
Math. Nachr. 223 (2001), 65 – 75

On Some Results Concerning the Reduite and Balayage

By Valentin Grecea of Bucharest

(Received November 5, 1998)

(Revised Version January 19, 2000)

(Accepted August 1, 2000)

Abstract. If J is an analytic, saturated gambling house with compact sections, and µ≤
J

λ,

we show that there exists a (submarkovian) borel kernel P permitted in J such that µ = λP . If

V = (Vα)α>0 is a proper submarkovian resolvent on a Lusin space X , we study the regularity of the

reduite RA
s of an excesive function s on a set A ⊂ X .

0. Introduction

In this paper we propose an improvement of some more or less recent results con-
cerning the theory of reduite and balayage in Potential Theory. First, we consider the
“discrete” frame given by a gambling house on a compact metric space (see [6, X, XI]);
we give an abstract version of an old, and well – known result due to Cartier for the
case of compact convex sets in locally convex spaces, and extended then by Strassen
to the case of convex cones of continuous functions on arbitrary compact spaces (see
Theorem 1.6). Next, we pass to the “continuous” frame given by a proper submarko-
vian resolvent V = (Vα)α>0) on a Lusin measurable space X. We improve several
recent results due to Beznea and Boboc concerning the reduite. Improvement refers
to regularity of sets and functions in question; in the particular case where there ex-
ists a borel (right) process on X whose resolvent is V, that is X is semisaturated (as
it is the case in [4]), both Theorem 2.2 and its analogous from [2] are well – known
consequences of the fundamental theorem of Hunt (see [6]). We do not hesitate to
use probabilistic and analytic methods as much, looking for generality of the state-
ments and rapid proofs: Proposition 2.5 appears as a consequence of the fundamental
lemma of Hunt for Ray processes, whereas Theorem 2.6 is proved using mostly an-
alytic tools, as an application of Capacity Theory (we point out here a bicapacitary
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operator), gambling houses, and a beautiful result concerning the characterization of
reduite due to Mokobodzky (taken from [3]).

The first part of Section 1 is devoted to recalling the minimal vocabulary concerning
the gambling houses. In exchange we asuume the reader sufficiently familiar with the
general theory of resolvents and right processes (for which we refer to [6] and [7]).

1.

Let (E, E) be a measurable space. We denote by M+(E) the set of all positive
bounded measures on E, and by Π′ = {µ ∈ M+(E), µ(E) ≤ 1} the set of all subprob-
abilities on E. We also denote by p E (resp. b E) the set of positive (resp. bounded)
E – measurable functions on E. Given µ ∈ M+(E), let Eµ be the completion of E with
respect to µ. We shall consider the universal completion Eu of E , the σ – field defined
by
⋂

µ∈M+(E) Eµ. For any µ ∈ M+(E) and for any f ∈ p Eµ (or b Eµ), we denote
by µ(f) the Lebesque integral of f with respect to µ. We endow M+(E) with the
σ – field E ′ generated by the functions µ → µ(f), f ∈ b E (the trace of E ′ on Π′ is still
denoted by E ′).

Remark 1.1. Let A be a subset of b E such that the σ – field on E generated by A
is equal to E ′, A is closed under multiplication (or is a Λ – stable vector space), 1 ∈ A.
Then for any set A1 ⊂ b E such that the uniform closure of A1 contains A (in particular
for A1 = A) it follows that E ′ is generated by the functions µ → µ(f), f ∈ A1.

Indeed, denoting by E ′
1 this σ – field, obviously E ′

1 ⊂ E ′. Let

H =
{
f ∈ b E : the function µ→ µ(f) is E ′

1 measurable on M+(E)
}
.

Then H contains A1, and hence A by uniform density. A typical application of the
monotone class theorem ([6, I, 2.1, 22.3]) leads now to conclusion.

Let P be a positive, submarkovian kernel on (E, E), that is a measurable mapping
x → Px from (E, E) to (Π′, E ′). If E is a topological space and E is the borel σ – field,
we say that P is borel. If (in this context) the mapping x → Px is measurable only
from (E, Eu)

(
resp.

(
E, Eλ

)
, λ ∈ M+(E) fixed

)
to (Π′, E ′), we say that P is universally

measurable (resp. λ measurable). Here a simple consequence of above considerations.

