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New examples of the Green functors arising from representation
theory of semisimple Hopf algebras

Sebastian Burciu Q1

Abstract

A general Mackey-type decomposition for representations of semisimple Hopf algebras is
investigated. We show that such a decomposition occurs in the case that the module is induced
from an arbitrary Hopf subalgebra and it is restricted back to a group subalgebra. Some other
examples when such a decomposition occurs are also constructed. They arise from gradings on
the category of corepresentations of a semisimple Hopf algebra and provide new examples of the
Green functors in the literature.

1. Introduction and main results

Mackey’s decomposition theorem of induced modules from subgroups is a very important tool
in the representations theory of finite groups. This decomposition describes the process of an
induction composed with a restriction in terms of the reverse processes consisting of restrictions
followed by inductions. More precisely, if G is a finite group, M and N are two subgroups of
G and V a finite-dimensional k-linear representation of M, then the well-known Mackey’s
decomposition states that there is an isomorphism of kN -modules: Q3

V ↑kG
kM↓kG

kN
δV−−→

⊕

x∈M\G/N

k[N ] ⊗k[ xM∩N ]
xV. (1.1)

Here xM := xMx−1 is the conjugate subgroup and xV := V is the conjugate xM -representation
defined by (xmx−1) · v := m · v for all m ∈ M and v ∈ V . The direct sum is indexed by a set
of representative group elements of G for all double cosets M\G/N of G relative to the two
subgroups M and N . Note that the inverse isomorphism of δV is given on each direct summand
by the left multiplication operator n ⊗kN∩k xM v �→ nx ⊗kM v; see [20, Proposition 22].

The goal of this paper is to investigate a similar Mackey-type decomposition for the induced
modules from Hopf subalgebras of semisimple Hopf algebras and restricted back to other Hopf
subalgebras. In order to do this, we use the corresponding notion of a double coset relative to a
pair of Hopf subalgebras of a semisimple Hopf algebra that was introduced by the author in [3].
We also have to define a conjugate Hopf subalgebra corresponding to the notion of a conjugate
subgroup. For any Hopf subalgebra K ⊆ H of a semisimple Hopf algebra H and any simple
subcoalgebra C of H, we define the conjugate Hopf subalgebra CK of K in Proposition 3.2.
This notion corresponds to the notion of conjugate subgroup from the above decomposition.
In order to deduce that CK is a Hopf subalgebra of H, we use several crucial results from [18]
concerning the product of two subcoalgebras of a semisimple Hopf algebra as well as Frobenius–
Perron theory for nonnegative matrices.

Q2
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Using these tools, we can prove one of the following main results of this paper.

Theorem 1.1. Let K ⊆ H be a Hopf subalgebra of a semisimple Hopf algebra and M
be a finite-dimensional K-module. Then for any subgroup G ⊆ G(H) one has a canonical
isomorphism of kG-modules

M ↑H
K↓H

kG
δM−−→

⊕

C∈kG\H/K

(kG ⊗ kGC

CM). (1.2)

Here G(H) is the group of group-like elements of H and the subgroup GC ⊆ G is determined
by kG ∩ CK = kGC . The conjugate module CM is defined by CM := CK ⊗K M .

As in the classical group case, the homomorphism δM is the inverse of a natural homomor-
phism πM , which is constructed by the left multiplication on each direct summand. It is not
difficult to check (see Theorem 1.2) that in general, for any two Hopf subalgebras K,L ⊆ H
the left multiplication homomorphism πM is always an epimorphism.

Theorem 1.2. Let K and L be two Hopf subalgebras of a semisimple Hopf algebra H. For
any finite-dimensional left K-module M, there is a canonical epimorphism of L-modules

⊕
C∈L\H/K(L ⊗L∩ CK

CM) πM−−→ M ↑H
K↓H

L (1.3)

given on components by l ⊗L∩ CK v �→ lv for any l ∈ L and any v ∈ CM . Here the conjugate
module CM is defined as above by CK := CK ⊗K M .

We remark that there is a similar direction in the literature in the paper [8]. In this paper, the
author considers a similar decomposition, but for pointed Hopf algebras instead of semisimple
Hopf algebras. Also, in [14] the author proves a similar result for some special Hopf subalgebras
of quantum groups at roots of 1.

Another particular situation of Mackey’s decomposition can be found in [3]. In this paper, it
is proved that for pairs of Hopf subalgebras that generate just one double coset subcoalgebra,
the above epimorphism πM from Theorem 1.2 is in fact an isomorphism. In both papers, the
above homomorphism πM is given by left multiplication.

Definition 1.3. We say that (L,K) is a Mackey pair of Hopf subalgebras of H if the
above left multiplication homomorphism πM from Theorem 1.2 is an isomorphism for any
finite-dimensional left K-module M .

Then Theorem 1.1 states that (kG,K) is a Mackey pair for any Hopf subalgebra K ⊂ H
and any subgroup G ⊂ G(H). Moreover, in Theorem 6.1 it is shown that for any normal Hopf
subalgebra K of H, the pair (K,K) is a Mackey pair. This allows us to prove a new formula
(see Proposition 6.3) for the restriction of an induced module from a normal Hopf subalgebra,
which substantially improves [3, Proposition 5.12]. It also gives a criterion for an induced
module from a normal Hopf subalgebra to be irreducible, generalizing a well-known criterion
for group representations; see, for example, [20, Corollary 7.1].

For any semisimple Hopf algebra H, using the universal grading of the fusion category
Rep(H∗) we construct in Section 5 new Mackey pairs of Hopf subalgebras of H. In turn, this
allows us to define a Green functor on the universal group G of the category of representations
of H∗. For H = kG, one obtains in this way the usual Green functor [11]. As in group theory,
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this new Green functor can be used to determine new properties of the Grothendieck ring of a
semisimple Hopf algebra.

In the last section, we prove the following tensor product formula for two induced modules
from a Mackey pair of Hopf subalgebras.

