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Abstract

For H a finite-dimensional semisimple Hopf algebra over an algebraically closed field of ch
teristic zero the induced representations fromH andH∗ to the Drinfel’d doubleD(H) are studied.
The product of two such representations is a sum of copies of the regular representation ofD(H).
The action of certain irreducible central characters ofH∗ on the simple modules ofH is considered
The modules that receive trivial action from each such irreducible central character are precis
constituents of the tensor powers of the adjoint representation ofH .
 2005 Elsevier Inc. All rights reserved.
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Introduction

Let H be a finite-dimensional semisimple Hopf algebra over an algebraically c
field of the characteristic zero. The Drinfel’d double ofH was introduced by Drinfel’d in
order to provide new quasitriangular Hopf algebras. The representation theory ofD(H)

has been intensively studied in the last years. Kaplansky’s tenth conjecture states
dimension of each simpleH -module divides the dimension ofH . Since the conjectur
was proved forD(H) [2,22] different relations between the category ofH -modules and
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that ofD(H)-modules have been considered. These relations were also used in clas
semisimple Hopf algebras of certain dimensions (see [13] and references there).

In the first section some basic facts about the character ring ofH are recalled. Sec
tion 2 is concerned with the study of the induction and the restriction functors bet
H -modules andD(H)-modules. The composition of the above two functors is compu
It is shown thatM↑D(H)↓H

∼= ∑
N∈Irr(H) N

∗ ⊗ M ⊗ N .
The trivial module ofH induced toD(H) is considered in Section 3. Study of t

restriction toH ∗ of each simple constituent of this module leads to the definition
setK(H) of irreducible centralH ∗-characters. The set of the simple constituents o
tensor powers of the adjoint representation ofH is characterized as being the set of
simple modules receiving the trivial action from each character inK(H).

WhenH has a commutative character ring (for example whenH is a quasitriangula
Hopf algebra) these irreducible centralH ∗-characters correspond to the central gro
like elements ofH . Action of theseH ∗-characters on the set of simple modules ofH is
considered in Section 4. An application of these results is given in the last section
the Grothendieck ring structure of the Drinfel’d double of the unique nontrivial semisi
eight-dimensional Hopf algebra is described.

For simplicity, the ground fieldk is assumed to be algebraically closed of character
zero even though some of the results also work for characteristicp > 0. Algebras and
coalgebras are defined over the ground fieldk; comultiplication, counit and antipode of
Hopf algebra are respectively denoted by∆, ε andS. All the other Hopf algebra notation
are those used in [12].

1. The character ring C(H)

Let H be a finite-dimensional semisimple Hopf algebra over an algebraically c
field k. Its character ringC(H) is the finite-dimensionalk-algebra with basis given b
the characters of the irreducibleH representations. We denote these characters byχ

i
, for

i = 0, . . . , r whereχ0 is the trivial character, which is the unit of thek-algebraC(H).
SinceC(H) is a semisimplek-algebra (see [25]) the Artin–Wedderburn theorem imp
thatC(H) is a product of matrix rings:

C(H) = Mp0(k) × Mp1(k) × Mp2(k) × · · · × Mpf
(k). (1.1)

SinceH ∗ is also semisimple andt ∈ C(H) being a cocommutative element [21] we m
assume that the first block matrix corresponds to the primitive central idempotentt ∈ H ∗,
the integral ofH ∗ with t (1) = 1. Therefore,t generates a one-dimensional two-sided id
insideC(H) and we havep0 = 1. C(H) admits an associative symmetric nondegene
bilinear form given by〈χ,µ〉 = χµ(Λ), whereΛ is the integral inH with ε(Λ) = 1. From
the orthogonality relations [8], we know that{χi,χi∗} form dual bases for this bilinea
form, whereχi∗ = S(χ ). On the other hand, semisimplicity ofC(H) implies that〈 , 〉 =
i
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matrix blockMps (k). In fact, Lorenz’s proof of class equation given in [9] shows that

as = dimk H ∗es

ps dimk H
. (1.2)

Herees are the central primitive idempotents ofC(H) for s = 0, . . . , f . If we consideres
uv

to be the matrix entries inMps (k) we know that{es
uv,

1
as

es
vu} are also dual bases onC(H).

Therefore, as in [9] we have that

r∑
i=0

χi∗ ⊗ χi =
∑
suv

1

as

es
uv ⊗ es

vu. (1.3)

There is another symmetric nondegenerate bilinear form onC(H), called multiplicity
(see [15]), and given bym(χi,χj ) = δi,j for any two irreducible charactersχi andχj .
Thus {χi,χi} form dual bases form( , ). We notice that for any two virtual characte
χ,µ ∈ C(H) we havem(χ,µ) = 〈χ∗,µ〉. Moreover, for any three charactersχ,µ,η ∈
C(H) Nichols and Richmond proved in [15] that

m(χ,µ) = m
(
χ∗,µ∗) and m(χ,µη) = m

(
µ∗, ηχ∗). (1.4)

In the next section the following properties ofm( , ) are needed:

Proposition 1. LetH be a semisimple Hopf algebra with the character ringC(H). Then

(1) χ = ∑
suv

1
as

m(es
uv,χ

∗)es
vu, for anyχ ∈ C(H).

(2) m(es
uv, (e

r
wt )

∗) = δs,t δv,wδu,t as .
(3) m(es

uv, et ) = δs,t∗δu,vas .

Proof. (1) For any characterχ we haveχ = ∑r
i=0 m(χi,χ)χi = ∑r

i=0 m(χi∗ , χ∗)χi . The
linear functionm(·, χ∗) applied on the first tensorand of relation (1.3) gives the equ
of (1).

(2) Letχ = er
wt in (1).

(3) Note thatet = ∑
u et

uu and apply (2). �

2. Drinfel’d double D(H)

If H is a finite-dimensional Hopf algebra then its Drinfel’d double is a Hopf alge
with underlying vector spaceH ∗ ⊗ H . The coalgebra structure ofD(H) is the tensor
product coalgebra structure ofH ∗cop⊗ H :

∆(f 	
 h) = (f2 	
 h1) ⊗ (f1 	
 h2) and ε(f 	
 h) = f (1)ε(h).
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The product is defined by the formula:

(f 	
 h)(g 	
 l) = 〈
g1, S

−1h3
〉〈g3, h1〉fg2 	
 h2l.

The antipode is given byS(f 	
 h) = S(h)S−1(f ).
SinceH is semisimple and cosemisimple it follows thatD(H) is itself semisimple

and cosemisimple [20]. In this caseΓ = t 	
 Λ is an integral ofD(H) satisfyingε(Γ ) = 1
whereΛ andt are the idempotent integrals ofH respectivelyH ∗. The Hopf algebraH can
be canonically considered as a Hopf subalgebra ofD(H) via the embeddingh �→ ε 	
 h.
If V is aD(H)-module then we get anH -moduleV ↓H , by restricting theD(H) action
to H . In this way, we get a map

resH :C
(
D(H)

) → C(H).

Now supposeM is anH -module. SinceH is embedded inD(H) we may consider th
induced moduleM↑D(H)

H = D(H) ⊗H M = H ∗ ⊗ M . In this way the map

indH :C(H) → C
(
D(H)

)

is defined on the canonical basis ofC(H) and then extended by linearity. We use
notationχ↑ for the image of a characterχ ∈ C(H) under the map indH . The following
result about the induction functor is needed. LetH be a semisimple Hopf algebra andK a
Hopf subalgebra ofH . It is known thatK is semisimple. IfM is an irreducibleK-module
and eM is a primitive idempotent ofK such thatM ∼= KeM then M↑H

K
∼= HeM [13].

