
HARMONIC MORPHISMS BETWEEN WEYL SPACES

RADU PANTILIE

Abstract

This is a brief survey on harmonic morphisms between Weyl spaces and twistorial

maps.

Introduction

A ‘Weyl connection’ is a torsion free linear connection, on a conformal manifold,
compatible with the conformal structure; a conformal manifold endowed with a Weyl
connection is called a ‘Weyl space’ (see [3] and the references therein).

A function f on a Weyl space (M, c,D) is ‘harmonic’ if tracec(Ddf) = 0 . A ‘har-
monic morphism’ is a map between Weyl spaces which pulls-back germs of harmonic
functions to germs of harmonic functions. By a basic result, harmonic morphisms are
harmonic maps which are horizontally weakly conformal (see [7] , [2] , [15] ).

For any almost Hermitian manifold (M, c, J) there exists a unique Weyl connection
D on (M, c) such that tracec(DJ) = 0 (see [3] , [7] ); then any holomorphic map from
(M, c, J) to an oriented two-dimensional conformal manifold is a harmonic morphism
[7] . Conversely, any harmonic morphism between two-dimensional orientable confor-
mal manifolds is holomorphic, with respect to suitable orientations (see [2] , [15] ).

Other similar results can be obtained by working with the more general notion of
‘twistorial map’ [12] . In this paper, we work with twistorial structures and maps
on smooth manifolds (cf. [13] ). Roughly speaking, a map ϕ : M → N is twistorial
if it admits a holomorphic lift Φ : PM → PN to the total spaces of some bundles
πM : PM → M and πN : PN → N , endowed with almost F -structures (see Definitions
2.2 and 4.1 , below). Then, we have the following facts ( [7] ; see Proposition 5.1 , be-
low) for a submersive map ϕ : (Mm, cM , D

M ) → (Nn, cN , D
N ) between Weyl spaces

of dimensions m and n , respectively, endowed with the almost twistorial structures of
Examples 3.2 , 3.3 or 3.4 , below:
• If m = 3 and n = 2 , then ϕ is a harmonic morphism if and only if it is a twistorial

map.
• If m = 4 and n = 2 , then ϕ is a twistorial harmonic morphism if and only if ϕ

is horizontally conformal and the fibres of Φ are tangent to the connection induced by
DM on PM .
• If m = 4 and n = 3 , then any two of the following assertions imply the third:

(i) ϕ is a harmonic morphism.
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(ii) ϕ is twistorial.
(iii) The fibres of Φ are tangent to the connection induced by DM on PM .

Furthermore, any harmonic morphism from a four-dimensional Einstein–Weyl space
to a two-dimensional conformal manifold is twistorial, and the same conclusion holds
for harmonic morphisms between Einstein–Weyl spaces of dimensions four and three
( [7] , see Theorem 5.3 , below). Moreover, in the latter case, the Weyl connection of
the domain (M4, cM , D

M ) is, locally, either the Obata connection of a hyper-Hermitian
structure on (M4, cM ) or it is the Levi-Civita connection of an Einstein representative
of cM ( [7] , see Theorem 5.4 , below).

Recall that a Weyl space of dimension four (or three) can also be endowed with a
natural almost twistorial structure which is always nonintegrable [4] . The relations
between the resulting twistorial maps and harmonic morphisms are discussed in [8] .

I am grateful to John C. Wood, and to Eric Loubeau for useful comments.

1. Harmonic morphisms

In this paper, unless otherwise stated, all the manifolds and maps are assumed to be
smooth; also, the manifolds are assumed to be connected.

Let Mm be a manifold of dimension m . If m is even then we denote by L the line
bundle associated to the frame bundle of Mm through the morphism of Lie groups
ρm : GL(m,R) → (0,∞) , ρm(a) = |det a |1/m ,

(
a ∈ GL(m,R)

)
; obviously, L is

oriented. Ifm is odd then we denote by L the line bundle associated to the frame bundle
of Mm through the morphism of Lie groups ρm : GL(m,R) → R∗ , ρm(a) = (det a)1/m ,(
a ∈ GL(m,R)