Theorem 1.4. Suppose that (L,K) is a Mackey pair of Hopf subalgebras of a semisimple
Hopf algebra H. Then for any K-module M and any L-module N one has a canonical
isomorphism:

M ↑H
K ⊗N ↑H

L

∼=−→
⊕

C∈L\H/K

((CK ⊗K M) ↓CK
L∩ CK ⊗N ↓L

L∩ CK) ↑H
L∩ CK . (1.4)

This generalizes a well-known formula for the tensor product of two induced group
representations given, for example, in [2].

This paper is structured as follows. In Section 1, we recall the basic results on coset
decomposition for Hopf algebras. Section ?? contains the construction for the conjugate Q6

Hopf subalgebra generalizing the conjugate subgroup of a finite group. These results are
inspired from the treatment given in [5]. A general characterization for the conjugate Hopf
subalgebra is given in Theorem 3.8. This theorem is automatically satisfied in the group
case. In Section 4 we prove Theorem 1.2. Also in Section 4, we prove Theorem 1.1. We Q6

also show that for any semisimple Hopf algebra, there are some canonical associated Mackey
pairs arising from the universal grading of the category of finite-dimensional corepresentations
(see Theorem 5.5). Necessary and sufficient conditions for a given pair to be a Mackey pair are
given in terms of the dimensions of the two Hopf subalgebras of the pair and their conjugate
Hopf subalgebras. In Section 6, we prove that for a normal Hopf subalgebra K the pair
(K,K) is always a Mackey pair. In Subsection 6.2, we prove the tensor product formula from
Theorem 1.4.

We work over an algebraically closed field k of characteristic zero. We use Sweedler’s notation
Δ for comultiplication, but with the sigma symbol dropped. All the other Hopf algebra
notations of this paper are the standard ones, used, for example, in [15].

2. Double coset decomposition for Hopf subalgebras of semisimple Hopf algebras

2.1. Conventions

Throughout this paper, H will be a semisimple Hopf algebra over k and ΛH ∈ H denotes
its idempotent integral (ε(ΛH) = 1). It follows that H is also cosemisimple [13]. If K is a
Hopf subalgebra of H, then K is also a semisimple and cosemisimple Hopf algebra [15]. For
any two subcoalgebras C and D of H, we denote by CD the subcoalgebra of H generated as
a k-vector space by all elements of the type cd with c ∈ C and d ∈ D.

Let G0(H) be the Grothendieck group of the category of left H-modules. Then, since H is
a Hopf algebra the group G0(H) has a ring structure under the tensor product of modules.
Then the character ring C(H) := G0(H) ⊗Z k is a semisimple subalgebra of H∗ (see [22]).
Denote by Irr(H) the set of all irreducible characters of H. Then C(H) has a basis consisting
of the irreducible characters χ ∈ Irr(H). Also, C(H) coincides to the space Cocom(H∗) of
cocommutative elements of H∗. By duality, the character ring C(H∗) of the dual Hopf algebra
H∗ is a semisimple Hopf subalgebra of H and C(H∗) = Cocom(H). If M is a finite-dimensional
H-module with character χ, then the linear dual M∗ becomes a left H-module with character
χ∗ := χ ◦ S.
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2.2. The subcoalgebra associated to a comodule

Let W be any right H-comodule. Since H is finite-dimensional, it follows that W is a left
H∗-module via the module structure f · w = f(w1)w0, where ρ(w) = w0 ⊗ w1 is the given right
H-comodule structure of W . Then one can associate to W the coefficient subcoalgebra denoted
by CW (see [12]). Recall that CW is the minimal subcoalgebra C of H with the property
that ρ(W ) ⊂ W ⊗ C. Moreover, it can be shown that CW = (AnnH∗(W ))⊥ and CW is called
the subcoalgebra of H associated to the right H-comodule W . If W is a simple right H-
comodule (or equivalently W is an irreducible H∗-module), then the associated subcoalgebra
CW is a co-matrix coalgebra. More precisely, if dim W = q, then dim CW = q2 and it has a
k-linear basis given by xij with 1 � i, j � q. The coalgebra structure of CW is then given by
Δ(xij) =

∑
l xil ⊗ xlj for all 1 � i, j � q. Moreover, the irreducible character d ∈ C(H∗) of W

is given by formula d =
∑q

i=0 xii. It is easy to check that W is an irreducible H∗-module if
and only if CW is a simple subcoalgebra of H. This establishes a canonical bijection between
the set Irr(H∗) of simple right H∗-comodules and the set of simple subcoalgebras of H. For
any irreducible character d ∈ Irr(H∗), we also use the notation Cd for the simple subcoalgebra
of H associated to the character d (see [12]).

Recall also that if M and N are two right H-comodules, then M ⊗ N is also a comodule
with ρ(m ⊗ n) = m0 ⊗ n0 ⊗ m1n1.

Remark 2.1. For a simple subcoalgebra C ⊂ H, we denote by MC the simple H-comodule
associated to C. Following [18], if C and D are simple subcoalgebras of a semisimple
Hopf algebra H, then the simple comodules entering in the decomposition of MC ⊗ MD

are in bijection with the set of all simple subcoalgebras of the product subcoalgebra CD
of H. Moreover, this bijection is given by W �→ CW for any simple subcomodule W of
MC ⊗ MD.

2.3. Double coset decomposition for Hopf subalgebras

In this subsection, we recall the basic facts on double cosets of semisimple Hopf algebras
developed in [3]. Let L and K be two Hopf subalgebras of H. As in [3], one can define an
equivalence relation rH

L, K on the set of simple subcoalgebras of H as following: C ∼ D if
C ⊂ LDK. The fact that rH

L, K is an equivalence relation is proved in [3]. In this paper, it
is shown that C ∼ D if and only if LDK = LCK as subcoalgebras of H. We also have the
following proposition.