IndeedM↑H
K

∼= H ⊗K KeM
∼= HeM sinceH is freeK-module (see [17]).

Proposition 2. Let H be a finite-dimensional semisimple Hopf algebra andK a Hopf
subalgebra ofH . LetM be aK-module andV anH -module. Then

V ⊗ M↑H
K

∼= (V ↓K ⊗ M)↑H
K .

Proof. Frobenius reciprocity and the fact that indH and∗ commutes implies that

mH

(
W,V ⊗ M↑H

K

) = mH

((
M↑H

K

)∗
,W ∗ ⊗ V

) = mH

((
M∗)↑H

K ,W ∗ ⊗ V
)

= mK

(
M∗,

(
W ∗ ⊗ V

)↓K

)
,

for anyH -moduleW . On the other hand

mH

(
W,(V ↓K ⊗ M)↑H

K

) = mK(W↓K,V ↓K ⊗ M) = mK

(
M∗,W↓∗

K ⊗ V ↓K

)
= mK

(
M∗,

(
W ∗ ⊗ V

)↓K

)
.

ThereforemH (W,V ⊗ M↑H
K) = mH (W, (V ↓K ⊗ M)↑H

K) for any H -moduleW which
implies thatV ⊗ M↑H ∼= (V ↓K ⊗ M)↑H . �
K
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Let M0 = kΛ be the trivialH -module andA0 = M0↑D(H)
H . The remark before Propo

sition 2 implies thatA0 ∼= D(H)(ε 	
 Λ) = H ∗ 	
 Λ. ThenA0 ∼= H ∗ whereD(H) acts
onH ∗ in the following way:

• 〈h.f, x〉 = 〈f,S−1h2xh1〉 is the left coadjoint action ofH onH ∗,
• f.g = fg is the left regularH ∗ action onH ∗.

The moduleA0 was studied in [26]. It was proved that EndD(H)(A0) ∼= C(H) as alge-
bras insideH ∗ and the simpleD(H)-submodules ofA0 are in one to one corresponden
with the central primitive idempotents ofC(H). With the above notations, it follows tha
eachH ∗es is a homogeneous component ofA0 and it containsps isomorphic copies o
a simpleD(H)-moduleVs . (Using the notations of relation (1.1),es is the central prim-
itive idempotent ofC(H) such thatC(H)es

∼= Mps (k).) Similarly let B0 be the module
obtained by inducing the trivial module fromH ∗ to D(H ∗). SinceD(H) ∼= D(H ∗)cop as
Hopf algebras [20] it follows thatB0 is aD(H)-module. ThenB0 ∼= D(H)(t 	
 1) = Ht

wheret is an idempotent integral ofH ∗. ThereforeB0 ∼= H where theD(H) action onH
is given by:

• h.l = hl is the left regular action ofH onH ,
• f.h = 〈f,h3S

−1h1〉h2 is the left coadjoint action ofH ∗ onH .

Before studying the relation betweenA0 andB0 we need the following standard fact.

Lemma 3. LetR be a ring ande andf two idempotents ofR. ThenHomR(Re,Rf) ∼= eRf .

Proposition 4. Let H be a semisimple Hopf algebra and letA0 and B0 be defined as
above. ThenA0 ⊗B0 ∼= D(H) and the only common simpleD(H) constituent of these tw
modules is the trivial module.

Proof. Let

Φ :A0 ⊗ B0 → D(H),

g ⊗ a �→ (g ↼ a1Sa3) 	
 a2.

ThenΦ is an isomorphism ofD(H)-modules with the inverse given by

Ψ :D(H) → A0 ⊗ B0,

g 	
 a �→ (g ↼ a3Sa1) ⊗ a2.

This follows from

Ψ
(
Φ(g ⊗ a)

) = Ψ
(
(g ↼ a1Sa3) 	
 a2

) = (g ↼ a1Sa5) ↼ a4Sa2 	
 a3 = g 	
 a
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sinceS2 = Id [21] andA0 ⊗ B0 is finite-dimensional. Moreover,Ψ is an isomorphism o
D(H)-modules since

Ψ (g 	
 a) = (g ↼ a3Sa1) 	
 a2 = (g 	
 a)(ε ⊗ 1).

Indeed

(g 	
 a)(ε ⊗ 1) = g.(ε ⊗ a) = g2 ⊗ 〈g1, a3Sa1〉a2 = (g ↼ a3Sa1) ⊗ a2.

SinceH is bisemisimple we may consider the idempotent integralsΛ andt of H andH ∗,
respectively. Thene = ε 	
 Λ andf = t 	
 1 are idempotents ofD(H) andA0 ∼= D(H)e ,
B0 ∼= D(H)f . Using previous lemma we have

mD(H)(A0,B0) = mD(H)

(
D(H)e,D(H)f

)
= dimk HomD(H)

(
D(H)e,D(H)f

)
= dimk f D(H)e = 1.

This implies that there is only one common constituent ofA0 andB0 and this constituen
has multiplicity one in both modules. It is easy to see that the trivialD(H)-module
k(t 	
 Λ) is a constituent for bothA0 andB0, thus it is the unique common constituent.�
Remark 5. Using Frobenius reciprocity, Proposition 4 implies that the trivial module is
only simpleD(H)-module whose restriction to bothH andH ∗ contains the trivial module
for H andH ∗, respectively.

If {ei} is ak-basis inH and{f i} is its dual basis inH ∗ then the element

R =
∑

i

(ε 	
 ei) ⊗ (
f i 	
 1

)

is an R-matrix, which makesD(H) a quasitriangular Hopf algebra [12]. Therefo
C(D(H)) is a commutativek-algebra. LetR21 be the matrix obtained by interchangi
the tensorands ofR. The map

Φ :D(H)∗ → D(H),

F �→ (id ⊗ F)(R21R)

is bijective showing that the Drinfel’d double is factorizable [14] (see also [22]). Restr
to the character ring ofD(H), Φ induces an algebra isomorphism between the cha
ter ring and the center of the Drinfel’d double [1]. The image of resH is Z(C(H)) [7].
A different proof of this fact is presented below.

Theorem 6. LetH be a finite-dimensional semisimple Hopf algebra.
ThenresH :C(D(H)) → Z(C(H)) is a surjective algebra map.
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Proof. Because the category of modules overD(H) is the center category of the catego
of H -modules [5] the image of resH lies in the center ofC(H) denoted byZ(C(H)). If Λ

andt are the nonzero idempotent integrals ofH and, respectively,H ∗, thenΓ = t ⊗Λ is an
idempotent integral ofD(H). Let V be an irreducibleD(H)-module with characterµ and
let e be the primitive central idempotent ofD(H) corresponding toV . According to [11]
we have

e = µ(1)

n2
µ ⇁ Γ = µ(1)

n2

∑
µ

(
S(t2 	
 Λ1)

)
t1 	
 Λ2,

wheren = dimk H . As pointed out in [7], under the identification ofD(H)∗ with H ∗ ⊗H ,
the mapΦ restricted toC(D(H)) is just the identity map. It follows that

E = Φ−1(e) = µ(1)

n2
µ ⇁ Γ = µ(1)

n2

∑
µ

(
S(t2 	
 Λ1)

)
t1 ⊗ Λ2

is a central primitive idempotent ofC(D(H)). Therefore

E↓H (h) = E(ε 	
 h) = µ(1)

n2

∑
µ

(
S(t2 ⊗ Λ1)

)
t1(h)ε(Λ2)

= µ(1)

n2

∑
µ

(
SΛSt2t1(h)

) = µ(1)

n2
ε(h)µ(ε 	
 Λ).

