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Abstract

Harmonic morphisms are smooth maps between Riemannian manifolds which

preserve Laplace’s equation. They are characterised as harmonic maps which

are horizontally weakly conformal [11, 17] .

R.L. Bryant [7] proved that there are precisely two types of harmonic mor-

phisms with one-dimensional fibres which can be defined on a constant cur-

vature space of dimension at least four. Here we prove that, on an Einstein

four-manifold, there are precisely three types of harmonic morphisms with

one-dimensional fibres, the third type being new.

We have the following applications: let (M4, g) and (N3, h) be complete Ein-

stein manifolds; then we list all the harmonic morphisms from (M4, g) onto

(N3, h) when:

• M4 and N3 are simply-connected (Theorem 4.1 , Theorem 4.8);

• M4 is compact (Theorem 4.11).

Introduction

It is useful to place the study of harmonic morphisms into the context of con-
formal foliations. The idea is due to J.C. Wood [30] (also, see [4] for a significant
application of it). Say that a foliation produces harmonic morphisms if its leaves
can be locally given as fibres of harmonic morphisms. In this way are captured all
the harmonic morphisms from a given Riemannian manifold, some of which may
be defined just locally. On the other hand, harmonic morphisms can be described
and classified in terms of the geometrical properties of the foliations formed by
their fibres. For example, on a Riemannian manifold of dimension at least four
and with constant curvature there are just two types of one-dimensional folia-
tions which produce harmonic morphisms [25] : (i) Riemannian foliations locally
generated by Killing fields and (ii) homothetic foliations with geodesic leaves and
integrable orthogonal complement. This slightly generalizes the main result of
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R.L. Bryant from [7] where the classification was obtained assuming the foliation
is simple and the domain is simply-connected.

In [25] we have also proved that the alternative (i) or (ii) still holds for one-
dimensional foliations which produce harmonic morphisms and have integrable
orthogonal complement on Einstein manifolds of dimension at least four. One of
the consequences of the main result of Section 1 below is that the integrability
assumption cannot be removed. More precisely, in Theorem 1.8 we prove that on
a four-dimensional Einstein manifold any one-dimensional foliation which pro-
duces harmonic morphisms is of one of the types (i) , (ii) or (iii) where (i) and (ii)
are as above and (iii) is as follows: (M4, g) is Ricci-flat and, up to homotheties,
any harmonic morphism ϕ : (U, g|U)→ (N3, h) , with dilation λ , produced by V
such that V|U and N3 are orientable is (locally) described by:

(a) (N3, h) has constant sectional curvature equal to one;
(b) 1

2
d(λ−2) is a (flat) principal connection for V with respect to suitably cho-

sen V ∈ Γ(V) such that g(V, V ) = λ2 ;
(c) the local connection form A of H with respect to 1

2
d(λ−2) satisfies the

equation dA+ 2 ∗A = 0 on (N3, h) where ∗ is the Hodge star-operator of (N3, h)
with respect to some orientation of N3 .

Examples of harmonic morphisms of type (iii) are given in Section 2 . There
we prove that these are always submersive (Proposition 2.1). Also, we show that
any surjective harmonic morphism of type (iii) with connected fibres and com-
plete codomain is, up to homotheties and Riemannian coverings, the restriction
of the radial projection (R4 \ {0}, ga)→ S3 where ga is a noncomplete Ricci-flat
Riemannian metric on R4 \ {0} which depends on a parameter a ∈ R (g0 is the
restriction of the canonical metric on R4). In particular, there exists no surjective
harmonic morphism of type (iii) whose domain and codomain are both complete.

A first set of applications of Theorem 1.8 is given in Section 3 . For example
we have: if ϕ : (M4, g) → (N3, h) is a nonconstant harmonic morphism be-
tween compact Einstein manifolds of dimension four and three, respectively, then
(M4, g) and (N3, h) are flat and, up to homotheties and Riemannian coverings, ϕ
is the canonical projection between flat tori T 4 → T 3. This is proved in Theorem
3.8 for submersive harmonic morphisms and Theorem 4.11 , in general.

In Section 4 we study surjective harmonic morphisms ϕ : (M4, g) → (N3, h)
between complete Einstein manifolds of dimension four and three, respectively. If
M4 and N3 are simply-connected we prove the following:
• If ϕ is submersive then, up to homotheties, it is one of the following pro-

jections R4 → R3 , H4 → R3 , H4 → H3 induced by the following canonical
warped-product decompositions R4 = R1×R3 , H4 = H1×r R3 , H4 = H1×sH3

where Hk is the hyperbolic space of dimension k (Theorem 4.1).
• If ϕ has exactly one critical point then there exists a ≥ 0 such that, up to

homotheties, ϕ : (R4, ga)→ (R3, h0) is the Hopf polynomial with ga the Hawking
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Taub-NUT metric (a > 0) and g0 , h0 the canonical metrics on R4 , R3 , respec-
tively (Theorem 4.10). Moreover, we show how the Hopf polynomial in the last
mentioned result can be generalised such that to allow any number of critical
points (Theorem 4.8).
Also, we prove that, if both (M4, g) and (N3, h) are compact and Einstein, then
ϕ is submersive and thus Theorem 3.8 , mentioned above, applies.

In the Appendix we prove a result needed in the proof of Theorem 4.1 ; there
we also give examples of harmonic morphisms of type (i) or (ii) defined on Ein-
stein manifolds not of constant curvature and which have integrable horizontal
distribution.

I am deeply indebted to J.C. Wood for thoughtful guidance.

1. Foliations of dimension one which produce harmonic morphisms
on four-dimensional Einstein manifolds

Foliations whose leaves are locally fibres of (submersive) harmonic morphisms
were introduced in [30] . We introduced the following terminology in [25] .

Definition 1.1. Let (M, g) be a (connected) Riemannian manifold and let V be
(the tangent bundle of) a foliation on it.

We say that V produces harmonic morphisms on (M, g) if each point of M
has an open neighbourhood U which is the domain of a submersive harmonic
morphism ϕ : (U, g|U)→ (N, h) whose fibres are open subsets of the leaves of V .
We call ϕ a harmonic morphism produced by V .

Since any harmonic morphism is horizontally weakly conformal, any foliation
which produces harmonic morphisms is a conformal foliation [30] . We recall the
following definition [25] .

Definition 1.2. Let V be a distribution on the Riemannian manifold (M, g) .
We shall say that V is homothetic if it is conformal and the mean curvature form
of its orthogonal complement is closed.

Homothetic foliations are characterised by the property that their leaves are
locally fibres of horizontally homothetic submersions, and that a foliation of codi-
mension not equal to two which has minimal leaves produces harmonic morphisms
if and only if it is a homothetic foliation [25] .

To state the main result of this section we also need a definition which is a trivial
generalization to foliations of the well-known concept of principal connection on
a principal bundle. For simplicity, we give this definition just for one-dimensional
foliations.

Definition 1.3. Let V be a one-dimensional foliation and let V ∈ Γ(V) be a
nowhere zero vector field tangent to V .
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A principal connection for V (with respect to V ) is a complementary distribu-
tion H ⊆ TM , H⊕V = TM such that V is an infinitesimal automorphism of H
(i.e. H is invariant under the local flow of V ).

The connection form θ of H is the ‘vertical’ dual of V (i.e. θ(V ) = 1 and
θ|H = 0) and the curvature form of H is Ω = dθ . Note that Ω is basic and it can
be interpreted as the integrability tensor of H (indeed Ω(X, Y )V = −V([X, Y ])
for any horizontal vector fields X and Y ).

It is obvious that a one form θ defines a principal connection for (the one-
dimensional foliation) V with respect to V if and only if θ(V ) = 1 and LV θ = 0 .

Example 1.4. Let V be an orientable one-dimensional geodesic foliation on
(M, g) . Then H(= V⊥) is a principal connection for V with respect to U ∈ Γ(V)
where g(U,U) = 1 . The connection form is U [ .

An orientable one-dimensional foliation V on M admits a principal connection
if and only if it is geodesible (i.e. there exists a Riemannian metric h on M such
that the leaves of V are geodesics on (M,h) ). Indeed, given the principal con-
nection H (with respect to some V ∈ Γ(V)) if we choose any metric h such that
h(V, V ) = 1 and h(V,X) = 0 for X ∈ H then the leaves of V are geodesics of
(M,h) . Also the set of principal connections of V (if nonempty) with respect to
a given nowhere zero vector field V ∈ Γ(V) is an affine space over the linear space
of basic one-forms: if θj , j = 1, 2 are connection forms then θ1 − θ2 is locally
the pull back by ϕ : U → N of a one-form A ∈ Γ(T ∗N) where U is an open
subset of M and the fibres of ϕ are open subsets of leaves of V . Fix V ∈ Γ(V) .
Then in a neighbourhood of each point of N a local section s of ϕ can be found
which, in a neighbourhood of its image, defines a principal connection θs which
is flat (i.e. dθs = 0). If θ defines a principal connection then the one-form A such
that θ = θs + ϕ∗(A) is the local connection form of θ with respect to s . Because
V is one-dimensional we can define the local connection form of a principal con-
nection with respect to a (local) flat principal connection by using any parallel
section of the flat connection. Also note that the existence of a global flat prin-
cipal connection impose severe restrictions to the topology of the foliation and
of the manifold. For example, as is well known, if the leaves of V are the fibres
of a principal bundle ξ = (M,N, S1) over the simply-conected N and ξ admits a
flat principal connection then ξ is trivial and, in particular, M and N × S1 are
diffeomorphic.

