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Abstract: Considering the ordered convex cone S of all positive right continuous
supermartingales, we give a complete description of its dual. Also we study
quasi-boundedness, quasi-continuity and subtractivity in S, proving that: the
universally quasi-bounded potentials are exactly the potentials of class (D), the
quasi-continuous potentials are exactly the regular potentials of class (D), and the
subtractible elements are exactly the local martingales.
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0. Introduction

Given a probability space (2, F, P) endowed with a filtration (F3),~, the convex
cone of supermartingales arises. Because of their many applications, the right
continuous (and positive) supermartingales are already well studied in the theory
of general processes (especially under the usual conditions). In [1], Cornea and
Licea considered the positive (without any integrability condition) right continuous
supermartingales as excessive elements with respect to a given resolvent of kernels
on the o-lattice cone of positive optional processes. They show that the convex cone
S of all positive, right continuous supermartingales is an H-cone (this also follows
from [2] and our section 3) and they obtain several interesting results concerning
duality. ‘

The aim of this paper is to study the ordered convex cone S. In order to
eliminate some technical complications, we restrict ourselves from start to the
supermartingales (X;) such that each random variable X; is finite and integrable,
that is, the familiar supermartingales considered by the theory of martingales, which
we use as our main tool. In fact, we intensely use the results from the general theory
of processes as exposed in [2]. More precisely, we first give a result concerning duality
for a large class of optional processes (Theorem 1.1), from which we then obtain the
complete description of the dual of S (Theorem 1.2) and even more. Further, we
describe the universally quasi-bounded potentials (Prop. 2.1), the quasi-continuous
potentials (Theorem 2.2), the subtractible elements of § (Prop. 2.4).

J. Azéma, M. Emery7 M. Ledoux, and M. Yor (Eds.): LNM 1801, pp. 402-412, 2003.
© Springer-Verlag Berlin Heidelberg 2003



403

1. Throughout this paper (2, F,P) is a probability space endowed with a
filtration (F;) such that Fy contains all negligible sets and F;, = F,4 for all ¢ > 0.
We denote by S the cone of all right continuous, positive supermartingales. In
fact, the clements of S are classes of real (and optional) processes with respect
to the equivalence relation associated with the preorder relation on the set of all
real processes: X < Y iff the set {(t,w) : Xi(w) £ Yi(w)} is evanescent, that is,
P{w : 3t > 0 such that X¢(w) £ Yi(w)} = 0. The order on S is the canomcal
order relation associated with “<” and will be expressed by the same symbol. We
denote by V (resp. A) the least upper bound (resp. the greatest lower bound). We
also identify a supermartingale X to the class which contains it, when no confusion
is possible. It follows then (see [3]) that for any increasing and dominated (resp.
decreasing) family F' C &, there exists an increasing (resp. decreasing) sequence
(X.) C F such that VF = \/X (resp. AF = QX") In fact, by the celebrated

theorem of Doob, it is easy to see that \/X = qup X, where “sup” denotes the

usual supremuin of the real functions X, deﬁned on R+ x 2. When X, decreases, we
have (by semianalogy) é\Xn = (1%f X, )+, where for any real process X we denote
by X the process of right-hand limits (if they exist). Here, the right-hand (and
even left-hand) limits exist at every ¢ > 0 since inf X, is still an (optional) strong
supermartingale ([2], App., 1,4).

Following [1], an H-cone is an ordered convex cone S such that the following
axioms hold:

H1) For any increasing and dominated family F' C S there exists VF and we have
s+VF =V(s+F)foralseS.

H2) For any non-empty family F' C S there exists AF and we have s + AF =
A(s+ F) forall s € S.

H3) & satisfies the Riesz decomposition property, i.e., for any s,s1,s52 € S such
that s < s1 + s there exists t1,t5 € S satisfying s = 1 + ¢, t1 < s1, t2 < s9.