ThenE↓H = 0 if and only ifµ(ε 	
 Λ) = 0. This is equivalent tom(εH ,µ↓H ) = 0. Frobe-
nius reciprocity implies that the simple representation corresponding toµ is a submodule
of A0. Since resH is an algebra map andA0 has exactly dimk Z(C(H)) homogenous com
ponents, it follows that Im(resH ) = Z(C(H)). �

Let V0,V1, . . . , Vl be a complete set of nonisomorphic simpleD(H)-modules with the
charactersµ0,µ1, . . . ,µl and corresponding central primitive idempotentsξ0, ξ1, . . . , ξl .
Assume thatV0 is the trivialD(H)-module. Then, as in the previous section write

l∑
i=0

µi∗ ⊗ µi =
l∑

s=0

1

As

Es ⊗ Es,

whereEs are the primitive idempotents ofC(D(H)) with Φ(Es) = ξs for s = 0, . . . , l.
Notice thatE0,E1, . . . ,El form a linear basis ofC(D(H)) sinceC(D(H)) is commuta-
tive. Without loss of generality suppose thatEs↓H = es for s = 0, . . . , f andEs↓H = 0
for f < s � l. We have the following expression for the composition resH (indH (M)) =
M↑D(H)↓H .

Theorem 7. Let H be a finite-dimensional semisimple Hopf algebra andM be an irre-
ducible representation ofH . ThenM↑D(H)↓H

∼= ∑
N∗ ⊗ M ⊗ N .
N∈Irr(H)
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Proof. Let χ be the irreducible character ofM andχ0, χ1, . . . , χr be the set of all irre
ducible characters ofH . It is enough to prove thatχ↑↓ = ∑r

i=0 χi∗χχi . Relation (1.3)
implies that

r∑
i=0

χi∗χχi =
f∑

s=0

1

as

νs(χ)es,

whereν0, ν1, . . . , νf are the characters ofC(H) corresponding, respectively, to the cent
primitive idempotentse0, e1, . . . , ef . Consequently, it is enough to check that

χ↑↓ =
f∑

s=0

1

as

νs(χ)es,

for any characterχ ∈ C(H). It will be shown that

χ↑ =
f∑

s=0

1

as

νs(χ)Es. (2.1)

Then applying resH the desired equality follows immediately. Therefore it suffices to s
that

et
uv↑ =

f∑
s=0

1

as

νs

(
et
uv

)
Es

which is equivalent to

et
uv↑ = δu,v

1

at

Et .

In order to prove this we show first thatet
uv↑ = δu,v

at

At
Et and then thatAt = a2

t . Frobenius
reciprocity and Proposition 1, part (3) implies that

mD(H)

(
et
uv↑,Es

) = mH

(
et
uv,Es↓

) = mH

(
et
uv, es

) = δu,vδs,t∗as

if s � f and

mD(H)

(
et
uv↑,Es

) = mH

(
et
uv,Es↓

) = mH

(
et
uv,0

) = 0

if f < s � l. Again Proposition 1, part (1) forD(H) implies that

et
uv↑ =

l∑
mD(H)

(
Es∗, et

uv↑
) 1

As

Es = δu,v

at

At

Et .
s=0
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It follows thatet↑ = atpt

At
Et sinceet = ∑

u et
uu for any 0� t � f . Thus

χ0↑ =
f∑

s=0

es↑ =
f∑

s=0

asps

As

Es. (2.2)

But A0↓H is the adjoint representationHad of H . Thereforeχ0↑↓ is the characterχad of
the adjoint action onH and by [23]χ0↑↓ = ∑r

i=0 χi∗χi . Using again relation (1.3) we ge

χ0↑↓ =
f∑

s=0

ps

as

es .

The above two formulae forχ0↑↓ give the relation betweenas andAs , namelyAs = a2
s

for 0� s � f . �
Theorem 8. LetM be anH -module andW be anH ∗-module. Then

(1) M↑D(H)
H ⊗ W↑D(H)

H ∗ ∼= D(H)|M||W |,
(2) mD(H)(M↑D(H)

H ,W↑D(H)
H ∗ ) = |M||W |, where|M| = dimk M and |W | = dimk W .

Proof. (1) Let 1= ν0 be the character of the trivial representation ofH ∗. Relation (2.2)
applied forH ∗ instead ofH gives that

ν0↑ =
f ′∑

s=0

e′
s↑ =

f ′∑
s=0

a′
sp

′
s

As

E′
s , (2.3)

wheree′
s are the primitive central idempotents ofC(H ∗) anda′

s , p′
s are the constants o

C(H ∗) as as and ps were for C(H) in Section 1.E′
s are the primitive idempotents o

C(D(H)) that have a nonzero restriction toH ∗, namelyE′
s↓H ∗ = e′

s (Theorem 6 applied
to H ∗).

Sincen2E0 is the regular character ofD(H), Proposition 4 implies thatχ0↑ν0↑ = n2E0

insideC(D(H)). Replacement ofχ0↑ andν0↑ with the above formulas shows that the on
primitive idempotent ofC(D(H)) with nonzero restrictions to bothH andH ∗ is E0, the
integral ofD(H)∗. Thus the sets of idempotents{Es | 0 � s � f } and {E′

s | 0� s � f ′}
have only one common element,E0. This fact together with the formula (2.1) for an i
duced character given in the proof of the previous theorem implies the equality in pa

(2) It is enough to prove the formula in the case whenM andW are both simple module
overH andH ∗, respectively. LeteM be a primitive idempotent ofH such thatM ∼= HeM

andeW be a primitive idempotent ofH ∗ such thatW ∼= H ∗eW . Then

M↑D(H) = D(H) ⊗H M = H ∗ ⊗ M
H
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can be regarded as a submodule ofD(H) and

M↑D(H)
H = D(H)(ε 	
 eM).

Similarly

W↑D(H)
H ∗ = D(H)(eW 	
 1).

Lemma 3 gives

mD(H)

(
M↑D(H)

H ,W↑D(H)
H ∗

) = mD(H)

(
D(H)(ε 	
 eM),D(H)(eW 	
 1)

)
= dimk(eW 	
 1)D(H)(ε 	
 eM)

= dimk

(
eWH ∗ 	
 HeM

) = |M||W |. �

3. The induced trivial representation

In this section we study the restriction of the induced moduleA0 to H ∗. A0 is the rep-
resentation corresponding toχ0↑D(H)

H . From the description given in previous section,A0
restricted toH ∗ is the regular module. The characters ofH ∗-modules can be viewed as e
ments ofH . Letd ∈ H be an irreducibleH ∗-character corresponding to the simple mod
Wd and letξd be its associated primitive central idempotent ofH ∗. SinceC(H) ⊂ H ∗, the
H ∗-moduleWd can be restricted toC(H). Recall that

C(H) = k × Mp1(k) × Mp2(k) × · · · × Mpf
(k).