)
; obviously, L∗ ⊗ TM is an oriented vector bundle. We say that L is

the line bundle of Mm .
Let c be a conformal structure on M . Then positive sections of L2 correspond to

representatives of c . Moreover, a conformal structure on M corresponds to an injective
vector bundle morphism L2 ↪→ �2TM such that, at each x ∈ M , the positive bases
of L2

x are mapped into the cone of positive definite symmetric bilinear forms on T ∗xM ;
furthermore, a conformal structure on M also corresponds to a Riemannian structure
on the vector bundle L∗ ⊗ TM . If dimM is odd then local sections of L correspond
to oriented local representatives of c (that is, local representatives of c together with
an orientation of their domain of definition). Let H be a distribution on M . Then c
induces a conformal structure c|H on H and, it follows that we have an isomorphism,
which depends of c , between L 2 and L 2

H , where LH is the line bundle of H (that
is, if H is a distribution of dimension n then LH is the line bundle associated to the
frame bundle of H through ρn ).

Definition 1.1. (i) Let (M, c,D) be a Weyl space. A harmonic function, on (M, c,D) ,
is a real-valued function f , locally defined on M , such that tracec(Ddf) = 0 .

(ii) Let (M, cM , D
M ) and (N, cN , DN ) be Weyl spaces. A map ϕ : M → N is a

harmonic map, from (M, cM , D
M ) to (N, cN , DN ) , if tracec(Ddϕ) = 0 .

(iii) Let (M, cM , D
M ) and (N, cN , DN ) be Weyl spaces. A map ϕ : M → N is a

harmonic morphism, from (M, cM , D
M ) to (N, cN , DN ) , if for any harmonic function
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f : V → R , on (N, cN , DN ) , with V an open set of N such that ϕ−1(V ) is nonempty,
f ◦ ϕ : ϕ−1(V ) → R is a harmonic function, on (M, cM , D

M ) .

Obviously, any harmonic function is a harmonic map and a harmonic morphism, if
R is endowed with its conformal structure and canonical connection.

Definition 1.2. Let (M, cM ) and (N, cN ) be conformal manifolds. A horizontally
(weakly) conformal map, from (M, cM ) to (N, cN ) , is a map ϕ : M → N such that, at
each point x ∈ M , either dϕx = 0 or dϕx|(ker dϕx)⊥ is a conformal linear isomorphism
from

(
(ker dϕx)⊥, (cM )x|(ker dϕx)⊥

)
onto

(
Tϕ(x)N, (cN )ϕ(x)

)
.

Let (M, cM ) and (N, cN ) be conformal manifolds and let ϕ : (M, cM ) → (N, cN ) be
a horizontally conformal submersion; denote by LM and LN the line bundles of M and
N , respectively. Let H = (ker dϕ)⊥ and denote by LH its line bundle. As L 2

M = L 2
H ,

the differential of ϕ induces a vector bundle isomorphism Λ from L 2
M to ϕ∗(L 2

N ) ; Λ is
called the square dilation of ϕ (cf. [2] ). We have Λ = 1

n c(dϕ,dϕ) , where n = dimN
and c is the conformal structure on the bundle T ∗M ⊗ ϕ∗(TN) induced by cM , cN
and ϕ . Therefore, if ϕ is horizontally weakly conformal, then Λ extends to a (smooth)
section of Hom

(
L 2
M , ϕ

∗(L 2
N )

)
which is zero over the set of critical points of ϕ .

Note that, if dimN is odd, dϕ defines a vector bundle morphism from (L ∗
H ⊗H , c|H )

to (L ∗
N ⊗ TN, cN ) which is an orientation preserving isometry, on each fibre.

We end this section with the following basic result on harmonic morphisms (see [7] ,
[2] and the references therein).

Theorem 1.3. A map between Weyl spaces is a harmonic morphism if and only if it
is a harmonic map which is horizontally weakly conformal.

2. F -structures

We recall the well-known notion of almost F -structure (cf. [16] ).

Definition 2.1. An almost F -structure, on a manifold M , is a section F of End(TM)
such that F 3 + F = 0 .

If F is an almost F -structure on M then we denote by T 0M ,T 1,0M ,T 0,1M the
eigenbundles of FC ∈ Γ

(
End(TCM)

)
corresponding to the eigenvalues 0 , i ,−i , respec-

tively.
Let (M, c) be a conformal manifold. An almost F -structure F on M is compatible

with c if F ∗ = −F , where F ∗ denotes the adjoint of F . An almost F -structure on
(M, c) is an almost F -structure on M , compatible with c .

Let F be an almost F -structure on M . Then T 0M is the zero distribution if and
only if F is an almost complex structure on M .