It is proved in [1] that S is an H-cone. The above discussion precises obviously
H1), and also H2) by considering the decreasing family F' = {siAs2A ... Asp;
s; € Ffori=1,2,...,n, and n € N isarbitrary }. Axiom H3) will also follow
easily from our section 3.

Definition. The dual of S is the set all mappings x : S — R, that are additive,
increasing and o- continuous in order for below (that is, X, /" X = u(X,) /" (X)),
and such that for each X € S there exists a sequence (X,) C S, increasing to X
such that u(X,) < oo for any n € N.

Further, we remark that for any stopping time T, the stochastic interval [0,T')
is an element of S (it is a potential if T < oo a.s.) which we denote by 1o 1)
Moreover, it is not difficult to check that for any X € S, the product 1o,y - X
still belongs to S, and we denote it by rX. We stress the distinction between this
“cancellation from the moment 77 and the stopping at the moment 7', that is, the

supermartingale X7 defined by XT Xt/\T,t > 0.

Definition. Let A be a set of processes containing all positive bounded martin-
gales, and all stochastic intervals 1 7y, where T ranges over the set of all stopping
times. A mapping A : A — Ry is called separately o-continuous in order from
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a) for any positive martingale M € A and for any sequence of positive martingales
M, increasing to M, we have A(M,) — \M)

b) for any predictable stopping time T', there exists a sequence of stopping times
(T7,) foretelling T, such that A(10,1,,)) — A(1po,1))-

Remark. The aim of above definition is to mark a weaker form of o-continuity
in order from below, that deals only with two special kinds of supermartingales: the
martingales and the stochastic intervals.

In the sequel we use the abbreviation r.c.l.l for a real process, to mean that its
trajectories are right continuous with left limits, a.s.

Following [2, VI, 51], an increasing process (A;) is an adapted process with values
in [0,00) such that its trajectories are increasing and right continuous a.s. We put
Ao— = 0. We say that (A;) is integrable if E[Ax] < 00. (Ao = tlim Ay)

— 00

Theorem 1.1. Let C be a minstable convex cone of positive processes, containing
the constants and satisfying the following properties:

1. Every X € C is bounded, adapted, r.c.l.]. with limit at infinity X _.

2. C contains all positive bounded martingales, and all stochastic intervals 1o 1),
where T ranges over the set of all stopping times.

Then, for every mapping A : C — R.. which is positive homogenous, increasing
and separately o-continuous in order from below, there exists a unique (up to
evanescence) integrable increasing (adapted, r.c.l.l.) positive process (A;), such that
one has

A(X)ZE[/[O )XtdAL], forall X €C.

(We recall that the order relation on C is that considered above and again C may
be considered as a set of classes of processes.)

Proof. Let us consider the linear space D = C — C. We extend naturally the
mapping A to a linear form on D, still denoted by A, which is obviously positive on
the convex cone D, since A is increasing on C. Let us consider a decreasing sequence
(X™) of elements of D, such that

(1 Hm(X™)* =0 a.s.
n

(We recall that for any real process X, we denote by X* the positive function

sup | X;|). We remark first that for any n € N, it follows that (X™)* is measurable,
>0
since X™ is r.c.1.l. We can therefore consider, for each n € N, a right continuous

(with left limits) martingale M™, closed to the right by (X™)*, that is,
(2) M} = E[(X™)"|F,], for anyt > 0.

Since we have obviously
3 X< M as., foranyt>0
¢ ¢

and since both X™ and M™ are right continuous, the above inequality holds except
on an evancscent set. If we consider the martingales P* = M! — M™, it follows
from (1), (2) and Lebesgue’s convergence theorem, that the sequence (P™) increases
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to M* in C. By our hypoteses it follows then that A(P") ,~ A(M!) and hence
A(M™) ™\, 0. Using (3), we conclude that (1) implies the relation

lmA(X™) =0

We can now apply the stochastic variant of Daniell’s theorem from ([2], VII, 2,3a)).
There exist therefore two integrable increasing (positive) processes: AT optional
which may jump at 0 but not at infinity; A~ predictable, which may jump at infinity
but not at 0, such that we have for all X € D:

“) AX) = E[/(Om] X,-dA7 +/

XSdA;’]
[0,00)

Moreover we can require A~ to be purely discontinuous, and this representation is
then unique. In order to get the desired result, we show that A~ = 0 on [0, 00], a.s.
At this moment, we use the second part of the separate o-continuity in order from
below property of A; since A~ is purely discontinuous and predictable, it follows
from the predictable cross section theorem ([2], IV, 85, 86) that A~ is null on
[0,00) a.s., iff AAZ =0 a.s. on {T < oo} for any predictable stopping time 7'. By
our hypothesis, there exists a sequence of stopping times (T;,) foretelling T' and such
that AM(1or,)) ./ AM1[o,r)) (that is, (T,,) increases to T and T, < T on {T" > 0},
for any n € N).

We apply (4) to the processes X™ = 1po,7,,)) and X = 1o 7). Since X™ " X, it
follows immediatelly from Lebesgue’s monotone convergence theorem that
(5) XPdAS XsdA7

/[0,00) [0,00)

On the other hand we have that X™ = 170 1,7 on {T,, >0} and X_ = Lo, on
{T' > 0}. Hence the trajectory X" (w) increases to 1o r(.)) if T(w) > 0 and is null
if T(w) = 0. Again by Lebesgue’s monotone convergence theorem, it follows that

E[/(m aa;| = E[/(O’T) aA; |

from (4), (5), and the choice of T,,. Therefore
E[AA7;T > 0] =0.
Since A~ does not jump at 0 we have in fact
E[AA;] =0.
As T is arbitrary, this implies that A~ is null on [0, c0) (from the cross-section
theorem) and moreover if we take T = o0, we see that the jump at infinity of A~ is
null.

We have proved that A~ is null except on an evanescent set, hence (4), restricted
of course for X € C, gives the desired result, and the proof is finished.

Definition. An element u of S is called weak unit if the following relation holds:

s = V(s Anu), foreveryseS.

n
In order to apply the above result to S, we recall first a simple fact concerning
duality for lattice convex cones with weak unit: an additive, increasing and o-
continuous in order from below mapping p : S — Ry belongs to the dual iff
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there exists some weak unit u of S such that u(u) < oo (the implication “<=" is
clear and for the opposite implication we consider a weak unit ug and an increasing
sequence (un) C S, un /" ug such that u(u,) < oo for all n € N. Then the element

Un,
= —_— s k unit and p(v) <
Z STETICN) a weak unit and p(v) < o0).

ObV 1ously S has weak unit (the constant process equal to 1 ) and its weak units
are exactly those supermartingales X such that X > 0 except on an evanescent set.

Coming back to processes, we remark that any increasing real process (A4;) is
left locally integrable, that is, there exists an increasing sequence of stopping times
(T,,) such that lim, 7;, = co a.s. and E[ATR_] < oo for any n € N. We note
the distinction from the usual definition of local integrability which requires that
E[Br,] < oo, where B is the process defined by B; = A; — Ay for all t > 0.

The elements of the dual of S, denoted by S*, are called H -integrals.

Theorem 1.2. For any increasing process A = (A4;) the mapping
S>X —>E[/ XLdAL]
[0,00)

is an H-intcgral and conversely, for any H-integral ;1 on S there exists a unique
increasing process A = (A;) such that

M(X):E[/[O )XtdAt}, forall X € 8.