The decomposition ofWd↓C(H) as a direct sum of simpleC(H)-modules gives a charact
formula

d↓C(H) =
f∑

s=0

xsνs,

where xs represents the multiplicity of the corresponding simpleC(H)-module in
Wd↓C(H) andν0, . . . , νf are the irreducible characters ofC(H). Then

d↓C(H)

(
es
uv

) = xsνs

(
es
uv

) = xsδu,v.

On the other hand,d↓C(H)(e
s
uv) = es

uv(d) from the identification ofH with H ∗∗. It follows
thates

uv(d) = xsδu,v for any matrix entryes
uv . Recall from the previous section thatH ∗es

are the homogenousD(H)-components ofA0. Their restriction toH ∗ is characterized b
the following theorem:
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Theorem 9. LetH be a finite-dimensional semisimple Hopf algebra andes a central prim-
itive idempotent of the character ringC(H). Then

(
H ∗es

)↓H ∗ =
∑

d∈Irr(H ∗)
W

es(d)
d ,

where the sum is over all irreducible charactersd of H ∗.

Proof. It is enough to show thatmH ∗(Wd,H ∗es) = es(d) for every irreducible charac
ter d . We denote byπ the projection ofH ∗ into the two-sided ideal generated byξd .
Thenπ(es) = ∑m

i=0 fii wherefii are some of the primitive idempotents correspond
to the minimal two-sided idealH ∗ξd . Therefore,H ∗es containsm copies ofWd and
mH ∗(Wd,H ∗es) = m. On the other hand,es(d) = π(es)(d) = ∑m

i=0 fii(d) = m since
fii(d) = 1 for any 1� i � m. �
Remark 10. Let χ be a character ofH andd a character ofH ∗. Then

χ∗(d) = d↓C(H)

(
χ∗) =

r∑
s=0

xsνs

(
χ∗).

Sinceνs(χ
∗) = νs(χ) (see [16]) it follows thatχ∗(d) = χ(d).

For every irreducible characterd of H ∗ we defineFd = ∑r
i=0 χi∗(d)χi . Note thatFd ∈

Z(C(H)) since by relation (1.3) it follows that

Fd =
f∑

s=0

1

as

es
uv(d)es

vu =
f∑

s=0

1

psas

es(d)es. (3.1)

If g is a group like element ofH we have the following characterization forFg :

Lemma 11. SupposeH is a finite-dimensional semisimple Hopf algebra andes ∈ C(H) is
a primitive central idempotent. Thenps

as
� n and we have equality if and only ifes = ξd ,

the central idempotent associated to an irreducibleH ∗-characterd ∈ Z(H). In this case
ε(d)
n

Fd = ξd .

Proof. Formula (1.2) foras gives

ps

as

= np2
s

dimk H ∗es

= n
dimk C(H)es

dimk H ∗es

� n.

Thereforeps

as
= n if and only if p2

s = dimk H ∗es . It follows that dimk Vs = ps which means
that H ∗es is a homogenousD(H) module. ButA0 is isomorphic toH ∗ asH ∗-modules
andVs↓H ∗ is a homogenousH ∗-module. The proof of Theorem 9 implies thates = ξd for
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some irreducibleH ∗ characterd . We claim thatd ∈ Z(H). Indeedd = n
ε(d)

(ξd ⇀ Λ) and
the map “⇀” sendsC(H) into Z(H). With the above notations

xs = ε(d) and as = dimk H ∗es

nps

= ε2(d)

nε(d)
= ε(d)

n
.

It follows that

Fd =
∑
tuv

1

at

et
uv(d)et

vu = xs

as

es = n

ε(d)
es. �

Let K(H) be the set of all irreducible charactersd ∈ C(H ∗) that have the property o
the previous lemma. Consequently

K(H) = {
d ∈ C(H ∗) | ξd is a primitive central idempotent ofC(H)

}
.

Proposition 12. Let H be a finite-dimensional semisimple Hopf algebra. An irreduc
characterd ∈ C(H ∗) acts asε(d)Id onHad if and only ifd ∈ K(H).

Proof. Supposed ∈ K(H). By [23]

χad=
r∑

i=0

χiχi∗ =
r∑

s=0

ps

as

es and χad(d) =
f∑

s=0

ps

as

es(d).

Since d ∈ K(H) there is only one central idempotentes with es(d) = 0, namelyξd .
Therefore,χad(d) = ε(d)χ(1) by Lemma 11. It follows thatd acts asε(d)IdM on each
irreducible constituent ofHad. Conversely suppose thatd acts asε(d)Id on Had. Then
χad(d) = nε(d). Formula (1.2) implies that

f∑
s=0

np2
s

dimk H ∗es

es(d) = nε(d) or
f∑

s=0

p2
s

dimk H ∗es

es(d) = ε(d).

Since dimk C(H)es = p2
s the last relation becomes

f∑
s=0

dimk C(H)es

dimk H ∗es

es(d) = ε(d).

The valuees(d) is a nonnegative integer since it represents the multiplicity ofWd in H ∗es .
On the other hand

f∑
es(d) = ε(d) and

dimk C(H)es

dimk H ∗es

� 1 for any 0� s � f.
s=0
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It follows that dimk C(H)es = dimk H ∗es wheneveres(d) = 0. There is only ones with
this property since in this caseps

as
= n and Lemma 11 implies thatd ∈ K(H). �

Recall that the exponent of a semisimple Hopf algebra is the smallest positive n
m > 0 such thath[m] = ε(h)1 for all h ∈ H . The generalized powerh[m] is defined by
h[m] = ∑

(h) h1h2 . . . hm. The exponent of a finite-dimensional semisimple Hopf algeb
always finite and divides the cube power of dimension ofH [3].

Proposition 13. Let d ∈ C(H ∗) be an irreducibleH ∗ character andχ ∈ C(H) be an
irreducible H character. Then|χ(d)| � χ(1)ε(d) with equality if and only ifd acts as
αIdM on the irreducibleH representationM corresponding to the characterχ whereα is
a root ofε(d).

Proof. Let W be the irreducible representation ofH ∗ corresponding to the characterd .
ThenW is a rightH -comodule. Define the map

T :M ⊗ W → M ⊗ W,

m ⊗ w �→ w2m ⊗ w1.

If l = exp(H) thenT l = IdM⊗W . ThereforeT is a semisimple operator and all its eige
values are root of unity. It follows that tr(T ) is the sum of all these eigenvalues and
consequence|tr(T )| � dimk(M ⊗ W) = χ(1)ε(d). It is easy to see that tr(T ) = χ(d). In-
deed ifWd = 〈x1i〉 is considered as the subspace generated by the first row of co-m
entries then

T (m ⊗ x1i ) =
ε(d)∑
j=0

xjim ⊗ x1j

which shows that

tr(T ) =
ε(d)∑
i=0

χ(xii) = χ(d).

Equality holds if and only ifT = αχ(1)ε(d)IdM⊗W for someα root of unity. The above
expression forT implies that in this casexijm = δi,j αm for any 1� i, j � ε(d). In partic-
ular dm = αε(d)m for anym ∈ M which shows thatd acts as a scalar multiple onM and
that scalar is a root ofε(d). The converse is immediate.�

The sets ofH ∗-characters closed under product and taking∗ are in bijective correspon
dence with the Hopf subalgebras ofH (see [17]). Let〈X〉 denote the Hopf subalgebra ofH

corresponding to a such setX of characters.
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Proposition 14. Let H be a finite-dimensional semisimple Hopf algebra. Then the
K(H) is closed under multiplicity and∗. It generates a Hopf subalgebra〈K(H)〉 of H

which is the biggest central Hopf subalgebra ofH .