Proposition 2.2. If C and D are two simple subcoalgebras of H, then the following are
equivalent:

(1) C ∼ D,
(2) LCK = LDK,
(3) ΛLCΛK = ΛLDΛK .

Proof. First assertion is equivalent to the second from [3, Corollary 2.5]. Clearly, (2) ⇒ (3)
by left multiplication with ΛK and right multiplication with ΛL. It will be shown that (3) ⇒ (1).
One has the following decomposition:

H =
l⊕

i=1

LCiK,

where C1, . . . , Cl are representative subcoalgebras for each equivalence class of rH
K,L.
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It follows that ΛLHΛK =
⊕l

i=1 ΛLCiΛK . Thus, if C � D, then ΛLCΛK ∩ ΛLDΛK = 0,
which proves (1).

Remark 2.3. The above proposition shows that for any two simple subcoalgebras C and
D of H, then either LCK = LDK or LCK ∩ LDK = 0. Therefore, for any subcoalgebra D ⊂
LCK, one has that LCK = LDK. In particular, for L = k, the trivial Hopf subalgebra, one
has that D ⊂ CK if and only if DK = CK.

2.3.1. Notation For the rest of the paper, we denote by L\H/K the set of double cosets
LCK of H with respect to L and K. Thus, the elements LCK of L\H/K are given by a
choice of representative of simple subcoalgebras in each equivalence class of rH

L, K . Similarly,
we denote by H/K be the set of right cosets CK of H with respect to K. This corresponds to
a choice of a representative simple subcoalgebra in each equivalence class of rH

k, K .

Remark 2.4. As noted in [3], one has that LCK ∈ MH
K and therefore LCK is a free right

K-module. Similarly, LCK ∈ H
L M and therefore LCK is also a free left L-module.

By Burciu [3, Corollary 2.6], it follows that two simple subcoalgebras C and D are in the
same double coset of H with respect to L and K if and only if

ΛL
c

ε(c)
ΛK = ΛL

d

ε(d)
ΛK , (2.1)

where c and d are the irreducible characters of H∗ associated to the simple subcoalgebras C
and D. In particular, for L = k, the trivial Hopf subalgebra, it follows that CK = DK if and
only if

cΛK =
ε(c)
ε(d)

dΛK . (2.2)

2.4. Principal eigenspace for 〈C〉
For a simple subcoalgebra C, we denote by 〈C〉 the Hopf subalgebra of H generated by C. If
d is the character associated to C, then we also denote this Hopf subalgebra by 〈d〉.

2.4.1. Frobenius–Perron theory for nonnegative matrices Next, we will use the Frobenius–
Perron theorem for matrices with nonnegative entries (see [9]). If A � 0 is such a matrix, then A
has a positive eigenvalue λ, which has the biggest absolute value among all the other eigenvalues
of A. The eigenspace corresponding to λ has a unique vector with all entries positive. λ is called Q4

the principal eigenvalue of A and the corresponding positive vector is called the principal vector
of A. Also, the eigenspace of A corresponding to λ is called the principal eigenspace of the
matrix A.

For an irreducible character d ∈ Irr(H∗), let Ld be the linear operator on C(H∗) given
by left multiplication by d. Recall [3] that ε(d) is the Frobenius–Perron eigenvalue of the
nonnegative matrix associated to the operator Ld with respect to the basis given by the
irreducible characters of H∗. In analogy with Frobenius–Perron theory, for a subcoalgebra
C with associated character d, we call the space of eigenvectors of Ld corresponding to the
eigenvalue ε(d) as the principal eigenspace for Ld.
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The following corollary is a particular case of [3, Theorem 2.4].

Corollary 2.5. The principal eigenspace of LΛK
is ΛKC(H∗) and it has a k-linear basis

given by ΛKd, where d are the characters of a set of representative simple coalgebras for the
right cosets of K inside H.

Using this, we can prove the following theorem.

Theorem 2.6. Let C be a subcoalgebra of a semisimple Hopf algebra H with associated
character d ∈ C(H∗). Then the principal eigenspaces of Ld and LΛ〈d〉 coincide.

Proof. Let V be the principal eigenspace of LΛ〈d〉 and W be the principal eigenspace of Ld.
Then by Corollary 2.5, one has that V = Λ〈d〉C(H∗). Since dΛ〈d〉 = ε(d)Λ〈d〉, it follows that
clearly V ⊆ W . On the other hand, since Λ〈d〉 is a polynomial with rational coefficients in d
(see [17, Corollary 19]) it also follows that W ⊆ V .

2.5. Rank of cosets

Let K be a Hopf subalgebra of a semisimple Hopf algebra H. Consider the equivalence relation
rH
k, K on the set Irr(H∗) of simple subcoalgebras of H. As above, one has C ∼ D if and only if

CK = DK. Therefore,

H =
⊕

C∈H/KCK. (2.3)

Lemma 2.7. The equivalence class under rH
k,K of the trivial subcoalgebra k is the set of all

simple subcoalgebras of K.

Proof. Indeed, suppose that C is a simple subcoalgebra of H equivalent to the trivial
subcoalgebra k. Then CK = kK = K by Proposition 2.2. Therefore, C ⊂ CK = K. Conversely,
if C ⊂ K, then CK ⊂ K and, since CK ∈ MH

K , it follows that CK = K. Thus, C ∼ k.

Proposition 2.8. If D is a simple subcoalgebra of a semisimple Hopf algebra H and e ∈ K
is an idempotent, then

DK ⊗K Ke ∼= DKe,

as vector spaces.

Proof. Since H is free right K-module, one has that the map

φ : H ⊗K Ke −→ He, h ⊗K re �−→ hre

is an isomorphism of H-modules. Using the above decomposition (2.3) of H and the fact that
DK is a free right K-module, note that φ sends DK ⊗K Ke to DKe.

Corollary 2.9. Let K be a Hopf subalgebra of a semisimple Hopf algebra H. For any
simple subcoalgebra C of H, one has that the rank of CK as right K-module is dimk CΛK .