Proof. Let (A;) be an increasing process and let (T;,) be an increasing sequence
of stopping times such that lim, T,, = oo a.s. and E[Ar _] < oo for all n € N.
If we COHSldel the sequence (un) = (10,7, y) and the mapping defined on S by
w(X) = E[/, [0,00) X:dA,], then u is obviously additive, increasing, o-continuous in

order from below and moreover p(u,) < oo for all n € N. If we consider the element
o0

Up
u of § defined by u = —_—
T; 27 (1 + p(un))

Therefore p is an H-integral on S

Conversely, let ¢ be an H-integral on S. There exists a weak unit u of S such
that p(u) < oo; so w is a supermartingale such that u > 0 except on an evanescent
set. We consider the sequence of stopping times (7},) defined for all n € N by

1
T = inf{t < —}.
n

Then (T},) is obviously increasing and from ([2], VI, 17) it follows that lim, T, = oo
a.s., since u > 0 except on an evanescent set.
We now fix n € N and we consider the mapping

S > X I /I(X . 1[0"['71))

which we denote by . Obviously p, is additive, increasing, o-continuous in order
from below. Moreover we have

(1) (1) = p(lro,m,y) < niu(u) < oo

since v > % on [0,T,) and therefore 1jo7,y < nu. It follows that the restriction

of pn to the convex cone C = bS consisting of all bounded elements of S satisfies

, then u is a weak unit and pu(u) < oo.
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the conditions from theorem 1.1, which applies, and there exists therefore a unique
integrable increasing process A™ = (A7) such that we have:

®) WX o) =) = B[ [ Xiaay]

[0,00)
for all X € bS. By uniqueness, it then follows that A?"! = A for all t € [0, T, (w)),
for almost all w € €. Hence there exists a unique (up to evanescence) increasing

process A = (Ay) such that A =A™ on [0,T,,) for cach n € N. From (2) we have

3)  w(X)=lmu(X-lor,)) = limE[/ XtdAt] = E[/ XtdAt]
n n [0,7%) [0,00)

for all X € bS and then for all X € S by o-continuity in order from below. The
existence of the desired representation being now clear, let B = (B;) be another left
locally integrable increasing process representing the H-integral p in the sense of
(3). If (Sp) is an increasing sequence of stopping times such that E[Bgs | < oo for
all n € N, we consider the sequence of stopping times (U,,) defined by Un = SpNT,.
Then the uniqueness assertion of theorem 1.1 implies that

E [/L'O’Un) XtdAt] -F [/[O’Un) XtdBL}

for any X € §. By taking limits when n — oo we get the desired uniqueness of the
representation and the proof is finished. [

We describe now the order relation on §*, defined for p,v € §* by p < v iff
w(X) < v(X) for all X € S. For this purpose (and the sequel) we shall consider the
supermartingales of class (D). We recall that a measurable real process X is of class
(D) iff the set of random variables {|X7| - 1{r<oo} : T' stopping time } is uniformly
integrable ([2], VI, 20). If we denote by Sp the convex subcone of S consisting of
all elements of class (D), it is obvious that Sp is solid in S and increasingly dense
(since bS C Sp). We also recall the Doob-Meyer decomposition: an element X of S
belongs to Sp iff there exists an integrable increasing predictable process A, indexed
by [0, 00], which may jump at oo, but without jump at 0 such that

X; = E[Aw — A|F:] ass., for allt >0,

and moreover the process A = (A;) is unique up to evanescence with these
properties.

From now on we identify by theorem 1.2 the dual §* of S with the set of all
increasing processes (A;), as convex cones.

Proposition 1.3. Let g, v € S*. Then pu < v iff A} < A? a.s. for all t > 0, where
Al and A? are increasing processes representing respectively p and v.

Proof. Since Sp is increasingly dense in S, we have the equivalence
p<v it p(X)<v(X)foral X € Sp

We fix now X € Sp and we consider the predictable proces B = (By) given by
the Doob-Meyer decomposition of X. We have the relation:

w(X) <v(X) =
(1) E[/[o )(E[Boo\}'t] _ Bt)dAﬂ < E[/[O w)(E[me] - Bt)dA'f] .
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Replacing X by X - 1y 1) for a suitable stopping time T', we may suppose that
both A' and A? are integrable. Further, as E[B,|Fr] is the optional projection of
the process By, constant in time ([2], VI, 43,45), it follows from ([2], VI, 57) that
the above inequality if equivalent to the following one:

2) E[/[O’OO)(BOQ . Bt)dAﬂ < E[/[Dm)(Boo - Bt)d,Af] .