Proof. If d ∈ K(H) thend∗ ∈ K(H) sinceχad(d
∗) = χad(d) = ε(d)n andd∗ acts with

the same scalar onHad. If d, d ′ ∈ K(H) write dd ′ = ∑q

i=1 midi wheredi are irreducible
characters ofH ∗. Then

χad(dd ′) =
q∑

i=1

miχad(di) and

∣∣χad(dd ′)
∣∣ �

q∑
i=1

mi

∣∣χad(di)
∣∣ � χad(1)

q∑
i=1

miε(di) = χad(1)ε(dd ′).

It follows by Proposition 13 that|χad(di)| = χad(1)ε(di) for all i = 0, . . . , q and therefore
eachdi acts as a scalar multiple onHad. Sincedi acts asε(di) multiple of identity onkΛ

it follows thatdi acts as the same multiple of the identity on each constituent ofHad and
thereforedi ∈ K(H). If L ⊂ Z(H) is a Hopf subalgebra ofH then L acts as epsilon
identity onHad. It follows that all the irreducible characters ofL∗ are contained inK(H)

and thereforeL is contained in〈K(H)〉. �
To proceed further, we need to recall the notion of index of a character introd

in [7]. Let H be a semisimple Hopf algebra andV anH module with the correspondin
characterχ . If J = ⋂

m�0 Ann(V ⊗m) is the intersection of the annihilators of all the ten
powers ofV thenJ is the largest Hopf ideal contained in the annihilator ofV (see [19]).
Let A be the matrix of the linear operatorLχ of C(H) corresponding to the standa
basis ofC(H) given by the irreducible characters ofH . ThenA has nonnegative intege
entries. Following [7],J = 0 if and only ifA is an indecomposable matrix. In this conte
an (m × m)-matrix A is called indecomposable if it is not possible to find a partition
{1,2, . . . ,m} into two setsM andN such thataij = 0 for all i ∈ M andj ∈ N . The index
of imprimitivity of A is the number of eigenvalues ofA with the possible greatest absolu
value (see [4]). The index of the characterχ is defined to be the index of imprimitivity o
the matrixA. Recall that the greatest absolute eigenvalue isχ(1) [7]. In [7] it was proved
that if a simple moduleM is a constituent of two tensor powersV ⊗m andV ⊗l of V then
m − l is divisible by the index ofχ .

Remark 15. With the above notations, letK = H/J be the quotient Hopf algebra ofH .
The set of all irreducible modules ofK is the set of irreducible constituents of the ten
powers ofV . ThenC(K) is a subring ofC(H) and every primitive idempotent ofC(K) can
be written as a sum of primitive idempotents ofC(H). If χ is central inC(H) thenχ is also
central inC(K). The corresponding eigenvectors of the linear operatorLχ of C(H) are ex-
actly the primitive idempotents ofC(H). Supposee is a primitive idempotent ofC(K) and
the corresponding eigenvalue ofLχ restricted toC(K) ate is λ. It follows that all the prim-
itive idempotents ofC(H) entering in the decomposition ofe give the same eigenvalueλ
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for Lχ . In particular, if e ∈ C(K) is an eigenvector ofLχ corresponding to the eigen
valueλ with a one-dimensional eigenspace onC(K), thene is the sum of all the primitive
idempotents ofC(H) which are eigenvectors ofLχ with the corresponding eigenvalueλ.

The trivial representation is a constituent ofHad and therefore all the constituen
of H⊗m

ad are also constituents ofH⊗l
ad for anym < l natural numbers. Thus there is a sma

est numberp such that all the simple constituents ofH
⊗(p+q)

ad are the same as those
H

⊗p

ad for anyq � 0.

Theorem 16. LetH be a finite-dimensional semisimple Hopf algebra. An irreducible re
sentationM of H is a constituent ofH⊗p

ad if and only if every central irreducible characte
d ∈ K(H) acts asε(d)IdM onM .

Proof. By the previous proposition every irreducible central characterd ∈ K(H) acts as
ε(d)Id on Had. The set of all constituents ofH⊗p

ad is closed under multiplication and∗.
It corresponds to a quotient Hopf algebraK = H/J . ThenHad is a module overK and
its tensor powers generate all the representations ofK . The index ofHad is one since the
trivial representation ofK appears as a constituent of any power ofHad. In consequence
by [7, Theorem 5.3], the eigenspace ofLχad

corresponding to the eigenvaluen = χad(1) is
one-dimensional and it is generated by the idempotent integraltK of K . Using [8] we have

tK = 1

dimk K

∑
χ∈Irr(K)

χ(1)χ = 1

dimk K

∑
χ,m(χ,χ

p
ad)>0

χ(1)χ.

As in Proposition 13χad= ∑r
i=0 χiχi∗ = ∑f

s=0
ps

as
es andχad is a central element ofC(H).

Consider the decomposition oftK as sum of primitive idempotents ofC(H). If es
uu appears

in the decomposition oftK the above remark implies that the eigenvalue ofχad at es
uu is n.

The above formula ofχad gives thatps

as
= n. According to Lemma 11 this implies th

es = ξd with d ∈ K(H). ThustK = ∑
d∈K(H) ξd . From the same Lemma 11 we know th

ξd = ε(d)

n
Fd = ε(d)

n

r∑
i=0

χi∗(d)χi

and

tK =
∑

d∈K(H)

ε(d)

n

r∑
i=0

χi∗(d)χi = 1

n

r∑
i=0

〈
χi∗ ,

∑
d∈K(H)

dε(d)

〉
χi.

The two formulas fortK show thatχ is a constituent ofχp

ad if and only if

〈
χ,

∑
dε(d)

〉
= 0.
d∈K(H)
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Equalizing the coefficient ofχ0 = ε in these two formulas we get that

n

dimk K
=

∑
d∈K(H)

ε(d)2. (3.2)

Therefore
〈
χ,

∑
d∈K(H)

dε(d)

〉
= χ(1)

∑
d∈K(H)

ε(d)2

for every constituent ofχp

ad, otherwise this evaluation is 0. Since|χ(d)| � χ(1)ε(d) we
deduce thatχ is a constituent ofχp

ad if and only if χ(d) = χ(1)ε(d) for everyd ∈ K(H).

ThereforeM is a constituent ofH⊗p

ad if and only if every central irreducible charact

d ∈ K(H) acts asε(d)IdM onM . �
Remark 17. Formula (3.2) gives thatn|K| = dimk〈K(H)〉 andMχ ∈ Irr(H⊗p

ad ) if and only
if χ↓K(H) = χ(1)ε.

Proposition 18. LetH be a finite-dimensional semisimple Hopf algebra. Then

Ann
(
H

⊗p

ad

) = ω
(〈
K(H)

〉)
H,

the augmentation ideal of〈K(H)〉 extended toH .

