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ABSTRACT

The classical Clifford correspondence for normal subgroups is considered

in the setting of semisimple Hopf algebras. We prove that this correspon-

dence still holds if the extension determined by the normal Hopf subalge-

bra is cocentral.

Introduction

The starting point for Clifford theory is Clifford’s paper [3] on representations

of normal subgroups. Since then much has been written on the subject. Par-

allel theories for graded rings and Lie algebras were developed in [4] and [1],

respectively, as well as in other papers. A unifying setting for these theories was

developed by Schneider [10] for Hopf Galois extensions. The main problem with

this more general theory is that usually the stabilizer is not a Hopf subalgebra

and is not an extension of the base ring.

A more general approach was considered by Witherspoon in [11] for any nor-

mal extension of semisimple algebras. With a certain definition of the stabilizer

it was proven in [11] that the Clifford correspondence holds.

In this paper we address an analogue of Clifford’s initial approach for groups.

We consider an extension of Hopf algebras A/B where B is a normal Hopf

subalgebra of A and let M be an irreducible B-module. The conjugate B-

modules ofM are defined as in [2] and the stabilizer Z ofM is a Hopf subalgebra

of A containing B. We say that the Clifford correspondence holds for M if
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induction from Z to A provides a bijection between the sets of Z (respectively

A)-modules that contain M as a B-submodule.

Since B is normal in A also in the sense of [11], the results from this paper

can also be applied. It is shown that the Clifford correspondence holds for M

if and only if Z is a stabilizer in the sense proposed in [11]. A necessary and

sufficient condition for this to happen is given in Proposition 2.9. Our approach

uses the character theory for Hopf algebras and normal Hopf subalgebras. If

the extension

k −−−−→ B
i−−−−→ A

π−−−−→ H −−−−→ k

is cocentral, then we prove that this condition is satisfied (see Corollary 3.10).

Recall that such an extension is cocentral if H∗ ⊂ Z(A∗) via π∗.
The paper is organized as follows. The first section recalls the character

theory results for Hopf subalgebras that are needed further. The next section

defines the conjugate module and introduces the stabilizer as a Hopf subalgebra.

The necessary and sufficient condition for the Clifford correspondence to hold

is proven in this section. The third section considers the case when the quotient

Hopf algebra is a finite group algebra. A different approach gives in these

settings another criterion for the Clifford correspondence to hold (see Theorem

3.8). As a corollary of this, it is proven that the Clifford correspondence holds

for cocentral extensions. In the last section of the paper a counterexample

of a non-cocentral extension where the Clifford correspondence does not hold

anymore is given.

For a vector space V over a field k, |V | denotes the dimension dimkV . The

comultiplication, counit and antipode of a Hopf algebra are denoted by Δ, ε

and S, respectively. We use Sweedler’s notation Δ(x) = x1 ⊗ x2 for all x ∈ H

with the sum symbol dropped. All the other notations are those used in [8]. All

considered modules are left modules.

1. Normal Hopf subalgebras

Throughout this paper A will be a finite-dimensional semisimple Hopf alge-

bra over an algebraically closed field k of characteristic zero. Then A is also

cosemisimple and S2 = Id [6]. The set of irreducible characters of A is de-

noted by Irr(A). The Grothendieck group G(A) of the category of finite-

dimensional left A-modules is a ring under the tensor product of modules. Then
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C(A) = G(A)⊗Z k is a semisimple subalgebra of A∗ [12] and it has a basis given

by the characters of the irreducible A-modules.

If M and N are two A-modules with characters χ and μ, respectively, then

m
A
(M,N) := dimkHomA(M,N). The same quantity is also denoted bym

A
(χμ).

In this manner one obtains a nondegenerate symmetric bilinear form m
A
(, ) on

the character ring C(A) of A.

If M is an A-module with character χ, then M∗ is also an A-module with

character χ∗ = χ ◦ S. This induces an involution ∗ : C(A) → C(A) on C(A).

