Journal: JOURNAL OF THE LONDON MATHEMATICAL SOCIETY
Article id: JDT061 (130122)
Article Title: New examples of the Green functors arising from representation theory of semisimple Hopf algebras

First Author: Sebastian Burciu
Corr. Author: Sebastian Burciu

AUTHOR QUERIES - TO BE ANSWERED BY THE CORRESPONDING AUTHOR

The following queries have arisen during the typesetting of your manuscript. Please answer these queries by marking the required corrections at the appropriate point in the text.

Q1	Please check that all names have been spelt correctly and appear in the correct order. Please also check that all initials are present. Please check that the author surnames (family name) have been correctly identified by a pink background. If this is incorrect, please identify the full surname of the relevant authors. Occasionally, the distinction between surnames and forenames can be ambiguous, and this is to ensure that the authors' full surnames and forenames are tagged correctly, for accurate indexing online. Please also check all author affiliations.
Q2	There seems to be a mismatch between the metadata/email and the manuscript for classification codes. We followed the one given in the manuscript. Please check.
Q3	As per the journal style, we have renumbered the equations and mathematical statements throughout the article. Please confirm changes made.
Q4	According to journal style, a sentence must not start with a symbol or a variable. Please help us adhere to this style by proposing a descriptive word.
Q5	Please provide the page range for reference [5]. Q6 Please confirm section numbers.

New examples of the Green functors arising from representation theory of semisimple Hopf algebras

Sebastian Burciu

Abstract

A general Mackey-type decomposition for representations of semisimple Hopf algebras is investigated. We show that such a decomposition occurs in the case that the module is induced from an arbitrary Hopf subalgebra and it is restricted back to a group subalgebra. Some other examples when such a decomposition occurs are also constructed. They arise from gradings on the category of corepresentations of a semisimple Hopf algebra and provide new examples of the Green functors in the literature.

1. Introduction and main results

Mackey's decomposition theorem of induced modules from subgroups is a very important tool in the representations theory of finite groups. This decomposition describes the process of an induction composed with a restriction in terms of the reverse processes consisting of restrictions followed by inductions. More precisely, if G is a finite group, M and N are two subgroups of G and V a finite-dimensional k-linear representation of M, then the well-known Mackey's decomposition states that there is an isomorphism of $k N$-modules:

$$
\begin{equation*}
V \uparrow_{k M}^{k G} \downarrow_{k N}^{k G} \xrightarrow{\delta_{V}} \bigoplus_{x \in M \backslash G / N} k[N] \otimes_{k\left[{ }^{x} M \cap N\right]}{ }^{x} V . \tag{1.1}
\end{equation*}
$$

Here ${ }^{x} M:=x M x^{-1}$ is the conjugate subgroup and ${ }^{x} V:=V$ is the conjugate ${ }^{x} M$-representation defined by $\left(x m x^{-1}\right) \cdot v:=m \cdot v$ for all $m \in M$ and $v \in V$. The direct sum is indexed by a set of representative group elements of G for all double cosets $M \backslash G / N$ of G relative to the two subgroups M and N. Note that the inverse isomorphism of δ_{V} is given on each direct summand by the left multiplication operator $n \otimes_{k N \cap k^{x} M} v \mapsto n x \otimes_{k M} v$; see [20, Proposition 22].

The goal of this paper is to investigate a similar Mackey-type decomposition for the induced modules from Hopf subalgebras of semisimple Hopf algebras and restricted back to other Hopf subalgebras. In order to do this, we use the corresponding notion of a double coset relative to a pair of Hopf subalgebras of a semisimple Hopf algebra that was introduced by the author in [3]. We also have to define a conjugate Hopf subalgebra corresponding to the notion of a conjugate subgroup. For any Hopf subalgebra $K \subseteq H$ of a semisimple Hopf algebra H and any simple subcoalgebra C of H, we define the conjugate Hopf subalgebra ${ }^{C} K$ of K in Proposition 3.2. This notion corresponds to the notion of conjugate subgroup from the above decomposition. In order to deduce that ${ }^{C} K$ is a Hopf subalgebra of H, we use several crucial results from [18] concerning the product of two subcoalgebras of a semisimple Hopf algebra as well as FrobeniusPerron theory for nonnegative matrices.

Received 22 January 2013; revised 27 May 2013.
2010 Mathematics Subject Classification 16T20 (primary), 19A22, 20J15 (secondary).
This work was supported by a grant of the Romanian National Authority for Scientific Research, CNCS
Q2 UEFISCDI, project number PN-II-RU-TE-2012-3-0168.

Using these tools, we can prove one of the following main results of this paper.

Theorem 1.1. Let $K \subseteq H$ be a Hopf subalgebra of a semisimple Hopf algebra and M be a finite-dimensional K-module. Then for any subgroup $G \subseteq G(H)$ one has a canonical isomorphism of $k G$-modules

$$
\begin{equation*}
M \uparrow_{K}^{H} \downarrow_{k G}^{H} \xrightarrow{\delta_{M}} \bigoplus_{C \in k G \backslash H / K}\left(k G \otimes_{k G_{C}}{ }^{C} M\right) . \tag{1.2}
\end{equation*}
$$

Here $G(H)$ is the group of group-like elements of H and the subgroup $G_{C} \subseteq G$ is determined by $k G \cap{ }^{C} K=k G_{C}$. The conjugate module ${ }^{C} M$ is defined by ${ }^{C} M:=C K \otimes_{K} M$.

As in the classical group case, the homomorphism δ_{M} is the inverse of a natural homomorphism π_{M}, which is constructed by the left multiplication on each direct summand. It is not difficult to check (see Theorem 1.2) that in general, for any two Hopf subalgebras $K, L \subseteq H$ the left multiplication homomorphism π_{M} is always an epimorphism.

Theorem 1.2. Let K and L be two Hopf subalgebras of a semisimple Hopf algebra H. For any finite-dimensional left K-module M, there is a canonical epimorphism of L-modules

$$
\begin{equation*}
\bigoplus_{C \in L \backslash H / K}\left(L \otimes_{L \cap \cap_{K}}{ }^{C} M\right) \xrightarrow{\pi_{M}} M \uparrow_{K}^{H} \downarrow_{L}^{H} \tag{1.3}
\end{equation*}
$$

given on components by $l \otimes_{L \cap{ }^{C} K} v \mapsto l v$ for any $l \in L$ and any $v \in{ }^{C} M$. Here the conjugate module ${ }^{C} M$ is defined as above by ${ }^{C} K:=C K \otimes_{K} M$.

We remark that there is a similar direction in the literature in the paper [8]. In this paper, the author considers a similar decomposition, but for pointed Hopf algebras instead of semisimple Hopf algebras. Also, in [14] the author proves a similar result for some special Hopf subalgebras of quantum groups at roots of 1 .

Another particular situation of Mackey's decomposition can be found in [3]. In this paper, it is proved that for pairs of Hopf subalgebras that generate just one double coset subcoalgebra, the above epimorphism π_{M} from Theorem 1.2 is in fact an isomorphism. In both papers, the above homomorphism π_{M} is given by left multiplication.

Definition 1.3. We say that (L, K) is a Mackey pair of Hopf subalgebras of H if the above left multiplication homomorphism π_{M} from Theorem 1.2 is an isomorphism for any finite-dimensional left K-module M.

Then Theorem 1.1 states that $(k G, K)$ is a Mackey pair for any Hopf subalgebra $K \subset H$ and any subgroup $G \subset G(H)$. Moreover, in Theorem 6.1 it is shown that for any normal Hopf subalgebra K of H, the pair (K, K) is a Mackey pair. This allows us to prove a new formula (see Proposition 6.3) for the restriction of an induced module from a normal Hopf subalgebra, which substantially improves [3, Proposition 5.12]. It also gives a criterion for an induced module from a normal Hopf subalgebra to be irreducible, generalizing a well-known criterion for group representations; see, for example, [20, Corollary 7.1].

For any semisimple Hopf algebra H, using the universal grading of the fusion category $\operatorname{Rep}\left(H^{*}\right)$ we construct in Section 5 new Mackey pairs of Hopf subalgebras of H. In turn, this allows us to define a Green functor on the universal group G of the category of representations of H^{*}. For $H=k G$, one obtains in this way the usual Green functor [11]. As in group theory,
this new Green functor can be used to determine new properties of the Grothendieck ring of a semisimple Hopf algebra.

In the last section, we prove the following tensor product formula for two induced modules from a Mackey pair of Hopf subalgebras.

