction of a subordonated resolvent U
relatively to a minstable cone of potentials on a compact metrizable space K that
contains X as universally measurable absorbent subset. Moreover we may suppose
X dense in K with respect to the topology on K.
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Proof. We begin with the simple implication “⇐”. Let C be a cone of potentials
on a compact metrizable space K such that C is minstable, separates the points of
K and contains the constants.

Then C-C is dense in C(K) (Weierstrass–Stone theorem). Since K is metriz-
able, C-C is separable and we choose a countable dense subset of C-C, say D1 =
{sn − tn}n∈N , where sn, tn belong to C. But the elements of C are supermedian for
U, and since X is absorbent, it follows that the set

D = {sn|X : n ∈ N} ∪ {tn|X : n ∈ N}
forms a Ray basis for V. In fact D-D is uniformly dense in bCd(X) = the linear
space of all bounded uniformly continuous functions on X (we consider the metric
induced on X).

For the converse, let V = (Vα)α>0 be a resolvent on (X, (β(X))∗) as in the state-
ment, possesing a Ray basis D. Let us denote by bS(V) the cone of all bounded
V supermedian functions, which is known to be a cone of potentials. We define
recurrently the sequence of sets of functions, all contained in bS(V):

P0 = D ∪ {1},
P 1
n+1 = {as + bt : s, t ∈ Pn, a, b � 0},
P 2
n+1 = {s ∧ t : s, t ∈ Pn},
P 3
n+1 = {Vαs : s ∈ Pn, α > 0},
P 4
n+1 = {R(s − t) : s, t ∈ Pn} ∪ {s − R(s − t) : s, t ∈ Pn},

Pn+1 =
4⋃

i=1

P i
n+1,

where R(s − t) is considered in the cone of potentials bS(V). We consider now

P =
∞⋃

n=0

Pn ⊂ bS(V).

It is easy to see that P is a Ray cone ([1, XII, 85]) possesing the additional property:

(i) s, t ∈ P ⇒ R(s − t), s − R(s − t) ∈ P ,

where R(s− t) is considered as above. In particular P is a cone of potentials, such
that

RP (s − t) = R(s − t), for any s, t ∈ P.

We show now that P is separable with respect to uniform norm, proceeding by
induction. If Pn is supposed to be separable, it is easily seen that P i

n+1 are separable
too, for i = 1, 2, 3. For i = 4, it suffices to recall that the operation

bS(V)× bS(V) � (s, t) → R(s − t) ∈ bS(V)
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is continuous with respect to uniform norm. Therefore Pn+1 is separable. Since n is
arbitrary it follows that P is separable, that is a true Ray cone, possesing moreover
the property (i) as above. We consider now the Ray compactification K of X with
respect to this Ray cone ([1, XII, 87]) and we denote by U = (Uα)α>0 the Ray
resolvent extending V on K. It follows from [1, XII, 87], that X is universally
measurable in K and is moreover absorbent since U extends V. Of course X is
dense in its Ray compactification K. For any s ∈ P we denote by s̄ the unique
extension of s to a continuous, U supermedian function on K. If we denote Sc =
S(U) ∩ C(K), we show now the following relation

s, t ∈ P ⇒ RSc (s̄ − t̄ ) = R(s − t) (1)

(R(s − t) ∈ P !). Let u ∈ Sc, u � s̄ − t̄ . Then

u|X � s − t

and hence

u|X � R(s − t) (u|X ∈ bS(V)).

Since u is continuous on K, it follows

u � R(s − t).

Since u ∈ Sc is arbitrary, we have established the inequality “�” in (1). For the
opposite inequality we remark that R(s − t) ∈ Sc, and moreover

R(s − t)|X = R(s − t) � s − t.

The continuity implies

R(s − t) � s̄ − t̄

and hence

R(s − t) � RSc (s̄ − t̄ ).

If we denote P = {s̄ : s ∈ P }, it follows from (1) and (i) that P is a cone of
potentials consisting of continuous U supermedian functions on K.

We denote now by C the closure (in Sc) of P with respect to uniform norm.
Using again the continuity of the “reduite” operation mentioned above, it then
follows easily that C is a cone of potentials on K, consisting of continuous, U
supermedian functions, and moreover C is minstable, contains the constants and
separates the points of K (since P does, by construction). In addition, from (1) it
follows the relation

RSc (f ) ∈ C, for any f ∈ C+(K). (2)
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It follows that C = Sc. If U0 denotes the initial kernel of U, then U0 is a continuous
kernel since V0 is bounded by hypothesis, and hence we have

f ∈ C+(K) ⇒ U0(f ) ∈ C. (3)

Finally, we show the relation

f ∈ C+(K) ⇒ δc(U0f ) ⊂ suppf = {f > 0}.
To this end we use the fact that the elements of C are U supermedian, and hence
U0 dominant. Therefore we have the implication

f ∈ β(K), f � 0, f ∈ C, s � U0f on {f > 0} ⇒ s � U0f.

If then follows that for any f ∈ C+(K), the set {f > 0} is a boundary set for the
convex cone

CU0f = {s − αU0f : s ∈ C, α � 0}
and therefore it contains the Choquet boundary of K (with respect to this convex
cone) which is known to be the smallest boundary set, and the proof is finished. ✷
REMARK 1. The existence of a Ray basis consisting of supermedian functions is
rather theoretical. In practice, the Ray basis consists of excessive functions, and if
we suppose moreover that the cone of excessive functions is minstable and contains
the constants, it follows that in our proof the cone P consists of excessive functions
(it is not the case for P ) and consequently the original space X is contained in the
set of nonbranch points for U.

REMARK 2. In the theory of resolvents, one works with proper resolvents, and
we have considered bounded resolvents. Let U = (Uα)α>0 be a proper resolvent,
that is there exists 0 < g � 1 such that U0(g) is bounded. It is well known that the
(bounded) kernel

V0(f )
def= U0(g · f )

possesses the complete maximum principle, and therefore exists a unique submar-
kovian resolvent V = (Vα)α>0, whose initial kernel is V0. It is also well known
that U and V have the same excessive functions; but we remark moreover that the
mapping

µ ◦ U0 ⇒ µ ◦ V0

extends to a natural ordered isomorphism between the excessive measures. There-
fore nothing is lost from the potentialist structure by this transform which allows
us to reduce to bounded resolvents.
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