Let (M, c) be a conformal manifold. An almost F -structure F on M is compatible
with c if and only if (T 0M)⊥ = T 1,0M ⊕ T 0,1M and T 1,0M is isotropic. Thus, any
almost F -structure on (M, c) is determined by its eigenbundle corresponding to i (or
−i).



4 R. PANTILIE

Definition 2.2. Let FM and FN be almost F -structures on M and N , respectively.
We shall say that a map ϕ : (M,FM ) → (N,FN ) is holomorphic if

dϕ(T 0M ⊕ T 1,0M) ⊆ T 0N ⊕ T 1,0N

(equivalently, dϕ(T 0M ⊕ T 0,1M) ⊆ T 0N ⊕ T 0,1N ).

Note that, the condition ϕ : (M,FM ) → (N,FN ) be holomorphic is less restrictive
than the condition that dϕ intertwine the almost F -structures. However, if FN is an
almost complex structure then ϕ is holomorphic if and only if dϕ ◦ FM = FN ◦ dϕ .

Definition 2.3. We shall say that an almost F -structure F on M is integrable if,
for any point x ∈ M , there exists a holomorphic submersion ϕ : (U,F |U ) → (N, J) ,
from some open neighbourhood U of x, onto a complex manifold (N, J) , such that
ker dϕ = T 0U .

An integrable almost F -structure will be called an F -structure. We shall say that an
F -structure is simple if there exists a holomorphic submersion ϕ : (M,F ) → (N, J) ,
with connected fibres, onto a complex manifold (N, J) , such that ker dϕ = T 0M .

Remark 2.4. 1) The complex structure of any complex manifold is a simple F -
structure.

2) Let F be an almost F -structure on M . Then F is integrable if and only if
T 0M ⊕ T 1,0M is (formally) integrable.

The torsion (cf. [6] ) of F is the tensor field defined by

NF (X,Y ) = [FX,FY ]− F [X,FY ]− F [FX, Y ] + F 2[X,Y ]

for any vector fieldsX ,Y onM . ThenNF = 0 if and only if T 0M , T 1,0M , T 0M⊕T 1,0M
and T 1,0M ⊕ T 0,1M are integrable. Hence, if NF = 0 then F is integrable, but the
converse does not hold. For example, let S3 be endowed with its canonical conformal
structure and let F be the almost F -structure on it with respect to which the Hopf
fibration ϕ : S3 → CP 1 is holomorphic and T 0S3 = ker dϕ . Obviously, F is integrable
but, as T 1,0S3 ⊕ T 0,1S3 is nowhere integrable, NF is nowhere zero.

3) Let (M,FM ) and (N,FN ) be manifolds endowed with simple F -structures and
let ψM : (M,FM ) → (PM , JM ) and ψN : (N,FN ) → (PN , JN ) , respectively, be the
corresponding holomorphic submersions.

A map Φ : (M,FM ) → (N,FN ) is holomorphic if and only if there exists a holomor-
phic map ϕ : (PM , JM ) → (PN , JN ) such that ϕ ◦ ψM = ψN ◦ Φ.

3. Twistorial structures

For the remainder of the paper, we refer the reader, for further details, to [7] , [8] ,
[12] and to the references therein.

The following definition reformulates, from the perspective of [12] , a definition of
[13] .

Definition 3.1. An almost twistorial structure, on a manifold M , is a quadruple
τ = (P,M, π, F ) where π : P →M is a locally trivial fibre space and F is an almost F -
structure on P such that ker dπ is preserved by F . The almost twistorial structure τ is
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integrable if F is integrable. Assuming F a simple F -structure, let πZ : (P, F ) → (Z, J)
be the corresponding holomorphic submersion. Then, the complex manifold (Z, J) is
the twistor space of τ .

A twistorial structure is an integrable almost twistorial structure. A twistorial struc-
ture τ = (P,M, π, F ) is simple if F is a simple F -structure and each leaf of T 0P
intersects each fibre of π at most once.

See [8] for a more general definition of the notion of almost twistorial structure.
Next, we formulate the examples of almost twistorial structures with which we shall

work.

Example 3.2. If F is an almost F -structure on M then (M,M, IdM , F ) is an almost
twistorial structure.