Remark 1.2. Suppose E metrizable, separable, endowed with the borel σ – field. If
λ ∈ M+(E) is fixed, then P is λ – borel iff there exists P ′ borel (positive submarkovian)
such that Px = P ′

x λ a.s.

Following Dubins and Savage, we call gambling house any subset J of E×Π′, such
that π1(J) = E. In the sequel we consider J such that (x, εx) ∈ J for any x ∈ E (εx

denotes the Dirac mass at x), and moreover J is an E × E ′ – analytic subset of E × Π′

(for the definition of analytic sets and their theory, see [6]). For any x ∈ E, we denote
by Jx the section {µ ∈ Π′ : (x, µ) ∈ J}. A kernel P is permitted in J if Px ∈ Jx for
any x ∈ E.
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Example 1.3. Given a positive submarkovian kernel P on E, the subset J of E×Π′

defined by Jx = {εx, Px} for any x ∈ E, is even a E × E ′ – measurable gambling house
if E is metrizable and separable.

We recall (from [6]) that a lower bounded function (not necessarily measurable) f
on E is called J – supermedian, if for any x ∈ E and µ ∈ Jx, we have

µ∗(f) ≤ f(x)

(µ∗ denotes the upper integral with respect to µ). Here we have changed a little the
definition from [6] in order to be more appropiate for our purpose. Let J̄ be the
saturated of J , that is the gambling house defined by

J̄x = {µ ∈ Π′ : µ(f) ≤ f(x) for any f universally measurable J−supermeridian} .
We say that J is saturated, if J = J̄ .

Example 1.4. Given a set Γ of lower bounded, universally measurable functions
on E, the (not necessarily analytic) gambling house J defined by Jx = {µ ∈ Π′ :
µ(f) ≤ f(x), for any f ∈ Γ} is automaticly saturated, and the elements of Γ are
J – supermedian. (In fact any saturated gambling house is of such kind, by taking Γ
to be the convex cone of universally measurable J – supermedian functions).

Also from [6], given f lower bounded on E, we consider the function J∗f on E,
defined by J∗f(x) = supµ∈Jx

µ∗(f), for any x ∈ E, and recurently J∗nf for any n ∈ N .
Finally, we see that the sequence J∗nf is increasing, and denote Rf = supn J

∗nf , the
reduite of f with respect to J . It is easy to see that Rf is the smallest J – supermedian
function dominating f . Again we note the difference from the definition given in [5],
where one consider only positive f . We return now to a set Γ as above, and for any
µ, λ ∈ M+(E), we consider the relation

µ ≤
Γ
λ

def⇐⇒ µ(f) ≤ λ(f) , for any f ∈ Γ ,

which defines obviously a preorder relation on M+(E). If in particular Γ is the convex
cone of J – supermedian, universally measurable functions with respect to a given
gambling house J , the above relation is called the balayage preorder ([6]).

Proposition 1.5. Let Γ be a convex cone of continuous functions on a compact
space K, such that 1 ∈ K, and denote by Γ′ the ∧ – stabilised of Γ, that is Γ′ =
{s1 ∧ s2 ∧ . . . ∧ sn : n ∈ N, si ∈ Γ for i = 1, 2 . . .n}. Let µ, λ ∈ M+(K) be Radon
measures. Then the following statements are equivalent:

1) µ≤
Γ′
λ.

2) For any system of Radon measures λ1, λ2, . . . , λn ∈ M+(K) such that λ =∑n
i=1 λi there exists a system of Radon measures µ1, µ2, . . . , µn ∈ M+(K) such that

µ =
∑n

i=1 µi and moreover

µi ≤
Γ
λi for i = 1 , 2 , . . . , n .
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Proof . The implication 1) ⇒ 2) follows using repeatedly the Riesz decomposition
property in the convex cone of Radon measures from M+(K) endowed with the pre-
order ≤

Γ′
, that is for any Radon measures µ1, λ1, λ2 ∈ M+(K) such that µ≤

Γ′
λ1 + λ2

there then exists Radon measures µ1, µ2 ∈ M+(K) such that µ = µ1 + µ2 and
µ1 ≤

Γ′
λ1, µ2 ≤

Γ′
λ2. Indeed, if for µ ∈ M+(K) and f ∈ C(K) we define Qµ(f) =

inf{µ(s), s ∈ Γ′} known as the Bauer functional, and we denote by Q(f) the function

x −→ Qεx(f)

the minstability of Γ′ implies that Qλ1+λ2(f) = (λ1 +λ2)(Q(f)) = λ1(Qf)+λ2(Qf) =
Qλ1(f) + Qλ2(f). Hence, for any f ∈ C(K) we have

µ(f) ≤ Qµ(f) ≤ Qλ1+λ2 (f) = Qλ1(f) +Qλ2(f) .