Let B be a Hopf subalgebra A. The restriction functor from A-modules to

B-modules defines a linear map res : C(A) → C(B). For a character χ ∈ C(A),

its image under res is also denoted by χ ↓AB. In the same manner, the induction

functor from B-modules to A-modules defines a linear map ind : C(B) → C(A).

For a character α ∈ C(B), its image under ind is also denoted by α ↑AB.
By Corollary 2.5 of [2] there is a coset decomposition for A

A =
⊕

C/∼
BC,

where ∼ is an equivalence relation on the set of simple subcoalgebras of A given

by C ∼ C′ if and only if BC = BC′. In [2], this equivalence relation is denoted

by rA
B, k

.

Since A is also cosemisimple [6], the set of simple subcoalgebras of A is in

bijection with the set of irreducible characters of A∗ (see [5] for this correspon-

dence).

Suppose now that B is a normal Hopf subalgebra of A. Recall that this means

a1BS(a2) ⊂ B for all a ∈ A. If χ and μ are two irreducible characters of A,

it can be proven that their restrictions to B either have the same irreducible

constituents or they don’t have common constituents at all. Define χ ∼ μ if and

only if m
B
(χ ↓AB, μ ↓AB) > 0. With the above notations this is the equivalence

relation rA
∗

H∗, k
for the inclusion H∗ ⊂ A∗, where H = A//B is the quotient

Hopf algebra.

Let A1, . . . ,Al be the equivalence classes of the above relation and

ai =
∑

χ∈Ai

χ(1)χ

for 1 ≤ i ≤ l.

This equivalence relation determines an equivalence relation on the set of

irreducible characters ofB. Two irreducibleB-characters α and β are equivalent
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if and only if they are constituents of χ ↓AB for some irreducible character χ of

A.

Let B1, . . . ,Bl be the equivalence classes of this new equivalence relation and

let

bi =
∑

α∈Bi

α(1)α.

The induction-restriction formulae from [2] can be written as

(1.1)
χ ↓AB
χ(1)

=
bi
bi(1)

and

(1.2)
α ↑A

B

α(1)
=

|A|
|B|

ai
ai(1)

if χ ∈ Ai and α ∈ Bi.
Since the regular character of A restricts to |A|

|B| copies of the regular character
of B, it follows that

(1.3) ai ↓AB=
|A|
|B|bi.

In particular, ai(1) =
|A|
|B|bi(1) for all 1 ≤ i ≤ l (see also 4.1 of [2]).

2. Conjugate modules and stabilizers

Throughout this section let B be a normal Hopf subalgebra of A. Let M be an

irreducible B-module with character α ∈ C(B). We recall the following notion

of conjugate module introduced in [2]. It was also previously considered in [10]

in the cocommutative case.

If W is an A∗-module, then W ⊗M becomes a B-module with

(2.1) b(w ⊗m) = w0 ⊗ (S(w1)bw2)m

Here we used that any left A∗-module W is a right A-comodule via ρ(w) =

w0 ⊗ w1. It can be checked that if W ∼= W ′ as A∗-modules then W ⊗M ∼=
W ′ ⊗M . Thus for any irreducible character d ∈ Irr(A∗) associated to a simple

A-comodule W , one can define the B-module dM ∼= W ⊗ M . If α is the

character of M , then the character dα of dM is given by

(2.2) dα(x) = α(Sd1xd2)
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for all x ∈ B (see Proposition 5.3 of [2]). The following is Proposition 5.12 of

[2].

Proposition 2.3: Let B be a normal Hopf subalgebra of A and M be an irre-

ducible B-module. ThenM ↑A
B
↓A

B
and

⊕
d∈Irr(A∗)

dM have the same irreducible

constituents.

Remark 2.4: From the above proposition, it follows that the equivalence class

of a character α ∈ Irr(B) is given by all the irreducible constituents of dα as d

runs through all irreducible characters of H∗.

Fix α ∈ Irr(B) and suppose that α ∈ Bi for some index i.

Proposition 2.5: The set {d ∈ Irr(A∗) | dα = ε(d)α} is closed under multi-

plication and “ ∗ ”. Thus it generates a Hopf subalgebra Z of A that contains

B.