Proof. Put e = ΛK , the idempotent integral of K in the above proposition.
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2.6. Frobenius–Perron eigenvectors for cosets

Let T be the linear operator given by right multiplication with ΛK on the character ring C(H∗).

Remark 2.10. Using [3, Proposition 2.5], it follows that the largest (in absolute value)
eigenvalue of T equals dim K. Moreover, a basis of eigenvectors corresponding to this eigenvalue
is given by cΛK , where the character c ∈ Irr(H∗) runs through a set of irreducible characters
representative for all the right cosets CK ∈ H/K.

3. The conjugate Hopf subalgebra CK

Let, as above, K be a Hopf subalgebra of a semisimple Hopf algebra H. For any simple
subcoalgebra C of H in this section, we construct the conjugate Hopf subalgebra CK appearing
in Theorem 1.3. If c ∈ Irr(H∗) is the associated irreducible character of C, then consider the
following subset of Irr(H∗):

cK = {d ∈ Irr(H∗) | dcΛK = ε(d)cΛK}, (3.1)

where, as above, ΛK ∈ K is the idempotent integral of K.
Recall from [18] that a subset X ⊂ Irr(H∗) is closed under multiplication if for every two

elements c, d ∈ X in the decomposition of the product cd =
∑

e∈Irr(H∗) me
c,de, then one has

e ∈ X whenever me �= 0. Also, a subset X ⊂ Irr(H∗) is closed under ‘∗’ if x∗ ∈ X for all x ∈ X.
Following [18], any subset X ⊂ Irr(H∗) closed under multiplication generates a subbialgebra

H(X) of H defined by

H(X) :=
⊕

x∈XCx. (3.2)

Moreover, if the set X is also closed under ‘∗’, then H(X) is a Hopf subalgebra of H.

Remark 3.1. Since in our case H is finite-dimensional, it is well known that any
subbialgebra of H is also a Hopf subalgebra. Therefore, in this case any set X of irreducible
characters closed under product is also closed under ‘∗’.

Proposition 3.2. The set cK ⊂ Irr(H∗) is closed under multiplication and ‘ ∗’ and it
generates a Hopf subalgebra CK of H. Thus,

CK =
⊕

d∈cKCd. (3.3)

Proof. Suppose that D and D′ are two simple subcoalgebras of H whose irreducible
characters satisfy d, d′ ∈ cK. Then one has dd′cΛK = ε(dd′)cΛK . On the other hand, suppose
that

dd′ =
∑

e∈Irr(H∗)

me
d,d′e. (3.4)

Then ε(dd′)cΛK = dd′cΛK =
∑

e∈Irr(H∗) me
d,d′ecΛK and Remark 2.10 implies that ecΛK is a

scalar multiple of cΛK for any e with me
d,d′ �= 0. Therefore, ecΛK = ε(e)cΛK and e ∈ cK. This

shows that CK is a subbialgebra of H and by Remark 3.1 a Hopf subalgebra of H.

Sometimes the notation CK will also be used for cK, where c ∈ Irr(H∗) is the irreducible
character associated to the simple subcoalgebra C.
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The notion of conjugate Hopf subalgebra CK is motivated by the following proposition.

Proposition 3.3. Let H be a semisimple Hopf algebra over k. If the simple subcoalgebra
C is of the form C = kg with g ∈ G(H) a group-like element of H, then CK = gKg−1.

Proof. Indeed, suppose that D ∈ CK. If d is the associated irreducible character of D,
then by definition it follows that dgΛK = gΛK . Thus, g−1dgΛK = ΛK . Therefore, the simple
subcoalgebra g−1Dg of H is equivalent to the trivial subcoalgebra k. Then, using Lemma 2.7,
one has that g−1Dg ⊂ K and therefore CK ⊂ gKg−1. The other inclusion gKg−1 ⊂ CK is
obvious.

Remark 3.4. In particular, for H = kG, one has that Ck[M ] = k[ xM ], where x ∈ G is
given by C = kx.

Remark 3.5. (i) Using Remark 2.1, it follows from the definition of conjugate Hopf
subalgebra that CK is always a left CK-module.

(ii) Note that if C(H∗) is commutative, then CK ⊇ K. Indeed, for any d ∈ Irr(K∗) one has
dΛK = ε(d)ΛK , and therefore dcΛK = cdΛK = ε(d)cΛK .

(iii) If K is a normal Hopf subalgebra of H, then since ΛK is a central element in H, by the
same argument it also follows that CK ⊇ K.

3.1. Some properties of the conjugate Hopf subalgebra

Proposition 3.6. Let H be a semisimple Hopf algebra and K be a Hopf subalgebra of H.
Then for any simple subcoalgebra C of H, one has that CK coincides to the maximal Hopf
subalgebra L of H with the property LCK = CK.

Proof. The equality CKCK = CK follows from the character equality Λ CKcΛK =
ε(Λ CK)cΛK and Remark 2.1. Conversely, if LCK = CK by passing to the regular H∗-
characters and using equation (2.1), then it follows that ΛLcΛK = ε(ΛL)cΛK , which shows
that L ⊂ CK.

Note that Remark 2.3, together with the previous proposition, implies that CKC ⊆ CK.

Corollary 3.7. One has that CK ⊆ CKC∗.

Proof. Since S(C) = C∗ by applying the antipode S to the above inclusion, one obtains that
C∗ CK ⊆ KC∗. Therefore, CC∗ CK ⊆ CKC∗ and then one has CK ⊆ CC∗ CK ⊆ CKC∗.

Theorem 3.8. One has that CK is the largest Hopf subalgebra L of H with the property
LC ⊆ CK.