The desired spliting of µ as above follows using a well – known application of Hahn –
Banach theorem, the Bauer functional being subadditive and positive homogeneous
on C(K). For the converse, let s = s1 ∧ s2 ∧ . . .∧ sn ∈ Γ′. Consider the sets A1 = {s =
s1}, A2 = {s = s2}\A1, . . . , An = {s = sn}\

⋃n−1
i=1 Ai. Then (Ai) form a (borel)

partition of E. Put λi = λ
∣∣
Ai

for i = 1, . . .n, and let µi be as in 2) for i = 1, 2, . . . , n.
We have

µ(s) =
n∑

i=1

µi(s) ≤
n∑

i=1

µi(si) ≤
n∑

i=1

λi(si) =
n∑

i=1

λi(s) = λ(s) .
✷

In the sequel E is a compact metric space and Π′ is endoved with the narrow (vague)
topology.

Theorem 1.6. Let J be an analytic, saturated gambling house with compact sections
(Jx compact, for any x ∈ E) and let λ, µ ∈ M+(K) be such that µ≤

J
λ. Then there

exists a borel submarkovian kernel P on E, permitted in J , such that µ = λP .

Proof . First, we remark that the relation µ≤
J
λ implies the relation

µ(f) ≤ λ(Rf)

for any f analytic, lower bounded on E, Rf being analytic by [6, X, 14], in particular
for any f ∈ C(E). If we consider the sublinear functional on C(E):

f −→ λ(Rf) =
∫
Rf(x)λ(dx)

as integral of sublinear functionals, and since the functions Rf(f ∈ C(E)) are analytic,
hence λ measurables on E, we see that the hypotheses from the well – known Strassen’s
disintegration theorem are satisfied (see the version of Strassen’s result from [6, X,
33] applied here to the separable Banach space C(E), the bounded functional f → µ(f),
and the family of sublinear functionals f → Rf(x), x ∈ E. There exists then a borel
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(E is metrizable and we apply the introducing remark) kernel P onE such that µ = λP
and

Px(f) ≤ Rf(x)(1.1)

for any f ∈ C(E), λ almost surely. Let x ∈ E be such that (1.1) holds for any
f ∈ C(E). Since J is saturated, hence stable under composition of permitted kernels,
it follows from [6, X, 22] that

Rh(x) = J∗h(x) = sup{µ(h) : µ ∈ Jx}
for any h analytic, lower bounded. Let g be upper semicontinuous, bounded. There
exists a sequence (fn) ⊂ C(E) converging decreasingly to g. Since Jx is compact, by
hypothesis, we deduce from (1.1) applied to each fn, and the Dini – Cartan lemma by
passing to the limit, that (1.1) holds for any upper semicontinuous, bounded function
g.

Let now f be universally measurable, bounded. If ε > 0 is given, there exists g
upper semicontinuous, bounded, such that g ≤ f and Px(f) ≤ Px(g) + ε. Then

Px(f) ≤ Px(g) + ε ≤ Rg(x) + ε ≤ Rf(x) + ε .(1.2)

Since ε is arbitrary, (1.2) implies obviously that

Px ≤
J
εx .(1.3)

Hence Px ∈ Jx, since J is assumed to be saturated. If we modify eventually Px on
a borel set of measure null (by taking Px = εx) we may get the kernel P permitted in
J , and the proof is finished. ✷

Corollary 1.7. (Cartier – Strassen). Let Γ be a minstable convex cone of continuous
functions on E, containing the positive constants. If we consider the gambling house
J defined by

Jx =
{
µ ∈ M+(K) : µ≤

Γ
εx

}
(1.4)

for any x ∈ E, and if the measures µ, λ ∈ M+(K) satisfy the relation µ≤
Γ
λ, then

there exists a borel kernel P permitted in J such that µ = λP .

