Representations of degree three for semisimple Hopf algebras ${ }^{2 \pi}$

S. Burciu
Department of Mathematics, Syracuse University, 215 Carnegie Hall, Syracuse, NY 13244, USA

Received 12 September 2003; received in revised form 16 April 2004
Communicated by A.V. Geramita

Abstract

Let H be a cosemisimple Hopf algebra over an algebraically closed field. It is shown that if H has a simple subcoalgebra of dimension 9 and has no simple subcoalgebras of even dimension, then H contains either a grouplike element of order 2 or 3 , or a family of simple subcoalgebras whose dimensions are the squares of each positive odd integer. In particular, if H is odd dimensional, then its dimension is divisible by 3 .

(c) 2004 Elsevier B.V. All rights reserved.

MSC: 16W30

1. Introduction

Let H be a finite dimensional semisimple Hopf algebra over an algebraically closed field k. Kaplansky conjectured that if H has a simple module of dimension n, then n divides the dimension of H [2, Appendix 2].

Several special cases of Kaplansky's conjecture have been proved: Etingof and Gelaki [1] proved it under the additional assumption that H is quasi-triangular and k has characteristic 0 (for another proof see [9]); M. Lorenz and S. Zhu proved it independently under the additional assumption that the character of the simple module is central in $H^{*}[5,10]$.
Dually, the Kaplansky conjecture says that if H is a finite dimensional cosemisimple Hopf algebra that contains a simple subcoalgebra of dimension n^{2}, then n divides the

[^0]dimension of H. This was verified by Nichols and Richmond [7], for $n=2$. They proved that if H is cosemisimple and contains a simple subcoalgebra of dimension 4, then H contains either a Hopf subalgebra of dimension 2, 12 or 60 , or a simple subcoalgebra of dimension n^{2} for each positive integer n. Their approach is based on the study of the Grothendieck group of H.

In this paper, we give a similar treatment for the case $n=3$. Assume that H is cosemisimple and contains a simple subcoalgebra of dimension 9. If H has no simple subcoalgebras of even dimension we prove that H contains either a grouplike element of order 2 or 3 , or a simple subcoalgebra of dimension n^{2} for each positive odd integer n. In particular, if H is odd dimensional, then its dimension is divisible by 3. We remark that if H is bisemisimple, then the assumption that H has odd dimension automatically implies that the dimension of each simple subcoalgebra is odd (see the corollary on p. 95 of [3].)

The basic properties of the Grothendieck group of the category of right H-comodules are recalled in Section 2. Section 3 contains our main result, namely Theorem 4, together with the required lemmas.

We follow the standard notation found in [6]. Algebras and coalgebras are defined over k; comultiplication, counit and antipode are denoted by Δ, ε and S respectively; and the category of right comodules over H is denoted by \mathscr{M}^{H}.

2. The Grothendieck group $\mathscr{G}(\boldsymbol{H})$

Let H be a k-coalgebra. For $V \in \mathscr{M}^{H}$ define [V] to be the isomorphism class of the comodule V. The Grothendieck group of the category of right comodules over H is the free abelian group generated by the isomorphism classes of simple right H-comodules. We denote this group by $\mathscr{G}(H)$. The following result appears in [7].

Proposition 1. Let Γ denote the set of simple subcoalgebras of the coalgebra H. For each $C \in \Gamma$, let V_{C} be a simple right C-comodule. Then $\mathscr{G}(H)$ is the free abelian group with basis $B=\left\{\left[V_{C}\right]: C \in \Gamma\right\}$.

Here $\left[V_{C}\right]$ is called a basic element and B is called the standard basis. Any basic element x is associated with a simple subcoalgebra x_{C} of H, and reciprocally, any simple subcoalgebra C of H is associated with a basic element C_{x}, as in the previous proposition. Every $z \in \mathscr{G}(H)$ may be written uniquely as $z=\sum_{x \in B} m(x, z) x$ where $m(x, z) \in \mathbb{Z}$. The integer $m(x, z)$ is called the multiplicity of x in z. If $m(x, z) \neq 0$, then x is called a basic component of z. The multiplicity function may be extended to a biadditive function $m: \mathscr{G}(H) \times \mathscr{G}(H) \rightarrow \mathbb{Z}$ by defining $m(w, z)=\sum_{x \in B} m(x, w) m(x, z)$. Note that there is a bijection between Γ and B, the set of isomorphism classes of simple right H-comodules.