The orthogonal complement of a one-dimensional foliation which produces har-
monic morphisms is a principal connection of it. To show this we first recall the
following [25] :

Definition 1.5. 1) Let V be a conformal foliation on the Riemannian manifold
(M, g) . A smooth positive function λ : U → R on an open subset U of M will
be called a local dilation of V if V|U is a Riemannian foliation on (U, λ2 g|U). If
U = M then λ is called a (global) dilation of V .
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2) Let V be a foliation which produces harmonic morphisms on the Riemannian
manifold (M, g) . Let λ be a local dilation of V which restricts to give dilations
of harmonic morphisms produced by V . Then ρ = λ2−n is called a local density
of V . If λ is globally defined on M then ρ is called a (global) density.

The terminology of Definition 1.5(2) is motivated by the following fact.

Remark 1.6. Let V be a foliation which produces harmonic morphisms on
(M, g) . Let ω be a local volume form for V and H = V⊥ . A positive smooth
function ρ is a local density for V if and only if ρω is invariant under the parallel
displacement determined by H [25] .

Proposition 1.7. Let V be a one-dimensional foliation which produces harmonic
morphisms on (Mn+1, g) where dimM = n + 1 . Let ρ = e(2−n)σ be a local
density of V . Supposing that V restricted to the domain of σ is orientable and
let V ∈ Γ(V) be such that g(V, V ) = e(2n−4)σ(= ρ−2) .

Then the horizontal distribution H(= V⊥) is a principal connection for V with
respect to V .

Proof. From [25, Lemma 2.1] (or Remark 1.6) it follows that
[
V,X

]
= 0 for any

basic vector field X ∈ Γ(H) . �

We now state the main result of this section.

Theorem 1.8. Let (M4, g) be an Einstein manifold of dimension four and V a
one-dimensional foliation which produces harmonic morphisms on (M4, g) .

Then, one of the following assertions holds:
(i) V is Riemannian and locally generated by Killing fields;
(ii) V is a homothetic foliation by geodesics with integrable orthogonal comple-

ment;
(iii) (M4, g) is Ricci-flat and, up to homotheties, any harmonic morphism

ϕ : (U, g|U) → (N3, h) , with dilation λ , produced by V such that V|U and N3

are orientable is (locally) described as follows:
(a) (N3, h) has constant sectional curvature kN = 1 ,
(b) 1

2
d(λ−2) is a (flat) principal connection for V with respect to suitably

chosen V ∈ Γ(V) such that g(V, V ) = λ2 ,
(c) the local connection form A of H with respect to 1

2
d(λ−2) satisfies the

equation dA+ 2 ∗A = 0 on (N3, h) where ∗ is the Hodge star-operator of (N3, h)
with respect to some orientation of N3 .

Moreover, only (i) and (ii) or (ii) and (iii) can occur simultaneously, in which
case (M4, g) must be Ricci-flat.

From Theorem 1.8 we obtain the following.

Corollary 1.9. Let (M4, g) be an orientable Einstein manifold of dimension four,
and (N3, h) an orientable Riemannian manifold of dimension three.

Let ϕ : (M4, g) → (N3, h) be a submersive harmonic morphism; denote its



6 RADU PANTILIE

dilation by λ and let V ∈ Γ(V) be such that g(V, V ) = λ2 .
Then, one of the following assertions (i) , (ii) , (iii) holds:
(i) V is a Killing field;
(ii) ϕ is horizontally homothetic and has geodesic fibres orthogonal to an um-

bilical foliation by hypersurfaces;
(iii) (a) (M4, g) is Ricci-flat and (N3, h) has constant sectional curvature kN = c2

4
(c 6= 0) ,

(b) 1
c

d(λ−2) is a (flat) principal connection for kerϕ∗ with respect to V ,

(c) the local connection form A of (kerϕ∗)
⊥ with respect to 1

c
d(λ−2) sat-

isfies dA + c ∗ A = 0 on (N3, h) where ∗ is the Hodge star-operator of (N3, h)
defined by some orientation of N3 .

Remark 1.10. 1) If M4 is not orientable then we can replace (M4, g) by a

Riemannian double covering (M̃4, g̃) such that M̃4 is orientable. Then we replace

ϕ by ϕ̃ = ϕ ◦ ξ where ξ : (M̃4, g̃)→ (M4, g) is the projection of the covering.
2) If N3 is not orientable we can pull-back ϕ to a Riemannian double-covering

(Ñ3, h̃) of (N3, h) such that Ñ3 is orientable.

Before proving Theorem 1.8 we need some further preparations.
Let V be a one-dimensional foliation which produces harmonic morphisms on a

Riemannian manifold (M4, g) , dimM = 4 and let ρ = e−σ be a positive smooth
function. We define the Riemannian metric h on M by

h = e2σ gH + e−2σ gV

where gH and gV are the horizontal and the vertical part of g , respectively. Then
from [25, Proposition 1.8] (cf. [23], [24]) it follows that V produces harmonic
on (M,h) aswell. Furthermore if ρ = e−σ is a (local) density of V then V is
Riemannian and has geodesic leaves with respect to h .

Assuming that V restricted to the domain O of the local density ρ is orientable
let V ∈ Γ(V|O) be such that g(V, V ) = ρ−2 . Then, by Proposition 1.7, H is a
principal connection for V , with respect to V . We shall always denote by Ω the
curvature form of H .

Next we relate the Ricci tensors MRicci and NRicci of (M4, g) and (N3, h̄) , re-
spectively, where (N3, h̄) is the codomain of a harmonic morphism produced by V .

Lemma 1.11. Let O be an open subset of M4 and let ϕ : (O, g|O)→ (N, h̄) be a
harmonic morphism produced by V . Then,

MRicci(X, Y ) = NRicci(ϕ∗X,ϕ∗Y )− 1

2
e4σ h(iXΩ, iY Ω)

−e−2σ ∆Mσ h(X, Y )− 2X(σ)Y (σ) ,
(1.1)

MRicci(X, V ) =
1

2
e4σ (hd∗Ω)(X) + 2e4σ Ω(X, gradh σ)

+ 2X(V (σ))− 2X(σ)V (σ) ,
(1.2)
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(1.3) MRicci(V, V ) = e2σ∆Mσ +
1

4
e8σ
∣∣Ω∣∣2

h
+ 4V (V (σ))− 10V (σ)2

for any horizontal vectors X , Y , where eσ is the dilation of ϕ , ∆M is the Lapla-
cian on (M, g) and hd∗ denotes the codifferential on (M,h) .

Proof. These equations follow, respectively, from (5.3) , (5.4) and (4.4) of [25] . �

The following proposition which will be used later on holds for manifolds of
any dimension.

Proposition 1.12. Let (M, g) be an Einstein manifold and V a one-dimensional
foliation of codimension not equal to two which produces harmonic morphisms on
(M, g) .

Then the following assertions are equivalent:
(i) V has basic mean curvature form;
(ii) V is a homothetic foliation.

Proof. This follows from [25, Proposition 5.13] . �

As mentioned before, Theorem 1.8 extends results of [25] for the dimension
considered. These results ( [25, Theorem 5.7 , Corollary 5.9] ) can be stated in a
unified manner as follows.

Theorem 1.13. Let (M, g) be an Einstein manifold of dimension at least four
endowed with a one-dimensional foliation V . Suppose that either V has integrable
orthogonal complement or V is homothetic.

Then V produces harmonic morphisms if and only if either
(i) V is Riemannian and locally generated by Killing fields or
(ii) V is homothetic, has geodesic leaves and integrable orthogonal complement.
Moreover, if both (i) and (ii) hold then (M, g) is Ricci-flat.

Proof of Theorem 1.8. By passing to a two-fold covering, if necessary, we can
suppose that V is oriented. Also, by passing to a regular covering, if necessary,
we can suppose that V admits a global density ρ = e−σ [26] . Thus there exists
V ∈ Γ(V) such that g(V, V ) = e2σ .

If Ω = 0 then we are done by Theorem 1.13 . So suppose that Ω 6= 0 . Then,
since Ω is basic, we can choose a local orthonormal frame

{
X , Y, Z

}
of H with

respect to h , made up of basic fields and such that

iZΩ = 0 and Ω(X, Y ) 6= 0 .