In order to “deduce” this “classical” result from our result, it suffices to note that
the gambling house defined by (1.4) is saturated (follows from definition), that J is
even a compact subset of E × Π′, and finally the nontrivial fact that the order of
balayage on measures is given by the elements of Γ. This result is quite similar to [6,
XI, 38, 39].

Theorem 1.8. a) If f is upper semi – continuous and bounded and if the function
f̂ is defined by

f̂(x) = inf{g(x) : g ∈ Γ, g ≥ f}
then f̂ = Rf = J∗f.
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b) Let λ and µ be positive measures. Then(
µ≤

J
λ

)
⇐⇒

(
µ≤

Γ
λ

)
.

We omit the proof which is essentially the same as for the result quoted above, noting
only that it leans on the following “classical” consequence of Hahn – Banach theorem
(and Dini– Cartan lemma): if for an arbitrary function f and a positive measure λ, we
denote pλ(f) = inf{λ(g) : g ∈ Γ, g ≥ f}, then for any upper semicontinuous, upper
bounded function f , we have

pλ(f) = sup
{
µ(f) : µ≤

Γ
λ

}
.

Remark 1.9. Returning to the theorem, if we remove the compactness of sections
from hypothesis, the theorem fails (for example, if we consider the “elementary” gam-
bling house J defined in [6, XI, 40 bis a)] as follows: E = [0,∞] endowed with the
usual compact topology; for x = ∞ we take Jx = εx, and for any x < ∞ we take
Jx = {µ ∈ Π′;µ is carried by {x}∪ (x+ 1,∞)}. Then J is analytic, saturated, even in
the stronger sense considering the relation µ≤

J
εx given by positive supermedian func-

tions; if λ and µ are respectively the restrictions of Lebesque measure to the intervals
[0, 1] and [1, 2], there is no kernel P permitted in J such that µ = λP ).

Finally, we note that if in the statement of our theorem the gambling house J is
supposed moreover to be compact in E × Π′, then it follows from [6, XI, 26, 28] that
J is generated by a convex cone Γ of continuous functions on E (Γ is just the cone of
continuous J – supermedian functions on E) and in this case our theorem is equivalent
to the “classical” case.

Remark 1.10. Theorem 1.6 extends immediately to the case where E is a Lusin
topological space. Indeed, imbed E in a compact metric space Ê, as borel subset.
Define

Ĵx =

{
Jx for x ∈ E ,

εx for x ∈ Ê\E .
Then Ĵ is an analytic gambling house in Ê × Π′(Ê), with compact sections ([6, III,
58]), and one checks easily that it is saturated. Apply Theorem 1.6 for Ĵ , and finally
restrict the obtained kernel to E.

2.

Let (X,X ) be a measurable space and let V = (Vα)α>0 be a submarkovian resolvent
on (X,X ). We denote by S (resp. E) the convex cone of V – supermedian (resp. V –
excessive) functions on X. We say that a set A ∈ X is V – regular if for any s ∈ E we
have the relation

lim
n
nVn(s · 1A)(x) = s(x)
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for any x ∈ A. For example, if X is generated by the excessive functions and A is an
arbitrary set from X , it is shown in [1, proof of Th. 1.2] that the set

A∗ =
{
x ∈ A : lim inf

n→∞ nVn1A(x) = 1
}

is V – regular. Moreover if E is minstable and 1 ∈ E , then for any fine open set A
we have A = A∗, and hence A is V – regular. Also if A is absorbent for V (

that is
Vα(1X\A)(x) = 0, for any α > 0 and x ∈ A), then A is obviously V – regular. If X u

denotes the universal completion of X , then V extends naturally to a resolvent on X u,
still denoted by V. The notations Su (resp. Eu) are clear. In the following result
R denotes the reduite with respect to the convex cone S, that is for any h ≥ 0 (not
necessary measurable) we consider (following Mokobodzky) Rh = inf{s∈S : s≥h};
if h is X – measurable, it is known that Rh ∈ S.