Since A; and A do not jump at infinity, from the integration by parts formula
applied to each trajectory ([2] VI, 90), the above inequality is equivalent to:

(3) E[‘/[OM Atl,dBt} < E[/[O

We let now X vary in Sp and therefore (3) holds for any integrable increasing
predictable process B = (B;). If we fix ¢ > 0, then for any positive, integrable
and F;_ measurable random variable H, the increasing process B, = H - 14 ) 18
predictable. Applying (3) to this (B:) we get

(1) LAY - H] < B[42 - H]
Since A}_ and A7_ are F;_ measurable, it follows from (4) that A;_ < A7_ as.,
and since A* = (A* )4 for i = 1,2, we get the desired relation
(5) Al < A? as.
The converse is easy: if (5) holds for all ¢ > 0, then for almost all w € © we have

that Al (w) < A?(w) for every ¢ > 0, hence (3), (2), (1) hold obviously, that is, 4 < v
and the proof is finished. O

Af,dBt} .

s00]

Remark. The proof of above proposition involves the computation of u(X) when
X € Sp is represented by B = (B;) and p is represented by A = (A;):

(E) u(x) = B /[ . A,dB]

Corollary 1.4, If y,v € S* are represented by A = (4;) and B = (By)
respectively, then p V v and p A v are represented by A, V B; and A; A By, where
“v? and “A” denote first the supremum (infimum) in the lattice S*, and then the
pointwise supremum (infimum) on the set of random variables.

We finally remark the striking analogy between the representation given by
theorem 1.2 and the mutual energy of two excessive functions from classical Potential
Theory. Here, the correspondent of the second excessive function (coexcessive) is
necessarily a “potential” whose “mass” is the increasing process (A;), that is, the
space €2 x Ry is “saturated” with respect to our structure. If moreover X € S'is a
potential of class (D) represented by the “mass” (B) (Doob-Meyer decomposition),
then formula (E) considered above corresponds to the classical mutual energy of
two masses.

2. We describe in this section some remarquable classes of elements of the H-
cone S by following the analogy with classical Potential Theory. First, we recall from
([2], VIL, 17) that the elements of class (D) of S are exactly the (infinite) sums of
bounded elements of S. We refine this result for potentials:
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Proposition 2.1. Let v € S be a weak unit and X € Sp a potential. Then
there exists a sequence of elements (X™) C S such that X™ < u for all n € N, and
o0
X=> X"
n=1
Proof. We define the sequence of stopping times (T5,) by T,, = inf{t : X; > nu;}.
Then (7},) is obviously increasing. Moreover, we have that lim,, T}, = cc a.s. from
([2], VI, 17), since u > 0 except on an evanescent set, and the supermartingale X
possesses a (finite) left limit at any ¢ > 0 on almost all trajectories ([2], VI, 3). If
A = (A;) is the predictable increasing process from the Doob-Meyer decomposition
of X, then (A¢) does not jump at infinity (since X is a potential) and if we consider
the predictable increasing processes A" = (A7) defined for each n > 0 by:

A? = At/\'l'n:
then for each n € N the predictable process B™ = A™ — é”‘l is increasing. It is
easy to see that the corresponding sequence of potentials (X n) defined by
X, = E[B™ — B'|F], foranyt >0,

satisfies the properties: X" < npuforalln € N and X = Z;o:l X". It is then
trivial to derive from (X ) the sequence (of potentials) (X™) possesing the desired
properties. {1

Remark. An element s of S is called universally quasi—bounded if for every weak
unit u of S there exists a sequence (s,) C S such that s, < u for all n € N and

>
s = Z $n. From the preceding facts it follows that the potentials of class (D) are

n=1
exactly the universally quasi-bounded potentials elements of S.