In particular, let (M2, c) be a two-dimensional oriented conformal manifold. Then, as
the identity component of CO(2,R) is isomorphic to C ∗, there exists a unique (almost)
Hermitian structure J on (M2, c) such that if X ∈ TM then (X, JX) is a positively
oriented frame on M2; then (M,M, Id, J) is a twistorial structure. Similarly, any
oriented vector bundle of (real) rank two, endowed with a conformal structure, is a
complex line bundle.

Example 3.3 ( [5] , [13] ). Let (M3, c,D) be a three-dimensional Weyl space. Let π :
P → M be the bundle of nonzero skew-adjoint F -structures on (M3, c) . Obviously,
P is also the bundle of nonzero skew-adjoint F -structures on the oriented Riemannian
bundle (L∗⊗TM, c) . Therefore, P is isomorphic to the sphere bundle of (L∗⊗TM, c)
(any element p , of the sphere bundle of (L∗ ⊗ TM, c) , corresponds to the linear F -
structure Fp , on

(
(L∗⊗TM)π(p), cπ(p)

)
, defined by Fp(q) = p×q , q ∈ (L∗⊗TM)π(p) ).

In particular, the typical fibre and the structural group of P are CP 1 and PGL(C , 1) ,
respectively.

The bundle P is also isomorphic with the bundle of oriented two-dimensional spaces
tangent to M3. It follows that there exists a bijective correspondence between one-
dimensional foliations on M3, with oriented orthogonal complement, and almost F -
structures on (M3, c) . Furthermore, under this bijection, conformal one-dimensional
foliations correspond to (integrable) F -structures.

Let H ⊆ TP be the connection induced by D on P . We denote by H 0, H 1,0

the subbundles of H C such that, at each p ∈ P , the subspaces H 0
p , H 1,0

p ⊆ H C
p

are the horizontal lifts of the eigenspaces of pC ∈ End(TC
π(p)M) corresponding to the

eigenvalues 0 , i , respectively.
We define the almost F -structure F on P with respect to which T 0P = H 0 and

T 1,0P = (ker dπ)1,0 ⊕H 1,0. Then (P,M, π,F) is an almost twistorial structure on M .

Example 3.4 ( [1] ). Let (M4, c,D) be an oriented four-dimensional Weyl space. Let
π : P → M be the bundle of positive orthogonal complex structures on (M4, c) . Ob-
viously, P is also the bundle of positive orthogonal complex structures on the oriented
Riemannian bundle (L∗⊗TM, c) . Let E be the adjoint bundle of (L∗⊗TM, c) and let
∗c be the involution of E induced by the Hodge star-operator of (L∗ ⊗M4, c) , under
the isomorphism E = Λ2(L ⊗ T ∗M) . Then E = E+ ⊕ E− where E± is the vector
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bundle, of rank three, formed of the eigenvectors of ∗c corresponding to the eigenvalue
±1 . There exists a unique oriented Riemannian structure < ·, · >± on E± with respect
to which AB = − < A,B >± IdTM ± A × B for any A,B ∈ E± . It follows that P is
the sphere bundle of (E+, < ·, · >+) .

Similarly to Example 3.3 , there exists a bijective correspondence between two-
dimensional distributions F on M4, with oriented orthogonal complement, and pairs
(J,K) of almost Hermitian structures on (M4, c) , with J positive and K negative, such
that J |F⊥ = K|F⊥ is the complex structure of the oriented conformal bundle of rank
two (F⊥, c|F⊥) .

Let H ⊆ TP be the connection induced by D on P . We denote by H 1,0 the subbun-
dle of H C such that, at each p ∈ P , the subspace H 1,0

p ⊆ H C
p is the horizontal lift of

the eigenspace of pC ∈ End(TC
π(p)M) corresponding to the eigenvalue i . We define the

almost complex structure J on P with respect to which T 1,0P = (ker dπ)1,0 ⊕H 1,0 .
Then (P,M, π,J ) is an almost twistorial structure on M .

Next, we recall the conditions under which the almost twistorial structures of Ex-
amples 3.3 and 3.4 are integrable.

Theorem 3.5 ( [5] ). Let (M3, c,D) be a three-dimensional Weyl space and let τ =
(P,M, π,F) be the almost twistorial structure of Example 3.3 .

Then τ is integrable if and only if (M3, c,D) is Einstein–Weyl.

Theorem 3.6 ( [1] ). Let (M4, c,D) be an oriented four-dimensional Weyl space and
let τ = (P,M, π,J ) be the almost twistorial structure of Example 3.4 .

Then τ depends only of (M4, c) . Moreover, τ is integrable if and only if (M4, c) is
anti-self-dual.