Proposition 2.1. Let V = (Vα)α>0 be a submarkovian resolvent on a measurable
space (X,X ), let A ∈ X be V – regular and let s ∈ E . Then R(s ·1A) ∈ E , and moreover
we have:

R(s · 1A) = inf{t ∈ E : t ≥ s on A}
= inf{t ∈ Eu : t ≥ s on A}
= inf{t ∈ Su : t ≥ s on A} .

Proof . It is well – known from the general theory of resolvent that the reduite
R(s · 1A) is given by the relation

R(s · 1A) = sup
n
RnVn(s · 1A)(2.1)

where for any n ∈ N , the operator RnVn denotes the discrete reduite with respect to
the (submarkovian) kernel nVn, and moreover we have nVn

(
RnVn(s · 1A)

)
= RnVn(s ·

1A) on X\A; hence it follows that allways R(s · 1A) = ̂R(s · 1A) on X\A. For x ∈ A,
we use the fact that A is V – regular to deduce that

̂R(s · 1A)(x) def= lim
n
nVn(R(s · 1A))(x) ≥ lim

n
nVn(s · 1A)(x) = s(x) = R(s · 1A)(x) .

Since the converse inequality is obvious, the first assertion and the first equality in
the statement are clear. Further, fix n ∈ N , and denote P = nVn. Since RP (h) =
supm J∗m(h) (where J is the gambling house given by Jx = {εx, Px} for any x ∈ X)
for any n. n.m. function h ≥ 0), it follows for h = s · 1A, that RP (s · 1A) is also the
smallest X u – measurable P – supermedian function dominating s · 1A. If we consider
s (resp. A) as X u – measurable function (resp. set) and we take n → ∞, it follows
from (2.1) the equality of R(s · 1A) to the third brace in the statement, and hence the
equality to the second brace follows immediately. ✷

For the remainder of the paper, we suppose that the initial kernel V = V◦ is proper,
the cone E is minstable, 1 ∈ E , and the σ – algebra σ(E) generated by E on X coincides
with X . We denote by Ẽ the σ – algebra σ(Eu) generated by the universally measurable
excessive functions. Obviously X ⊂ Ẽ ⊂ X u. We recall that a subset A of X is called
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a Lusin set if the measurable space A endowed with the trace of X on A, is a Lusin
measurable space. It is well – known that if (X,X ) is Lusin, then a subset A of X is
Lusin, iff A ∈ X .

Theorem 2.2. Suppose that (X,X ) is Lusin (resp. Radon), and let A ∈ Ẽ (resp.
A be a Lusin set). Then for any s ∈ Eu, the function

RA
s

def= inf{t ∈ Eu : t ≥ s on A}

(called the reduite of s on A) is Ẽ (resp. X u) –measurable, V – supermedian, and if we
denote by BA

s its excessive regularization, limα→∞αVα

(
RA

s

)
we have

BA
s = RA

s on X\A .

Proof . First, we remark that we may suppose V◦ bounded, using a standard trans-
form of resolvent preserving the excessive and supermedian functions. The above hy-
pothesis permit us to choose a Ray cone R for V (see [6]) consisting of X – measurable
bounded excessive functions. Considering the Ray compactification Y of X with re-
spect to R (see [6]) and the Ray resolvent V on the metrizable compact space Y , we
have that V extends V, and X is absorbent for V .

Moreover the initial space X is contained in the set D of nonbranch points for V , since
R consists of excessive functions (not only supermedian). It follows that the initial
kernel V ◦ of V (which extends V◦) is continuous, and hence bounded on Y (a fortiori
on D). We can consider the Ray process (Xt)t≥0 on D, whose associated resolvent is
the restriction of V on D, still denoted in the sequel by V. For any V – supermedian
function u on X, the function ū defined on D by (X is universally measurable in D)

ū(x) =

{
u(x) x ∈ X ,

∞ x ∈ D\X ,

is obviously V – supermedian. Moreover if u is excessive, then the excessive regular-
ization ˆ̄u of ū coincides with u on X (since X is absorbent in D).

Therefore the trace on X of the σ – algebra E� on D generated by the set Ēu of
universally measurable V – excessive functions coincides with Ẽ . It follows that: if X
is Lusin and A ∈ E , then X is borel in D (by Lusin’s theorem), in particular X ∈ Ē ,
and hence A ∈ Ē ; if (X is Radon and) A is a Lusin set, we have that A is borel in D
(since D is a Lusin space) and hence A ∈ E�.