THEOREM 1.4. Suppose that (L, K) is a Mackey pair of Hopf subalgebras of a semisimple Hopf algebra H. Then for any K-module M and any L-module N one has a canonical isomorphism:

$$
\begin{equation*}
M \uparrow_{K}^{H} \otimes N \uparrow_{L}^{H} \cong \bigoplus_{C \in L \backslash H / K}\left(\left(C K \otimes_{K} M\right) \downarrow_{L \cap^{C} C_{K}}^{C} \otimes N \downarrow_{L \cap{ }^{C} K}^{L}\right) \uparrow{ }_{L \cap{ }^{C}}{ }_{K}^{H} . \tag{1.4}
\end{equation*}
$$

This generalizes a well-known formula for the tensor product of two induced group representations given, for example, in [2].

This paper is structured as follows. In Section 1, we recall the basic results on coset decomposition for Hopf algebras. Section ?? contains the construction for the conjugate Hopf subalgebra generalizing the conjugate subgroup of a finite group. These results are inspired from the treatment given in [5]. A general characterization for the conjugate Hopf subalgebra is given in Theorem 3.8. This theorem is automatically satisfied in the group case. In Section 4 we prove Theorem 1.2. Also in Section 4, we prove Theorem 1.1. We also show that for any semisimple Hopf algebra, there are some canonical associated Mackey pairs arising from the universal grading of the category of finite-dimensional corepresentations (see Theorem 5.5). Necessary and sufficient conditions for a given pair to be a Mackey pair are given in terms of the dimensions of the two Hopf subalgebras of the pair and their conjugate Hopf subalgebras. In Section 6, we prove that for a normal Hopf subalgebra K the pair (K, K) is always a Mackey pair. In Subsection 6.2, we prove the tensor product formula from Theorem 1.4.
We work over an algebraically closed field k of characteristic zero. We use Sweedler's notation Δ for comultiplication, but with the sigma symbol dropped. All the other Hopf algebra notations of this paper are the standard ones, used, for example, in [15].

2. Double coset decomposition for Hopf subalgebras of semisimple Hopf algebras

2.1. Conventions

Throughout this paper, H will be a semisimple Hopf algebra over k and $\Lambda_{H} \in H$ denotes its idempotent integral $\left(\epsilon\left(\Lambda_{H}\right)=1\right)$. It follows that H is also cosemisimple [13]. If K is a Hopf subalgebra of H, then K is also a semisimple and cosemisimple Hopf algebra [15]. For any two subcoalgebras C and D of H, we denote by $C D$ the subcoalgebra of H generated as a k-vector space by all elements of the type $c d$ with $c \in C$ and $d \in D$.

Let $G_{0}(H)$ be the Grothendieck group of the category of left H-modules. Then, since H is a Hopf algebra the group $G_{0}(H)$ has a ring structure under the tensor product of modules. Then the character ring $C(H):=G_{0}(H) \otimes_{\mathbb{Z}} k$ is a semisimple subalgebra of H^{*} (see [22]). Denote by $\operatorname{Irr}(H)$ the set of all irreducible characters of H. Then $C(H)$ has a basis consisting of the irreducible characters $\chi \in \operatorname{Irr}(H)$. Also, $C(H)$ coincides to the space $\operatorname{Cocom}\left(H^{*}\right)$ of cocommutative elements of H^{*}. By duality, the character ring $C\left(H^{*}\right)$ of the dual Hopf algebra H^{*} is a semisimple Hopf subalgebra of H and $C\left(H^{*}\right)=\operatorname{Cocom}(H)$. If M is a finite-dimensional H-module with character χ, then the linear dual M^{*} becomes a left H-module with character $\chi^{*}:=\chi \circ S$.

2.2. The subcoalgebra associated to a comodule

Let W be any right H-comodule. Since H is finite-dimensional, it follows that W is a left H^{*}-module via the module structure $f \cdot w=f\left(w_{1}\right) w_{0}$, where $\rho(w)=w_{0} \otimes w_{1}$ is the given right H-comodule structure of W. Then one can associate to W the coefficient subcoalgebra denoted by C_{W} (see [12]). Recall that C_{W} is the minimal subcoalgebra C of H with the property that $\rho(W) \subset W \otimes C$. Moreover, it can be shown that $C_{W}=\left(\operatorname{Ann}_{H^{*}}(W)\right)^{\perp}$ and C_{W} is called the subcoalgebra of H associated to the right H-comodule W. If W is a simple right H comodule (or equivalently W is an irreducible H^{*}-module), then the associated subcoalgebra C_{W} is a co-matrix coalgebra. More precisely, if $\operatorname{dim} W=q$, then $\operatorname{dim} C_{W}=q^{2}$ and it has a k-linear basis given by $x_{i j}$ with $1 \leqslant i, j \leqslant q$. The coalgebra structure of C_{W} is then given by $\Delta\left(x_{i j}\right)=\sum_{l} x_{i l} \otimes x_{l j}$ for all $1 \leqslant i, j \leqslant q$. Moreover, the irreducible character $d \in C\left(H^{*}\right)$ of W is given by formula $d=\sum_{i=0}^{q} x_{i i}$. It is easy to check that W is an irreducible H^{*}-module if and only if C_{W} is a simple subcoalgebra of H. This establishes a canonical bijection between the set $\operatorname{Irr}\left(H^{*}\right)$ of simple right H^{*}-comodules and the set of simple subcoalgebras of H. For any irreducible character $d \in \operatorname{Irr}\left(H^{*}\right)$, we also use the notation C_{d} for the simple subcoalgebra of H associated to the character d (see [12]).

Recall also that if M and N are two right H-comodules, then $M \otimes N$ is also a comodule with $\rho(m \otimes n)=m_{0} \otimes n_{0} \otimes m_{1} n_{1}$.

Remark 2.1. For a simple subcoalgebra $C \subset H$, we denote by M_{C} the simple H-comodule associated to C. Following [18], if C and D are simple subcoalgebras of a semisimple Hopf algebra H, then the simple comodules entering in the decomposition of $M_{C} \otimes M_{D}$ are in bijection with the set of all simple subcoalgebras of the product subcoalgebra $C D$ of H. Moreover, this bijection is given by $W \mapsto C_{W}$ for any simple subcomodule W of $M_{C} \otimes M_{D}$.

2.3. Double coset decomposition for Hopf subalgebras

In this subsection, we recall the basic facts on double cosets of semisimple Hopf algebras developed in [3]. Let L and K be two Hopf subalgebras of H. As in [3], one can define an equivalence relation $r_{L, K}^{H}$ on the set of simple subcoalgebras of H as following: $C \sim D$ if $C \subset L D K$. The fact that $r_{L, K}^{H}$ is an equivalence relation is proved in [3]. In this paper, it is shown that $C \sim D$ if and only if $L D K=L C K$ as subcoalgebras of H. We also have the following proposition.

Proposition 2.2. If C and D are two simple subcoalgebras of H, then the following are equivalent:
(1) $C \sim D$,
(2) $L C K=L D K$,
(3) $\Lambda_{L} C \Lambda_{K}=\Lambda_{L} D \Lambda_{K}$.

Proof. First assertion is equivalent to the second from [3, Corollary 2.5]. Clearly, (2) $\Rightarrow(3)$ by left multiplication with Λ_{K} and right multiplication with Λ_{L}. It will be shown that (3) \Rightarrow (1). One has the following decomposition:

$$
H=\bigoplus_{i=1}^{l} L C_{i} K
$$

where C_{1}, \ldots, C_{l} are representative subcoalgebras for each equivalence class of $r_{K, L}^{H}$.

It follows that $\Lambda_{L} H \Lambda_{K}=\bigoplus_{i=1}^{l} \Lambda_{L} C_{i} \Lambda_{K}$. Thus, if $C \nsim D$, then $\Lambda_{L} C \Lambda_{K} \cap \Lambda_{L} D \Lambda_{K}=0$, which proves (1).

REMARK 2.3. The above proposition shows that for any two simple subcoalgebras C and D of H, then either $L C K=L D K$ or $L C K \cap L D K=0$. Therefore, for any subcoalgebra $D \subset$ $L C K$, one has that $L C K=L D K$. In particular, for $L=k$, the trivial Hopf subalgebra, one has that $D \subset C K$ if and only if $D K=C K$.
2.3.1. Notation For the rest of the paper, we denote by $L \backslash H / K$ the set of double cosets $L C K$ of H with respect to L and K. Thus, the elements $L C K$ of $L \backslash H / K$ are given by a choice of representative of simple subcoalgebras in each equivalence class of $r_{L, K}^{H}$. Similarly, we denote by H / K be the set of right cosets $C K$ of H with respect to K. This corresponds to a choice of a representative simple subcoalgebra in each equivalence class of $r_{k, K}^{H}$.