Then it is easy to see that

(1.4) h(iXΩ, iY Ω) = h(iY Ω, iZΩ) = h(iZΩ, iXΩ) = 0 ,

(1.5) h(iXΩ, iXΩ) = h(iY Ω, iY Ω) = Ω(X, Y )2 .
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Now recall that (M4, g) is Einstein and thus MRicci = cM g for some real
number cM ∈ R . Hence from (1.1) and (1.4) it follows that

X(σ)Y (σ) , Y (σ)Z(σ) , Z(σ)X(σ)

are basic functions. Also, because MRicci(X,X) = MRicci(Y, Y ) from (1.1) and
(1.5), it follows that X(σ)2 − Y (σ)2 is a basic function. Hence X(σ) , Y (σ) are
basic functions and, moreover, outside the set

S =
{
x ∈M |Xx(σ) = Yx(σ) = 0

}
,

we have that Z(σ) is also basic. It follows that, at least, outside the interior of S ,
the foliation V is homothetic by Proposition 1.12 . From Theorem 1.13 we obtain
that the alternative (i) or (ii) of Theorem 1.8 holds locally at least on M \S (just
locally because M \S might be disconnected). If also Z(σ) = 0 on S then we are
done because then V is homothetic on M and we can again apply Theorem 1.13 .

From now on in this proof we shall work on
◦
S ∩

{
x ∈M |Zx(σ) 6= 0

}
. There

we can write [X, Y ](σ) = X(Y (σ))− Y (X(σ)) = 0 and hence

−V [X, Y ](σ) = H[X, Y ](σ)

⇐⇒ Ω(X, Y )V (σ) = h(H[X, Y ], gradh σ) .

Since we are in the interior of S the last equality is equivalent to

(1.6) Ω(X, Y )V (σ) = Z(σ)h([X, Y ], Z) .

Next we compute (hd∗Ω)(Z) (note that by (1.2) the other components of
H∗(hd∗Ω) are zero):

(hd∗Ω)(Z) = −(
h

∇XΩ)(X,Z)− (
h

∇Y Ω)(Y, Z)− (
h

∇ZΩ)(Z,Z)− (
h

∇V Ω)(V, Z) .

Because iZΩ = 0 we have (
h

∇ZΩ)(Z,Z) = 0 and because Ω is basic and V is

geodesic with respect to h we have (
h

∇V Ω)(V, Z) = 0 . Also

(
h

∇XΩ)(X,Z) =X(Ω(X,Z))− Ω(
h

∇XX,Z)− Ω(X,
h

∇XZ)

=− Ω(X,
h

∇XZ) .

Since h(
h

∇XZ, Y ) = −h(Z,
h

∇XY ) we have

(
h

∇XΩ)(X,Z) = Ω(X, Y )h(Z,
h

∇XY ) .

Similarly (
h

∇Y Ω)(Y, Z) = Ω(Y,X)h(Z,
h

∇YX) and we obtain that

(hd∗Ω)(Z) = −Ω(X, Y )h(Z,
h

∇XY )− Ω(Y,X)h(Z,
h

∇YX)

= −Ω(X, Y )
{
h(Z,

h

∇XY )− h(Z,
h

∇YX)
}
.
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We have proved that

(1.7) (hd∗Ω)(Z) = −Ω(X, Y )h(Z, [X, Y ]) .

Now by (1.2) (with X replaced by Z) we have

(1.8)
1

2
e4σ(hd∗Ω)(Z) + 2Z(V (σ))− 2Z(σ)V (σ) = 0 .

From (1.7) and (1.8) it follows that on
◦
S ∩

{
x ∈M |Zx(σ) 6= 0

}
we have

− 1

2
e4σ Ω(X, Y )h(Z, [X, Y ]) + 2Z(V (σ))− 2Z(σ)V (σ) = 0

which together with (1.6) gives

(1.9) − 1

2
e4σ V (σ)

Z(σ)
Ω(X, Y )2 + 2Z(V (σ))− 2Z(σ)V (σ) = 0 .

Because MRicci(X,X) = MRicci(Z,Z) from relation (1.1) we obtain that the
function− 1

2
e4σ h(iXΩ, iXΩ) + 2Z(σ)2 is basic, equivalently, − 1

2
e4σ Ω(X, Y )2 + 2Z(σ)2

is basic. This implies that

(1.10) e4σ V (σ) Ω(X, Y )2 = 2V (Z(σ))Z(σ) .

From (1.9) and (1.10) it follows that

(1.11) V (Z(σ)) = 2V (σ)Z(σ)

which is equivalent to the fact that e−2σ Z(σ) is basic. Hence Z(V (e−2σ)) =
V (Z(e−2σ)) = 0 . This implies that, if V (e−2σ) is nonconstant, then its level
hypersurfaces are horizontal and hence H is integrable; then the proof follows
from Theorem 1.13 . There remains to be considered the case when V (e−2σ) is a
constant, say c ∈ R . By replacing, if necessary, V with −V we can assume that
c ≥ 0 . Since V (e−2σ) is basic, V (V (e−2σ)) = 0 , equivalently,

(1.12) V (V (σ)) = 2V (σ)2 .

From (1.8) and (1.11) it follows that

(1.13) (hd∗Ω)(Z) = −4 e−4σ Z(σ)V (σ) .

From (1.10) and (1.11) it follows that either

(a) V (σ) = 0 or (b) Ω(X, Y )2 = 4 e−4σ Z(σ)2

which, after replacing, if necessary, one of the vector fields X , Y or Z with its
negative, is equivalent to

(1.14) Ω(X, Y ) = Z(e−2σ) .

In case (a) , V is Riemannian and the proof follows from Theorem 1.13 . So
suppose from now on that (1.14) holds.
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By (1.11) the horizontal component of d(e−2σ) is basic and thus we can locally
write

(1.15) H∗
(
d(e−2σ)

)
= ϕ∗(B)

where ϕ is as in Lemma 1.11 and B is a one-form on N . Hence ϕ∗(dB)+c dθ = 0
where θ is, as before, the vertical dual of V . But Ω is also basic and hence
Ω = ϕ∗(F ) for some two-form F on N . It follows that

(1.16) dB = −c F .

Because V is Riemannian and has geodesic leaves with respect to h we have that
ϕ∗(h̄d∗F ) = H∗(hd∗Ω) where h̄d∗ is the codifferential on (N, h̄) .

Now (1.13) can be written:

(1.17) h̄d∗F = −cB .

Also (1.14) can be written:

(1.18) F = ∗B (equivalently, ∗F = B )

where ∗ is the Hodge star-operator (locally) induced on (N, h̄) by the (local) ori-
entation corresponding to

{
ϕ∗X , ϕ∗Y, ϕ∗Z

}
.

From (1.1) it easily follows that

NRicci(ϕ∗X,ϕ∗Y ) = NRicci(ϕ∗Y, ϕ∗Z) = NRicci(ϕ∗Z, ϕ∗X) = 0 ,
NRicci(ϕ∗X,ϕ∗X) = NRicci(ϕ∗Y, ϕ∗Y ) .

Also by (1.1), NRicci(ϕ∗X,ϕ∗X) = NRicci(ϕ∗Z, ϕ∗Z) if and only if (1.14) holds.
Thus (N3, h̄) is Einstein and, because it is three-dimensional, it is of constant
sectional curvature kN . Then NRicci = 2 kN h̄ .

Now from (1.3) we obtain

e2σ cM = e2σ ∆Mσ +
1

2
e8σ Ω(X, Y )2 + 4V (V (σ))− 10V (σ)2

which together with (1.12) gives

(1.19) e−2σ cM = e−2σ ∆Mσ +
1

2
e4σ Ω(X, Y )2 − 2 e−4σ V (σ)2 .

It is easy to see by using (1.14) that (1.19) implies

(1.20)
1

2
∆M(e−2σ) + e−2σ cM + c2 = 0 .

Also by (1.1) we have

(1.21) e−2σ cM = NRicci(ϕ∗X,ϕ∗X)− 1

2
e4σ Ω(X, Y )2 − e−2σ ∆Mσ .
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From formulae (1.19) and (1.21) it follows that

NRicci(ϕ∗X,ϕ∗X) =e−2σ cM +
1

2
e4σ Ω(X, Y )2 + e−2σ ∆Mσ

=e−2σ cM +
(
e−2σ cM + 2 e−4σ V (σ)2

)
and thus

(1.22) NRicci(ϕ∗X,ϕ∗X) = 2 e−2σ cM + 2 e−4σ V (σ)2 .

Now recall that (N, h̄) is of constant sectional curvature kN and thus (1.22) is
equivalent to

(1.23) kN = e−2σ cM + e−4σ V (σ)2 .

Now recall that V (e−2σ) = c = constant and thus (1.23) reads

(1.24) kN = e−2σ cM +
c2

4
.

Now, if V is not Riemannian (i.e. c > 0), then e−2σ cannot be constant, and

hence cM = 0 and kN = c2

4
> 0 . Then, after a homothetic transformation, if

necessary, we can suppose that kN = 1 and hence c = 2 . Then 1
2

d(e−2σ) is a flat

principal connection for V with respect to V . Put A = −1
2
B . From equation

(1.15) and the fact that V (e−2σ) = 2 and it follows that

θ =
1

2
d(e−2σ) + ϕ∗(A)

and hence A is a local connection form of θ with respect to 1
2

d(e−2σ) . Also
dA = F and this together with (1.18) implies that

(1.25) dA+ 2 ∗ A = 0 .

We have proved that, at each point of M , one of the situations (i) , (ii) or (iii)
occurs.

Now by (1.20) it is obvious that there cannot exist any point where both (i)
and (iii) occur.