Proof. Since d(d
′
α) =dd

′
α, it follows that the above set is closed under mul-

tiplication. Since d∗ is a constituent of some power of d, it also follows that

the set is closed under “ ∗ ” too. Thus it generates a Hopf subalgebra Z

of A (see [9]) with Z =
⊕

C C where the sum is over all simple subcoal-

gebras of A whose irreducible characters d satisfy dα = ε(d)α. If d ∈ B,

then dα(x) = α(Sd1xd2) = α(xd2S(d1)) = ε(d)α(x) for all x ∈ B. Therefore

B ⊂ Z.

Z will be called the stabilizer of α in A.

Remark 2.6: If C is any subcoalgebra of A, then C ⊗M has a structure of a

B-module as above using the fact that C is a right A-comodule via Δ. Then

C ⊗M ∼=M |C| as B-modules if and only if C ⊂ Z.

Remark 2.7: If A = kG and B = kN for a normal subgroup N , then Z coincides

with the stabilizer of α introduced in [3].

2.1. On the stabilizer. Since B is normal in Z, one can define as above

two equivalence relations, on Irr(Z) respectively Irr(B). Let Z1, . . . ,Zr be the

equivalence classes in Irr(Z) and B′
1, . . . ,B′

r be the corresponding equivalence

classes in Irr(B).

Remark 2.4 implies that α by itself forms an equivalence class of Irr(B), say

B′
1. Then clearly the corresponding equivalence class Z1 is given by
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Z1 = {ψ ∈ Irr(Z)| ψ ↓
B

containsα}.
Formula 1.1 becomes in this situation ψ ↓Z

B
= ψ(1)

α(1)α for all ψ ∈ Z1. Let ψα =
∑

ψ∈Z1
ψ(1)ψ. Then ψα ↓Z

B
= |Z|

|B|α(1)α by 1.3 and ψα(1) =
|Z|
|B|α(1)

2.

Lemma 2.8: With the above notations

ψα ↑AZ=
α(1)2

bi(1)
ai.

Proof. One has α ↑ZB= |Z|
|B|

α(1)
ψα(1)ψα by 1.2. But ψα(1) =

|Z|
|B|α(1)

2 and the last

formula becomes

α ↑ZB=
ψα
α(1)

.

Thus α ↑AB= (α ↑ZB) ↑AZ= ψα↑A
Z

α(1) . On the other hand, α ↑AB= |A|α(1)
|B|ai(1)ai and one

gets that

ψα ↑AZ=
|A|α(1)2
|B|ai(1) ai =

α(1)2

bi(1)
ai.

2.2. Definition of the Clifford correspondence. The above Lemma

implies that for any ψ ∈ Z1, all the irreducible constituents of ψ ↑AZ are in

Ai. We say that the Clifford correspondence holds for the irreducible character

α ∈ Bi if ψ ↑AZ is irreducible for any irreducible character ψ ∈ Z1 and the

induction function

ind : Z1 → Ai

given by ind(ψ) = ψ ↑AZ is a bijection.

2.3. Clifford theory for normal subrings [11]. Let B ⊂ A be an ex-

tension of k-algebras. An ideal J of B is called A-invariant if AJ = JA. Fol-

lowing [11], the extension A/B is called normal if every two sided ideal of B

is A-invariant. Witherspoon gave a general Clifford correspondence for normal

extensions. Let M be a B-module. Then M is called A stable if the module

M ↑AB↓AB is isomorphic to a direct sum of copies of M . A stabilizer S of M is a

semisimple algebra S such that B ⊂ S ⊂ A, B is a normal subring of S, M is

S-stable, and M − soc(M ↑AB↓AB) =M − soc(M ↑SB↓SB). Here, the M -socle of a

B -module is the sum of all its submodules isomorphic to M .

Next, we investigate a relationship between the stabilizer Z previously defined

and the notion of stabilizer defined as above for normal extensions. It is easy to
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see that if B is a normal Hopf subalgebra of A, then the extension A/B is normal

in the above sense (see also Proposition 5.3 of [11]). By the same argument B

is normal in Z, and from Remark 2.4 it follows that M is Z-stable. Thus Z is

a stabilizer in the above sense if and only if the socle condition is satisfied. In

terms of characters, this can be written as m
B
(α ↑ZB↓ZB, α) = m

B
(α ↑AB↓AB, α)

where α is the character of M .