Remark 2.4. As noted in [3], one has that $L C K \in \mathcal{M}_{K}^{H}$ and therefore $L C K$ is a free right K-module. Similarly, $L C K \in{ }_{L}^{H} \mathcal{M}$ and therefore $L C K$ is also a free left L-module.

By Burciu [3, Corollary 2.6], it follows that two simple subcoalgebras C and D are in the same double coset of H with respect to L and K if and only if

$$
\begin{equation*}
\Lambda_{L} \frac{c}{\epsilon(c)} \Lambda_{K}=\Lambda_{L} \frac{d}{\epsilon(d)} \Lambda_{K} \tag{2.1}
\end{equation*}
$$

where c and d are the irreducible characters of H^{*} associated to the simple subcoalgebras C and D. In particular, for $L=k$, the trivial Hopf subalgebra, it follows that $C K=D K$ if and only if

$$
\begin{equation*}
c \Lambda_{K}=\frac{\epsilon(c)}{\epsilon(d)} d \Lambda_{K} \tag{2.2}
\end{equation*}
$$

2.4. Principal eigenspace for $\langle C\rangle$

For a simple subcoalgebra C, we denote by $\langle C\rangle$ the Hopf subalgebra of H generated by C. If d is the character associated to C, then we also denote this Hopf subalgebra by $\langle d\rangle$.
2.4.1. Frobenius-Perron theory for nonnegative matrices Next, we will use the FrobeniusPerron theorem for matrices with nonnegative entries (see [9]). If $A \geqslant 0$ is such a matrix, then A has a positive eigenvalue λ, which has the biggest absolute value among all the other eigenvalues of A. The eigenspace corresponding to λ has a unique vector with all entries positive. λ is called the principal eigenvalue of A and the corresponding positive vector is called the principal vector of A. Also, the eigenspace of A corresponding to λ is called the principal eigenspace of the matrix A.
For an irreducible character $d \in \operatorname{Irr}\left(H^{*}\right)$, let L_{d} be the linear operator on $C\left(H^{*}\right)$ given by left multiplication by d. Recall [3] that $\epsilon(d)$ is the Frobenius-Perron eigenvalue of the nonnegative matrix associated to the operator L_{d} with respect to the basis given by the irreducible characters of H^{*}. In analogy with Frobenius-Perron theory, for a subcoalgebra C with associated character d, we call the space of eigenvectors of L_{d} corresponding to the eigenvalue $\epsilon(d)$ as the principal eigenspace for L_{d}.

The following corollary is a particular case of [3, Theorem 2.4].

Corollary 2.5. The principal eigenspace of $L_{\Lambda_{K}}$ is $\Lambda_{K} C\left(H^{*}\right)$ and it has a k-linear basis given by $\Lambda_{K} d$, where d are the characters of a set of representative simple coalgebras for the right cosets of K inside H.

Using this, we can prove the following theorem.

Theorem 2.6. Let C be a subcoalgebra of a semisimple Hopf algebra H with associated character $d \in C\left(H^{*}\right)$. Then the principal eigenspaces of L_{d} and $L_{\Lambda_{\langle d\rangle}}$ coincide.

Proof. Let V be the principal eigenspace of $L_{\Lambda_{\langle d\rangle}}$ and W be the principal eigenspace of L_{d}. Then by Corollary 2.5, one has that $V=\Lambda_{\langle d\rangle} C\left(H^{*}\right)$. Since $d \Lambda_{\langle d\rangle}=\epsilon(d) \Lambda_{\langle d\rangle}$, it follows that clearly $V \subseteq W$. On the other hand, since $\Lambda_{\langle d\rangle}$ is a polynomial with rational coefficients in d (see [17, Corollary 19]) it also follows that $W \subseteq V$.

2.5. Rank of cosets

Let K be a Hopf subalgebra of a semisimple Hopf algebra H. Consider the equivalence relation $r_{k, K}^{H}$ on the set $\operatorname{Irr}\left(H^{*}\right)$ of simple subcoalgebras of H. As above, one has $C \sim D$ if and only if $C K=D K$. Therefore,

$$
\begin{equation*}
H=\bigoplus_{C \in H / K} C K \tag{2.3}
\end{equation*}
$$

Lemma 2.7. The equivalence class under $r_{k, K}^{H}$ of the trivial subcoalgebra k is the set of all simple subcoalgebras of K.

Proof. Indeed, suppose that C is a simple subcoalgebra of H equivalent to the trivial subcoalgebra k. Then $C K=k K=K$ by Proposition 2.2. Therefore, $C \subset C K=K$. Conversely, if $C \subset K$, then $C K \subset K$ and, since $C K \in \mathcal{M}_{K}^{H}$, it follows that $C K=K$. Thus, $C \sim k$.

Proposition 2.8. If D is a simple subcoalgebra of a semisimple Hopf algebra H and $e \in K$ is an idempotent, then

$$
D K \otimes_{K} K e \cong D K e
$$

as vector spaces.

Proof. Since H is free right K-module, one has that the map

$$
\phi: H \otimes_{K} K e \longrightarrow H e, \quad h \otimes_{K} r e \longmapsto h r e
$$

is an isomorphism of H-modules. Using the above decomposition (2.3) of H and the fact that $D K$ is a free right K-module, note that ϕ sends $D K \otimes_{K} K e$ to $D K e$.

Corollary 2.9. Let K be a Hopf subalgebra of a semisimple Hopf algebra H. For any simple subcoalgebra C of H, one has that the rank of $C K$ as right K-module is $\operatorname{dim}_{k} C \Lambda_{K}$.

Proof. Put $e=\Lambda_{K}$, the idempotent integral of K in the above proposition.

2.6. Frobenius-Perron eigenvectors for cosets

Let T be the linear operator given by right multiplication with Λ_{K} on the character ring $C\left(H^{*}\right)$.

Remark 2.10. Using [3, Proposition 2.5], it follows that the largest (in absolute value) eigenvalue of T equals $\operatorname{dim} K$. Moreover, a basis of eigenvectors corresponding to this eigenvalue is given by $c \Lambda_{K}$, where the character $c \in \operatorname{Irr}\left(H^{*}\right)$ runs through a set of irreducible characters representative for all the right cosets $C K \in H / K$.

3. The conjugate Hopf subalgebra ${ }^{C} K$

Let, as above, K be a Hopf subalgebra of a semisimple Hopf algebra H. For any simple subcoalgebra C of H in this section, we construct the conjugate Hopf subalgebra ${ }^{C} K$ appearing in Theorem 1.3. If $c \in \operatorname{Irr}\left(H^{*}\right)$ is the associated irreducible character of C, then consider the following subset of $\operatorname{Irr}\left(H^{*}\right)$:

$$
\begin{equation*}
{ }^{c} K=\left\{d \in \operatorname{Irr}\left(H^{*}\right) \mid d c \Lambda_{K}=\epsilon(d) c \Lambda_{K}\right\}, \tag{3.1}
\end{equation*}
$$

where, as above, $\Lambda_{K} \in K$ is the idempotent integral of K.
Recall from [18] that a subset $X \subset \operatorname{Irr}\left(H^{*}\right)$ is closed under multiplication if for every two elements $c, d \in X$ in the decomposition of the product $c d=\sum_{e \in \operatorname{Irr}\left(H^{*}\right)} m_{c, d}^{e} e$, then one has $e \in X$ whenever $m_{e} \neq 0$. Also, a subset $X \subset \operatorname{Irr}\left(H^{*}\right)$ is closed under ${ }^{* *}$ if $x^{*} \in X$ for all $x \in X$.
Following [18], any subset $X \subset \operatorname{Irr}\left(H^{*}\right)$ closed under multiplication generates a subbialgebra $H(X)$ of H defined by

$$
\begin{equation*}
H(X):=\bigoplus_{x \in X} C_{x} \tag{3.2}
\end{equation*}
$$

Moreover, if the set X is also closed under ${ }^{\text {** }}$, then $H(X)$ is a Hopf subalgebra of H.

Remark 3.1. Since in our case H is finite-dimensional, it is well known that any subbialgebra of H is also a Hopf subalgebra. Therefore, in this case any set X of irreducible characters closed under product is also closed under ${ }^{\text {** }}$.