Proof. Let J be the annihilator ofH⊗p

ad . By the previous theorem everyd ∈ K(H) acts
as identity onH

⊗p

ad . Therefored − ε(d)1 is in the annihilator ofH⊗p

ad . It follows that
ω(〈K(H)〉)H is contained inJ . Since

dimk(H/J ) = dimk(K) = n

dimk〈K(H)〉 = dimk

(
H/ω

(〈
K(H)

〉
H

))

we conclude thatJ = ω(〈K(H)〉)H . �

4. An equivalence relation on the set of irreducible characters

If H has a commutative character ring (for example, ifH is quasitriangular), then th
action of the central charactersd ∈ K(H) on the irreducible representations ofH can
be described in terms of the restriction functor fromD(H)-mod toH -mod. In order to
establish a relation between this action and the restriction toH of the D(H)-modules,
a binary relation on the set of irreducible characters ofH is introduced. Letχ and µ

be two irreducible characters ofH corresponding to the irreducible representationsM

respectivelyN . We defineχ ∼ µ if there is a simpleD(H)-moduleV such thatM andN

are constituents ofV ↓H . It is clear that∼ is reflexive and symmetric. Let us remark th
this is an equivalence relation in the case whenH is the dual of a group algebrakG. Indeed
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in this caseD(kG∗) is isomorphic withD(kG) and the irreducible representations of t
latter are described in [24]. They are isomorphic with the induced moduleskG ⊗Zi

M

whereZi runs over the centralizers of a set of conjugacy class representatives andM over
all the irreducible representations ofZi . It is easy to see that in this case the relation defi
before coincides with the conjugacy relation in the groupG which clearly is an equivalenc
relation. We will see that∼ is not an equivalence relation in general. (See Example 1
we consider the transitive closure of this relation:χ ≈ µ if there are irreducible characte
χ1, χ2, . . . , χs such thatχ ∼ χ1 ∼ χ2 ∼ · · · ∼ χs ∼ µ, clearly≈ is an equivalence relation

A description of the equivalence classes of≈ will be given in this section. IfC(H) is
commutative it will be shown thatχ ≈ µ if and only if they receive the same action fro
each characterd ∈ K(H). A necessary and sufficient condition for∼ to be an equivalenc
relation is described in this case. Frobenius reciprocity implies thatχ ∼ µ is equivalent
with the fact thatV is a constituent of bothM↑ andN↑. Thereforeχ ∼ µ if and only if
mD(H)(M↑,N↑) > 0 ormH (M↑↓,N) > 0.

Proposition 19. LetH be a finite-dimensional semisimple Hopf algebra andχ0, χ1, . . . , χr

the set of all irreducible characters ofH . Then for any two charactersχu andχv we have
χu ∼ χv if and only if there arei andj such thatm(χu,χiχj ) > 0 andm(χv,χjχi) > 0.

Proof. The above remark gives thatχu ∼ χv if and only if m(χv,χu↑↓) > 0. It is enough
to prove thatχu↑↓ = ∑r

i,j=0 m(χu,χiχj )χjχi . Using Theorem 7 this is equivalent with

r∑
i=0

χi∗χχi =
r∑

i,j=0

m(χ,χiχj )χjχi

for any characterχ ∈ C(H).
The second property ofm( , ) given in (1.4) implies

χi∗χ =
r∑

j=0

m(χj ,χi∗χ)χj =
r∑

j=0

m(χ,χiχj )χj .

If we multiply to the right withχi and add overi we get the desired equality.�
Remark 20.

(1) If H = kG∗ then twokG∗-charactersg,h ∈ G are conjugate if and only ifg = ab and
h = ba for somea, b ∈ G.

(2) χ ∼ χ0 if and only if m(χ,χad) > 0 sinceχad= χ0↑↓.
(3) m(χ,χad) = tr(Lχ) whereLχ is the linear operator ofC(H) given by left multiplica-

tion with χ .
Indeed,

tr(Lχ) =
r∑

m(χi,χχi) =
r∑

m(χ,χi∗χi) = m(χ,χad).
i=0 i=0
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For the rest of this section we assume thatC(H) is a commutativek-algebra (e.g.
H -quasitriangular).

In this case the formula from Theorem 7 becomesχ↑↓ = χχad. For any two irre-
ducible charactersχ and µ we haveχ ∼ µ if and only if tr(Lχµ∗) > 0 which is the
same asm(χµ∗, χad) > 0. Indeed, from the above remark it follows thatm(χ,µ↑↓) =
m(χ,µχad) = m(χ∗µ,χad) = m(χµ∗, χad).

Remark 21. SinceC(H) is commutative it follows thatps = 1 for any 0� s � f . Then
ps

as
= n if and only if as = n which is equivalent with dimk H ∗es = 1. From the proof of

Lemma 11 we deduce that

es = 1

n
Fg

for some central grouplike elementg. Therefore in this caseK(H) = Ḡ(H) whereḠ(H)

is the group of central grouplike elements ofH .

Lemma 22. LetH be a finite-dimensional semisimple Hopf algebra and assume thatC(H)

is a commutativek-algebra. Then∼ is an equivalence relation if and only ifH⊗2
ad andHad

have the same simple constituents.

Proof. If χ ∈ C(H) is a constituent ofHad then all the constituents ofχµ are in relation
with µ. Indeed, letν be a constituent ofχµ. Thenm(ν,χµ) = m(χ∗,µν∗) = m(χ,νµ∗)
and tr(L

νµ∗ ) � tr(Lχ) > 0. Therefore,ν ∼ µ.
Assume that∼ is an equivalence relation. Letχ and µ be two simple constituent

of Had. By the previous statement all the constituents ofχµ are in relation with bothχ
andµ. Sinceχ is in relation withε from transitivity it follows that all the constituen
of χµ are in relation withε and therefore they are constituents ofHad.

Suppose thatH⊗2
ad andHad have the same simple constituents. Letχ ∼ µ andµ ∼ ν.

We have to proveχ ∼ ν. First relation is equivalent withm(µ,χ↑↓) > 0 and the sec
ond one withm(µ,ν↑↓) > 0. It follows thatm(χ↑↓, ν↑↓) > 0 which is the same with
m(χχad,µχad) > 0. Thenm(χµ∗, χ2

ad) > 0. SinceH⊗2
ad andHad have the same simp

constituents the assertion follows from Remark 20(3) above.�
Remark 23. Assume thatC(H) is commutative. Then:

(1) According to Remark 21 we have thatK(H) = Ḡ(H), the group of central grou
like elements ofH . In this case an irreducible representationM of H is a constituen
of H

⊗p

ad if and only if every central grouplike element acts as identity onM . Re-
call form above thatp is the smallest number such that all the simple constitu
of H

⊗(p+q)

ad are the same as those ofH
⊗p

ad for anyq � 0.
(2) LetM be a simple module ofH . All the other simple modules ofH receiving the sam

action asM from each central grouplike elementg ∈ Ḡ(H) are exactly the simple con
stituents ofM ⊗ H

⊗p

ad . Indeed, sinceg ∈ Ḡ(H) acts as identity onH⊗p

ad it acts via the

same scalars on bothM andM ⊗H
⊗p and thus on each constituent of the latter. C
ad
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versely, ifg acts the same onM andN theng acts as identity onM ⊗ N∗. Therefore
all the constituents ofM ⊗ N∗ are inH

⊗p

ad which implies thatN is a constituent o

M ⊗ H
⊗p

ad .
(3) The two formulas fortK from the above proof give that|Ḡ(H)| = n

|K| . Thus,Ḡ(H) is
trivial if and only if all irreducible modules ofH are constituents ofH⊗p

ad .

Corollary 24. AssumeH is a semisimple Hopf algebra withC(H) commutative. Letχ
andµ be two irreducible characters ofH . Then

(1) χ ≈ µ if and only ifm(χ,µχ
p

ad) > 0.
(2) χ ≈ µ if and only if 1

χ(1)
χ↓Ḡ(H) = 1

µ(1)
µ↓Ḡ(H).