We end this section with a proof of Theorems 3.5 and 3.6 (cf. [9] ).

Proof of Theorems 3.5 and 3.6. Let (Mm, c,D) be a Weyl space, dimM = m ∈ {3, 4} ;
if m = 4 assume M4 oriented. If m = 3 let G = CO(3,C ) and if m = 4 let G be
the connected component of the identity of CO(4,C ) . Thus, Mm is endowed with a
(complex) G-structure (G(M),M,G) which is equipped with the principal connection
H ⊆ T

(
G(M)

)
corresponding to D .

For any ξ ∈ Cm, let B(ξ) be the section of TC(
G(M)

)
which, at each u ∈ G(M) , is

the horizontal lift of u(ξ) ∈ TC
π(u)M , where π : G(M) →M is the canonical projection.

Note that, (ker dπ)C is the trivial complex vector bundle with fibre g⊕g , where g is
the Lie algebra of G . Furthermore, for any A ∈ g , A′ ∈ g and ξ, η ∈ Cm the following
relations hold (cf. [6] ) :

[A,A′ ] = 0 ,

[A,B(ξ)] = B(Aξ) ,

[A′, B(ξ)] = 0 ,

[B(ξ), B(η)] = −Ω(B(ξ), B(η)) ,

(3.1)
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where Ω is the curvature form of H and where we have denoted by the same symbols
elements of gC and the corresponding fundamental (complex) vector fields on G(M) .

Let F0 be a nonzero skew-adjoint F -structure on Rm ; if m = 4 assume F0 to be
a positive orthogonal complex structure. Denote by p0 the corresponding subspace
T 0Rm ⊕ T 0,1Rm ⊆ Cm and let H ⊆ G be the subgroup fixing p0 . Note that, if m = 3
then G(M)/H is the bundle of degenerate two-dimensional spaces on (M3, c) whilst if
m = 4 then G(M)/H is the bundle of self-dual spaces on (M4, c) .

Let F0 be the subbundle of H C spanned by all B(ξ) , ξ ∈ p0 , and let h be the Lie
algebra of H . Then the almost twistorial structure of Example 3.3 or 3.4 , associated
to (Mm, c,D) , according to m = 3 or m = 4 , is integrable if and only if the subbundle
F = F0 ⊕

(
G(M)× h

)
⊕

(
G(M)× g

)
of TC(

G(M)
)

is integrable.
From (3.1) it follows that F is integrable if and only if Ω(B(ξ), B(η))(p0) ⊆ p0

for all ξ, η ∈ p0 . Let L be the line bundle of Mm and let R be the curvature form
of the connection induced by D on L∗ ⊗ TM . Then F is integrable if and only if
c(R(X,Y )X,Y ) = 0 for all X,Y ∈ TCM spanning an element of G(M)/H .

If m = 3 let Π ⊆ G2(C3) be the space of degenerate two-dimensional subspaces of
C3 and if m = 4 let Π ⊆ G2(C4) be the space of self-dual subspaces of C4. Then the
Plücker embedding G2(Cm) → P

(
Λ2(Cm)

)
maps Π onto the conic of null directions

in Λ2(C3) or Λ2
+(C4) , according to m = 3 or m = 4 , where Λ2

+(C4) is the space of
self-dual forms on C4.

Let R be the restriction to Λ2(TM) or Λ2
+(TM) , according to m = 3 or m = 4 ,

of the L2-valued quadratic form defined by X ∧ Y 7→ c(R(X,Y )X,Y ) , X,Y ∈ TM .
It follows that F is integrable if and only if there exists a section µ of L∗2 such that
R = µ c . The proof follows. �

4. Twistorial maps

We start this section, by formulating the definition of twistorial maps.

Definition 4.1 (cf. [13] , [12] ). Let τM = (PM ,M, πM , F
M ) and τN = (PN , N, πN , FN )

be almost twistorial structures and let ϕ : M → N be a map. Suppose that ϕ is en-
dowed with a map Φ : QM → QN , where QM and QN are submanifolds of PM and PN ,
respectively, such that:

1) πM |QM
: QM →M and πN |QN

: QN → N are locally trivial fibres spaces.
2) TQM and TQN are preserved by FM and FN , respectively.
3) ϕ ◦ πM |QM

= πN |QN
◦ Φ .