Proposition 3.2. The set ${ }^{c} K \subset \operatorname{Irr}\left(H^{*}\right)$ is closed under multiplication and ${ }^{* *}$, and it generates a Hopf subalgebra ${ }^{C} K$ of H. Thus,

$$
\begin{equation*}
{ }^{C} K=\bigoplus_{d \in{ }^{c} K} C_{d} . \tag{3.3}
\end{equation*}
$$

Proof. Suppose that D and D^{\prime} are two simple subcoalgebras of H whose irreducible characters satisfy $d, d^{\prime} \in{ }^{c} K$. Then one has $d d^{\prime} c \Lambda_{K}=\epsilon\left(d d^{\prime}\right) c \Lambda_{K}$. On the other hand, suppose that

$$
\begin{equation*}
d d^{\prime}=\sum_{e \in \operatorname{Irr}\left(H^{*}\right)} m_{d, d^{\prime}}^{e} e \tag{3.4}
\end{equation*}
$$

Then $\epsilon\left(d d^{\prime}\right) c \Lambda_{K}=d d^{\prime} c \Lambda_{K}=\sum_{e \in \operatorname{Irr}\left(H^{*}\right)} m_{d, d^{\prime}}^{e} e c \Lambda_{K}$ and Remark 2.10 implies that $e c \Lambda_{K}$ is a scalar multiple of $c \Lambda_{K}$ for any e with $m_{d, d^{\prime}}^{e} \neq 0$. Therefore, $e c \Lambda_{K}=\epsilon(e) c \Lambda_{K}$ and $e \in{ }^{c} K$. This shows that ${ }^{C} K$ is a subbialgebra of H and by Remark 3.1 a Hopf subalgebra of H.

Sometimes the notation ${ }^{C} K$ will also be used for ${ }^{c} K$, where $c \in \operatorname{Irr}\left(H^{*}\right)$ is the irreducible character associated to the simple subcoalgebra C.

The notion of conjugate Hopf subalgebra ${ }^{C} K$ is motivated by the following proposition.

Proposition 3.3. Let H be a semisimple Hopf algebra over k. If the simple subcoalgebra C is of the form $C=k g$ with $g \in G(H)$ a group-like element of H, then ${ }^{C} K=g K g^{-1}$.

Proof. Indeed, suppose that $D \in{ }^{C} K$. If d is the associated irreducible character of D, then by definition it follows that $d g \Lambda_{K}=g \Lambda_{K}$. Thus, $g^{-1} d g \Lambda_{K}=\Lambda_{K}$. Therefore, the simple subcoalgebra $g^{-1} D g$ of H is equivalent to the trivial subcoalgebra k. Then, using Lemma 2.7, one has that $g^{-1} D g \subset K$ and therefore ${ }^{C} K \subset g K g^{-1}$. The other inclusion $g K g^{-1} \subset{ }^{C} K$ is obvious.

Remark 3.4. In particular, for $H=k G$, one has that ${ }^{C} k[M]=k\left[{ }^{x} M\right]$, where $x \in G$ is given by $C=k x$.

Remark 3.5. (i) Using Remark 2.1, it follows from the definition of conjugate Hopf subalgebra that $C K$ is always a left ${ }^{C} K$-module.
(ii) Note that if $C\left(H^{*}\right)$ is commutative, then ${ }^{C} K \supseteq K$. Indeed, for any $d \in \operatorname{Irr}\left(K^{*}\right)$ one has $d \Lambda_{K}=\epsilon(d) \Lambda_{K}$, and therefore $d c \Lambda_{K}=c d \Lambda_{K}=\epsilon(d) c \Lambda_{K}$.
(iii) If K is a normal Hopf subalgebra of H, then since Λ_{K} is a central element in H, by the same argument it also follows that ${ }^{C} K \supseteq K$.

3.1. Some properties of the conjugate Hopf subalgebra

Proposition 3.6. Let H be a semisimple Hopf algebra and K be a Hopf subalgebra of H. Then for any simple subcoalgebra C of H, one has that ${ }^{C} K$ coincides to the maximal Hopf subalgebra L of H with the property $L C K=C K$.

Proof. The equality ${ }^{C} K C K=C K$ follows from the character equality $\Lambda_{C_{K}} c \Lambda_{K}=$ $\epsilon\left(\Lambda_{c_{K}}\right) c \Lambda_{K}$ and Remark 2.1. Conversely, if $L C K=C K$ by passing to the regular H^{*} characters and using equation (2.1), then it follows that $\Lambda_{L} c \Lambda_{K}=\epsilon\left(\Lambda_{L}\right) c \Lambda_{K}$, which shows that $L \subset{ }^{C} K$.

Note that Remark 2.3, together with the previous proposition, implies that ${ }^{C} K C \subseteq C K$.

Corollary 3.7. One has that ${ }^{C} K \subseteq C K C^{*}$.

Proof. Since $S(C)=C^{*}$ by applying the antipode S to the above inclusion, one obtains that $C^{*} K \subseteq K C^{*}$. Therefore, $C C^{*}{ }^{C} K \subseteq C K C^{*}$ and then one has ${ }^{C} K \subseteq C C^{*} K \subseteq C K C^{*}$.

Theorem 3.8. One has that ${ }^{C} K$ is the largest Hopf subalgebra L of H with the property $L C \subseteq C K$.

Proof. We have seen above that ${ }^{C} K C \subseteq C K$. Suppose now that $L C \subseteq C K$ for some Hopf subalgebra L of H. Then, by Remark 2.3, it follows that $L C K=C K$. Thus, by passing to regular characters, one has that $\Lambda_{L} c \Lambda_{K}=\epsilon\left(\Lambda_{L}\right) c \Lambda_{K}$, which shows the inclusion $L \subseteq{ }^{C} K$.

Proposition 3.9. Let H be a semisimple Hopf algebra and K be a Hopf subalgebra of H. Then, for any subcoalgebra D with $D K=C K$, one has that ${ }^{D} K={ }^{C} K$.

Proof. One has that ${ }^{C} K C K=C K$. If $D \subset C K$, then by Remark 2.3, one has that ${ }^{C} K D K={ }^{C} K C K=C K=D K$, which shows that ${ }^{C} K={ }^{D} K$.

4. Mackey-type decompositions for representations of Hopf algebras

Let K be a Hopf subalgebra of a semisimple Hopf algebra H and M be a finite-dimensional K-module. Note that for any simple subcoalgebra C of H, one has by Proposition 3.6 that ${ }^{C} M:=C K \otimes_{K} M$ is a left ${ }^{C} K$-module via the left multiplication with elements of ${ }^{C} K$.

REmARK 4.1. Let $H=k G$ be a group algebra of a finite group G and $K=k A$ for some subgroup A of G. Then note that ${ }^{C} M:=C K \otimes_{K} M$ coincides to the usual conjugate module ${ }^{g} M$ if $C=k g$ for some $g \in G$. Recall that ${ }^{g} M=M$ as vector spaces and $\left(g a g^{-1}\right) \cdot m=a \cdot m$ for all $a \in A$ and all $m \in M$.

4.1. Proof of Theorem 1.2

Proof. Since by definition of the double cosets, one has $H=\bigoplus_{C \in L \backslash H / K} L C K$ and each $L C K$ is a free K-module, the following decomposition of L-modules follows:

$$
\begin{equation*}
M \uparrow_{K}^{H} \downarrow_{L}^{H}=H \otimes_{K} M \cong \bigoplus C \in L \backslash H / K\left(L C K \otimes_{K} M\right) . \tag{4.1}
\end{equation*}
$$

Consider now the k-linear map $\pi_{M}^{(C)}: L \otimes_{L \cap{ }^{C} K}\left(C K \otimes_{K} M\right) \rightarrow L C K \otimes_{K} M$ given by

$$
l \otimes_{L \cap \cap_{K}}\left(c x \otimes_{K} m\right) \longmapsto l c x \otimes_{K} m,
$$

for all $l \in L, x \in K, c \in C$ and $m \in M$. It is easy to see that $\pi_{M}^{(C)}$ is a well-defined map and clearly a surjective morphism of L-modules. Then $\pi_{M}:=\bigoplus_{C \in L \backslash H / K} \pi_{M}^{(C)}$ is surjective morphism of L-modules and the proof is complete.

Remark 4.2. Suppose that for $M=k$ one has that π_{k} isomorphism in Theorem 1.2. Then, using a dimension argument, it follows that the same epimorphism π_{M} from Theorem 1.2 is in fact an isomorphism for any finite-dimensional left H-module M.