(3) The number of equivalence classes of≈ is equal with the order of̄G(H).

Proof. (1) LetT be the linear operator ofC(H) defined as resH ◦ indH . By Theorem 7 we
know thatT (χ) = ∑r

i=0 χi∗χχi = χχad for any characterχ ∈ C(H). Sinceχ ∼ µ if and
only if m(χ,T (µ)) > 0 it follows thatχ ≈ µ if and only if m(χ,T m(µ)) > 0 for some
positive integerm. But T m(µ) = µχm

ad and (1) follows.
(2) Any irreducible characterχ has the property that

χ↓kḠ(H) = χ(1)ψ

whereψ is an irreducible character of̄G(H). Indeed, since anyg ∈ Ḡ(H) acts as a scala
multiple of identity on the associated representationMχ of χ it follows thatg acts via the
same scalar multiple of identity on each simple constituent ofMχ↓Ḡ(H). Then all these
simple constituents are isomorphic andχ↓kḠ(H) = χ(1)ψ . Sinceχad↓kḠ(H) = χad(1)ε

we get thatχ ≈ µ if and only if

1

χ(1)
χ↓Ḡ(H) = 1

µ(1)
µ↓Ḡ(H).

(3) It follows from (2) immediately. �
For any irreducible characterχ let Gχ = ∑

χi≈χ χi(1)χi . If an elementg ∈ Ḡ(H) acts
as a scalar on a moduleM of H then it acts as the same scalar on each simple submo
of M . In particular, all the irreducible constituents ofχµ are in the same equivalence cla
of ≈. Using this we denote byGχµ the elementGη for some irreducible constituentη
of χµ.

Proposition 25. AssumeH is a semisimple Hopf algebra withC(H) commutative. Ifχ
andµ are two irreducible characters ofH then the following relations hold:

(1) χGµ = χ(1)Gχµ andGχ(1) = dimk H

|Ḡ(H)| for every irreducible characterχ .

(2) GχGµ = n

|Ḡ(H)|Gχµ.

(3) Gχ is a central element ofH ∗ for any irreducible characterχ ∈ C(H).
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Proof. (1) If t denotes the regular character ofH thenχt = χ(1)t . On the other hand,

t =
r∑

i=0

χi(1)χi =
∑
χ/≈

Gχ,

where in the last sumχ runs over all the representatives of the equivalence classes≈.
The remark above implies thatχGµ = χ(1)Gχµ. In particular, forµ = χ0, the trivial
character ofH we get thatχGχ0

= χ(1)Gχ . Applying 1 to both sides of the last equali
it follows thatGχ0

(1) = Gχ(1) for every irreducible characterχ . Then the above formul
for t implies that

Gχ(1) = n

|G|
for every irreducible characterχ .

(2) First let us observe that ifχi ≈ χ thenGχiµ = Gχµ since all the central grouplik
elementsg ∈ Ḡ(H) act via the same scalar on bothχiµ andχµ. Thus

GχGµ =
∑
χi≈χ

χi(1)χiGµ =
∑
χi≈χ

χi(1)2Gχµ = Gχ(1)Gχµ = n

|Ḡ(H)|Gχµ.

(3) For every central grouplike elementg ∈ Ḡ(H) we have

Fg =
∑

i

χi∗(g)χi =
∑
χ/≈

χ(g)

χ(1)
Gχ,

where the last sum is over all the representatives of the equivalence classes of≈. The
matrix (

χ(g)
χ(1)

)χ,g is nondegenerate which implies that everyGχ is a linear combination o
the elements(Fg)g∈Ḡ(H) and therefore central by Lemma 11. One can write

Gχ = n

|Ḡ(H)|
∑

g∈Ḡ(H)

χ(g)

χ(1)
ξg. � (4.1)

Corollary 26. Let H = kG for a finite groupG. Then∼ is an equivalence relation if an
only if Ann(Had) = ω(kZ(G))kG.

Example 1 [18]. Let p and q be two prime numbers withq − 1 divisible by p. We
will construct a groupG such thatZ(G) = 1 but Ann((kG)ad) = 0. Let P be an ele-
mentary abelianp-group of orderp2 andQ be an elementary abelianq-group of order
qp+1. ThenG = Q � P where the action ofP on Q is constructed such that each su
group ofP of orderp is the kernel of the action ofP on a cyclic factor ofQ. Suppose
Q = Q0 × Q1 × · · · × Qp where eachQi is cyclic of orderq. If P0,P1, . . . ,Pp are all
the subgroups ofP of orderp then we define the action ofP such that eachPi acts triv-
ially on Qi . This is possible sincep | q − 1. It follows that for eachg ∈ G there isi such
that CG(g) ⊇ Qi . Thereforeω(CG(g)) ⊇ ∏p

i=0 ω(Qi) = 0. In the same paper [18] it i
shown that Ann(Had) = ⋂

g∈G ω(CG(g)). Therefore Ann(Had) = 0 althoughZ(G) = 1.
The previous corollary implies that∼ is not transitive.
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In the same paper [18] it was proved that the adjoint action onSn is faithful, therefore
∼ is an equivalence relation and in this case there is only one equivalence class.

Lemma 27. Let H be a semisimple Hopf algebra withC(H) commutative andψ be
an irreducible character ofḠ(H). Thenψ↑H

kḠ(H)
= Gχ for some irreducible characte

χ ∈ C(H).

Proof. Recall thatGχ = ∑
χi≈χ χi(1)χi andχ ≈ µ if and only if

1

χ(1)
χ↓Ḡ(H) = 1

µ(1)
µ↓Ḡ(H).

The relation follows from Frobenius reciprocity forḠ(H) andH . �
Lemma 28. Let H be a semisimple Hopf algebra withC(H) commutative. IfD(H)ad is
the adjoint representation ofD(H) thenD(H)ad↓H

∼= H⊗2
ad .

Proof. SinceC(H) is commutative, with the notations from relation (1.1) we haveps = 1
for every 0� s � f and

χad=
f∑

s=0

1

as

es

whereχad is the character of the adjoint representationHad. Similarly,

D(H)ad=
l∑

s=0

1

As

Es.

Then

D(H)ad↓H =
f∑

s=0

1

As

es = χ2
ad

sinceAs = a2
s . �

Theorem 29. Let H be a semisimple Hopf algebra withC(H) commutative. Letµ be an
irreducible character ofD(H) andDµ be the equivalence class ofµ. If χ is an irreducible
constituent ofµ↓H thenDµ↓H = n

l
Gχ wherel is the index ofḠ(H) insideḠ(D(H)).

Proof. Dµ is a central character inD(H)∗ and by Proposition 25

Dµ = n2

|Ḡ(D(H))|
∑
¯

µ(x)

µ(1)
ξx.
x∈G(D(H))
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Let ψ :D(H)∗ → D(H) be the map defined in Section 2 which shows thatD(H) is a
factorizable Hopf algebra. Since every central grouplike element ofx ∈ Ḡ(D(H)) is of
the typex = f 	
 g for somef ∈ G(H ∗) and g ∈ G(H), it follows that ψ(ξx) is the
central idempotent ofH corresponding to the simple one-dimensionalD(H)-moduleVg,f .
Thereforeξx↓H = ξg if g is a central grouplike element ofH andf = 1 andξx↓H = 0
otherwise. Consequently,

Dµ↓H = n2

|Ḡ(D(H))|
∑

g∈Ḡ(H)

µ(ε 	
 g)

µ(1)
ξg.