Suppose that in an open connected subset O ⊆M which is the domain of the
harmonic morphism ϕ : (O, g|O) → (N, h̄) both situations (ii) and (iii) occurs.
Then on the image (by ϕ) of the set where (iii) occurs from (1.25) it follows that

(1.26) ∆A = 4A .

But, on the image of the interior of the set where (ii) holds, the equation (1.26)
is trivially satisfied. Thus (1.26) is satisfied on N ; this is an analytic manifold
because (N, h̄) has constant curvature. By the regularity of solutions for elliptic
operators (see [6, p. 467]) we have that A is analytic and hence, if O contains
interior points of the set where (ii) occurs, we have that A = 0 on N . Hence
if the set where (iii) occurs is nonempty and also the interior of the set where
(ii) occurs is nonempty then the set where (iii) occurs is contained by the set of
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points where (ii) occurs.
Since by Theorem 1.13 on each connected component of the complement of

the set where (iii) occurs the alternative (i) or (ii) holds globally the theorem is
proved. �

Remark 1.14. 1) Note that if A satifies (1.25) then F = dA satifies

h̄ d∗ F + 2 ∗ F = 0 .

2) The codomain of a harmonic morphism of type (iii) of Theorem 1.8 always
has constant positive sectional curvature. In the limit, when this tends to zero,
we obtain a harmonic morphism of type (i) . This follows from (1.24) .

3) Harmonic morphisms of type (iii) are also of type (ii) if and only if A = 0 .
4) The result of Theorem 1.8 shows that, on an Einstein manifold of dimension

four, the nonlinear system of partial differential equations whose solutions are
harmonic morphisms with fibres of dimension one can be reduced to one of three
types of systems of linear partial differential equations of the first order. For
type (i) this is Killing’s equation, and for type (iii) it is (1.25) . Finally, the
one-dimensional foliation V on (M, g) is of type (ii) if and only if it is locally
generated by vector fields W ∈ Γ(V) which satisfies 4∇W = divW Id TM where
∇ is the Levi-Civita connection of (M, g) (see [26, Lemma 6.5]).

2. The third type

We shall say that a harmonic morphism ϕ : (M4, g) → (N3, h) is of type (iii)
( (i), (ii) ) if its regular fibres form a foliation of type (iii) ( (i), (ii) ) of Theorem
1.8 . In this section the harmonic morphisms of type (iii) will be the main object
of study.

The first thing to be noticed about the harmonic morphisms of type (iii) is
that they are always submersive.

Proposition 2.1. Let ϕ : (M4, g)→ (N3, h) be a harmonic morphism of type (iii).
Then ϕ is submersive.

Proof. By passing, if necessary, to a two-fold covering, we can suppose that the
vertical distribution V (which is well-defined outside the set of critical points) is
orientable. Then, as before, let V ∈ Γ(V) be such that g(V, V ) = λ2 where λ is the
dilation of ϕ . Since, up to a multiplicative constant, d(λ−2) is a (flat) principal
connection with respect to V , V (λ−2) is a nonzero constant. This implies that
the connected components of any regular fibre of ϕ are noncompact.

Suppose that ϕ is not submersive and let x0 ∈ M be a critical point of it.
Recall that, by a result of P. Baird [2, Proposition 5.1] , the set of critical points
of ϕ must be discrete. Then from the main result of [8] it follows that ϕ is
topologically locally equivalent at x0 to the cone of the Hopf fibration S3 → S2 .
Hence, in a neighbourhood of x0 , the connected components of the regular fibres
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of ϕ are diffeomorphic to S1 . But we have seen that all the regular fibres of ϕ have
noncompact connected components and hence ϕ cannot have critical points. �

Remark 2.2. Let ϕ : (M4, g) → (N3, h) be a harmonic morphism of type (iii);
denote its dilation by λ . ThenH∗(d(λ−2)) is a basic one-form and let A ∈ Γ(T ∗N)
be such that −1

2
H∗(d(λ−2)) = ϕ∗(A) . Because (N3, h) is of constant curvature

it is an analytic manifold. But A satisfies (1.26) and hence it is analytic. Using
this fact it is easy to see that if N3 is orientable then there exists an orientation
of it such that dA+ 2 ∗ A = 0 on N3 .

From the proof of Theorem 1.8 it follows that any harmonic morphism of type
(iii) is locally determined by the local connection form A . This is also illustrated
by the following example.

Example 2.3. Let h be the canonical metric on the three-dimensional sphere S3 .
Let A = i∗

(
−x2 dx1 + x1 dx2 − x4 dx3 + x3 dx4

)
where i : S3 ↪→ R4 is the canon-

ical inclusion.
Let ∗ be the Hodge star-operator on (S3, h) considered with the usual orienta-

tion of S3 . Then

dA− 2 ∗ A = 0 .

To show this, first note that A is the canonical connection (form) on the Hopf
bundle (S3, S2, S1) . Also |A| = 1 and thus it suffices to check that A ∧ dA = 2 vS3

where vS3 is the usual volume form on S3 .
For a ∈ R let ga be the Riemannian metric on R4 \{0} = (0,∞)× S3 defined

by

ga = ρ2 h+ ρ−2 (ρ dρ+ aA)2 .

Then for any a 6= 0 the canonical projection ϕa :
(
R4 \{0}, ga

)
→ (S3, h) is a

harmonic morphism of type (iii) whilst g0 is the restriction to R4 \{0} of the
canonical metric on R4 and thus ϕ0 : R4 \{0} → S3 is the usual radial projection
which is of type (ii) .

Note that (R4 \{0}, ga) is Ricci-flat and anti-self-dual. Moreover, (R4 \{0}, ga)
is conformally flat if and only if a = 0 in which case it is obviously flat.

Let ψa = π ◦ ϕa where π : S3 → S2 is the Hopf fibration. Then ψa is a
harmonic morphism with totally geodesic fibres. Any fibre of it is isometric with
(R2 \{0}, γa) where γa , in polar coordinates (ρ, θ) , is given by

γa = ρ2 dθ2 + ρ−2 (ρ dρ+ a dθ)2 .

It is easy to see that any point of R2 \{0} is at finite distance from 0 with respect
to γa . Hence (R2 \{0}, γa) is not complete. Because the fibres of ψa are closed
and totally geodesic we obtain that ga is not complete for any a ∈ R .

We shall prove that the ϕa of Example 2.3 are, essentially, the only surjective
harmonic morphisms of type (iii) with connected fibres and complete simply-
connected codomain. For this we need the following:
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Proposition 2.4. Let S3
(
= Sp(1)

)
be the three-dimensional sphere considered

with its canonical metric and orientation and let ∗ be the Hodge star-operator on
it.

(i) The space of solutions of the equation

(2.1) dA+ 2 ∗ A = 0 , A ∈ Γ(T ∗S3)

is the space of left-invariant one-forms on S3 .
(ii) The space of solutions of the equation

(2.2) dA− 2 ∗ A = 0 , A ∈ Γ(T ∗S3)

is the space of right-invariant one-forms on S3 .

Proof. (i) Let S3 × Sp(1) → S3 be the unique spin-structure on S3 and let
S3 ×H → S3 be the spinor bundle induced by the action of the Clifford algebra
Cl3 = H ⊕H on H given by (x, y) · q = x · q .

Consider the trivialization TS3 = S3 × ImH induced by the canonical left
action of S3

(
= Sp(1)

)
on itself. Thus any one-form A on S3 can be viewed as a

spinor field A : S3 → ImH ⊆ H which is constant if and only if the corresponding
one-form is left-invariant.

Consider the Dirac operator D obtained by using the trivial flat connection on
S3×H → S3 . Then it is easy to see that A ∈ Γ(T ∗S3) satisfies (2.1) if and only
if DA = 0 . Also a straightforward calculation gives D2 = ∆ + 2D where ∆ is
the usual Laplacian acting on H -valued functions on S3 . Thus any solution A of
(2.1) induces a harmonic H -valued function on S3 which must be constant if A
is globally defined on S3 .

(ii) Since the isometry x 7→ x−1 of S3 reverses the orientation, it pulls back
solutions of (2.1) to solutions of (2.2) . Thus the proof of (ii) follows from (i) . �

Remark 2.5. There are other ways to describe the solutions of the equations
(2.1) and (2.2) . For example, since any orthogonal complex structure on R4(= H )
compatible with the canonical orientation can be described as left multiplication
with imaginary quaternions of length one any solution of (2.2) is, up to a multi-
plicative constant, of the form

A = i∗
(∑
a,b

Jab x
b dxa

)
where J is any orthogonal complex structure which induce the canonical orienta-
tion on R4 (i.e. if {u1, u2} is a complex basis of (R4, J) then {u1, Ju1, u2, Ju2} is
positively oriented) and i : S3 ↪→ R4 is the canonical inclusion. This can also be
checked directly.

Also, any solution A of (2.2) can be written A = ∗ i∗(F ) where F ∈ Λ2
+(R4) is

a self-dual two-form.
In fact, by using these characterisations an alternative proof for Proposition

2.4 can be obtained. First, note that, for each one of the equations (2.1) and
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(2.2) we have a three dimensional space of solutions. Then, it is easy to see that
if A satisfies (2.1) or (2.2) then A is coclosed and ∆A = 4A where ∆ is the
Hodge Laplacian on S3 . Thus A is in the eigenspace corresponding to the first
eigenvalue of ∆ acting on coclosed one-forms of S3 and it is well-known that this
space is of dimension six (see [13, 7.2] or apply one of the results from [22, page
148] and [18, Theorem 2.3] ).