Proposition 2.9: With the above notations:

(1) |Z| ≤ |A|α(1)2
bi(1)

.

(2) Equality holds if and only if Z is a stabilizer in the sense of [11].

Proof. Clearly m
B
(α ↑ZB↓ZB, α) ≤ m

B
(α ↑AB↓AB, α), and equality holds if and

only if Z is a stabilizer in the sense of [11].

Let, as before, s = |A|
|B| be the index of B in A and s′ = |Z|

|B| be the index of B

in Z.

Using formulae (1.2) and (1.3) it can be seen that

m
B
(α ↑AB↓AB, α) =

sα(1)

ai(1)
m

B
(ai ↓AB, α) =

s2α(1)

ai(1)
m

B
(bi, α)

=
α(1)2s2

ai(1)

=
α(1)2

bi(1)
s.

A similar argument applied to the extension B ⊂ Z gives

m
B
(α ↑ZB↓ZB, α) =

α(1)2s′

b′1(1)
= s′,

since in this situation b′1 = α(1)α. Thus

s′ =
|Z|
|B| ≤ s

α(1)2

bi(1)
=

|A|
|B|

α(1)2

bi(1)
,

which gives the required inequality.

Remark 2.10: If A = kG and B = kN for a normal subgroup N , then the above

inequality is equality. It states that the number of conjugate modules of α is

the index of the stabilizer of α in G.
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2.4. Clifford correspondence.

Theorem 2.11: The Clifford correspondence holds for α if and only if Z is a

stabilizer in the sense given in [11].

Proof. If Z is a stabilizer in the sense given in [11], then the Clifford correspon-

dence holds by Theorem 4.6 of the same paper.

Conversely, suppose that the map

ind : Z1 → Ai

given by ind(ψ) = ψ ↑AZ is a bijection. Thus for any ψ ∈ Z1 there is a χ ∈ Ai

such that ψ ↑AZ= χ. Note that this implies ψ(1) = |Z|
|A|χ(1).

Since ind is a bijection, one can write

ψα ↑AZ=
∑

ψ∈Z1

ψ(1)ψ ↑AZ=
∑

χ∈Ai

|Z|
|A|χ(1)χ =

|Z|
|A|ai,

which implies that ψα(1) = ( |Z|
|A| )

2ai(1). Lemma 2.8 implies ψα(1) =
|Z|
|A|

α(1)2

bi(1)
ai(1)

and therefore one gets |Z| = |A|α(1)2
bi(1)

. Proposition 2.9 implies that Z is a stabi-

lizer in the sense given in [11].

3. Extensions of Hopf algebras

Let B be a normal Hopf subalgebra of A and H = A//B. Then we have the

extension

(3.1) k −−−−→ B
i−−−−→ A

π−−−−→ H −−−−→ k

and A/B is an H-Galois extension with the comodule structure ρ : A→ A⊗H

given by ρ = (id⊗ π)Δ.

Remark 3.2: The restriction functor from A-modules to B-modules induces a

map res : C(A) → C(B). It is easy to see that res = i∗|C(A), the restriction of

i∗ : A∗ → B∗ to the subalgebra of characters C(A). By duality, π|C(A∗) is the

restriction map of A∗-characters to H∗ (here H∗ ⊂ A∗ via π∗).