Proof. We have seen above that CKC ⊆ CK. Suppose now that LC ⊆ CK for some Hopf
subalgebra L of H. Then, by Remark 2.3, it follows that LCK = CK. Thus, by passing to
regular characters, one has that ΛLcΛK = ε(ΛL)cΛK , which shows the inclusion L ⊆ CK.
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Proposition 3.9. Let H be a semisimple Hopf algebra and K be a Hopf subalgebra of H.
Then, for any subcoalgebra D with DK = CK, one has that DK = CK.

Proof. One has that CKCK = CK. If D ⊂ CK, then by Remark 2.3, one has that
CKDK = CKCK = CK = DK, which shows that CK = DK.

4. Mackey-type decompositions for representations of Hopf algebras

Let K be a Hopf subalgebra of a semisimple Hopf algebra H and M be a finite-dimensional
K-module. Note that for any simple subcoalgebra C of H, one has by Proposition 3.6 that
CM := CK ⊗K M is a left CK-module via the left multiplication with elements of CK.

Remark 4.1. Let H = kG be a group algebra of a finite group G and K = kA for some
subgroup A of G. Then note that CM := CK ⊗K M coincides to the usual conjugate module
gM if C = kg for some g ∈ G. Recall that gM = M as vector spaces and (gag−1) · m = a · m
for all a ∈ A and all m ∈ M .

4.1. Proof of Theorem 1.2

Proof. Since by definition of the double cosets, one has H =
⊕

C∈L\H/K LCK and each
LCK is a free K-module, the following decomposition of L-modules follows:

M ↑H
K↓H

L = H ⊗K M ∼=
⊕

C∈L\H/K(LCK ⊗K M). (4.1)

Consider now the k-linear map π
(C)
M : L ⊗L∩ CK (CK ⊗K M) → LCK ⊗K M given by

l ⊗L∩ CK (cx ⊗K m) �−→ lcx ⊗K m,

for all l ∈ L, x ∈ K, c ∈ C and m ∈ M . It is easy to see that π
(C)
M is a well-defined map

and clearly a surjective morphism of L-modules. Then πM :=
⊕

C∈L\H/K π
(C)
M is surjective

morphism of L-modules and the proof is complete.

Remark 4.2. Suppose that for M = k one has that πk isomorphism in Theorem 1.2. Then,
using a dimension argument, it follows that the same epimorphism πM from Theorem 1.2 is in
fact an isomorphism for any finite-dimensional left H-module M .

4.2. Mackey pairs

It follows from the proof above that (L,K) is a Mackey pair if and only if πk is an isomorphism,
that is, if and only if each π

(C)
k is isomorphism for any simple subcoalgebra C of H. Since π

(C)
k

is surjective passing to dimensions, one has that (L,K) is a Mackey pair if and only if

dim LCK =
(dim L) (dim CK)

dim L ∩ CK
, (4.2)

for any simple subcoalgebra C of H.
Note that for C = k1, the above condition can be written as

dim LK =
(dim L)(dim K)

dim(L ∩ K)
.
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Remark 4.3. Note also that for any Mackey pair, it follows that

dim L ∩ DK

dim DK
=

dim L ∩ CK

dim CK
, (4.3)

if LCK = LDK.

Example 4.4. Suppose that L, K are Hopf subalgebras of H with LK = KL. Then (L,K)
is a Mackey pair of Hopf subalgebras of LK by Burciu [3, Proposition 3.3].

4.3. Proof of Theorem 1.1

Let L,K be two Hopf subalgebras of a semisimple Hopf algebra H and let C be a simple
subcoalgebra of H. Note that equations (2.1) and (2.2) imply that LCK can be written as a
direct sum of right K-cosets,

LCK =
⊕

DK∈S
DK, (4.4)

for a subset S ⊂ H/K of right cosets of K inside H. Note that always one has CK ∈ S.
Next, we give a proof for the main result of Theorem 1.1.

Proof. Suppose that L = kG. By equation (4.2), one has to verify

dim(kG)CK =
|G| (dim CK)
dim kG ∩ CK

, (4.5)

for any subcoalgebra C of H. Since kG ∩ CK is a Hopf subalgebra of kG, it follows that
kG ∩ CK = kGC for some subgroup GC of G. By equation (3.1), it follows that GC =
{g ∈ G | gdΛK = dΛK}, where d ∈ Irr(H∗) is the character associated to C. In terms of
subcoalgebras, this can be written as GC = {g ∈ G | gCK = CK}.

With the above notation, equation (4.5) becomes

dim(kG)CK =
|G|
|GC | dim CK. (4.6)

Note that the group G acts transitively on the set S from equation (4.4). The action is given
by g · DK = gDK for any g ∈ G and any DK ∈ S. Let StC be the stabilizer of the right coset
CK. Thus, the subgroup StC of G is defined by StC = {g ∈ G | gCK = CK}, which shows that
StC = GC . Note that dim DK = dim CK for any DK ∈ S since DK = gCK for some g ∈ G.
Thus, dim(kG)CK = |S|(dim CK) and equation (4.6) becomes

|S| =
|G|
|GC | , (4.7)

which is the same as the formula for the size of the orbit S of CK under the action of the finite
group G.

5. New examples of the Green functors

In this section, we construct new examples of the Green functors arising from gradings on the
category of corepresentations of semisimple Hopf algebras.

5.1. Gradings of fusion categories

In this subsection, we recall a few basic results on gradings of fusion categories from [10]
that will be further used in the paper. For an introduction to fusion categories, one might
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consult [7]. Let C be a fusion category and O(C) be the set of isomorphism classes of simple
objects of C. Recall that the fusion category C is graded by a finite group G if there is a
function deg : O(C) → G such that for any two simple objects X,Y ∈ O(C), then one has that
deg(Z) = deg(X) deg(Y ) whenever Z ∈ O(C) is a simple object such that Z is a constituent
of X ⊗ Y . Alternatively, there is a decomposition C =

⊕
g∈G Cg such that the tensor functor

of C sends Cg ⊗ Ch into Cgh. Here Cg is defined as the full abelian subcategory of C generated
by the simple objects X of C satisfying deg(X) = g. Recall that a grading is called universal if
any other grading of C is arising as a quotient of the universal grading. The universal grading
always exists and its grading group denoted by UC is called the universal grading group.