Proposition 2.6. Let ϕ : (M4, g)→ (N3, h) be a surjective harmonic morphism
of type (iii) such that (N3, h) is complete, simply-connected and ϕ has connected
fibres and orientable vertical distribution.

Then there exists a ∈ R such that, up to homotheties, ϕ is a restriction of
ϕa :

(
R4 \{0}, ga

)
→ (S3, h) from Example 2.3 .

Proof. Up to a homothety, we can identify (N3, h) with S3 considered with its
canonical metric and orientation. Let λ be the dilation of ϕ . Then, by Proposition
2.4 , there exists a ∈ R such that, up to an isometry of S3 , −1

2
H∗(d(λ−2)) =

aϕ∗(A) where A ∈ Γ(T ∗S3) is as in Example 2.3 . By Proposition 2.1 , ϕ is
submersive and let V = kerϕ∗ . Because V is orientable we can find V ∈ Γ(V)
such that g(V, V ) = λ2 .

Because ϕ is of type (iii) we have that V (λ−2) is a nonzero constant. This
implies that the restriction of λ to any fibre of ϕ is a diffeomorphism onto some
open subinterval of (0,∞) . Hence the map Φ : M4 → S3 × (0,∞) defined by
Φ(x) = (ϕ(x), λ(x)−1) , x ∈M4 , is a diffeomorphic embedding.

Then from the proof of Theorem 1.8 it follows that Φ : (M4, g) → (S3 ×
(0,∞), ga) is a local isometry and hence an isometric embedding. Also, it is
obvious that ϕa ◦ Φ = ϕ . �

Corollary 2.7. Let ϕ : (M4, g)→ (N3, h) be a surjective harmonic morphism of
type (iii) such that (N3, h) is complete.

Then (M4, g) is not complete.

Proof. By passing, if necessary, to a two-fold covering of M4 we can suppose that
V is orientable.

Up to homotheties, the universal covering of (N3, h) is S3 with its canonical
metric and orientation. Then, ϕ can be pulled back via S3 → N3 to a harmonic
morphism whose total space is complete if and only if (M4, g) is complete. Then
we can define Φ as in the proof of Proposition 2.6 . Then Φ is a local isometry
and because (R4 \ {0}, ga) is not complete (M4, g) is not complete. �

3. A few applications

From Theorem 1.8 and Corollary 2.7 we can exclude the third type in the
complete case as follows:

Theorem 3.1. Let (M4, g) be a complete Einstein manifold of dimension four
and let (N3, h) be a complete Riemannian manifold of dimension three.
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Let ϕ : (M4, g)→ (N3, h) be a surjective harmonic morphism.
Then, either:
(i) the regular fibres of ϕ form a Riemannian foliation locally generated by

Killing fields or
(ii) ϕ is horizontally homothetic and has geodesic fibres orthogonal to an um-

bilical foliation by hypersurfaces.

Recall that for a horizontally weakly-conformal map the vertical distribution
is well-defined outside the set of critical points. We analyse the behaviour of ϕ
at a critical point. The model is the cone of the Hopf fibration S3 → S2 which,
as is well-known, can be written as a quadratic polynomial:

Definition 3.2. The Hopf polynomial is the harmonic morphism ϕ : R4 → R3

defined by
ϕ(z1, z2) =

(
|z1|2 − |z2|2 , 2 z1 z2

)
via the standard identifications R4 = C 2 , R3 = R× C .

Note that the Hopf polynomial has an isolated critical point at the origin of
R4 .

Corollary 3.3. Let (M4, g) be an Einstein manifold of dimension four.
Let ϕ : (M4, g) → (N3, h) be a nonconstant harmonic morphism which has

critical points and orientable vertical distribution.
Then there exists a Killing field V ∈ Γ(TM) tangent to the fibres of ϕ which

vanishes precisely at the critical points of ϕ . Moreover, in a neighbourhood of
each critical point ϕ is smoothly equivalent to the Hopf polynomial.

Proof. Because ϕ has critical points and (M4, g) is Einstein, ϕ must be of type
(i) . (By Proposition 2.1 it cannot be of type (iii) and from the main result of
[12] it follows that ϕ cannot be of type (ii).)

Let λ be the dilation of ϕ and let V be the vertical distribution of ϕ . Let
V ∈ Γ(V) be such that g(V, V ) = λ2 .

Obviously, V can be extended to a continuous vector field on M whose zero
set is equal to Cϕ , the set of critical points of ϕ .

Then V is a Killing field on (M \Cϕ, g|M\Cϕ) [7] (cf. [5] , [25]). Hence it satisfies
the equation

(3.1) ∇∗∇V = MRicci(V )

(see, for example, [18, page 44]), here MRicci ∈ Γ(TM ⊗ T ∗M) denotes the (1,1)
tensor field associated to the Ricci tensor of (M4, g) . From the regularity of
solutions for the elliptic operators it follows that V is a smooth (in fact, analytic)
vector field on M .

By Baird’s result ([2, Proposition 5.1]) ϕ has isolated critical points. Then in
a neighbourhood of the critical point x ∈M the local flow of V is equivalent, via
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the exponential map at x , with the flow (ξt) on TxM given by the vector field
with value ∇wV at w ∈ TxM . Recall that (∇V )x : TxM → TxM induces an
orthogonal complex structure on (TxM, gx) (see [18]) . Hence (ξt) induces an S1

action on TxM which must be free outside zero since its quotient is equivalent to
ϕ in a neighbourhood of x . From this fact the last assertion of the proposition
easily follows. �

Remark 3.4. Since (3.1) holds in general, the conclusion of the above corollary
holds for any harmonic morphism ϕ : (M4, g) → (N3, h) of type (i) and with
orientable vertical distribution.

Corollary 3.5. Let (M4, g) be a complete Einstein manifold of dimension four
and let (N3, h) be a complete Riemannian manifold of dimension three.

Let ϕ : (M4, g)→ (N3, h) be a surjective submersive harmonic morphism with
orientable vertical distribution; denote its dilation by λ . Let W be a vertical
vector field such that g(W,W ) = λ−2 and suppose that W is complete.

Then ϕ is of type (i) and there exists a globally defined nowhere zero Killing
field tangent to the fibres of ϕ .

Proof. Suppose that (ii) of Theorem 3.1 occurs. Then, either directly or by using
[25, Lemma 4.3] , it can be shown that ∇W = µ IdTM where µ is a smooth
function on M4 . In particular, W is conformal. By a result of K. Yano and
T. Nagano (see [18]), either W is Killing or (M4, g) is S4 with its canonical
metric. But in the latter case W would have two zeroes. The proof follows from
Theorem 3.1 . �

Proposition 3.6. Let (M4, g) be a compact Einstein manifold (MRicci = cM g)
of dimension four and let ϕ : (M4, g) → (N3, h) be a nonconstant harmonic
morphism with orientable vertical distribution.

Then there exists a Killing field tangent to the fibres of ϕ and nowhere zero on
the set of regular points. In particular, the Euler number of M4 is equal to the
number of critical points of ϕ .

If ϕ has critical points, then cM > 0 and Nb1 = Nb2 = 0 , where Nb1 and Nb2

denote the Betti numbers of N3 .

Proof. Because ϕ has compact fibres it cannot be of the third type.
From Corollary 3.3 and Corollary 3.5 it follows that there exists a Killing

vector field tangent to the fibres of ϕ . Then the fact that cM > 0 follows from
Corollary 3.3 and equation (3.1) . Also by a well-known result of S. Bochner we
have Mb1 = 0 . From [9, 7.14] it follows that Nb1 = 0 and by Poincaré duality
Nb2 = Nb1 = 0 . �

Remark 3.7. More generally, if M4 is an arbitrary compact manifold then the
number of critical points of ϕ : M4 → N3 is equal to the Euler number of M4

provided that the smooth map ϕ has isolated critical points (this follows from
[29, Proposition 4.2(iii)]).
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Recall that by the well-known result of M. Berger the Euler number of (M4, g)
(Einstein and compact) is nonnegative and is zero if and only if (M4, g) is flat
(see [6, 6.32]) .

We can now completely describe submersive harmonic morphisms with one-
dimensional fibres defined on a compact Einstein four-manifold as follows.

Theorem 3.8. Let (M4, g) be a compact Einstein manifold of dimension four.
Let ϕ : (M4, g)→ (N3, h) be a submersive harmonic morphism.

Then (M4, g) and (N3, h) are flat and the fibres of ϕ are locally generated by
parallel vector fields. In particular, up to homotheties and Riemannian coverings
ϕ is the canonical projection between flat tori T 4 → T 3 .

Proof. By passing, to a two-fold covering if necessary we can suppose that the
vertical distribution of ϕ is orientable. Then, from Proposition 3.6 it follows that
there exists a Killing vector field V on (M4, g) tangent to the fibres of ϕ and the
Euler number of M4 is zero. Hence (M4, g) is flat by the above mentioned result
of Berger. From a result of Bochner (see [6, 1.84]) V is parallel.