4.2. Mackey pairs

It follows from the proof above that (L, K) is a Mackey pair if and only if π_{k} is an isomorphism, that is, if and only if each $\pi_{k}^{(C)}$ is isomorphism for any simple subcoalgebra C of H. Since $\pi_{k}^{(C)}$ is surjective passing to dimensions, one has that (L, K) is a Mackey pair if and only if

$$
\begin{equation*}
\operatorname{dim} L C K=\frac{(\operatorname{dim} L)(\operatorname{dim} C K)}{\operatorname{dim} L \cap^{C} K}, \tag{4.2}
\end{equation*}
$$

for any simple subcoalgebra C of H.
Note that for $C=k 1$, the above condition can be written as

$$
\operatorname{dim} L K=\frac{(\operatorname{dim} L)(\operatorname{dim} K)}{\operatorname{dim}(L \cap K)}
$$

Remark 4.3. Note also that for any Mackey pair, it follows that

$$
\begin{equation*}
\frac{\operatorname{dim} L \cap{ }^{D} K}{\operatorname{dim} D K}=\frac{\operatorname{dim} L \cap{ }^{C} K}{\operatorname{dim} C K} \tag{4.3}
\end{equation*}
$$

if $L C K=L D K$.

Example 4.4. Suppose that L, K are Hopf subalgebras of H with $L K=K L$. Then (L, K) is a Mackey pair of Hopf subalgebras of $L K$ by Burciu [3, Proposition 3.3].

4.3. Proof of Theorem 1.1

Let L, K be two Hopf subalgebras of a semisimple Hopf algebra H and let C be a simple subcoalgebra of H. Note that equations (2.1) and (2.2) imply that $L C K$ can be written as a direct sum of right K-cosets,

$$
\begin{equation*}
L C K=\bigoplus_{D K \in \mathcal{S}} D K, \tag{4.4}
\end{equation*}
$$

for a subset $\mathcal{S} \subset H / K$ of right cosets of K inside H. Note that always one has $C K \in \mathcal{S}$.
Next, we give a proof for the main result of Theorem 1.1.

Proof. Suppose that $L=k G$. By equation (4.2), one has to verify

$$
\begin{equation*}
\operatorname{dim}(k G) C K=\frac{|G|(\operatorname{dim} C K)}{\operatorname{dim} k G \cap \cap^{C} K} \tag{4.5}
\end{equation*}
$$

for any subcoalgebra C of H. Since $k G \cap{ }^{C} K$ is a Hopf subalgebra of $k G$, it follows that $k G \cap{ }^{C} K=k G_{C}$ for some subgroup G_{C} of G. By equation (3.1), it follows that $G_{C}=$ $\left\{g \in G \mid g d \Lambda_{K}=d \Lambda_{K}\right\}$, where $d \in \operatorname{Irr}\left(H^{*}\right)$ is the character associated to C. In terms of subcoalgebras, this can be written as $G_{C}=\{g \in G \mid g C K=C K\}$.

With the above notation, equation (4.5) becomes

$$
\begin{equation*}
\operatorname{dim}(k G) C K=\frac{|G|}{\left|G_{C}\right|} \operatorname{dim} C K \tag{4.6}
\end{equation*}
$$

Note that the group G acts transitively on the set \mathcal{S} from equation (4.4). The action is given by $g \cdot D K=g D K$ for any $g \in G$ and any $D K \in \mathcal{S}$. Let St_{C} be the stabilizer of the right coset $C K$. Thus, the subgroup St_{C} of G is defined by $\mathrm{St}_{C}=\{g \in G \mid g C K=C K\}$, which shows that $\mathrm{St}_{C}=G_{C}$. Note that $\operatorname{dim} D K=\operatorname{dim} C K$ for any $D K \in \mathcal{S}$ since $D K=g C K$ for some $g \in G$. Thus, $\operatorname{dim}(k G) C K=|\mathcal{S}|(\operatorname{dim} C K)$ and equation (4.6) becomes

$$
\begin{equation*}
|\mathcal{S}|=\frac{|G|}{\left|G_{C}\right|} \tag{4.7}
\end{equation*}
$$

which is the same as the formula for the size of the orbit \mathcal{S} of $C K$ under the action of the finite group G.

5. New examples of the Green functors

In this section, we construct new examples of the Green functors arising from gradings on the category of corepresentations of semisimple Hopf algebras.

5.1. Gradings of fusion categories

In this subsection, we recall a few basic results on gradings of fusion categories from [10] that will be further used in the paper. For an introduction to fusion categories, one might
consult [7]. Let \mathcal{C} be a fusion category and $\mathcal{O}(\mathcal{C})$ be the set of isomorphism classes of simple objects of \mathcal{C}. Recall that the fusion category \mathcal{C} is graded by a finite group G if there is a function deg : $\mathcal{O}(\mathcal{C}) \rightarrow G$ such that for any two simple objects $X, Y \in \mathcal{O}(\mathcal{C})$, then one has that $\operatorname{deg}(Z)=\operatorname{deg}(X) \operatorname{deg}(Y)$ whenever $Z \in \mathcal{O}(\mathcal{C})$ is a simple object such that Z is a constituent of $X \otimes Y$. Alternatively, there is a decomposition $\mathcal{C}=\bigoplus_{g \in G} \mathcal{C}_{g}$ such that the tensor functor of \mathcal{C} sends $\mathcal{C}_{g} \otimes \mathcal{C}_{h}$ into $\mathcal{C}_{g h}$. Here \mathcal{C}_{g} is defined as the full abelian subcategory of \mathcal{C} generated by the simple objects X of \mathcal{C} satisfying $\operatorname{deg}(X)=g$. Recall that a grading is called universal if any other grading of \mathcal{C} is arising as a quotient of the universal grading. The universal grading always exists and its grading group denoted by $U_{\mathcal{C}}$ is called the universal grading group.

Remark 5.1. If $\mathcal{C}=\operatorname{Rep}(H)$ for a semisimple Hopf algebra H, then by Gelaki and Nikshych [10, Theorem 3.8] it follows that the Hopf center (that is, the largest central Hopf subalgebra) of H is $k G^{*}$, where G is the universal grading group of \mathcal{C}. We denote this Hopf center by $\mathcal{H Z}(H)$. Therefore, one has $\mathcal{H Z}(H)=k G^{*}$, where $G=U_{\operatorname{Rep}(H)}$. Moreover, in this case, by the universal property any other grading on $\mathcal{C}=\operatorname{Rep}(H)$ is given by a quotient group G / N of G. The corresponding graded components of \mathcal{C} are given by

$$
\begin{equation*}
\mathcal{C}_{\bar{g}}=\left\{M \in \operatorname{Irr}(H) \mid M \downarrow_{k^{G / N}}^{H}=(\operatorname{dim} M) \bar{g}\right\}, \tag{5.1}
\end{equation*}
$$

for all $g \in G$. Here $k^{G / N} \subset k^{G}$ is regarded as a central Hopf subalgebra of H. Also note that in this situation one has a central extension of Hopf algebras:

$$
\begin{equation*}
k \longrightarrow k^{G / N} \longrightarrow H \longrightarrow H / / k^{G / N} \longrightarrow k \tag{5.2}
\end{equation*}
$$

5.2. Gradings on $\operatorname{Rep}\left(H^{*}\right)$ and cocentral extensions

Suppose that H is a semisimple Hopf algebra such that the fusion category $\operatorname{Rep}\left(H^{*}\right)$ is graded by a finite group G. Then the dual version of Remark 5.1 implies that H fits into a cocentral extension

$$
\begin{equation*}
k \longrightarrow B \longrightarrow H \xrightarrow{\pi} k G \longrightarrow k . \tag{5.3}
\end{equation*}
$$

Recall that such an exact sequence of Hopf algebras is called cocentral if $k G^{*} \subset \mathcal{Z}\left(H^{*}\right)$ via the dual map π^{*}. On the other hand, using the reconstruction theorem from [1] it follows that

$$
\begin{equation*}
H \cong B^{\tau} \#_{\sigma} k F \tag{5.4}
\end{equation*}
$$

for some cocycle $\sigma: B \otimes B \rightarrow k F$ and some dual cocycle $\tau: k F \rightarrow B \otimes B$.
For any such cocentral sequence, it follows that G acts on $\operatorname{Rep}(B)$ and by Natale [16, Proposition 3.5] that $\operatorname{Rep}(H)=\operatorname{Rep}(B)^{G}$, the equivariantized fusion category. For the main properties of group actions and equivariantized fusion categories, one can consult, for example, $[\mathbf{1 9}]$. Recall that the above action of G on $\operatorname{Rep}(B)$ is given by $T: G \rightarrow \operatorname{Aut}_{\otimes}(\operatorname{Rep}(B))$, $g \mapsto T^{g}$. For any $M \in \operatorname{Rep}(B)$, one has that $T^{g}(M)=M$ as vector spaces and the action of B is given by $b \cdot{ }^{g} m:=(g \cdot b) \cdot m$ for all $g \in G$ and all $b \in B, m \in M$. Here the weak action of G on B is the action used in the crossed product from equation (5.4).