If H is a bialgebra, $\mathscr{G}(H)$ becomes a ring. Recall that if M and N are right H-comodules then $M \otimes N$ is also a right H-comodule via

$$
\rho(m \otimes n)=\sum_{(m),(n)} m_{0} \otimes n_{0} \otimes m_{1} n_{1}
$$

Let 1 denote [$k 1$], the unit of $\mathscr{G}(H)$. If $V \in \mathscr{M}^{H}$ is a simple comodule then the degree of the element $[V] \in \mathscr{G}(H)$ is defined to be the dimension of the comodule V and it is denoted by $|[V]|$. Since $B=\left\{\left[V_{C}\right]: C \in \Gamma\right\}$ is a basis for $\mathscr{G}(H)$ we get a linear map called the degree map, defined as above on the canonical basis of $\mathscr{G}(H)$ and then extended by linearity. By convention, an element $x \in \mathscr{G}(H)$ is said to be n-dimensional if its degree is equal to n. Note that $|x y|=|x \| y|$ for all $x, y \in B$, and so $|w z|=|w \| z|$ for all $w, z \in \mathscr{G}(H)$ which shows that the degree map is a ring homomorphism. Thus $|w \| z|=$ $\sum_{x} m(x, w z)|x|$ for all $w, z \in \mathscr{G}(H)$. Let $\mathscr{G}(H)_{+}$be the subset of $\mathscr{G}(H)$ consisting of all elements $z \in \mathscr{G}(H)$ with the property that $m(x, z) \geqslant 0$ for any basic element $x \in \mathscr{G}(H)$. When H is cosemisimple, the elements of $\mathscr{G}(H)_{+}$are in a bijective correspondence with all the isomorphism classes of H-comodules $V \in \mathscr{M}^{H}$ and $\mathscr{G}(H)_{+}$is closed under multiplication.

Suppose H is a Hopf algebra with antipode S. If $U \in \mathscr{M}^{H}$ is a right comodule with the comodule structure $\rho: U \rightarrow U \otimes H$ then $U^{*} \in \mathscr{M}^{H}$ in the following way. Let $\left\{u_{j}\right\}$ be a basis of U, and write $\rho\left(u_{j}\right)=\sum_{i} u_{i} \otimes a_{i j}, a_{i j} \in H$. Then if $\left\{u_{i}^{*}\right\}$ is the dual basis of $\left\{u_{i}\right\}$ the map $\check{\rho}\left(u_{i}^{*}\right)=\sum_{j} u_{j}^{*} \otimes S\left(a_{i j}\right)$ defines a right H-comodule structure on U^{*}. It is easy to see that $C_{U^{*}}=S\left(C_{U}\right)$ and if S is injective then U^{*} is simple whenever U is a simple comodule. Moreover $U^{* *} \cong U$ if $S^{2}(C)=C$. The map ${ }^{*}: \mathscr{G}(H) \rightarrow \mathscr{G}(H)$ given by $[M]^{*}=\left[M^{*}\right]$ is a group homomorphism and a ring antihomomorphism. If H is cosemisimple then ${ }^{*}$ is an involution on $\mathscr{G}(H)$. A standard subring in $\mathscr{G}(H)$ is a subring of $\mathscr{G}(H)$ which is spanned as an abelian group by a subset of B.

Theorem 2 (Nichols and Richmond [7, Theorem 6]). Let H be a bialgebra. There is a one-to-one correspondence between standard subrings of $\mathscr{G}(H)$ and subbialgebras of H generated as algebras by their simple subcoalgebras, given by: the subbialgebra A generated by its simple subcoalgebras corresponds to the standard subring spanned by $\left\{x_{C}: C\right.$ is a simple subcoalgebra of $\left.A\right\}$

Furthermore, if H is a cosemisimple Hopf algebra this one-to-one correspondence induces a one-to-one correspondence between standard subrings closed under "*" and Hopf subalgebras of H.

The following facts about the multiplicity in $\mathscr{G}(H)$ will be used in the sequel.
Theorem 3 (Nichols and Richmond [7, Theorem 10]). Let H be a Hopf algebra.
(1) If the antipode of H is injective then $m(x, y)=m\left(x^{*}, y^{*}\right)$ for all $x, y \in \mathscr{G}(H)$.
(2) If H is cosemisimple and k is algebraically closed, then
(a) $m(x, y z)=m\left(y^{*}, z x^{*}\right)=m\left(y, x z^{*}\right)$ for all $x, y, z \in \mathscr{G}(H)$
(b) For each grouplike element g of H, we have $m(g, x y)=1$, if $y=x^{*} g$ and 0 otherwise.
(c) Let $x \in \mathscr{G}(H)$ be a basic element. Then for any grouplike element g of H, $m\left(g, x x^{*}\right)>0$ iff $m\left(g, x x^{*}\right)=1$ iff $g x=x$. The set of such grouplike elements forms a group, of order at most $|x|^{2}$.