The fact that (N3, h) is flat follows from Lemma 1.11 .
Because ϕ has compact regular fibres, from a well-known result of C. Ehres-

mann [10] , it follows that the leaf space of the foliation whose leaves are the
connected components of the regular fibres of ϕ is smooth. Thus by factorising
ϕ , if necessary, into a harmonic morphism followed by a Riemannian covering
we can suppose that ϕ has connected fibres. Thus, ϕ is, up to homotheties, the
quotient induced by V . Hence, ϕ is the projection of a S1-principal bundle and
the horizontal distribution H is a flat principal connection on it. Then, each
holonomy bundle P of it is a regular covering over N3 with group the holonomy
group H(⊆ S1) of H . Moreover, because (M4, g) is flat, P considered with the
metric induced by g is flat (actually, up to homotheties, this is the unique metric
with respect to which P → N becomes a Riemannian covering; in particular, P
with the considered metric is complete.) Hence M = P ×H S1 and the pull back
of ϕ by P → N is the projection P × S1 → P . To end the proof, recall ( [19,
Chapter V, Theorem 4.2] ) that P is covered by an Euclidean cylinder or by a
torus. �

Remark 3.9. 1) The condition that ϕ is submersive, in Theorem 3.8 , can be
removed if we assume that (N3, h) is of constant curvature (see Theorem 4.11).

2) Recall that the K3 surfaces and the tori cannot carry any metric of positive
scalar curvature (see [6, 4.34]). Hence, from Proposition 3.6 and Theorem 3.8 we
obtain the following:
• There exists no K3 surface endowed with an Einstein metric and which is the

domain of a harmonic morphism whose regular fibres are of dimension one.
• Let g be an Einstein metric on the torus T 4 and let ϕ : (T 4, g) → (N3, h)

be a nonconstant harmonic morphism. Then g and h are flat, ϕ is submersive
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and, up to homotheties and Riemannian coverings, ϕ is the canonical projection
T 4 → T 3 .

Corollary 3.10. Let (M4, g) be a compact Einstein manifold of dimension four.
Then there exists no submersive harmonic morphism ϕ : (M4, g) → (N3, h) if

either Nb1 = 0 or Mb1 = 0 .

4. Harmonic morphisms ϕ : (M4, g)→ (N3, h) between
Einstein manifolds

In this section (M4, g) and (N3, h) will be Einstein manifolds (since N3 is three-
dimensional this means that (N3, h) is of constant curvature) and ϕ : (M4, g)→
(N3, h) will be a harmonic morphism. Recall that, by a result of P. Baird [2,
Proposition 5.1] , the set of critical points of ϕ is discrete and hence, by the sec-
ond axiom of countability, at most countable.

We now state one of the main results of this section enumerating all surjec-
tive submersive harmonic morphisms between complete simply-connected Ein-
stein manifolds of dimension four and three, respectively.

Theorem 4.1. Let (M4, g) be a complete simply-connected Einstein manifold and
let (N3, h) be complete, simply-connected and with constant curvature.

Let ϕ : (M4, g)→ (N3, h) be a surjective submersive harmonic morphism.
Then, up to homotheties, ϕ is one of the following projections R4 → R3 , H4 →

R3 , H4 → H3 induced by the following canonical warped-product decompositions
R4 = R1×R3 , H4 = H1×rR3 , H4 = H1×sH3 where Hk is the hyperbolic space
of dimension k .

Proof. First we prove that (M4, g) has constant curvature and that ϕ has geodesic
fibres and integrable horizontal distribution.

By Theorem 3.1 , either (i) the vertical distribution of ϕ is Riemannian and
locally generated by Killing fields or (ii) ϕ has geodesic fibres and integrable
horizontal distribution. Suppose that case (i) holds and let V = kerϕ∗ be the
vertical distribution. We can choose a local orthonormal frame

{
X , Y, Z

}
for

H (= V⊥) with respect to h made up of basic fields and such that iZΩ = 0 .
Because (M4, g) and (N3, h) are both Einstein, from (1.1) we obtain

(4.1) X(σ)Y (σ) = 0 and X(σ)2 = Y (σ)2 .

Thus X(σ) = Y (σ) = 0 .
From (1.1) it follows that (1.14) holds after, replacing, if necessary, one of the

vector fields X , Y , Z or V with its negative. Choose the (local) orientation on
N3 such that

{
ϕ∗X , ϕ∗Y, ϕ∗Z

}
is positively oriented.

Let λ̌ be the function on N3 such that eσ = ϕ∗(λ̌) and let F be the two-form
on N3 such that Ω = ϕ∗(F ) . Then (1.14) implies that

(4.2) F = ∗ dλ̌−2 .
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where ∗ is the Hodge star-operator on (N3, h) .
But dF = 0 and thus (4.2) implies that λ̌−2 is a positive harmonic function on

(N3, h) .
From (1.1) and (1.3) we obtain

(4.3) kN = λ̌−2 cM

where kN is the constant sectional curvature of (N3, h) and cM is the Einstein
constant of (M4, g) . Thus either λ̌ is constant or kN = cM = 0 . But in the latter
case, by Liouville’s theorem, λ̌−2 must be constant. Hence λ̌ is constant and, by
[3, Theorem 5.2] , ϕ has geodesic fibres. Moreover, by (4.2) , F = 0 and thus H
is integrable.

Thus, we always have case (ii). The fact that (M4, g) has constant curvature
now follows from Corollary A.3 .

Next we prove that the horizontal distribution H is an Ehresmann connection
for ϕ (see [6, 9.39] for the definition). Let γ̌ : [0, 1] → N3 be a curve in N3

and let x ∈ ϕ−1(γ(0)) . Recall that locally horizontal lifts exist and are unique.
Thus there is a maximal interval [0, b) ⊆ [0, 1] on which there can be defined a
horizontal lift γ : [0, b)→M4 of γ̌|[0,b) such that γ(0) = x . Obviously, γ̌([0, 1]) is
a bounded subset of (N3, h) . Because ϕ is horizontally homothetic this implies
that γ([0, b)) is bounded in (M4, g) . But (M4, g) is complete and hence the
closure of γ([0, b)) is compact. Hence the closure of γ([0, b)) (which is obviously
connected) is contained in an integral manifold of H with the property that its
intersection with any fibre of ϕ is discrete. This implies that γ can be extended
to a continuous curve defined on [0, b] which we shall denote again by γ . Now,
ϕ restricted to a neighbourhood of γ(b) is the projection of a warped-product.
Using this, it is easy to see that γ : [0, b] → M4 is a (smooth) horizontal lift of
γ̌|[0,b] . If b < 1 then γ could be extended to a horizontal lift [0, b + ε) → M4 of
γ̌|[0,b+ε) which would contradict the maximality of [0, b) ⊆ [0, 1] . Thus b = 1 and
hence H is an Ehresmann connection for ϕ .

BecauseH is a flat (i.e. integrable) Ehresmann connection any maximal integral
submanifold of it is a covering space of N3 . But N3 is simply-connected and hence
ϕ admits a (global) horizontal section. The proof of the theorem follows. �

Corollary 4.2. Let (M4, g) be a complete simply-connected Einstein manifold
and let (N3, h) be complete, simply-connected and with constant curvature.

Let ϕ : (M4, g) → (N3, h) be a surjective submersive harmonic morphism;
denote its dilation by λ . Let W be the vertical vector field such that g(W,W ) =
λ−2 . Suppose that W is complete.

Then, up to homotheties, ϕ is the orthogonal projection R4 → R3 .

Proof. This follows from Corollary 3.5 and Theorem 4.1 . �

Proposition 4.3. Let ϕ : (M4, g) → (N3, h) be a harmonic morphism between
Einstein manifolds and let λ be its dilation . Suppose that the regular fibres of ϕ
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form a Riemannian foliation.
Then, up to homotheties, ϕ can be (locally) characterised as follows:
• (M4, g) is Ricci-flat and (N3, h) is flat;
• λ−2 is the pull back of a local positive harmonic function u on (N3, h) (in

particular, λ−2 is a harmonic function on (M4, g) );
• Any local connection form A (= s∗θ) of the horizontal distribution satisfies

dA = ∗ du

where ∗ is the Hodge star-operator of (N3, h) with respect to some (local) orien-
tation (equivalently, the curvature form F = dA satisfies the monopole equation
F = ∗ du);
• In a neighbourhood of the local section s of ϕ where ϕ is equivalent to a

projection we have
g = uh+ u−1(dt+ A)2 .

Proof. This follows from the proof of Theorem 4.1 . �

Remark 4.4. 1) Note that, in Proposition 4.3 , the conclusion that g is Ricci-flat
follows from the other conclusions (apply, for example, Lemma 1.11). In fact, g
is constructed by applying S.W. Hawking’s ansatz [16] .

2) Let ϕ : (M4, g)→ (N3, h) be a harmonic morphism between Einstein man-
ifolds. If (M4, g) does not have constant curvature or the horizontal distribution
is nonintegrable then (M4, g) is Ricci-flat and ϕ is of type (i) (and hence lo-
cally given as in Proposition 4.3) or type (iii) of Theorem 1.8 . This follows from
Theorem 1.8 and Corollary A.3 .