For any subgroup M of G, it is easy to check that $H(M)=B \#{ }_{\sigma} k M$, that is, $H(M)$ is the unique Hopf subalgebra of H fitting the exact cocentral sequence

$$
\begin{equation*}
k \longrightarrow B \longrightarrow H(M) \longrightarrow k M \longrightarrow k \tag{5.5}
\end{equation*}
$$

Lemma 5.2. Let H be a semisimple Hopf algebra. Then gradings on the fusion category $\operatorname{Rep}\left(H^{*}\right)$ are in one-to-one correspondence with cocentral extensions

$$
\begin{equation*}
k \longrightarrow B \longrightarrow H \xrightarrow{\pi} k G \longrightarrow k \tag{5.6}
\end{equation*}
$$

Proof. We have shown at the beginning of this subsection how to associate a cocentral extension to any G-grading on $\operatorname{Rep}\left(H^{*}\right)$.

Conversely, suppose that one has a cocentral exact sequence as in equation (5.13). Then $\operatorname{Rep}\left(H^{*}\right)$ is graded by G, where the graded component of degree $g \in G$ is given by

$$
\begin{equation*}
\operatorname{Rep}\left(H^{*}\right)_{g}=\left\{d \in \operatorname{Irr}\left(H^{*}\right) \mid \pi(d)=\epsilon(d) g\right\} \tag{5.7}
\end{equation*}
$$

Indeed, since $k^{G} \subset \mathcal{Z}\left(H^{*}\right)$ via π^{*} it follows that k^{G} acts by scalars on each irreducible representation of H^{*}. Therefore, for any $d \in \operatorname{Irr}\left(H^{*}\right)$ one has $d \downarrow_{k^{G}}^{H^{*}}=\epsilon(d) g$ for some $g \in G$. It follows then by Gelaki and Nikshych [10, Theorem 3.8] that $\operatorname{Rep}\left(H^{*}\right)$ is G-graded and

$$
\begin{equation*}
\operatorname{Rep}\left(H^{*}\right)_{g}=\left\{d \in \operatorname{Irr}\left(H^{*}\right) \mid d \downarrow_{k^{G}}^{H^{*}}=\epsilon(d) g\right\} \tag{5.8}
\end{equation*}
$$

On the other hand, it is easy to check that one has $\pi(d)=d \downarrow_{k^{G}}^{H^{*}}$ for any $d \in \operatorname{Irr}\left(H^{*}\right)$ (see also
[4, Remark 3.2]).
Clearly, the two constructions are inverse one to the other.

5.3. New examples of Mackey pairs of Hopf subalgebras

Let H be a semisimple Hopf algebra and $\mathcal{C}=\operatorname{Rep}\left(H^{*}\right)$. Since H^{*} is also a semisimple Hopf algebra [13], it follows that \mathcal{C} is a fusion category. For the rest of this section, fix an arbitrary G-grading $\mathcal{C}=\bigoplus_{g \in G} \mathcal{C}_{g}$ on \mathcal{C}.

For any subset $M \subset G$, define $\mathcal{C}_{M}:=\bigoplus_{m \in M} \mathcal{C}_{m}$ as a full abelian subcategory of \mathcal{C}. Thus, $\mathcal{O}\left(\mathcal{C}_{M}\right)=\bigsqcup_{m \in M} \mathcal{O}\left(\mathcal{C}_{m}\right)$. Let also $H(M)$ be the subcolagebra of H generated by all the simple subcoalgebras of H whose irreducible H^{*}-characters belong to $\mathcal{O}\left(\mathcal{C}_{M}\right)$.

For any subcoalgebra C of H, denote by $\operatorname{Irr}\left(C^{*}\right)$ the irreducible characters of the dual algebra C^{*}. Therefore, by its definition $H(M)$ verifies the equality $\operatorname{Irr}\left(H(M)^{*}\right)=\mathcal{O}\left(\mathcal{C}_{M}\right)$ and as a coalgebra can be written as $H(M)=\bigoplus_{\left\{d \in \mathcal{O}\left(C_{m}\right) \mid m \in M\right\}} C_{d}$. Note that if M is a subgroup of G, then $H(M)$ is a Hopf subalgebra of H by Remark 2.1.

For any simple subcoalgebra C of H whose associated irreducible character $d \in \operatorname{Irr}\left(H^{*}\right)$ has degree g, we will also write for shortness that $\operatorname{deg}(C)=g$.

Proposition 5.3. Let H be semisimple Hopf algebra and G be the universal grading group of $\operatorname{Rep}\left(H^{*}\right)$. Then, for any arbitrary two subgroups M and N of G, the set of double cosets $H(M) \backslash H / H(N)$ is canonically bijective to the set of group double cosets $M \backslash N / G$. Moreover, the bijection is given by $H(M) C H(N) \mapsto M \operatorname{deg}(C) N$.

Proof. By Remark 2.1, one has the following equality in terms of irreducible H^{*}-characters:

$$
\operatorname{Irr}\left(H(M) C H(N)^{*}\right)=\mathcal{O}\left(\mathcal{C}_{M \operatorname{deg}(C) N}\right) .
$$

Thus, if $H(M) C H(N)=H(M) D H(N)$, then $\operatorname{deg}(C)=\operatorname{deg}(D)$, which shows that the above map is well defined. Clearly, the map $H(M) C H(N) \mapsto M \operatorname{deg}(C) N$ is surjective. The injectivity of this map also follows from Remark 2.1.

Note that the proof of the previous proposition implies that the coset $H_{x}=H(M) C H(N)$ with $\operatorname{deg}(C)=x$ is given by

$$
\begin{equation*}
H_{x}=\bigoplus_{\left\{d \in \mathcal{O}\left(\mathcal{C}_{m x n}\right) \mid m \in M, n \in N\right\}} C_{d} . \tag{5.9}
\end{equation*}
$$

Proposition 5.4. Suppose that $V \in H(M)$-mod, that is, V is a $B \#{ }_{\sigma} k M$-module. Then as B-modules, one has that ${ }^{C} V \cong T^{g^{-1}}\left(\operatorname{Res}_{B}^{H(M)}(V)\right)$, where $g \in G$ is chosen such that $\operatorname{deg}(C)=g$. Moreover, ${ }^{C}(V \otimes W) \cong{ }^{C} V \otimes{ }^{C} W$ for any two left $H(M)$-modules V and W.

Proof. Note that in this situation, one has that ${ }^{C} H(M)=H\left({ }^{g} M\right)=B \#{ }_{\sigma} k^{g} M$. By definition, one has ${ }^{C} V=C H(M) \otimes_{H(M)} V=H(g M) \otimes_{H(M)} V$. Thus,

$$
\begin{equation*}
{ }^{C} V=(B \# k g M) \otimes_{B \# k M} V \cong k g M \otimes_{k M} V, \tag{5.10}
\end{equation*}
$$

where the inverse of the last isomorphism is given by $g \otimes_{k M} v \mapsto(1 \# g) \otimes_{B \# k M} v$. Note that B acts on $k g M \otimes_{k M} V$ via $b \cdot\left(g \otimes_{k M} v\right)=g \otimes_{k M}\left(g^{-1} \cdot b\right) m$ for all $b \in B, v \in V$. This shows that indeed ${ }^{C} V \cong T^{g^{-1}}\left(\operatorname{Res}_{B}^{H(M)}(V)\right)$ as B-modules. Moreover, it follows that ${ }^{C} V$ can be identified to V as vector spaces with the $B \#_{\sigma} k g M g^{-1}$-module structure given by $b \cdot v=$ $\left(g^{-1} \cdot b\right) v$ and $\left(g h g^{-1}\right) \cdot v=\left(\left[g^{-1} \cdot\left(\sigma\left(g h g^{-1}, g\right) \sigma^{-1}(g, h)\right)\right] \#{ }_{\sigma} h\right) \cdot v$ for all $g \in G, h \in M$ and $v \in V$. Then it can be checked by direct computation that the map $v \otimes w \mapsto \tau^{-1}(g)(v \otimes w)$ from [16, Proposition 3.5] is in this case a morphism of $B \#{ }_{\sigma} \mathrm{kgMg}^{-1}$-modules. In order to do that one has to use the compatibility conditions from [1, Theorem 2.20].