Then ϕ : (M, τM ) → (N, τN ) is a twistorial map (with respect to Φ) if the map
Φ : (QM , FM |TQM

) → (QN , FN |TQN
) is holomorphic. If, further, (QM , FM |TQM

)
and (QN , FN |TQN

) are simple F -structures, with ψM : (QM , FM |TQM
) → ZM,Φ and

ψN : (QN , FN |TQN
) → ZN,Φ , respectively, the corresponding holomorphic submer-

sions, then Φ induces a holomorphic map ZM,Φ → ZN,Φ , which is called the twistorial
representation of ϕ (with respect to Φ) .

Next, we give the examples of twistorial maps with which we shall work.
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Example 4.2. Let (M2, cM ) and (N2, cN ) be two-dimensional oriented conformal man-
ifolds. Let τM = (M,M, IdM , JM ) and τN = (N,N, IdN , JN ) be the twistorial struc-
tures of Example 3.2 associated to (M2, cM ) and (N2, cN ) , respectively.

Let ϕ : M2 → N2 be a map. Obviously, ϕ : (M2, τM ) → (N2, τN ) is twistorial (with
respect to ϕ) if and only if ϕ : (M2, JM ) → (N2, JN ) is holomorphic.

The following example is, essentially, due to [5] .

Example 4.3. Let (M3, cM , D) be a three-dimensional Weyl space and let (N2, cN )
be a two-dimensional oriented conformal manifold. Let τM = (P,M, π,F) be the
almost twistorial structure of Example 3.3 , associated to (M3, cM , D) , and let τN =
(N,N, IdN , J) be the twistorial structure of Example 3.2 , associated to (N2, cN ) .

Let ϕ : M3 → N2 be a submersion and let Fϕ be the almost F -structure on (M3, cM )
determined by ker dϕ and the orientation of N2. Define Φ = ϕ ◦ pϕ−1 : pϕ(M) → N
where pϕ is the section of P corresponding to Fϕ.

The following assertions are equivalent:
(i) ϕ : (M3, τM ) → (N2, τN ) is twistorial (with respect to Φ).
(ii) pϕ : (M3, Fϕ) → (P 5,F) is holomorphic and ϕ : (M3, cM ) → (N2, cN ) is

horizontally conformal.
(iii) ϕ : (M3, cM ) → (N2, cN ) is horizontally conformal and the fibres of Φ are

tangent to the connection induced by D on P 5.
(iv) ϕ : (M3, cM , D) → (N2, cN ) is a horizontally conformal submersion with

geodesic fibres.

Example 4.4 ( [14] ). Let (M4, cM ) and (N2, cN ) be oriented conformal manifolds of
dimensions four and two, respectively. Let τM = (P,M, π,J ) be the almost twistorial
structure of Example 3.4 , associated to (M4, cM ) , and let τN = (N,N, IdN , J) be the
twistorial structure of Example 3.2 , associated to (N2, cN ) .

Let ϕ : M4 → N2 be a submersion and let Jϕ be the almost Hermitian structure
on (M4, cM ) determined by ker dϕ and the orientation of N2. Define Φ = ϕ ◦ pϕ−1 :
pϕ(M) → N where pϕ is the section of P corresponding to Jϕ.

The following assertions are equivalent:
(i) ϕ : (M4, τM ) → (N2, τN ) is twistorial (with respect to Φ).
(ii) pϕ : (M4, Jϕ) → (P 6,J ) is holomorphic and ϕ : (M4, cM ) → (N2, cN ) is

horizontally conformal.
(iii) Jϕ is integrable and ϕ : (M4, cM ) → (N2, cN ) is horizontally conformal.

Example 4.5 ( [5] , [3] ). Let (M4, cM ) be a four-dimensional oriented conformal mani-
fold and let (N3, cN , D

N ) be a three-dimensional Weyl space. Let τM = (PM ,M, πM ,J )
be the almost twistorial structure of Example 3.4 , associated to (M4, cM ) , and let
τN = (PN , N, πN ,F) be the almost twistorial structure of Example 3.3 , associated to
(N3, cN , D

N ) .
Let ϕ : M4 → N3 be a submersion. Let V = ker dϕ and H = V ⊥. Then the

orientation of M4 corresponds to an isomorphism between V and the line bundle of
H . Therefore (V ∗ ⊗ H , c|H ) is an oriented Riemannian vector bundle. We define
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Φ : PM → PN by
Φ(p) = 1

|| dϕ(V ∗⊗p(V ))|| dϕ(V ∗ ⊗ p(V )) ,

where {V } is any basis of VπM (p) and {V ∗} its dual basis, (p ∈ PM ) .
Let IH be the V -valued two-form on H defined by IH (X,Y ) = −V [X,Y ] , for any

sections X and Y of H . Then ∗H IH is a horizontal one-form on M4, where ∗H is
the Hodge star-operator of (V ∗ ⊗ H , c|H ) . Denote by D+ the Weyl connection on
(M4, cM ) defined by D+ = D+∗H IH where D is the Weyl connection of (M4, cM ,V ) .