Let a ≥ 0 . Recall that if we apply the Hawking’s ansatz (with the convention
dA = − ∗ du) to the harmonic function ua : R3 \ {0} → (0,∞) defined by
ua(y) = 1

4

(
1
|y| + a

)
, y ∈ R3 \ {0} , then the following metric is obtained.

Definition 4.5. Let a > 0 . The Hawking Taub-NUT metric is the Riemannian
metric on R4 defined by

ga = (a|x|2 + 1) g0 −
a(a|x|2 + 2)

a|x|2 + 1

(
−x2 dx1 + x1 dx2 − x4 dx3 + x3 dx4

)2
.

For a = 0 this gives the canonical metric g0 on R4 .

Note that g1 is discussed in [21] .

Remark 4.6. 1) For any a ≥ 0 the Hopf polynomial ϕ : (R4, ga)→ (R3, h0) is the
harmonic morphism induced by the isometric action of S1 on (R4, ga) where h0

is the canonical metric on R3 . In particular, (R4, ga) is Ricci-flat for any a ≥ 0 .
2) Moreover, we can consider a = ϕ∗(ǎ) to be the pull back of a nonnegative

harmonic function ǎ defined in the neighbourhood of 0 ∈ R3 . Then, the resulting
metric ga is still Ricci-flat and with respect to it the Hopf polynomial, suitably
restricted, is a harmonic morphism.
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To state the next main result of this section we need a generalization of the
Hopf polynomial (R4, g0) → (R3, h0) . The construction is essentially based on
Hawking’s ansatz.

Example 4.7. Let u : R3 \Cu → (0,∞) be a positive harmonic function whose
set of singularities Cu = {yj}j∈I is discrete. Hence I is finite or countable. Thus
by applying Bôcher’s theorem, the ‘minimum’ and Harnack’s principles (see [1])
we obtain

(4.4) u(y) = a+
∑
j∈I

bj
|y − yj|

for any y ∈ R3 where a ≥ 0 and bj ≥ 0 are nonnegative constants. Suppose that
u has the same residue equal to b (> 0) at each singular point, i.e. bj = b for each
j ∈ I .

Let Fu ∈ Γ(Λ2(T ∗(R3 \Cu))) be defined by Fu = − ∗ du where ∗ is the Hodge
star-operator on R3 . Because u is harmonic we have dFu = 0 . Then, taking
S1 = R/4πbZ , the cohomology class

1

4πb
[Fu] ∈ H2(R3 \Cu,Z) = H1(R3 \Cu, S1)

is the first Chern class of a principal bundle ξu = (Pu, R3 \Cu , S1) , with projec-
tion ψu : Pu → R3 \Cu . It is not difficult to see, by using the homotopy sequence
of ξu , that Pu is simply-connected.

As is well-known, Fu is the curvature form of a principal connection given by
θu ∈ Γ(T ∗Pu) . Note that if A is a local connection form of θu , with respect to
some local section of ξu , then dA = − ∗ du .

Let h0 be the canonical metric on R3 and define γu = ψ∗u(uh0) + ψ∗u(u
−1)θ2

u .
Then ψu : (Pu, γu)→ (R3 \Cu, h0|R3\Cu

) is a harmonic morphism.
The key point of the construction is the fact that ψu can be extended to a

harmonic morphism whose codomain is R3 .
To prove this, first note that if Cu = {0} then ξu is the cylinder of the Hopf

bundle (S3, S2, S1) and hence ψu is the restriction of the Hopf polynomial to
R4 \ {0} . Moreover, one can easily verify that γu is homothetic to the restriction
of the Hawking Taub-NUT metric g4a to R4 \ {0} where, from now on, we con-
sider, for simplicity, that b = 1

4
.

Let v(y) = b
|y−y1| and w = u− v . Then

ξu = ξv+w = ξv|R3\Cu
· ξw|R3\Cu

where ‘ · ’ denotes the group operation in H1(R3 \Cu, S1) . There exists a neigh-
bourhood U of y1 such that U ∩Cu = {y1} and hence w|U is a (well-defined) posi-
tive harmonic function. By taking U to be contractible we get that ξw|U is trivial
(equivalently, it is the neutral element of H1(U, S1) ). Then ξu|U\{y1} = ξv|U\{y1}
and hence ψu can be extended so that its image contains y1 . More precisely, we
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can add a point x1 to ψ−1
u (U) such that the extended map is smoothly equivalent,

in a neighbourhood of x1 , to the cone of the Hopf fibration S3 → S2 . Moreover,
because w has no singularities in U the metric γu extends over x1 to a metric
which is homothetic, in the neighbourhood of x1 , to g4w of Remark 4.6(2) .

In this way (Pu, γu) can be extended to a Riemannian manifold (Mu, gu) and
ψu can be extended to a surjective harmonic morphism ϕu : (Mu, gu)→ (R3, h0)
where h0 is the canonical metric on R3 . Note that (Mu, gu) is Ricci-flat, simply-
connected and that ϕu is induced by an isometric action.

We can now state the next main result of this section enumerating all the
surjective harmonic morphisms with critical points between complete, simply-
connected Einstein manifolds of dimension four and three, respectively.

Theorem 4.8. Let (M4, g) be a complete Einstein manifold and let (N3, h) be
complete, simply-connected and with constant curvature.

Let ϕ : (M4, g)→ (N3, h) be a surjective harmonic morphism; denote its dila-
tion by λ . Suppose that ϕ has critical points.

Then, up to homotheties, (N3, h) = (R3, h0) where h0 is the canonical metric on
R3 . Moreover, λ−2 = ϕ∗(u) for a positive harmonic function u : R3 \ Cu → (0,∞)
having the same (positive) residue at each (fundamental) pole y ∈ Cu and (M4, g) =
(M4

u , gu) and ϕ = ϕu .

Proof. By Corollary 3.3 there exists a Killing field V on (M, g) tangent to the
fibres of ϕ .

Although ϕ has critical points, an argument due to R. Hermann (see [6, 9.45])
can be adapted to prove that the horizontal distribution H (which is well-defined
outside the set of critical points) is an Ehresmann connection for ϕ restricted
to the set of regular points. By applying [6, 9.40] , it is easy to see that ϕ
can be factorised into a harmonic morphism with connected fibres followed by a
Riemannian covering over (N3, h) . But the latter must be trivial because N3 is
simply-connected and hence ϕ has connected fibres.

Now, as in the proof of Theorem 4.1 we obtain (4.3) and the monopole equation
(4.2) and hence λ̌−2 is a harmonic function where λ = ϕ∗(λ̌) .

Because ϕ has critical points its dilation cannot be constant. This, together
with (4.3) , imply that (M4, g) is Ricci-flat and (N3, h) is flat. Hence, up to
homotheties, (N3, h) = (R3, h0) where h0 is the canonical metric on R3 .

Using the completeness of (M4, g) and the fact that V is Killing it is not difficult
to prove (directly or by using [25, Theorem 2.9]) that the restriction of ϕ to the
set of regular points is the projection of a principal bundle ξ with group (R,+)
or (S1, ·) and the horizontal distribution is a principal connection on it. But ϕ
extends the projection of ξ over the critical points. Hence in the neighbourhood
of each critical point ξ is (suitably restricted) the cylinder of the Hopf bundle
(S3, S2, S1) or its dual. Hence the structural group of ξ is S1 = R/LZ where
L (> 0) is the period of the orbits of V .
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Let {yj}j∈I be the set of critical values of ϕ . Using the Chern-Weil morphism
and (4.2) it is easy to see that the first Chern number of ξ suitably restricted to
a sphere about any yj is given by c1 = −4πbj/L where bj(> 0) is the residue of

λ̌−2 at yj . But we must have c1 = ±1 and hence bj = bk for any j, k ∈ I and the
proof follows. �

Remark 4.9. Note that the period L of V is the mass of the regular fibres, i.e.
L =

∫
fibre

ρ where ρ (= λ−1) is the density of ϕ . Because ρ is constant along the
fibres we have that L is equal to ρ|fibre multiplied by the length of the considered
fibre.

We end with two other classification results:

Theorem 4.10. Let (M4, g) be a complete simply-connected Einstein manifold
and let (N3, h) be complete, simply-connected and with constant curvature.

Let ϕ : (M4, g)→ (N3, h) be a surjective harmonic morphism. Suppose that ϕ
has exactly one critical point.

Then there exists a ≥ 0 such that, up to homotheties, ϕ : (R4, ga)→ (R3, h0) is
the Hopf polynomial with ga the Hawking Taub-NUT metric (a > 0) and g0 , h0

the canonical metrics on R4 , R3 , respectively.

Proof. This follows from Theorem 4.8 . �

Theorem 4.11. Let (M4, g) be a compact Einstein manifolds of dimension four.
Let (N3, h) be a Riemannian manifold of dimension three with constant curva-
ture. Let ϕ : (M4, g)→ (N3, h) be a nonconstant harmonic morphism.

Then (M4, g) and (N3, h) are flat, ϕ is submersive and its fibres are locally gen-
erated by parallel vector fields. In particular, up to homotheties and Riemannian
coverings ϕ is the canonical projection T 4 → T 3 between flat tori.