Remark 5.1. If C = Rep(H) for a semisimple Hopf algebra H, then by Gelaki and Nikshych
[10, Theorem 3.8] it follows that the Hopf center (that is, the largest central Hopf subalgebra)
of H is kG∗, where G is the universal grading group of C. We denote this Hopf center by
HZ(H). Therefore, one has HZ(H) = kG∗, where G = URep(H). Moreover, in this case, by the
universal property any other grading on C = Rep(H) is given by a quotient group G/N of G.
The corresponding graded components of C are given by

Cḡ = {M ∈ Irr(H) |M ↓H
kG/N = (dim M)ḡ}, (5.1)

for all g ∈ G. Here kG/N ⊂ kG is regarded as a central Hopf subalgebra of H. Also note that
in this situation one has a central extension of Hopf algebras:

k −→ kG/N −→ H −→ H//kG/N −→ k. (5.2)

5.2. Gradings on Rep(H∗) and cocentral extensions

Suppose that H is a semisimple Hopf algebra such that the fusion category Rep(H∗) is graded
by a finite group G. Then the dual version of Remark 5.1 implies that H fits into a cocentral
extension

k −→ B −→ H
π−→ kG −→ k. (5.3)

Recall that such an exact sequence of Hopf algebras is called cocentral if kG∗ ⊂ Z(H∗) via the
dual map π∗. On the other hand, using the reconstruction theorem from [1] it follows that

H ∼= B τ#σ kF , (5.4)

for some cocycle σ : B ⊗ B → kF and some dual cocycle τ : kF → B ⊗ B.
For any such cocentral sequence, it follows that G acts on Rep(B) and by Natale

[16, Proposition 3.5] that Rep(H) = Rep(B)G, the equivariantized fusion category. For the
main properties of group actions and equivariantized fusion categories, one can consult, for
example, [19]. Recall that the above action of G on Rep(B) is given by T : G −→ Aut⊗(Rep(B)),
g �→ T g. For any M ∈ Rep(B), one has that T g(M) = M as vector spaces and the action of B
is given by b ·g m := (g · b) · m for all g ∈ G and all b ∈ B, m ∈ M . Here the weak action of G
on B is the action used in the crossed product from equation (5.4).

For any subgroup M of G, it is easy to check that H(M) = B#σkM , that is, H(M) is the
unique Hopf subalgebra of H fitting the exact cocentral sequence

k −→ B −→ H(M) −→ kM −→ k. (5.5)

Lemma 5.2. Let H be a semisimple Hopf algebra. Then gradings on the fusion category
Rep(H∗) are in one-to-one correspondence with cocentral extensions

k −→ B −→ H
π−→ kG −→ k. (5.6)
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Proof. We have shown at the beginning of this subsection how to associate a cocentral
extension to any G-grading on Rep(H∗).

Conversely, suppose that one has a cocentral exact sequence as in equation (5.13). Then
Rep(H∗) is graded by G, where the graded component of degree g ∈ G is given by

Rep(H∗)g = {d ∈ Irr(H∗) |π(d) = ε(d)g}. (5.7)

Indeed, since kG ⊂ Z(H∗) via π∗ it follows that kG acts by scalars on each irreducible
representation of H∗. Therefore, for any d ∈ Irr(H∗) one has d ↓H∗

kG = ε(d)g for some g ∈ G. It
follows then by Gelaki and Nikshych [10, Theorem 3.8] that Rep(H∗) is G-graded and

Rep(H∗)g = {d ∈ Irr(H∗) | d ↓H∗
kG = ε(d)g}. (5.8)

On the other hand, it is easy to check that one has π(d) = d ↓H∗
kG for any d ∈ Irr(H∗) (see also

[4, Remark 3.2]).
Clearly, the two constructions are inverse one to the other.

5.3. New examples of Mackey pairs of Hopf subalgebras

Let H be a semisimple Hopf algebra and C = Rep(H∗). Since H∗ is also a semisimple Hopf
algebra [13], it follows that C is a fusion category. For the rest of this section, fix an arbitrary
G-grading C =

⊕
g∈G Cg on C.

For any subset M ⊂ G, define CM :=
⊕

m ∈M Cm as a full abelian subcategory of C. Thus,
O(CM ) =

⊔
m∈M O(Cm). Let also H(M) be the subcolagebra of H generated by all the simple

subcoalgebras of H whose irreducible H∗-characters belong to O(CM ).
For any subcoalgebra C of H, denote by Irr(C∗) the irreducible characters of the dual

algebra C∗. Therefore, by its definition H(M) verifies the equality Irr(H(M)∗) = O(CM ) and
as a coalgebra can be written as H(M) =

⊕
{d∈O(Cm) |m∈M} Cd. Note that if M is a subgroup

of G, then H(M) is a Hopf subalgebra of H by Remark 2.1.
For any simple subcoalgebra C of H whose associated irreducible character d ∈ Irr(H∗) has

degree g, we will also write for shortness that deg(C) = g.

Proposition 5.3. Let H be semisimple Hopf algebra and G be the universal grading group
of Rep(H∗). Then, for any arbitrary two subgroups M and N of G, the set of double cosets
H(M)\H/H(N) is canonically bijective to the set of group double cosets M\N/G. Moreover,
the bijection is given by H(M)CH(N) �→ M deg(C)N .

Proof. By Remark 2.1, one has the following equality in terms of irreducible H∗-characters:

Irr(H(M)CH(N)∗) = O(CM deg(C)N ).

Thus, if H(M)CH(N) = H(M)DH(N), then deg(C) = deg(D), which shows that the above
map is well defined. Clearly, the map H(M)CH(N) �→ M deg(C)N is surjective. The injectivity
of this map also follows from Remark 2.1.