We say that an element s of S is quasi-continuous if for every family (s;)ics
increasing to s, one has A R(s — s;) = 0, where R(s — 1) def MueS:u+t> s}
1€
denotes the “réduite” of s —t in the S (see our section 3 and [3]). One can check
that quasi-continuity implies universal quasi-boundedness. Since X —R(X ;‘X nes
(see section 3), for I = N the above relation is equivalent to 1&% R(X -X")=0.
?

Finally, we recall that an optional process X of class (D) is called regular ([2],
V1, 50) if for all increasing and uniformly bounded sequences of stopping times (T,),
E[ Xy 7, ] = lim E[ X7, ].

Theorem 2.2. Let X € S be a potential of class (D). Then X is quasi-continuous
in S iff X is a regular process.

Proof. “==". Let T be a stopping time and T}, be a sequence of stopping times
increasing to T'. The process X™ defined by

X on [0,T),)
X" ={ E[Xp | F] on[T,T)
X on [T, 00)



410

is a supermartingale such that X™  X. By quasi-continuity of X, A R{(X—X"™) = 0.
Putting Y™ = R(X — X") > X — X", one has Y > Xp, — X} :Lnd
0< E[Xr,] — E[Xr] = E[XT1, — E[X71 | ]—'T J1 <E[Y]] < E[Y]] —0.
“&=" Let now X € S be a bounded regular potential and (X™) C S be a sequence
increasing to X. We want to prove that
(6) QR(X—X"):O

For this purpose, we invoque (the proof of) ([2], VII, 20) which tells us that
under the above conditions we have:

lim(X — X™)* =0 in probability.

Hence the martingales M = E[(X — X™)* | F¢] (verifying the relation
M"™ > R(X — X™)) are decreasing to 0 in S (by Lebesgue’s dominated convergence
theorem). Therefore A R(X — X,,) = 0, that is, X is quasi-continuous.

n

If we consider now an arbitrary regular potential X of class (D), it follows from
[2, VII, 17a] that there exists a sequence (X,,) of bounded regular potentials such
that X,, X, and X — X,, € § for all n € N. From above, each X,, is quasi-
continuous. The fact that X is quasi-continuous follows from the following relations
(and proposition below). Let X* /~ X, put X} = X* A X,, (/' X,, for fixed n) and
Y, =X —X,. We have for all i € I and n € N:

R(X - X)) < R(X,, - X)+Y,=R(X, - X))+,

and we vary first ¢ and then n. O

Remark. In the course of above proof we met the following situation: we have
a decreasing sequence (X*) of elements of S such that A X* = inf X¢ = 0 and we
(3

used from these informations only the fact that lim; E[X{] = 0. It seems that we
have not used the whole information, since only the values at 0 of the processes X*
interfere in the above limit.

It is not the case, as follows from the following “remark”.

Proposition 2.3. Let (X?) be a decreasing sequence of clements of S such that
lim; F[X{] = 0. Then we have
AX' = inf X' =0.

Proof. Let X be the (opnonal) strong supermartingale 1nf Xt It follows that for
every stopping time 7" we have

Xp < Xhas on(Q, foralli € N.
Using now the strong supermartingale property, we have
E[Xr] <lim B[X}] < lim B[X§] = 0.
1 2

Therefore X7 = 0 a.s. for every stopping time T, and X = 0 by the optional cross
section theorem. O
We now recall that a r.c.Ll. process X is called a local martingale ([4], VI, 27) if
there exists a sequence (1), ) of stopping times such that lim, 7, = oo a.s., and for
each n € N the process X "1{7« >0} is a uniformly integrable martingale (X is
the process obtained by stopping the process X at the time T5,); one says that T,
reduces X.
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We say that an element s of S is subtractible if for every t € S such that s < ¢,
s is specifically dominated by ¢.