The following assertions are equivalent:
(i) ϕ : (M4, τM ) → (N3, τN ) is twistorial (with respect to Φ).
(ii) ϕ : (M4, cM ) → (N3, cN ) is horizontally conformal and ϕ∗(DN ) = H D+ as

partial connections on H , over H .

5. Harmonic morphisms and twistorial maps

In this section, we discuss the relations between harmonic morphisms and the twisto-
rial maps of Examples 4.2 , . . . , 4.5 . Firstly, any map between two-dimensional ori-
entable conformal manifolds is a harmonic morphism if and only if, with respect to
suitable orientations, it is a twistorial map.

Proposition 5.1 ( [7] ). Let (Mm, cM , D
M ) and (Nn, cN , D

N ) be Weyl spaces of di-
mensions m and n , respectively, where (m,n) ∈ {(3, 2), (4, 2), (4, 3)} . If m (resp. n) is
even then Mm (resp. Nn) is assumed to be oriented. Endow Mm and Nn, according
to their dimensions, with the almost twistorial structures τM and τN , respectively, of
Examples 3.2 , 3.3 or 3.4 . Let ϕ : Mm → Nn be a submersion.

(i) If (m,n) = (3, 2) then the following assertions are equivalent:
(i1) ϕ : (M3, cM , D

M ) → (N2, cN ) is a harmonic morphism.
(i2) ϕ : (M3, τM ) → (N2, τN ) is a twistorial map.

(ii) If (m,n) = (4, 2) then the following assertions are equivalent:
(ii1) ϕ : (M4, cM , D

M ) → (N2, cN ) is a harmonic morphism and ϕ : (M4, τM ) →
(N2, τN ) is a twistorial map.

(ii2) ϕ : (M4, cM ) → (N2, cN ) is horizontally conformal and the fibres of Φ are
tangent to the connection induced by DM on PM .

(iii) If (m,n) = (4, 3) then any two of the following assertions imply the third:
(iii1) ϕ : (M4, cM , D

M ) → (N3, cN , D
N ) is a harmonic morphism.

(iii2) ϕ : (M4, τM ) → (N3, τN ) is a twistorial map.
(iii3) The fibres of Φ are tangent to the connection induced by DM on PM .

Proof. Assertion (i) is an immediate consequence of the fundamental equation for hor-
izontally conformal submersions between Weyl spaces [7] .

Let V = ker dϕ and let H = V ⊥.
To prove assertion (ii) , let T 1,0M and T 0,1M be the eigenbundles of Jϕ correspond-

ing to i and −i , respectively. If ϕ is horizontally conformal, then T 0,1M is parallel
along T 0,1M ∩ H C , with respect to DM . It follows that ϕ : (M4, τM ) → (N2, τN )
is a twistorial map if and only if it is horizontally conformal and T 0,1M is parallel
along T 0,1M ∩ V C . Also, by the fundamental equation, ϕ : (M4, cM , D

M ) → (N2, cN )



10 R. PANTILIE

is a harmonic morphism if and only if it is horizontally conformal and its fibres are
minimal, with respect to DM ; equivalently, ϕ is horizontally conformal and T 0,1M is
parallel along T 1,0M ∩ V C . Thus, assertion (ii1) holds if and only if ϕ is horizontally
conformal and T 0,1M is parallel along V which, clearly, is equivalent to (ii2) .

Assertion (iii) follows from the fundamental equation and the fact that if ϕ is hori-
zontally conformal then (iii3) is equivalent to H DM = H D + 1

2 ∗H IH , where D is
the Weyl connection of (M4, cM ,V ) . �

Note that, statement (ii) of Proposition 5.1 , applied to the particular case when DM

is the Levi-Civita connection of a representative of cM , reformulates a result of [14] .