Note that the proof of the previous proposition implies that the coset Hx = H(M)CH(N)
with deg(C) = x is given by

Hx =
⊕

{d∈O(Cmxn) |m∈M, n∈N}
Cd. (5.9)

Proposition 5.4. Suppose that V ∈ H(M)-mod, that is, V is a B#σkM -module. Then

as B-modules, one has that CV ∼= T g−1
(ResH(M)

B (V )), where g ∈ G is chosen such that
deg(C) = g. Moreover, C(V ⊗ W ) ∼= CV ⊗ CW for any two left H(M)-modules V and W .
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Proof. Note that in this situation, one has that CH(M) = H( gM) = B#σkgM . By
definition, one has CV = CH(M) ⊗H(M) V = H(gM) ⊗H(M) V . Thus,

CV = (B#kgM) ⊗B#kM V ∼= kgM ⊗kM V , (5.10)

where the inverse of the last isomorphism is given by g ⊗kM v �→ (1#g) ⊗B#kM v. Note that
B acts on kgM ⊗kM V via b · (g ⊗kM v) = g ⊗kM (g−1 · b)m for all b ∈ B, v ∈ V . This shows
that indeed CV ∼= T g−1

(ResH(M)
B (V )) as B-modules. Moreover, it follows that CV can be

identified to V as vector spaces with the B#σkgMg−1-module structure given by b · v =
(g−1 · b)v and (ghg−1) · v = ([g−1 · (σ(ghg−1, g)σ−1(g, h))]#σh) · v for all g ∈ G, h ∈ M and
v ∈ V . Then it can be checked by direct computation that the map v ⊗ w �→ τ−1(g)(v ⊗ w)
from [16, Proposition 3.5] is in this case a morphism of B#σkgMg−1-modules. In order to do
that one has to use the compatibility conditions from [1, Theorem 2.20].

5.4. Examples of Mackey pairs arising from group gradings on the category Rep(H∗)

Let, as above, H be a semisimple Hopf algebra with C =
⊕

g∈G Cg be a group grading of
C := Rep(H∗). It follows that

FPdim(Cg) =
dim H∗

dimHZ(H∗)
, (5.11)

for all g ∈ G, where FPdim(Cg) :=
∑

V ∈O(CG)(dim V )2 is the Perron–Frobenius dimension of
the full abelian subcategory Cg of C.

Theorem 5.5. Let H be a semisimple Hopf algebra and M, N be any two subgroups of G.
With the above notation, the pair (H(M),H(N)) is a Mackey pair of Hopf subalgebras of H.

Proof. Put L := H(M) and K := H(N). Therefore, Irr(L∗) = O(C(M)) and Irr(K∗) =
O(C(N)). Then we have to verify equation (4.2) for any simple subcoalgebra C. Fix a simple
subcoalgebra C of H with deg(C) = x. As above, one has CH(M) = H( xM).

It is easy to verify that H(M) ∩ H(N) = H(M ∩ N) for any two subgroups M and N of G.
This implies that L ∩ CK = H(N ∩ xM). On the other hand from equation (5.9), note that
dim LCK = |MxN |FPdim(C1).

Then equation (4.2) is equivalent to the well-known formula for the size of a double coset
relative to two subgroups:

|MxN | =
|M ||N |

|M ∩ xN | , (5.12)

for any x ∈ G.

Remark 5.6. The fact that (H(M),H(N)) is a Mackey pair also followed in this case
from a more general version of Mackey’s decomposition theorem that holds for the action of
any finite group on a fusion category. These results will be contained in a future paper of the
author.

Remark 5.7. It also should be noted that the author is not aware of any pair of
Hopf subalgebras that is not a Mackey pair. It would be interesting to construct such
counterexamples if they exist.
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5.5. Mackey and the Green functors

For a finite group G, denote by S(G) the lattice of all subgroups of G. Following [21], a Mackey
functor for G over a ring R can be regarded as a collection of vector spaces M(H) for any
H ⊂ S(G) together with a family of morphisms IL

K : M(K) → M(L), RL
K : M(L) → M(K)

and cK,g : M(K) → M( gK) for all subgroups K and L of G with K ⊂ L and for all g ∈ G.
This family of morphisms has to satisfy the following compatibility conditions:

(1) IH
H , RH

H , cH,h : M(H) → M(H) are the identity morphisms for all subgroups H of G and
any h ∈ H;

(2) RJ
KRK

H = RJ
K , for all subgroups J ⊂ K ⊂ H;

(3) IK
H IH

J = IK
J , for all subgroups J ⊂ K ⊂ H;

(4) cK,gcK,h = cK,gh for all elements g, h ∈ G;
(5) for any three subgroups J, L ⊆ K of G and any a ∈ M(J), one has the following Mackey

axiom:
RJ

L(IK
J (a)) =

∑

x∈J\K/L

IL
L∩ xJ(R

xJ
xJ∩L(cJ,x(a))).

Moreover, a Green functor is a Mackey functor M such that for any subgroup K of G, one has
that M(K) is an associative R-algebra with identity and the following conditions are satisfied:

(6) RL
K and cK,g are always unitary R-algebra homomorphisms;

(7) IL
K(aRL

K(b)) = IL
K(a)b;

(8) IL
K(RL

K(b)a) = bIL
K(a) for all subgroups K ⊆ L ⊆ G and all a ∈ M(K) and b ∈ M(L).

The Green functors play an important role in the representation theory of finite groups (see,
for example, [21]).

5.6. New examples of the Green functors

The following theorem allows us to construct new examples of the Green functors from
semisimple Hopf algebras.

Theorem 5.8. Let H be a semisimple Hopf algebra and G be a grading group for the
fusion category Rep(H∗). Then the functor M �→ K0(H(M)) is a Green functor.