For a basic element x, the grouplike elements entering in the basic decomposition of $x x^{*}$ form a subgroup G of the grouplike elements of H (by 2(c) of the previous
theorem). Then $k G$ is a Hopf subalgebra of H, and by the freeness theorem [8] the order of G divides the dimension of H.

3. The 3-dimensional case

The goal of this section is to prove the following theorem.
Theorem 4. Let H be a cosemisimple Hopf algebra over an algebraically closed field. Assume that H contains a simple subcoalgebra C of dimension 9 and has no simple subcoalgebras of even dimension. Then one of the following conditions must hold:
(i) H contains a grouplike element of order 2 or 3,
(ii) H has two families of subcoalgebras $\left\{C_{2 n+1}: n \geqslant 1\right\}$ and $\left\{D_{2 n+1}: n \geqslant 1\right\}$ with $\operatorname{dim} C_{2 n+1}=\operatorname{dim} D_{2 n+1}=(2 n+1)^{2}$ such that

$$
C_{2 n+1} C_{3}=C_{2 n-1}+D_{2 n+1}+C_{2 n+3} .
$$

for each $n \geqslant 1$.
We need the following lemmas.
Lemma 5. Let k be an algebraically closed field and H a cosemisimple Hopf algebra over k with a simple subcoalgebra C of dimension 9. Assume that H has no simple subcoalgebras of even dimension. Then one of the following conditions holds:
(i) H contains a grouplike element of order 2 or 3,
(ii) for any basic element $x_{3} \in \mathscr{G}(H)$ with $\left|x_{3}\right|=3$ and $x_{3} x_{3}^{*}=1+u+v$ where u and v are basic elements of $\mathscr{G}(H)$ with $|u|=3$ and $|v|=5$.

Proof. Suppose that x_{3} is a basic element of degree 3. Then $x_{3} x_{3}^{*}=1+y$ where $|y|=8$. Note that since H has no simple subcoalgebras of even dimension, y is not a basic element. We consider the decomposition of y into basic elements in $\mathscr{G}(H)$. If y has $1,2,3,5$ or 81 -dimensional representations in this decomposition, then together with 1 they form a subgroup of $\mathscr{G}(H)$ with $2,3,4,6$ or 9 elements respectively, and so (i) holds.

Since $|y|=8$ and there are no 2 -dimensional simple comodules of H, it is clear that y cannot have exactly 6 grouplike elements. A similar argument shows that y cannot have exactly 4 grouplike elements.

It follows that if (i) does not hold then y has no grouplike elements in its basic decomposition. Since any other element of $\mathscr{G}(H)$ has degree at least 3, $y=u+v$, where u and v are basic elements with $|u|=3$ and $|v|=5$. In this case (ii) holds.

Lemma 6. If H satisfies the assumptions of Theorem 4, then one of the following conditions holds:
(i) H contains a grouplike element of order 2 or 3,
(ii) there is a 3-dimensional self dual basic element x_{3} with $x_{3}^{2}=1+x_{3}+x_{5}$, where x_{5} is a 5 -dimensional basic element.

Proof. Assume (i) does not hold. By the previous lemma there is a 3-dimensional basic element with $x_{3} x_{3}^{*}=1+u+v$, where u and v are basic elements of $\mathscr{G}(H)$ with $|u|=3$ and $|v|=5$. Since $x_{3} x_{3}^{*}$ is self adjoint, the last relation implies that $u=u^{*}$ and $v=v^{*}$. If $u=x_{3}$, we are done. Otherwise the previous lemma applied to u instead of x_{3} gives that $u u^{*}=1+u_{1}+v_{1}$ with $\left|u_{1}\right|=3,\left|v_{1}\right|=5$, and u_{1}, v_{1} self-adjoint. If $u \neq u_{1}$, Lemma 5 again gives $u_{1} u_{1}^{*}=1+u_{2}+v_{2}$ where u_{2}, v_{2} are self-adjoint with $\left|u_{2}\right|=3$ and $\left|v_{2}\right|=5$. It suffices to show that $u_{1}=u_{2}$.