Remark 5.2. Let (M4, cM ) be a four-dimensional oriented conformal manifold and let
(N3, cN , D

N ) be a three-dimensional Weyl space. Let τM and τN be the almost twisto-
rial structures, of Examples 3.4 and 3.3 , associated to (M4, cM ) and (N3, cN , D

N ) ,
respectively.

Suppose that there exist three submersive harmonic morphisms ψj , j = 1, 2, 3 , with
one-dimensional fibres, on (N3, cN , D

N ) , such that the distributions orthogonal to the
fibres of ψj , j = 1, 2, 3 , are orientable, and ker dψj is orthogonal to ker dψk , if j 6= k .

Let ϕ : (M4, τM ) → (N3, τN ) be a twistorial map. Then, as ψj ◦ϕ is twistorial, Jψj◦ϕ

is integrable, (j = 1, 2, 3) . Moreover, as ker dψj is orthogonal to ker dψk , if j 6= k ,
the Hermitian structures Jψj◦ϕ, j = 1, 2, 3 , determine a hyper-Hermitian structure on
(M4, cM ) . Let DM be the Obata connection of this hyper-Hermitian structure.

Then ϕ : (M4, cM , D
M ) → (N3, cN , D

N ) is a harmonic morphism [7] .

In the following results, as in Proposition 5.1 , the given Weyl spaces are endowed,
according to their dimensions, with the almost twistorial structures of Examples 3.2 ,
3.3 or 3.4 .

Theorem 5.3 ( [7] , cf. [14] , [10] ). Let (M4, cM , D
M ) and (Nn, cN , D

N ) be Einstein–
Weyl spaces of dimensions 4 and n , respectively, where n ∈ {2, 3} ; assume M4 ori-
entable and, if n = 2, assume N2 oriented.

Then a submersion ϕ : (M4, cN , D
N ) → (Nn, cN , D

N ) is a harmonic morphism if
and only if ϕ is twistorial, with respect to a suitable orientation of M4, and the fibres
of Φ are tangent to the connection induced by DM on PM .

For harmonic morphisms between Einstein–Weyl spaces of dimensions four and three,
the result of Theorem 5.3 takes a more precise form, as follows.

Theorem 5.4 ( [7] ). Let (M4, cM , D
M ) and (N3, cN , D

N ) be Einstein–Weyl spaces of
dimensions four and three, respectively; assume M4 orientable.

Then a submersion ϕ : (M4, cN , D
N ) → (N3, cN , D

N ) is a harmonic morphism
if and only if, with respect to a suitable orientation, (M4, cM ) is anti-self-dual, ϕ is
twistorial and, locally, either

(i) DM is the Obata connection of a hyper-Hermitian structure, on (M4, cM ) ,
constructed as in Remark 5.2 , or

(ii) DM is the Levi-Civita connection of an Einstein representative g of cM , with
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nonzero scalar curvature, and the fibres of the twistorial representation of ϕ are tangent
to the holomorphic distribution, on the twistor space of (M4, cM ) , determined by g .

Example 5.5. The harmonic morphisms given by the Gibbons-Hawking and the Bel-
trami fields constructions (see [11] , [15] ) satisfy assertion (i) of Theorem 5.4 .

The harmonic morphisms of warped-product type (see [2] , [15] ) with one-dimensional
fibres from an oriented four-dimensional Riemannian manifold with nonzero constant
sectional curvature satisfy assertion (ii) of Theorem 5.4 .

Finally, we present the following result.

Theorem 5.6 ( [7] ). Let (M4, cM , D
M ) be an orientable Einstein–Weyl space of di-

mension four.
Then, locally, there can be defined on (M4, cM , D

M ) at least five distinct foliations
of dimension two which produce harmonic morphisms if and only if one of the following
two assertions holds:

(i) DM is the Weyl connection of a Hermitian structure locally defined on (M4, cM );
(ii) (M4, cM ) is anti-self-dual, with respect to a suitable orientation, and DM is

the Levi-Civita connection of a local Einstein representative of cM .

The interested reader may consult [7] for the proofs of Theorems 5.3 , 5.4 and 5.6 ,
and for further facts on harmonic morphisms between Weyl spaces.
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mailto:Radu.Pantilie@imar.ro

	Abstract
	Introduction
	1. Harmonic morphisms
	2. F-structures
	3. Twistorial structures
	4. Twistorial maps
	5. Harmonic morphisms and twistorial maps
	References