Proof. By Proposition 5.2 there is a cocentral extension

k −→ B −→ H
π−→ kG −→ k, (5.13)

for some Hopf subalgebra B ⊂ H. Then as above, for a simple subcoalgebra C of H with
associated character d ∈ H∗, one has that if π(d) = g for some g ∈ G, then π(C) = kg.

The map RL
K : K0(H(L)) → K0(H(K)) is induced by the restriction map ResH(L)

H(K) :
H(L)-mod → H(K)-mod. Similarly, the map IL

K is induced by the induction functor between
the same two categories of modules. Clearly, RL

K is a unital algebra map and the compatibility
conditions (7) and (8) follow from the adjunction of the two functors. Moreover, conditions (2)
and (3) are automatically satisfied.

Define cL,g : K0(L) → K0( gL) by [M ] �→ [ CM ], where C is any simple subcoalgebra of
H chosen with the property that deg(C) = g. It follows by Proposition 5.4 that cL,g is
a well-defined algebra map. Condition (4) is equivalent to T gh(M) ∼= T gTh(M), which is
automatically satisfied for a group action on a fusion category.

It is easy to see that all other axioms from the definition of a Green functor are satisfied.
For example, the Mackey decomposition axiom (5) is satisfied by Theorem 5.5.
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6. On normal Hopf subalgebras of semisimple Hopf algebras

Recall that a Hopf subalgebra L of a Hopf algebra H is called a normal Hopf subalgebra if
it is stable under the left and right adjoint action of H on itself. When H is a semisimple
Hopf algebra, since S2 = id, in order for L to be normal, it is enough to be closed only under
the left adjoint action, that is, h1LS(h2) ⊂ L for any h ∈ H. Let L+ := L ∩ ker ε and set
H//L := H/HL+. Since HL+ is a Hopf ideal of H (see, for example, [15]), it follows that H//L
is a quotient Hopf algebra of H. Moreover, (H//L)∗ can be regarded as a Hopf subalgebra of
H∗ via the dual map of the canonical Hopf projection πL : H → H//L.

Proposition 6.1. Suppose that H is a semisimple Hopf algebra. Then for any normal
Hopf subalgebra K of H, one has that (K,K) is a Mackey pair of Hopf algebras.

Proof. Note KC = CK for any subcoalgebra C of K since K is a normal Hopf subalgebra
of H. Then for any simple subcoalgebra C of H, the dimension condition from equation (4.2)
can be written as

dim CK =
(dim K)(dim CK)

dim K ∩ CK
, (6.1)

which is equivalent to K ∩ CK = K. This equality follows by the third item of
Remark 3.5.

6.1. Irreducibility criterion for an induced module

Remark 6.2. Let G be a finite group and H be a normal subgroup H of G. Then [20,
Corollary 7.1] implies that an induced module M ↑G

H is irreducible if and only if M is irreducible
and M is not isomorphic to any of its conjugate module gM .

The previous theorem allows us to prove the following proposition, which is an improvement
of [3, Proposition 5.12]. The second item is also a generalization of [20, Corollary 7.1].

Proposition 6.3. Let K be a normal Hopf subalgebra of a semisimple Hopf algebra H
and M be a finite-dimensional K-module.

(i) Then

M ↑H
K↓H

K
∼=

⊕

C∈H/K

CM,

as K-modules.
(ii) M ↑H

K is irreducible if and only if M is an irreducible K-module, which is not a direct
summand of any conjugate module CM for any simple subcoalgebra C of H with C �⊂ K. Q4

Proof. (i) Previous proposition implies that

M ↑H
K↓H

K
∼=

⊕

C∈K\H/K

K ⊗K∩ CK
CM, (6.2)

as K-modules. On the other hand, since K is normal note that CK = KC and therefore
the space K\H/K of double cosets coincides to the space H/K of left (right) cosets (see
also Paragraph 2.3.1 for the notation). In the proof of the same Proposition 6.1, it was also
remarked that K ∩ CK = K.
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(ii) One has that M ↑H
K is an irreducible H-module if and only if

dimk HomH(M ↑H
K , M ↑H

K) = 1.

Note that by the Frobenius reciprocity, one has the following HomH(M ↑H
K , M ↑H

K) =
HomK(M, M ↑H

K↓H
K). Then previous item implies that

HomK(M, M ↑H
K) ∼=

⊕

C∈H/K

HomK(M, CM). (6.3)

Since for C = k, one has kM = M it follows that HomK(M, CM) = 0 for all C �⊂ K.

6.2. A tensor product formula for induced representations

We need the following preliminary tensor product formula for induced representations which
appeared in [6].

Proposition 6.4. Let K be a Hopf subalgebra of a semisimple Hopf algebra H. Then for
any K-module M and any H-module V, one has that

M ↑H
K ⊗V ∼= (M ⊗ V ↓H

K) ↑H
K . (6.4)

Proof of Theorem 1.4. Applying Proposition 6.4, one has that

M ↑H
K ⊗N ↑H

L
∼= (M ↑H

K↓H
L ⊗N) ↑H

L . (6.5)

On the other hand, by Theorem 1.2 one has

M ↑H
K↓H

L
∼=

⊕
C∈L\H/K(L ⊗L∩ CK (CK ⊗K M)). (6.6)

Thus,

M ↑H
K ⊗N ↑H

L
∼= (M ↑H

K↓H
L ⊗N) ↑H

L
∼=−→

⊕
C∈L\H/K((L ⊗L∩ CK (CK ⊗K M)) ⊗ N) ↑H

L .

Applying again Proposition 1.4 for the second tensor product, one obtains that

M ↑H
K ⊗N ↑H

L

∼=−→ ((CK ⊗K M) ⊗ N ↓L
L∩ CK) ↑L

L∩ CK↑H
L

∼=−→
⊕

C∈L\H/KH ⊗L∩ CK ((CK ⊗K M) ⊗ N ↓L
L∩ CK).

Remark 6.5. Note that the above theorem always applies for K = L a normal Hopf
subalgebra of H.
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