Since $m\left(u_{1}, u^{2}\right)=1$, it follows from Theorem 3 that $m\left(u, u u_{1}\right)=1$. Suppose $u u_{1}=u+y$. Since $|y|=6, y$ is not a basic element of $\mathscr{G}(H)$. Therefore $y=w+\xi$ where $w, \xi \neq 0$. Using the previous relations we have

$$
u^{2} u_{1}=\left(1+u_{1}+v_{1}\right) u_{1}=u_{1}+1+u_{2}+v_{2}+v_{1} u_{1} .
$$

On the other hand

$$
u^{2} u_{1}=u(u+w+\xi)=1+u_{1}+v_{1}+u w+u \xi .
$$

Hence

$$
\begin{equation*}
u_{2}+v_{2}+v_{1} u_{1}=v_{1}+u w+u \xi . \tag{1}
\end{equation*}
$$

But $1 \leqslant m\left(w, u u_{1}\right)=m\left(u_{1}, u w\right)$. Assume $u_{1} \neq u_{2}$. In this case, from the last two relations, u_{1} must enter in the basic decomposition of $v_{1} u_{1}$ and $1 \leqslant m\left(u_{1}, v_{1} u_{1}\right)=m\left(v_{1}, u_{1}^{2}\right)$. Therefore $v_{1}=v_{2}$ and $m\left(u_{1}, v_{1} u_{1}\right)=m\left(v_{1}, u_{1}^{2}\right)=1$. Then (1) becomes $v_{1} u_{1}+u_{2}=u w+u \xi$. This relation is impossible in the case $u_{1} \neq u_{2}$. Indeed, if $u_{1} \neq u_{2}$ then the multiplicity of u_{1} on the left hand side is equal to 1 whereas on the other side the multiplicity of u_{1} is at least 2 since u_{1} enters in both terms of the sum.

Before giving the proof of Theorem 4, one more lemma is needed.
Lemma 7. Suppose H satisfies the assumptions of Theorem 4 and $a, a^{\prime}, b \in \mathscr{G}(H)$ with $|a|=\left|a^{\prime}\right|<|b|$ and a, b basic elements. Let x_{3} be a 3-dimensional basic element of $\mathscr{G}(H)$ with $a x_{3}=b+c+u=a^{\prime}+c+v$, for some $c, u, v \in \mathscr{G}(H)_{+}$with $c \neq 0$. Then $v=b$ and $u=a^{\prime}$.

Proof. It is easy to see that any basic component of $a x_{3}$ has degree at least $|a| / 3$. Indeed, if $1 \leqslant m\left(z, a x_{3}\right)=m\left(a, z x_{3}\right)$ then $|a| \leqslant\left|z x_{3}\right|$ and $|z| \geqslant|a| / 3$. We have $b+u=a^{\prime}+v$. Since $\left|a^{\prime}\right|<|b|$ and b is a basic element, it follows that b is a basic component of v. Therefore $v=v_{1}+b$ and $u=a^{\prime}+v_{1}$. We want to show that $v_{1}=0$. If $v_{1} \neq 0$ then $c+v_{1}$ must have at least three basic components since every basic element has odd degree. These are also basic components of $a x_{3}$. But this is impossible, since in that case $\left|c+v_{1}\right| \geqslant 3|a| / 3=|a|$ and therefore the degree of $b+c+u$ is strictly greater than $3|a|$. Thus $v_{1}=0$.

We are ready to prove our main result.

Proof of Theorem 4. Assume (i) does not hold. By Lemma 6 there is a 3-dimensional basic element x_{3} such that $x_{3}^{2}=1+x_{3}+x_{5}$.

It will be shown that (ii) holds in this case. For (ii) it suffices to prove the existence of two families of basic elements $\left\{x_{2 n+1}: n \geqslant 1\right\},\left\{x_{2 n+1}^{\prime}: n \geqslant 1\right\}$ corresponding to the two families of simple subcoalgebras $\left\{C_{2 n+1}: n \geqslant 1\right\},\left\{D_{2 n+1}: n \geqslant 1\right\}$ satisfying $\left|x_{2 n+1}\right|=\left|x_{2 n+1}^{\prime}\right|=2 n+1$ and

$$
x_{2 n+1} x_{3}=x_{2 n-1}+x_{2 n+1}^{\prime}+x_{2 n+3}
$$

for all $n \geqslant 0$.
For $x_{1}=1$ and $x_{3}^{\prime}=x_{3}$ the first relation of (ii) is satisfied. Suppose we have found $x_{3}, x_{5}, \ldots x_{2 n+1}, x_{2 n+3}$ and $x_{3}^{\prime}, x_{5}^{\prime}, \ldots x_{2 n+1}^{\prime}$ such that:

$$
x_{2 k+1} x_{3}=x_{2 k-1}+x_{2 k+1}^{\prime}+x_{2 k+3}
$$

for any natural number k with $1 \leqslant k \leqslant n$.
We want to show that there are another two basic elements $x_{2 n+3}^{\prime}, x_{2 n+5}$ such that

$$
x_{2 n+3} x_{3}=x_{2 n+1}+x_{2 n+3}^{\prime}+x_{2 n+5} .
$$

Since $m\left(x_{2 n+1}, x_{2 n+3} x_{3}\right)=m\left(x_{2 n+3}, x_{2 n+1} x_{3}\right)=1$ we may write

$$
x_{2 n+3} x_{3}=x_{2 n+1}+y_{0}+z_{0}
$$

where y_{0} is a basic component of $x_{2 n+3} x_{3}$, different from $x_{2 n+1}$ and with the smallest possible degree. If $\left|y_{0}\right| \geqslant 2 n+3$ we are done. Indeed any other irreducible that enters in z_{0} has dimension at least $2 n+3$. If z_{0} is not basic then it contains at least three basic elements since $\left|z_{0}\right|$ is odd. In this case $\left|z_{0}\right| \geqslant 3(2 n+3)$ which is not possible. Hence z_{0} is basic. Since $\left|y_{0}\right|+\left|z_{0}\right|=4 n+8$ and $\left|z_{0}\right| \geqslant\left|y_{0}\right| \geqslant 2 n+3$ the following equalities are satisfied $\left|y_{0}\right|=2 n+3$ and $\left|z_{0}\right|=2 n+5$. Then let $x_{2 n+3}^{\prime}=y_{0}$ and $x_{2 n+5}=z_{0}$.

The case $\left|y_{0}\right|<2 n+3$ will be shown to be impossible. Note that $m\left(x_{2 n+3}, y_{0} x_{3}\right)=$ $m\left(y_{0}, x_{2 n+3} x_{3}\right)=1$ and if $y_{0} \neq x_{2 n+3} x_{3}$ we may write again

$$
y_{0} x_{3}=x_{2 n+3}+y_{1}+z_{1}
$$

where y_{1} is a basic component of $y_{0} x_{3}$ different from $x_{2 n+3}$ and with the smallest possible dimension. The degree of $y_{0} x_{3}-x_{2 n+3}$ is even and therefore there are at least three basic components in the decomposition of $y_{0} x_{3}$. Since $\left|y_{0}\right|<2 n+3$ we have $\left|y_{1}\right|<\left|y_{0}\right|$. The same procedure gives $y_{1} x_{3}=y_{0}+y_{2}+z_{2}$ where y_{2} is again a basic component of $y_{1} x_{3}$, different from y_{0} and with the smallest possible dimension. Similarly $\left|y_{2}\right|<\left|y_{1}\right|$.

In this manner we construct a sequence of basic elements $y_{0}, y_{1}, \ldots y_{k}$ with $\left|y_{k}\right|<$ $\left|y_{k-1}\right|<\cdots<\left|y_{2}\right|<\left|y_{1}\right|<\left|y_{0}\right|<2 n+3$ and

$$
y_{0} x_{3}=x_{2 n+3}+y_{1}+z_{1}
$$

$$
y_{1} x_{3}=y_{0}+y_{2}+z_{2}
$$

$$
\vdots
$$

$$
y_{k-1} x_{3}=y_{k-2}+y_{k}+z_{k},
$$

where the z_{i} are not necessarily irreducible.

Since the dimension of y_{k} is decreasing this process must stop. Therefore we may suppose $y_{k} x_{3}$ is basic, so $y_{k} x_{3}=y_{k-1}$. Note that the case $y_{0} x_{3}=x_{2 n+3}$ simply means that the process stops after the first stage.

It will be shown that $k=n=1$. First note that $k<n+1$ since $\left|y_{k}\right|<\left|y_{k-1}\right|<\cdots<\left|y_{1}\right|$ $<\left|y_{0}\right|<2 n+3$ and all the elements have odd degree. Next we will prove that

$$
\begin{equation*}
y_{k-t}=y_{k} x_{2 t+1} \tag{2}
\end{equation*}
$$

for $1 \leqslant t \leqslant k+1$. For consistency of notation we put $y_{-1}=x_{2 n+3}$.
For $t=1, y_{k} x_{3}=y_{k-1}$ from above. Suppose

$$
y_{k-t}=y_{k} x_{2 t+1}
$$

for $1 \leqslant t \leqslant s$. We need to prove that

$$
y_{k-s-1}=y_{k} x_{2 s+3} .
$$

For $t=s$ we have $y_{k-s}=y_{k} x_{2 s+1}$. Multiplication by x_{3} gives $y_{k-s} x_{3}=y_{k} x_{2 s+1} x_{3}$. Then

$$
y_{k-s-1}+y_{k-s+1}+z_{k-s+1}=y_{k} x_{2 s-1}+y_{k} x_{2 s+1}^{\prime}+y_{k} x_{2 s+3}
$$