Proposition 2.4. Let X € S. Then if X is subtractible in S, the process X is a
local martingale.

Proof. (The converse is just ([2], VI, 36).) From [2, VII, 13], we deduce that
there exist an integrable increasing, predictable process B = (B;) null at 0, with no
jump at infinity, and a positive local martingale N = (Ny), such that

Xy = E[Bs — B¢|F] + N; as., forallt > 0.
If we consider the element Y € S defined by
Y: = E[Bx|Fi] + N
then obviously X < Y. By hypothesis it follows that the process
Yi—Xi=B:

is a supermartingale, and this forces the increasing process (B;) to be null (up to
cvanescence). Hence X = N is a local martingale. [J.

3. The aim of this closing section is to show an alternative way to [1] to deduce
the “cone of potentials” property of S.
We denote by J the set of all stopping times. For each positive, optional process
Y such that Y7 is integrable for all T € 7, we consider the random variables
Z5, T € J defined by
Zl = esssup E[Ys|Fr].
SeJ
s3T

If [Z5dP < o for all T € J, then there exists a unique (up to evanescence)
optional strong supermartingale Z such that

(S) Zy=Zh as,foral TeJ.

More precisely, Z is the Snell envelope of Y considered in ({2] App. 22, 23b)).

We denote by S the positive ordered convex cone of all positive, optional strong
supermartingales; of course S C S. (The usual conditions are in force.)

If X', X2 ¢ 5, then the positive optional process ¥ = (X? — X!) Vv 0 satisfies
the above integrability conditions and the Snell envelope of (X? — X') v 0 will be
denoted by R(X?2 — X1), the réduite of X2 — X' in S.

Proposition 3.1. For all X!, X% ¢ g., the process X2~ R(X?—X1) belongs to S.
_ Proof. We may suppose that X* < X2, by replacing X' by X 1 A X2 if necessary
(S is minstable). Using the above defining property (S) of the Snell envelope, we
have for every T' € J the (a.s.) relation:
(1) (R(X?— X"))r = esssup B[X% — Xg[Fr]
Let now T,T' € J,T < T’ be arbitrary fixed. Since the process X? — R(X? - X1
is obviously optional and strong integrable, it suffices to prove that

(X* = R(X* = X")r 2 B[(X* = R(X* = X")rr|Fr),
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or equivalently
(R(X? — X"))r < X} — E[X3.|Fr] + E[(R(X? — XY)) | Fr].
According to (1), it suffices to prove that for all S € 7, S > T, we have
(2) B[X§ — X5|Fr] < X3 — B[X3|Fr] + E[(X&yp — X&yr)|Fr)
since obviously § VT’ > T”, and a well known property of conditional expectations
holds (FT g fT/).
But from the strong supermartingale property for X! we have

X5 > E[Xgyr|Fs],

and hence

(3) E[X5|Fr] 2 E[E[X§yr|Fs]|Fr] = B[ X§yp|Fr].

since Fr C Fg. Owing to (3), inequality (2) will follow quickly once it is proved that
) E[(X5 + XP)|Fr] < B[B[X3yp|Fr]] + X7

But T < 5,7 < T, and therefore T < S A T'. Hence, and from the strong
supermartingale property for X2, we have

(5) Xf 2 E[Xi\p|Fr].
Since the following identity is obvious:
(6) X&+ X3 = Xiyp + Xéar

the desired (4) follows immediately by taking the conditional expectation and
summing to (5). The proof is finished. [J

Remark. The above result holds without the usual conditions.

We return now to the usual conditions and right continuous supermartingales,
and we consider S as an ordered convex subcone of S. If X1, X2 € &, it follows from
([2], App., 23 c)) that R(X! — X?) is r.c.Ll,, and hence it belongs to S (the same
is true then for X! — R(X?! — X?2)). Hence, we have obviously

RX'-XY) =AY eS§S:V+X*> X"
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