If s ∈ Eu, we can consider the function

R
A
ˆ̄s

def= inf
{
t̄ ∈ Ēu : t̄ ≥ ˆ̄s on A

}
.

By the celebrated theorem of Hunt on balayage (see [6, XIV, 97]) and its immediate
consequences we know that the function R̄A

ˆ̄s
is E� measurable, V – supermedian, and

it conincides with its V – excessive regularization B
A
ˆ̄s on D\A. From above considera-

tions, the restriction of R
A
ˆ̄s on X coincides with RA

s , also the restriction of B
A
ˆ̄s on X



Grecea, Reduite and Balayage 73

coincides with BA
s , and the proof is finished. ✷

It is convenient to choose the variant (X,X ) Lusin and A ∈ Ẽ. We say that A ⊂ Ẽ
is polar if BA

1 = 0;A is thin at x if there exists s ∈ Eu such that BA
s (x) < s(x); A

is totally thin if A is thin at any x ∈ X; A is semipolar if A is a countable union
of totally thin sets. For any A ∈ Ẽ we denote b(A) = {x ∈ X : A is not thin at x};
on the other hand, if Xt(t≥0) is the Ray process considered in the above proof, let
Ar = {x ∈ D : P x{TA = 0} = 1} be the set of regular points for A, where TA is the
hitting time of A.

Proposition 2.3. b(A) = X ∩Ar.

Proof . Denoting by B
A

the above “balayage” operator considered on D, we have
(A ⊂ X)

b(A) =
{
x ∈ X : BA

s (x) = s(x), for any s ∈ Eu
}

= X ∩ {x ∈ D : B
A

s̄ (x) = s̄(x), for any s̄ ∈ Eu
}

= X ∩Ar ,

by the Hunt’s theorem on balayage: B
A

s̄ (x) = P x
{
s̄◦XTA ; TA <∞} for any s̄ ∈ Ēu; if

x ∈ Ar then obviously B
A

s̄ (x) = s̄(x) for any s̄ ∈ Ēu, and conversely, if B
A

s̄ (x) = s̄(x)
for any s̄ ∈ Ēu, it suffices to take s̄ = V h̄, where h̄ > 0 on D with V h̄(x) <∞, to get

Ex

(∫ ξ

TA

h ◦Xt dt

)
= B

A

V h̄(x) = V h̄(x) = Ex

(∫ ξ

0

h ◦Xt dt

)
,

and hence TA = 0 a. s. P x, that is x ∈ Ar . ✷

It is well – known that A\Ar is semipolar in D. By arguing as above, we can complete
the statement of the theorem:

Corollary 2.4. For any A ∈ Ẽ and s ∈ Eu, we have

BA
s = RA

s

off the semipolar set A\b(A).

Indeed, since s ≥ RA
s ≥ BA

s anywhere, it follows that on A∩b(A) we have s = RA
s =

BA
s , and we have that A\b(A) = A\Ar , which is semipolar in D and hence in X.

We could continue in this manner indefinitely; it is clear that a substantial part of
the “analytic” Potential Theory associated to a transient resolvent may be deduced
from the “probabilistic” Potential Theory associated to a borel (right) process. We
end this idea with a nice consequence of Hunt’s fundamental lemma.

Let µ be a σ – finite measure on X. For any set A ∈ Ẽ and any s ∈ Eu, we denote
(according to [2])

RA
s (µ) = inf{µ(t); t ∈ Eu, t ≥ s on A} .
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Suppose for the moment that V comes from a Ray resolvent restricted to the set
X of nonbranch points and let (Xt)t≥0 be the canonical Ray process whose resolvent
is V. Let s = V h be a bounded potential such that µ(s) < ∞. Then we have
the relation RA

s (µ) = µ(RA
s ). Indeed, by Hunt’s fundamental lemma (see [6, XIV,

94]), there exists a decreasing sequence (Hn) ∈ Ẽ, A ⊂ Hn ⊂ Hr
n for any n ∈ N ,

such that P µ a. s. DHn (D denotes the enter time) tends to DA, stationarilly on
{DA < ∞}. Therefore this convergence happens P x a. s. for µ – almost all x ∈ X.
Hence Ex