3.1. Results on Hopf Galois extensions. In this subsection we recall a

few facts about Clifford theory for Hopf Galois extensions over finite group

algebras H = kF from [10]. (See also [4].) Let A/B be a Hopf Galois extension

over H = kF via the comodule map ρ : A→ A⊗ kF . For any f ∈ F let Af =
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ρ−1(A⊗kf). Since A/B is a Hopf Galois extension, one has that A =
⊕

f∈F Af
is a strongly graded algebra by F with A1 = B. The functor Af ⊗B − :B

M →B M is an equivalence of categories, since Af is an invertible B-bimodule,

Af ⊗B Af−1 = B. In particular, for any simple B-module M then Af ⊗B M
is also a simple B-module. From this, it follows that the group F acts on the

irreducible representations of B by f.M := Af ⊗B M
The stabilizer F ′ ofM is defined as the set of all f ∈ F such that Af ⊗BM ∼=

M as B-modules. It is a subgroup of F . Let S = A(F ′) =: ρ−1(A ⊗ kF ′) =⊕
f∈F ′ Af . Then the induction map ind

{V ∈ S −mod : V ↓SB contains M} → {P ∈ A−mod : P ↓AB contains M}
given by ind(M) = S ⊗B M is a bijection.

3.2. Extensions by kF . For the rest of this section we suppose that H = kF

for some finite group F . Then H∗ = kF is a normal Hopf subalgebra of A∗

and one can define the same equivalence relations from the beginning of this

paper for this extension. Since Irr(kF ) = F , this gives a partition of the group

F =
⊔m
j=1 Fj . Then by Remark 3.2, formula (1.3) applied to this situation

implies that for any d ∈ Irr(A∗) there is an unique index j such that

(3.3) π(d) =
ε(d)

|Fj |
∑

f∈Fj

f.

3.3. Dimension of the orbit. Let M be an irreducible representation of B

with character α and let F ′ ≤ F be the stabilizer of M . Since |f.M | = |M |,
it follows that all the irreducible representations in the equivalence class of M

have the same dimension. If s is their number then clearly s = |F |
|F ′| . Suppose

now that Bi is the equivalence class of α. The above results imply that Bi
coincides with the set of characters of the irreducible modules f.M . Thus

(3.4) bi(1) = sα(1)2 =
|F |
|F ′|α(1)

2.

3.4. Coset decomposition. Recall the coset decomposition for A

(3.5) A =
⊕

C/∼
BC,

where ∼ is an equivalence relation on the set of simple subcoalgebras of A given

by C ∼ C′ if and only if BC = BC′. Note that BC = CB for any simple

subcoalgebra C of A, since B is a normal Hopf subalgebra (see also [2]).
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Lemma 3.6: Suppose that π : A → kF is a surjective map of Hopf algebras

where F is a finite group. Let C be a simple subcoalgebra of A with irreducible

character d and suppose π(d) =
∑
g∈A agg where A ⊂ F and ag are positive

integers for all g ∈ A. Then π(C) =
⊕

g∈A kg.

Proof. π(C) is a subcoalgebra of kF and therefore π(C) =
⊕

g∈B kg. It is

enough to show A = B. Clearly A ⊂ B. For any g ∈ B let kg be a copy of

the field k. By duality, π∗ induces an embedding of the semisimple algebra

R =
∏
g∈B kg in the matrix algebra C∗ = Mε(d)(k). Writing the primitive

idempotents of R in terms of the primitive idempotents of C∗, it follows that

B ⊂ A.

Lemma 3.7: Assume that H = kF for some finite group F . Let d ∈ Irr(A∗) be
associated to the simple subcoalgebra C. If

π(d) =
ε(d)

|Fj |
∑

f∈Fj

f,

then the coset BC = ⊕f∈FjA(f).

Proof. Let As =
⊕

f∈Fs
A(f) for all 1 ≤ s ≤ m. Then A =

⊕m
s=1As. The

above lemma implies that π(C) =
⊕

f∈Fj
kf . Since π(BC) = π(C), this shows

BC ⊂ Aj . The coset decomposition formula (3.5) forces BC = Aj .

Theorem 3.8: Suppose that H = kF for some finite group F . Let M be an

irreducible representation of B with character α and let F ′ ≤ F be the stabilizer

of M . Then Z ⊂ S := A(F ′) and the Clifford correspondence holds for α if and

only if Z = S.

Proof. Since A/B is a Hopf Galois extension over H = kF , it follows as above

that A is strongly F -graded with A =
⊕

f∈F Af . First, we show that Z ⊂
S = A(F ′). Recall the definition of Z as the sum of all simple subcoalgebras C

whose irreducible characters d verify the property dα = ε(d)α. Let C be such an

algebra with character d. As above, there is a j such that π(d) = ε(d)
|Fj|

∑
f∈Fj

f .