(We used that $2 s+1 \leqslant 2 k+1 \leqslant 2 n+1$). Since $y_{k-s+1}=y_{k} x_{2 s-1}$ it follows that

$$
y_{k-s-1}+z_{k-s+1}=y_{k} x_{2 s+1}^{\prime}+y_{k} x_{2 s+3} .
$$

But $\left|y_{k} x_{2 s+1}^{\prime}\right|=\left|y_{k} x_{2 s+1}\right|=\left|y_{k-s}\right|<\left|y_{k-s-1}\right|$. Lemma 7 applied to $a=y_{k-s}, a^{\prime}=y_{k} x_{2 s+1}^{\prime}$ and $b=y_{k-s-1}$ implies that $z_{k-s+1}=y_{k} x_{2 s+1}^{\prime}$ and $y_{k-(s+1)}=y_{k} x_{2 s+3}$ as required. Note that y_{-2} represents $x_{2 n+1}$ in the case $t=k+1$.

For $t=k+1$ relation (2) becomes

$$
\begin{equation*}
x_{2 n+3}=y_{k} x_{2 k+3} . \tag{3}
\end{equation*}
$$

We show that this is impossible if $k<n$. Indeed, $2 k+3<2 n+3$ and relation (3) multiplied by x_{3} gives

$$
x_{2 n+1}+y_{0}+z_{0}=y_{k} x_{2 k+1}+y_{k} x_{2 k+3}^{\prime}+y_{k} x_{2 k+5}
$$

Since $y_{0}=y_{k} x_{2 k+1}$ it follows that

$$
\begin{equation*}
x_{2 n+1}+z_{0}=y_{k} x_{2 k+3}^{\prime}+y_{k} x_{2 k+5} . \tag{4}
\end{equation*}
$$

It will be shown that $x_{2 n+1}$ cannot be a basic component of either term of the right hand side. The degree of the first term is

$$
\left|y_{k} x_{2 k+3}^{\prime}\right|=\left|y_{k} x_{2 k+3}\right|=\left|x_{2 n+3}\right|=2 n+3
$$

and the difference between its degree and the degree of $x_{2 n+1}$ is 2 . The other components of $y_{k} x_{2 k+3}^{\prime}$ cannot be 1 -dimensional since they are also components of $x_{2 n+3} x_{3}$. If $x_{2 n+1}$ is a basic component of the second term, $y_{k} x_{2 k+5}$, then relation 4 implies that $y_{k} x_{2 k+5}=x_{2 n+1}+u+v, z_{0}=y_{k} x_{2 k+3}^{\prime}+u+v$ and $x_{2 n+3} x_{3}=x_{2 n+1}+y_{0}+y_{k} x_{2 k+3}^{\prime}+u+v$. Therefore $\left|y_{0}\right|+|u|+|v|=2 n+5$. Since any basic components of $x_{2 n+3} x_{3}$ has degree at least $(2 n+3) / 3$ and y_{0} is the smallest component different from $x_{2 n+1}$, we have $(2 n+3) / 3 \leqslant\left|y_{0}\right| \leqslant(2 n+5) / 3$. But $y_{0} x_{3}$ contains $x_{2 n+3}$ and $\left|y_{0} x_{3}\right|-\left|x_{2 n+3}\right| \leqslant 2$. So if $y_{0} x_{3}-x_{2 n+3} \neq 0$ then it has to be the sum of two grouplike elements, which is
impossible. Indeed, if g and h were these two grouplike elements then $g y_{0}=h y_{0}=x_{3}$ and $g h^{-1} x_{3}=x_{3}$ which implies $g=h$ and contradicts part 2 (c) of Theorem 3. We conclude that $y_{0} x_{3}=x_{2 n+3}$, and hence $\left|y_{0}\right|=(2 n+3) / 3$. Moreover, $|u|=\left|y_{0}\right|=(2 n+3) / 3$ and $|v|=\left|y_{0}\right|+2$. Thus $u x_{3}=x_{2 n+3}$ and $v x_{3}=x_{2 n+3}+w$, where $|w|=6$. But $n \geqslant 1,|v| \geqslant 4$ and so $v x_{3}$ cannot have any 1 -dimensional basic components. Therefore w is the sum of two 3-dimensional basic components w_{1} and w_{2}. Since $1 \leqslant m\left(w_{i}, v x_{3}\right)=m\left(v, w_{i} x_{3}\right)$ and $\left|w_{i} x_{3}\right|=9$, it follows that $w_{i} x_{3}-v$ has dimension at most 5 . Multiplying on the right by x_{3}, it is easy to see that $w_{i} x_{3}-v \neq 0$. So each product $w_{i} x_{3}$ has a 1 -dimensional component g_{i} with $w_{i}=g_{i} x_{3}$. Therefore $v x_{3}^{2}=x_{2 n+3} x_{3}+w_{1} x_{3}+w_{2} x_{3}=x_{2 n+3} x_{3}+g_{1} x_{3}^{2}+g_{2} x_{3}^{2}$ has two components of degree 1 , namely g_{1} and g_{2}. On the other hand, $v x_{3}^{2}=v+v x_{3}+v x_{5}$ and the only 1 -dimensional components of $v x_{3}^{2}$ appear in the basic decomposition of $v x_{5}$. Part 2(b) of Theorem 3 implies that $v=g_{1} x_{5}=g_{2} x_{5}$. So for $i=1,2, v x_{3}=g_{i} x_{5} x_{3}$ and its basic components have dimension at most 7 . Since $2 n+3$ is divisible by 3 and $n \geqslant 1$ we have $\left|x_{2 n+3}\right|=2 n+3 \geqslant 9$. Hence $x_{2 n+3}$ cannot be a basic component of $v x_{3}$. This means that relation (3) cannot hold for $k<n$.