{
s ◦XDHn

}↘ Ex
{
s ◦XDA

}
for µ almost all x ∈ X. Using Hunt’s theorem,

we have µ
(
RA

s

)
= Eµ

{
s ◦ XDA ;DA < ∞}, µ(RHn

s ) = Eµ
{
s ◦ XDHn

< ∞} for any
n ∈ N . If we denote tn = RHn

s = BHn
s ∈ Eu, it follows by dominated convergence that

µ(tn) ↘ µ
(
RA

s

)
; also tn = s on Hn ⊃ A, hence RA

s (µ) ≤ µ
(
RA

s

)
and since the opposite

inequality is obvious, the desired relation is clear. We return now to our general X
and V.

Proposition 2.5. RA
s (µ) = µ

(
RA

s

)
, for any set A ∈ Ẽ and any s ∈ Eu such that

there exists t ∈ Eu, t > 0 with µ(t) <∞.

Proof . Since the mapping s → RA
s (µ) is increasing

(
that is sn ↗ s ⇒ RA

sn
(µ) ↗

RA
s (µ)

)
as is noted in [2], we may reduce to the case where s is a bounded potential

with µ(s) <∞. We imbed X in D and we extend V to V as in the proof of theorem;
we apply the above remarks and we pass to the original space by restriction. ✷

Theorem 2.6. For any analytic set A ⊂ X, and for any potential s = V h, where
h ≥ 0 is analytic on X, the reduite RA

s is analytic. (X may be taken Souslin here).

Proof . As usual now, we may reduce to the case of a bounded Ray resolvent V on
a compact metric space Y , such that X = D — the set of nonbranch points. Let us
denote by Sc the convex cone of (positive) continuous V – supermedian functions on Y .
We consider the gambling house J associated as above to this ministable convex cone
of positive functions on Y and the corresponding reduite R. It can be easily checked
(using the notations from Section 1) that the following mapping

(A, f) −→ T (A, f) def= J∗((V f) · 1A) =
(( ̂V f

) · 1A

)
where A ⊂ Y , and f ≥ 0 on Y , is a bicapacitary operator (see [6, XI, 12] for definition)
on Y × Y , (each) Y being endowed with the paving of compact sets). Using now a
well – known result of Mokobodzky (also used in [2] and [3]), it follows that if A is
compact and contained in D, we have

RA
(
V
(
f
∣∣
D

))
= T (A, f)

∣∣
D

(2.2)

at least for any continuous positive function f on Y . But for any fixed x ∈ D, the
Radon measure

f −→ RA
(
V
(
f
∣∣
D

))
(x)

extends obviously to a capacity on Y (argument function) Hence (2.2) holds also
for any upper – semicontinuous positive f on Y . Now, using Choquet capacitability
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theorem, it follows that (2.2) holds for any analytic set A ⊂ D
(
we also have RAs(x) =

sup
{
RKs(x);K ⊂ A,K compact

}
for any s ∈ E) and for any analytic f ≥ 0 on Y .

Using [6, XI, 14], we conclude from (2.2) that RA
s is analytic for s = V h, where h ≥ 0

is analytic on D. ✷

Remark 2.7. If s is an arbitrary (univ. measurable) excessive function on X, it
follows by Hunt’s approximation theorem that s = supn V hn, where hn = n(s ∧ n −
nVn(s∧n)). Therefore if s is borel, it follows from above theorem that RA

s is analytic
([3]); if s is assumed to be analytic, RA

s is measurable with respect to the σ – field
generated by analytic subsets of X.

Notes 2.8. Proposition 2.1, suggested by [1, Th. 1.2] says that for regular sets
the “reduite” and the “balayage” coincide and are somewhat elementary operations,
closely connected to the discrete theory. Theorem 2.2 and Proposition 2.5 extend
similar results from [2], using a quite different approach. The consideration of the
σ – field Ẽ , instead of working with “nearly borel” or “nearly analytic” sets, is justified
by the fact that it contains almost all the sets which naturally occur in the theory.
Therefore, Theorem 2.6 should be considered a theoretic result; it refines a similar
result from [3], where it is established for the case of a borel excessive function.
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