It is easy to see that the canonical map CB⊗M → CB⊗BM is a morphism of

B-modules. Since BC ⊂ Z is a subcoalgebra, Remark 2.6 implies CB ⊗M ∼=
M |CB| as B-modules. Thus CB ⊗B M is a sum of copies of M . By Lemma

3.7, BC ⊗B M =
⊕

f∈Fj
A(f)⊗B M , which shows that Fj ⊂ F ′ and therefore

C ⊂ A(F ′) by Lemma 3.6. Thus Z =
∑

C⊂Z C ⊂ A(F ′).
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Since S/B is a kF ′-Hopf Galois extension, it follows that |S| = |B||F ′|. Using
formula 3.4 it follows that |S| = |A|α(1)2

bi(1)
if α ∈ Bi. Then Theorem 2.11 shows

that the Clifford correspondence holds if and only if |Z| = |S|.

It is easy to see that ΔA(S) ⊂ A⊗ S.

Corollary 3.9: Suppose that H = kF for some finite group F . Let M be an

irreducible representation of B with character α and let F ′ ≤ F be the stabilizer

of M . Then the Clifford correspondence holds for α if and only if S = A(F ′) is
a Hopf subalgebra of A.

Proof. Any S-module which restricted to B containsM is a direct sum of copies

ofM as a B-module by Corollary 2.2 of [10]. If S is a Hopf algebra, then Remark

2.4 applied to the extension S/B implies that S ⊂ Z. Thus S = Z.

Corollary 3.10: Suppose that the extension (3.1) is cocentral. Then the

Clifford correspondence holds for any irreducible B-module M .

Proof. Since H∗ is commutative, there is a finite group F such that H = kF .

It is easy to see that H∗ ⊂ Z(A∗) via π∗ if and only if π(a1)⊗ a2 = π(a2)⊗ a1

for all a ∈ A. This last relation implies that S is a Hopf subalgebra of A and

the previous corollary finishes the proof.

4. A counterexample

Let Σ = FG be an an exact factorization of finite groups. This gives a right

action � : G × F → G of F on the set G, and a left action � : G × F → F of

G on the set F subject to the following two conditions:

s� xy = (s� x)((s � x)� y), st� x = (s� (t� x))(t � x).

The actions � and � are determined by the relations gx = (g� x)(g � x) for

all x ∈ F , g ∈ G. Note that 1� x = x and s� 1 = s.

Consider the Hopf algebra A = kG#kF [7] which is a smashed product and

coproduct using the above two actions. The structure of A is given by

(δgx)(δhy) = δg�x,hδgxy,

Δ(δgx) =
∑

st=g

δs(t� x)⊗ δtx.
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C4 � S3 g g2 g3

t g g3 g2

s g2 g3 g

s2 g3 g g2

st g3 g2 g

ts g2 g g3

Table 1. The right action of S3 on C4

C4 � S3 t s s2 st ts

g ts t s st s2

g2 s2 ts t st s

g3 s s2 ts st t

Table 2. The left action of C4 on S3

Then A fits into the abelian extension

(4.1) k −−−−→ kG
i−−−−→ A

π−−−−→ kF −−−−→ k

As above, F acts on Irr(kG) = G. It is easy to see that this action is exactly

�. Let g ∈ G and H be the stabilizer of g under �. Using the above notations

it follows that S = A(H) = kG#kH . We will construct an example where S is

not a Hopf algebra and therefore the Clifford correspondence does not hold for

g ∈ G. We remark that the above comultiplication formula implies S is a Hopf

subalgebra if and only if G�H ⊂ H .

Consider the exact factorization S4 = C4S3, where C4 is generated by the

four cycle g = (1234) and S3 is given by the permutations that leave 4 fixed. If

t = (12) and s = (123), then the actions � and � are given in Tables 1 and 2.

The stabilizer of the element g is the subgroup {1, t}, which is not invariant

by the action of C4. Thus the Clifford correspondence does not hold for g.
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