5.4. Examples of Mackey pairs arising from group gradings on the category Rep $\left(H^{*}\right)$

Let, as above, H be a semisimple Hopf algebra with $\mathcal{C}=\bigoplus_{g \in G} \mathcal{C}_{g}$ be a group grading of $\mathcal{C}:=\operatorname{Rep}\left(H^{*}\right)$. It follows that

$$
\begin{equation*}
\operatorname{FPdim}\left(\mathcal{C}_{g}\right)=\frac{\operatorname{dim} H^{*}}{\operatorname{dim} \mathcal{H} \mathcal{Z}\left(H^{*}\right)} \tag{5.11}
\end{equation*}
$$

for all $g \in G$, where $\operatorname{FPdim}\left(\mathcal{C}_{g}\right):=\sum_{V \in \mathcal{O}\left(\mathcal{C}_{G}\right)}(\operatorname{dim} V)^{2}$ is the Perron-Frobenius dimension of the full abelian subcategory \mathcal{C}_{g} of \mathcal{C}.

Theorem 5.5. Let H be a semisimple Hopf algebra and M, N be any two subgroups of G. With the above notation, the pair $(H(M), H(N))$ is a Mackey pair of Hopf subalgebras of H.

Proof. Put $L:=H(M)$ and $K:=H(N)$. Therefore, $\operatorname{Irr}\left(L^{*}\right)=\mathcal{O}(\mathcal{C}(M))$ and $\operatorname{Irr}\left(K^{*}\right)=$ $\mathcal{O}(\mathcal{C}(N))$. Then we have to verify equation (4.2) for any simple subcoalgebra C. Fix a simple subcoalgebra C of H with $\operatorname{deg}(C)=x$. As above, one has ${ }^{C} H(M)=H\left({ }^{x} M\right)$.

It is easy to verify that $H(M) \cap H(N)=H(M \cap N)$ for any two subgroups M and N of G. This implies that $L \cap{ }^{C} K=H\left(N \cap{ }^{x} M\right)$. On the other hand from equation (5.9), note that $\operatorname{dim} L C K=|M x N| \operatorname{FPdim}\left(\mathcal{C}_{1}\right)$.

Then equation (4.2) is equivalent to the well-known formula for the size of a double coset relative to two subgroups:

$$
\begin{equation*}
|M x N|=\frac{|M||N|}{\left|M \cap{ }^{x} N\right|}, \tag{5.12}
\end{equation*}
$$

for any $x \in G$.

Remark 5.6. The fact that $(H(M), H(N))$ is a Mackey pair also followed in this case from a more general version of Mackey's decomposition theorem that holds for the action of any finite group on a fusion category. These results will be contained in a future paper of the author.

REMARK 5.7. It also should be noted that the author is not aware of any pair of Hopf subalgebras that is not a Mackey pair. It would be interesting to construct such counterexamples if they exist.

5.5. Mackey and the Green functors

For a finite group G, denote by $\mathcal{S}(G)$ the lattice of all subgroups of G. Following [21], a Mackey functor for G over a ring R can be regarded as a collection of vector spaces $M(H)$ for any $H \subset \mathcal{S}(G)$ together with a family of morphisms $I_{K}^{L}: M(K) \rightarrow M(L), R_{K}^{L}: M(L) \rightarrow M(K)$ and $c_{K, g}: M(K) \rightarrow M\left({ }^{g} K\right)$ for all subgroups K and L of G with $K \subset L$ and for all $g \in G$. This family of morphisms has to satisfy the following compatibility conditions:
(1) $I_{H}^{H}, R_{H}^{H}, c_{H, h}: M(H) \rightarrow M(H)$ are the identity morphisms for all subgroups H of G and any $h \in H$;
(2) $R_{K}^{J} R_{H}^{K}=R_{K}^{J}$, for all subgroups $J \subset K \subset H$;
(3) $I_{H}^{K} I_{J}^{H}=I_{J}^{K}$, for all subgroups $J \subset K \subset H$;
(4) $c_{K, g} c_{K, h}=c_{K, g h}$ for all elements $g, h \in G$;
(5) for any three subgroups $J, L \subseteq K$ of G and any $a \in M(J)$, one has the following Mackey axiom:

$$
R_{L}^{J}\left(I_{J}^{K}(a)\right)=\sum_{x \in J \backslash K / L} I_{L \cap x_{J}}^{L}\left(R_{x}^{x_{J \cap L}}\left(c_{J, x}(a)\right)\right) .
$$

Moreover, a Green functor is a Mackey functor M such that for any subgroup K of G, one has that $M(K)$ is an associative R-algebra with identity and the following conditions are satisfied:
(6) R_{K}^{L} and $c_{K, g}$ are always unitary R-algebra homomorphisms;
(7) $I_{K}^{L}\left(a R_{K}^{L}(b)\right)=I_{K}^{L}(a) b$;
(8) $I_{K}^{L}\left(R_{K}^{L}(b) a\right)=b I_{K}^{L}(a)$ for all subgroups $K \subseteq L \subseteq G$ and all $a \in M(K)$ and $b \in M(L)$.

The Green functors play an important role in the representation theory of finite groups (see, for example, $[\mathbf{2 1}]$).

5.6. New examples of the Green functors

The following theorem allows us to construct new examples of the Green functors from semisimple Hopf algebras.

Theorem 5.8. Let H be a semisimple Hopf algebra and G be a grading group for the fusion category $\operatorname{Rep}\left(H^{*}\right)$. Then the functor $M \mapsto K_{0}(H(M))$ is a Green functor.

Proof. By Proposition 5.2 there is a cocentral extension

$$
\begin{equation*}
k \longrightarrow B \longrightarrow H \xrightarrow{\pi} k G \longrightarrow k \tag{5.13}
\end{equation*}
$$

for some Hopf subalgebra $B \subset H$. Then as above, for a simple subcoalgebra C of H with associated character $d \in H^{*}$, one has that if $\pi(d)=g$ for some $g \in G$, then $\pi(C)=k g$.

The map $R_{K}^{L}: K_{0}(H(L)) \rightarrow K_{0}(H(K))$ is induced by the restriction map $\operatorname{Res}_{H(K)}^{H(L)}$: $H(L)-\bmod \rightarrow H(K)$-mod. Similarly, the map I_{K}^{L} is induced by the induction functor between the same two categories of modules. Clearly, R_{K}^{L} is a unital algebra map and the compatibility conditions (7) and (8) follow from the adjunction of the two functors. Moreover, conditions (2) and (3) are automatically satisfied.

Define $c_{L, g}: K_{0}(L) \rightarrow K_{0}\left({ }^{g} L\right)$ by $[M] \mapsto\left[{ }^{C} M\right]$, where C is any simple subcoalgebra of H chosen with the property that $\operatorname{deg}(C)=g$. It follows by Proposition 5.4 that $c_{L, g}$ is a well-defined algebra map. Condition (4) is equivalent to $T^{g h}(M) \cong T^{g} T^{h}(M)$, which is automatically satisfied for a group action on a fusion category.

It is easy to see that all other axioms from the definition of a Green functor are satisfied. For example, the Mackey decomposition axiom (5) is satisfied by Theorem 5.5.

6. On normal Hopf subalgebras of semisimple Hopf algebras

Recall that a Hopf subalgebra L of a Hopf algebra H is called a normal Hopf subalgebra if it is stable under the left and right adjoint action of H on itself. When H is a semisimple Hopf algebra, since $S^{2}=\mathrm{id}$, in order for L to be normal, it is enough to be closed only under the left adjoint action, that is, $h_{1} L S\left(h_{2}\right) \subset L$ for any $h \in H$. Let $L^{+}:=L \cap \operatorname{ker} \epsilon$ and set $H / / L:=H / H L^{+}$. Since $H L^{+}$is a Hopf ideal of H (see, for example, [15]), it follows that $H / / L$ is a quotient Hopf algebra of H. Moreover, $(H / / L)^{*}$ can be regarded as a Hopf subalgebra of H^{*} via the dual map of the canonical Hopf projection $\pi_{L}: H \rightarrow H / / L$.

Proposition 6.1. Suppose that H is a semisimple Hopf algebra. Then for any normal Hopf subalgebra K of H, one has that (K, K) is a Mackey pair of Hopf algebras.

Proof. Note $K C=C K$ for any subcoalgebra C of K since K is a normal Hopf subalgebra of H. Then for any simple subcoalgebra C of H, the dimension condition from equation (4.2) can be written as

$$
\begin{equation*}
\operatorname{dim} C K=\frac{(\operatorname{dim} K)(\operatorname{dim} C K)}{\operatorname{dim} K \cap^{C} K} \tag{6.1}
\end{equation*}
$$

which is equivalent to $K \cap{ }^{C} K=K$. This equality follows by the third item of Remark 3.5.