Now suppose $k=n$. Then $x_{2 n+3}=y_{n} x_{2 n+3}$ implies that $\left|y_{n}\right|=1$ and $y_{n}=g$, a grouplike element of H. Moreover, relation 2 implies that $y_{n-t}=g x_{2 t+1}$, for $0 \leqslant t \leqslant n$. Then

$$
\begin{equation*}
x_{2 n+3} x_{3}=x_{2 n+1}+g x_{2 n+1}+z_{0} \tag{5}
\end{equation*}
$$

which gives $\left|z_{0}\right|=2 n+7$. We have to consider two cases, whether z_{0} is a basic element or not.

If z_{0} is basic then g has order 2 , which would imply (i), contrary to our assumption. Indeed, the last relation multiplied by g becomes $x_{2 n+3} x_{3}=g x_{2 n+3} x_{3}=g x_{2 n+1}+g^{2} x_{2 n+1}+$ $g z_{0}$. Therefore $g^{2} x_{2 n+1}=x_{2 n+1}$. The decomposition formula for $x_{2 n+1} x_{3}$ multiplied by x_{3} gives $g^{2} x_{2 n-1}=x_{2 n-1}$. Similarly, $g^{2} x_{2 t+1}=x_{2 t+1}$ for any $0 \leqslant t \leqslant n$. In particular $g^{2} x_{1}=x_{1}$ gives $g^{2}=1$.

Hence z_{0} cannot be a basic element. In this case, in its basic decomposition there are at least three terms, since every basic element has odd degree. By the choice of y_{0}, any of these basic elements has degree at least $\left|y_{0}\right|=2 n+1$; therefore $2 n+7 \geqslant 3(2 n+1)$ which implies $n=1$.

It will be shown that this is impossible. Write $z_{0}=u_{1}+u_{2}+u_{3}$. Then (5) becomes

$$
x_{5} x_{3}=x_{3}+g x_{3}+u_{1}+u_{2}+u_{3}
$$

and 1-dimensional basic elements cannot appear on the right-hand side. Hence $\left|u_{i}\right|=3$ for $1 \leqslant i \leqslant 3$. It is easy to see that each of the products $u_{i} x_{3}$ has a 1 -dimensional basic component since each of them has degree 9 and all of them have x_{5} as a component. Hence, by part 2(b) of Theorem 3, $u_{i}=h_{i} x_{3}$ where each h_{i} is a grouplike element.