On the other hand,

1

µ(1)
µ↓Ḡ(H) = 1

χ(1)
χ↓Ḡ(H)

since the irreducible constituents ofµ↓H are equivalent withχ . Then

µ(ε 	
 g)

µ(1)
= χ(g)

χ(1)

for anyg ∈ Ḡ(H). It follows that

Dµ↓H
= n2

|Ḡ(D(H))|
∑

g∈Ḡ(H)

χ(g)

χ(1)
ξg = n|Ḡ(H)|

|Ḡ(D(H))|Gχ = n

l
Gχ . �

5. The Drinfel’d double of the eight-dimensional Hopf algebra

In this section we describe the Grothendieck ring structure of the Drinfel’d doub
the unique nontrivial eight-dimensional Hopf algebraH8 [6,10].

H8 can be presented by generatorsx, y, z with relations

x2 = y2 = 1,

xy = yx, zx = yz, zy = xz,

2z2 = (1+ x + y − xy).

The coalgebra structure is determined by

∆(x) = x ⊗ x, ε(x) = 1, S(x) = x,

∆(y) = y ⊗ y, ε(y) = 1, S(y) = y,

∆(z) = 1

2

(
(1+ y) ⊗ 1+ (1− y) ⊗ x

)
(z ⊗ z),

ε(z) = 1, S(z) = z−1.
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In additionH8 � H ∗
8 , G(H8) = {1, x, y, xy} � Z2 × Z2, andḠ(H8) = G(H8) ∩ Z(H8) =

{1, xy} � Z2.
As an algebra,H8 ∼= k4 × M2(k). It follows that H8 has five irreducible character

four one-dimensionalε,u1, u2, u1u2, and one two-dimensional self dual characterχ .
Therefore, the character ring ofH8 is five-dimensional and the ring structure is given
G(H ∗

8 ) ∼= Z2×Z2 andχ2 = ε +u1+u2+u1u2. The relation≈ on the simpleH8-modules
has 2 equivalence classes given byG0 = ε +u1+u2 +u1u2 andG1 = 2χ . SinceH8 is self
dual Hopf algebraH ∗

8 has the same representation type asH8. Let 1, û1, û2, û1û2 be the
four one-dimensional representations ofH ∗

8 andχ̂ be the two-dimensional representati
of H ∗

8 . Similarly H ∗
8 has two equivalence classes, given byĜ0 = 1+ û1 + û2 + û1û2 and

Ĝ1 = 2χ̂ .
In [13] it was proved thatD(H8) ∼= k8×M2(k)14 andD(H8)

∗ ∼= k16×M2(k)8×M4(k)

as algebras.

Remark 30. Let A be a finite-dimensional Hopf algebra and letg ∈ G(A), η ∈ G(A∗).
Let Vg,η denote the vector spacek1 endowed with the actionh.1 = η(h)1, h ∈ H , and the
coaction 1�→ g ⊗ 1. By [20], the one-dimensionalD(A)-modules overA are exactly of
the formVg,η, whereg ∈ G(A) andη ∈ G(A∗) are such that(η ⇀ h)g = g(h ↼ η), for all
h ∈ A. In particular, ifg ∈ Z(A) andη ∈ Z(A∗) thenVg,ε andV1,η are one-dimensiona
D(A)-modules andε ⊗ g,1⊗ η ∈ G(D(A)∗).

Let g ∈ G(H8)\Z(H8) andη ∈ G(H ∗
8 )\Z(H ∗

8 ). Then according to [13, Lemma 15.2.
Vg,η is a D(H8)-module andG(D(H8)

∗) � Z2 × Z2 × Z2. In order to determine th
Grothendieck ring structure ofD(H8) we need to determine first the equivalence clas
under≈. Since|Ḡ(D(H8))| = 8 there are eight equivalence classes and the dimen
of the representative character of each equivalence class is 8. Therefore each equ
class contains either two two-dimensional representations, one two-dimensional rep
tation and four one-dimensional representation, or eight one-dimensional represen
Since bothC(H8) andC(H ∗

8 ) are commutative it follows that

Dad↓H8 = χ2
ad= 5ε + u1 + u2 + u1u2.

Similarly

Dad↓H ∗
8

= 5 · 1+ û1 + û2 + û1û2.

The equivalence class of the trivialD(H8)-moduleV1,ε is denoted byD0 and has the
restrictionG0 to H and Ĝ0 to H ∗. The restrictions ofD(H8)-modules toH8 and H ∗

8
can be described using Proposition 4. Looking in Table 1 it follows thatD0 might con-
tain any of the one-dimensional representations and possiblyV9 or V10. SinceD0 cannot
contain both of these two-dimensional modules, the self duality ofH8 implies that this
class contains all the eight one-dimensional representations. Therefore all the other
alence classes have 2 representations of dimension two. Comparing the restrictions
modules to bothH8 andH ∗

8 and using Theorem 29 it follows immediately that{V1,V3},
{V2,V4}, {V5,V7}, {V6,V8} {V9,V10} form equivalence classes. Without loss of genera
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Table 1
D(H8)-modules and their restrictions

D(H8)-modules Restriction toH8 Restriction toH∗
8

V1,ε ε 1
V1,u1u2 u1u2 1
Vû1û2,ε ε û1û2
Vû1,u1

u1 û1
Vû1,u2

u2 û1
Vû2,u1

u1 û2
Vû2,u2

u2 û2
Vû1û2,u1u2

u1u2 û1û2

V1 ε + u1 χ̂

V2 ε + u2 χ̂

V3 = V1,u1u2 ⊗ V1 u1u2 + u1 χ̂

V4 = V1,u1u2 ⊗ V2 u1u2 + u2 χ̂

V5 χ 1+ û1
V6 χ 1+ û2
V7 = Vû1û2,ε ⊗ V5 χ û1û2 + û2
V8 = Vû1û2,ε ⊗ V6 χ û1û2 + û1
V9 ε + u1u2 û1 + û2
V10 u1 + u2 1+ û1û2
V11,V12,V13,V14 χ χ̂

it might be assumed that{V11,V12} and{V13,V14} are the other two equivalence class
Let D1 = {V9,V10}, D2 = {V5,V7} andD3 = {V1,V8}. Proposition 25, part(2) implies
that any equivalence class is obtained as a product from other equivalence classe
Ḡ(D(H8)) ∼= Z2 × Z2 × Z2 has three group generators it follows that all the equivale
classes can be obtained as a product from three different equivalence classes. W
thatD1, D2 andD3 generate all the other equivalence classes. Indeed, the restricti
these classes to bothH8 andH ∗

8 give thatD4 = {V6,V8} = D1D2, D5 = {V2,V4} = D1D3,
D6 = {V11,V12} = D2D3 andD7 = {V13,V14} = D1D2D3. Examining Table 1 it follows
that multiplying twoD(H8)-modules the result cannot have a constituent with multip
ity 2 since its restriction to eitherH8 or H ∗

8 does not have this property. Therefore,
multiplication of two modules from two different equivalence classes should be the
of the two modules in the corresponding product class. In this way the multiplicati
any 2 two-dimensional modules can be determined if they are from two different e
alence classes. If they are in the same equivalence class, their product is the su
one-dimensional modules that can be easily determined just looking at the restrict
the product to bothH8 andH ∗

8 .
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