6.1. Irreducibility criterion for an induced module

Remark 6.2. Let G be a finite group and H be a normal subgroup H of G. Then [20, Corollary 7.1] implies that an induced module $M \uparrow_{H}^{G}$ is irreducible if and only if M is irreducible and M is not isomorphic to any of its conjugate module ${ }^{g} M$.

The previous theorem allows us to prove the following proposition, which is an improvement of [3, Proposition 5.12]. The second item is also a generalization of [20, Corollary 7.1].

Proposition 6.3. Let K be a normal Hopf subalgebra of a semisimple Hopf algebra H and M be a finite-dimensional K-module.
(i) Then

$$
M \uparrow{ }_{K}^{H} \downarrow_{K}^{H} \cong \bigoplus_{C \in H / K}{ }^{C} M
$$

as K-modules.
(ii) $M \uparrow_{K}^{H}$ is irreducible if and only if M is an irreducible K-module, which is not a direct summand of any conjugate module ${ }^{C} M$ for any simple subcoalgebra C of H with $C \not \subset K$.

Proof. (i) Previous proposition implies that

$$
\begin{equation*}
M \uparrow_{K}^{H} \downarrow_{K}^{H} \cong \bigoplus_{C \in K \backslash H / K} K \otimes_{K \cap{ }^{c}{ }_{K}}{ }^{C} M, \tag{6.2}
\end{equation*}
$$

as K-modules. On the other hand, since K is normal note that $C K=K C$ and therefore the space $K \backslash H / K$ of double cosets coincides to the space H / K of left (right) cosets (see also Paragraph 2.3 .1 for the notation). In the proof of the same Proposition 6.1, it was also remarked that $K \cap{ }^{C} K=K$.
(ii) One has that $M \uparrow_{K}^{H}$ is an irreducible H-module if and only if

$$
\operatorname{dim}_{k} \operatorname{Hom}_{H}\left(M \uparrow_{K}^{H}, M \uparrow_{K}^{H}\right)=1 .
$$

Note that by the Frobenius reciprocity, one has the following $\operatorname{Hom}_{H}\left(M \uparrow_{K}^{H}, M \uparrow_{K}^{H}\right)=$ $\operatorname{Hom}_{K}\left(M, M \uparrow_{K}^{H} \downarrow_{K}^{H}\right)$. Then previous item implies that

$$
\begin{equation*}
\operatorname{Hom}_{K}\left(M, M \uparrow_{K}^{H}\right) \cong \bigoplus_{C \in H / K} \operatorname{Hom}_{K}\left(M,{ }^{C} M\right) \tag{6.3}
\end{equation*}
$$

Since for $C=k$, one has ${ }^{k} M=M$ it follows that $\operatorname{Hom}_{K}\left(M,{ }^{C} M\right)=0$ for all $C \not \subset K$.
6.2. A tensor product formula for induced representations

We need the following preliminary tensor product formula for induced representations which appeared in [6].

Proposition 6.4. Let K be a Hopf subalgebra of a semisimple Hopf algebra H. Then for any K-module M and any H-module V, one has that

$$
\begin{equation*}
M \uparrow_{K}^{H} \otimes V \cong\left(M \otimes V \downarrow_{K}^{H}\right) \uparrow_{K}^{H} . \tag{6.4}
\end{equation*}
$$

Proof of Theorem 1.4. Applying Proposition 6.4, one has that

$$
\begin{equation*}
M \uparrow_{K}^{H} \otimes N \uparrow_{L}^{H} \cong\left(M \uparrow_{K}^{H} \downarrow_{L}^{H} \otimes N\right) \uparrow_{L}^{H} . \tag{6.5}
\end{equation*}
$$

On the other hand, by Theorem 1.2 one has

$$
\begin{equation*}
M \uparrow_{K}^{H} \downarrow_{L}^{H} \cong \bigoplus_{C \in L \backslash H / K}\left(L \otimes_{L \cap C_{K}}\left(C K \otimes_{K} M\right)\right) \tag{6.6}
\end{equation*}
$$

Thus,

$$
\begin{aligned}
M \uparrow_{K}^{H} \otimes N \uparrow_{L}^{H} & \cong\left(M \uparrow_{K}^{H} \downarrow_{L}^{H} \otimes N\right) \uparrow_{L}^{H} \\
& \cong \bigoplus C \in L \backslash H / K \\
& \bigoplus\left(L \otimes_{L \cap{ }^{C}}^{K}\right. \\
& \left.\left.\left(C K \otimes_{K} M\right)\right) \otimes N\right) \uparrow_{L}^{H}
\end{aligned}
$$

Applying again Proposition 1.4 for the second tensor product, one obtains that

$$
\begin{aligned}
M \uparrow_{K}^{H} \otimes N \uparrow_{L}^{H} & \cong\left(\left(C K \otimes_{K} M\right) \otimes N \downarrow_{L \cap{ }^{c} K}^{L}\right) \uparrow_{L \cap{ }^{c} K}^{L} \uparrow_{L}^{H} \\
& \cong \bigoplus_{C \in L \backslash H / K} H \otimes_{L \cap^{c} K_{K}}\left(\left(C K \otimes_{K} M\right) \otimes N \downarrow_{L \cap{ }^{c} C_{K}}^{L}\right)
\end{aligned}
$$

REmark 6.5. Note that the above theorem always applies for $K=L$ a normal Hopf subalgebra of H.

References

1. N. Andruskiewitsch and J. Devoto, 'Extensions of Hopf algebras', Algebra i Analiz 7 (1995) 22-69.
2. D. J. Benson, Representations and cohomology: basic representation theory of finite groups and associative algebras, I, Cambridge Studies in Advanced Mathematics 30 (Cambridge, Cambridge University Press, 1995).
3. S. Burciu, 'Coset decomposition for semisimple Hopf algebras', Comm. Algebra 37 (2009) 3573-3585.
4. S. Burciu, 'Clifford theory for cocentral extensions', Israel J. Math. 181 (2011) 111-123.
5. S. Burciu and L. Kadison, 'Subgroups of depth three and more', Surv. Differ. Geom. 15 (2010).
6. S. Burciu, L. Kadison and B. Kuelshammer, 'On subgroup depth', Int. Electron. J. Algebra 9 (2011) 133-166.
7. P. Etingof, D. Nikshych and V. Ostrik, 'On fusion categories', Ann. of Math. 162 (2005) 581-642.
8. M. Feshbach, 'Transfer for Hopf algebras', J. Algebra 180 (1996) 287-305.
9. F. R. Gantmacher, Matrizentheorie (Springer, Berlin, 1986).
10. S. Gelaki and D. Nikshych, 'Nilpotent fusion categories', Adv. Math. 217 (2008) 1053-1071.
11. J. A. Green, 'Axiomatic representation theory for finite groups', J. Pure Appl. Algebra 1 (1971) 41-77.
12. R. G. Larson, 'Characters of Hopf algebras', J. Algebra 17 (1971) 352-368.
13. R. G. Larson and D. E. Radford, 'Finite dimensional cosemisimple Hopf algebras in characteristic zero are semisimple', J. Algebra 117 (1988) 267-289.
14. Z. Lin, 'A Mackey decomposition theorem and cohomology for quantum groups at roots of 1', J. Algebra 166 (1994) 100-129.
15. S. Montgomery, Hopf algebras and their actions on rings, CBMS Regional Conference Series in Mathematics 82 (American Mathematical Society, Providence, RI, 1993).
16. S. Natale, 'Hopf algebra extensions of group algebras and Tambara-Yamagami categories', Algebr. Represent. Theory 13 (2010) 673-691.
17. W. D. Nichols and M. B. Richmond, 'The Grothendieck group of a Hopf algebra', J. Pure Appl. Algebra 106 (1996) 297-306.
18. W. D. Nichols and M. B. Zoeller, 'A Hopf algebra Freenes theorem', Amer. J. Math. 111 (1989) 381-385.
19. D. Niкshych, 'Non group-theoretical semisimple Hopf algebras from group actions on fusion categories', Selecta Math. 14 (2009) 145-161.
20. J. P. Serre, Linear representations of finite groups, vol. 82 (Springer, Berlin, 1976).
21. J. Thevenaz, 'Some remarks on G-functors and the Brauer morphism', J. reine angew. Math 384 (1988) 24-56.
22. Y. Zhu, 'Hopf algebras of prime dimension', Int. Math. Res. Not. 1 (1994) 53-59.

Sebastian Burciu
Institute of Mathematics 'Simion Stoilow' of the Romanian Academy
Research Unit 5
PO Box 1-764
RO-014700 Bucharest
Romania
sebastian.burciu@imar.ro