Consider the set V of grouplike elements h such that $h x_{5}=x_{5}$. By part 2(c) of Theorem 3, V is a group. It is easy to see that $1, g, h_{1}, h_{2}, h_{3} \in V$. If $h \in V$ then $m\left(h x_{3}, x_{5} x_{3}\right)=m\left(h x_{5}, x_{3}^{2}\right)=m\left(x_{5}, x_{3}^{2}\right)=1$, implying that $h x_{3}$ is one of the basic elements u_{i}. But if $h x_{3}=h_{i} x_{3}$ then multiplication by x_{3} on the right gives $h+h x_{3}+h x_{5}=h_{i}+h_{i} x_{3}+h_{i} x_{5}$ and so $h=h_{i}$. Therefore $V=\left\{1, g, h_{1}, h_{2}, h_{3}\right\}$. The relation $x_{3}^{2}=1+x_{3}+x_{5}$ multiplied by x_{5} on the right gives $x_{5}^{2}=4 x_{5}+1+g+h_{1}+h_{2}+h_{3}$. This shows that $\left\{x_{3}, x_{5}\right\} \cup V$ generates a standard subring R_{1} of $\mathscr{G}(H)$. We have $x_{3}^{3}=x_{3}^{2} x_{3}=x_{3}+x_{3}^{2}+x_{5} x_{3}$. On the other hand, $x_{3}^{3}=x_{3} x_{3}^{2}=x_{3}+x_{3}^{2}+x_{3} x_{5}$. Therefore $x_{5} x_{3}=x_{3} x_{5}$. But $x_{5} x_{3}=\left(x_{3} x_{5}\right)^{*}$ and
R_{1} is closed under *. By Theorem 2, it corresponds to a Hopf subalgebra K_{1} of H with dimension equal to $5 * 1^{2}+5 * 3^{2}+5^{2}=75$. In a similar way it can be seen that $\left\{x_{5}\right\} \cup V$ generates a standard subring R_{2}. It is also closed under * and by the same argument it corresponds to a Hopf subalgebra K_{2} of H with dimension 30. Clearly $R_{2} \subseteq R_{1}$. Then K_{2} is a Hopf subalgebra of K_{1} contradicting the freeness theorem.

Corollary 8. Let H be an odd dimensional Hopf algebra over an algebraically closed field k. If H contains a simple subcoalgebra of dimension 9 and no simple subcoalgebras of even dimension then $\operatorname{dim}_{k} H$ is divisible by 3.

Proof. Since $\operatorname{dim}_{k} H$ is odd the freeness theorem implies that H cannot have a grouplike element of order 2. Therefore H has a grouplike element of order 3 and the same theorem gives the divisibility relation.

A similar result was obtained by Kashina et al. [4]. They assume that the characteristic of the base field is 0 in which case the assumption that H is odd dimensional automatically implies that H has no even dimensional simple subcoalgebras.

Acknowledgements

I would like to express my deep gratitude to my thesis supervisor Declan Quinn whose guidance and support were crucial for the successful completion of this paper. I also thank Y. Sommerhäuser for his encouraging comments and suggestions regarding the presentation of this paper.

References

[1] P. Etingof, S. Gelaki, Some properties of finite dimensional semisimple Hopf algebras, Math. Res. Lett. 5 (1988) 191-197.
[2] I. Kaplansky, Bialgebras, University of Chicago Press, Chicago, 1975.
[3] Y. Kashina, Y. Sommerhäuser, Y. Zhu, Self dual modules of semisimple Hopf algebras, J. Algebra 257 (2002) 88-96.
[4] Y. Kashina, Y. Sommerhäuser, Y. Zhu, On higher Frobenius-Schur indicators, preprint, math.RA/0311199, 2003.
[5] M. Lorenz, On the degree of irreducible representations of Hopf algebras preprint.
[6] S. Montgomery, Hopf Algebras and Their Actions on Rings, Vol. 82, 2nd Revised Printing, Regional Conference Series Mathematics, American Mathematical Society, Providence, RI, 1997.
[7] W.D. Nichols, M.B. Richmond, The Grothendieck group of a Hopf algebra, J. Pure Appl. Algebra 106 (1996) 297-306.
[8] W.D. Nichols, M.B. Zoeller, A Hopf algebra freeness theorem, Amer. J. Math. 111 (1989) 381-385.
[9] H.-J. Schneider, Some properties of factorizable Hopf algebras, Proc. Amer. Math. Soc. 129 (2001) 1891-1898.
[10] S. Zhu, On semisimple Hopf algebras, J. Algebra 1 (1996) 53-59.

[^0]: ${ }^{2}$ This paper is part of the author's thesis to be submitted in partial fulfillment of the requirements for the Ph.D. degree in Mathematics at Syracuse University.

 E-mail address: smburciu@syr.edu (S. Burciu).