In particular there exists no harmonic morphism with one-dimensional fibres
from a compact Einstein manifold of dimension four to S3 .

Proof. Suppose that ϕ has critical points. Then by Proposition 3.6 we have that
cM > 0 . From (4.3) it follows that the dilation of ϕ is constant and hence ϕ
cannot have critical points.

Hence ϕ is submersive and the proof follows from Theorem 3.8 . �

Remark 4.12. We do not know any example of a harmonic morphism with
critical points and one-dimensional regular fibres which is defined on a compact
four-dimensional Einstein manifold.
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Appendix A. (More) examples of one-dimensional foliations
which produce harmonic morphisms on Einstein manifolds

Here we prove a result needed in the proof of Theorem 4.1. Also we construct
one-dimensional foliations with integrable orthogonal complement and which pro-
duce harmonic morphisms on Einstein manifolds which are not of constant cur-
vature. By Theorem 1.13 these are of one of two types.

A.1. Homothetic foliations with geodesic leaves.

Proposition A.1. Let ϕ : (Mn+1, g) → (Nn, h) , n ≥ 3 , be a nonconstant
harmonic morphism with geodesic leaves and integrable horizontal distribution;
denote its dilation by λ . Then the following assertions are equivalent.

(i) (Mn+1, g) is Einstein (MRicci = cM g) ;
(ii) (Nn, h) is Einstein (NRicci = cN h) and the following relation holds

(A.1)
cM

n
λ2 − cN

n− 1
λ4 +

(
U(λ)

)2
= 0

where U is a vertical vector field such that g(U,U) = 1 .
Moreover, if (i) or (ii) holds then

(A.2) KM
X∧Y −

cM

n
= λ2

(
KN
ϕ∗X∧ϕ∗Y −

cN

n− 1

)
where KM and KN are the sectional curvature of (M, g) and (N, h) , respectively,
and X , Y are horizontal.

Proof. The equivalence (i) ⇐⇒ (ii) follows from Lemma 4.6 , (4.4) , (5.3) and
(5.4) of [25] or from [6, 9.107–109] (note that (A.1) is essentially the same as
equation (9.109) of [6]).

If (i) or (ii) holds then (A.2) follows from (A.1) and the following formula

λ2KM
X∧Y − λ4KN

ϕ∗X∧ϕ∗Y +
(
U(λ)

)2
= 0

which can be obtained directly or as a consequence of a formula of S. Gudmundsson
[14] . �

Note that Proposition A.1 slightly improves Proposition 5.4(a) of [25] in the
sense that instead of the formula from [25, Proposition 5.4(a)(ii)] , which locally is
a second order ordinary differential equation for λ suitably restricted to a fibre of
ϕ , here we have (A.1) which locally is a first order ordinary differential equation
for λ suitably restricted to a fibre of ϕ . In fact, these two formulae are equivalent
(this follows from equations (4.4) and (5.3) of [25] and [25, Lemma 4.6]).

The first assertion of the following proposition is due to R.L. Bryant [7] .

Proposition A.2. Let ϕ : (Mn+1, g) → (Nn, h) , n ≥ 3 , be a nonconstant
harmonic morphism with geodesic leaves and integrable horizontal distribution.

(i) If (Mn+1, g) has constant curvature then (Nn, h) has constant curvature.
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(ii) If (Mn+1, g) is Einstein and (Nn, h) has constant curvature then (Mn+1, g)
has constant curvature.

Proof. Assertion (i) is an immediate consequence of (A.2) .
If (Mn+1, g) is Einstein then from (A.1) and from (5.1) of [25] we obtain

(A.3) KM
X∧U =

cM

n

where X is any horizontal vector.
The proof of (ii) follows from (A.2) and (A.3) . �

The following result is needed in the proof of Theorem 4.1 .

Corollary A.3. Let ϕ : (M4, g) → (N3, h) be a harmonic morphism with one-
dimensional geodesic leaves and integrable horizontal distribution.

If (M4, g) is Einstein then both (M4, g) and (N3, h) have constant curvature.

Proof. If (M4, g) is Einstein then by Proposition A.1 , (N3, h) is Einstein. But N3

is three-dimensional and thus (N3, h) has constant curvature. The proof follows
from Proposition A.2(ii) . �

The first set of promised examples are given by the following corollary. More-
over, these are simple (i.e. their leaves are globally the fibres of harmonic mor-
phisms).

Corollary A.4. Given any Einstein manifold (Nn, h) of dimension n there exists
an Einstein manifold (Mn+1, g) of dimension n+1 and a harmonic morphism ϕ :
(Mn+1, g)→ (Nn, h) with geodesic fibres and integrable horizontal distribution.

If n ≥ 4 and (Nn, h) does not have constant curvature then (Mn+1, g) does not
have constant curvature.

Proof. Let (Nn, h) be Einstein and let λ be a (local) solution of (A.1) (note that
there λ can be viewed, locally, as a function defined on a fibre).

Let Mn+1 = R × Nn and g = dt2 + λ−2 h . It is obvious that the canonical
projection (Mn+1, g) → (Nn, h) is a harmonic morphism with geodesic leaves
and integrable horizontal distribution. Also (Mn+1, g) is an Einstein manifold by
Proposition A.1 . Moreover, if (Nn, h) does not have constant curvature then, by
Proposition A.2 , (Mn+1, g) does not have constant curvature. �

A.2. Riemannian foliations locally generated by Killing fields.

Proposition A.5. Let (Nn, h) be a Riemannian manifold and ρ : Nn → (0,∞)
a smooth positive function.

Let Mn+1 = R × Nn and g = ρ2 dt2 + h . Then, the following assertions are
equivalent.

(i) (Mn+1, g) is Einstein (MRicci = cM g) .
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(ii) (Nn, h) has constant scalar curvature sN = (n − 1) cM and the following
relation holds

(A.4)
N

∇ dρ = − cM

n
ρ h+ ρZN

where
N

∇ is the Levi-Civita connection on (Nn, h) and ZN = NRicci−(sN/n)h is
the trace-free part of NRicci .

Proof. A straightforward calculation gives:

p∗N(MRicci) = NRicci−ρ−1
N

∇ dρ

p∗R(MRicci) =ρ−1(∆Nρ) p∗R(g)
(A.5)

where pN : M → N and pR : M → R are the canonical projections.
From (A.5) the proof easily follows. �

Constructions of Einstein manifolds, not with constant curvature, endowed
with one-dimensional Riemannian foliations locally generated by nowhere zero
Killing fields and with integrable orthogonal complement are given by the follow-
ing:

Corollary A.6. For each n ≥ 5 there exists Einstein manifolds (Mn+1, g) not of
constant curvature, endowed with a nowhere zero Killing field which has integrable
orthogonal complement. Moreover, the construction can be done such that the
(locally) induced isometric quotients are also Einstein.

Proof. If the equation
N

∇ dρ = a ρ h , where a ∈ R , has solutions then there
exists a homothetic one-dimensional foliation with geodesic leaves and integrable
orthogonal complement (see [26]). Recall that ZN = 0 if and only if (Nn, h)
is Einstein (see [6, 1.118]). Hence, Corollary A.4 implies that there exists an
Einstein manifold (Nn, h) , n ≥ 4 , not of constant curvature, on which (A.4)
has a (local) solution ρ which is positive. Then, by Proposition A.5 , (Mn+1, g)
(where Mn+1 = R × Nn and g = ρ2 dt2 + h) is Einstein. Clearly V = ∂/∂t is a
nowhere zero Killing field on (Mn+1, g) . �
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variété riemannienne, J. Math. Pures Appl. (9), 54 (1975), no. 3, 259–284

[14] S. Gudmundsson, The Geometry of Harmonic Morphisms, Ph.D. thesis, University of
Leeds, 1992.

[15] S. Gudmundsson, The Bibliography of Harmonic Morphisms, http://www.maths.lth.se/
matematiklu/personal/sigma/harmonic/bibliography.html

[16] S.W. Hawking, Gravitational Instantons, Phys. Lett. 60A (1977) 81–83.
[17] T. Ishihara, A mapping of Riemannian manifolds which preserves harmonic functions, J.

Math. Kyoto Univ. 19 (1979) 215–229.
[18] S. Kobayashi, Transformation groups in differential geometry, reprint of the 1972 edition,

Classics in Mathematics, Springer-Verlag, Berlin, 1995.
[19] S. Kobayashi, K. Nomizu, Foundations of differential geometry, I, II, Interscience Tracts

in Pure and Applied Math. 15, Interscience Publ., New York, London, Sydney, 1963, 1969.
[20] H.B. Lawson, Jr., M.L. Michelsohn, Spin geometry, Princeton Mathematical Series, 38,

Princeton University Press, Princeton, NJ, 1989.
[21] C. LeBrun, Complete Ricci-flat Kähler metrics on C n need not be flat, Several complex

variables and complex geometry, Part 2 (Santa Cruz, CA, 1989), 297–304, Proc. Sympos.
Pure Math., 52, Part 2, Amer. Math. Soc., Providence, RI, 1991.

[22] A. Lichnerowicz, Geometry of groups of transformations. Translated from French and
edited by Michael Cole. Noordhoff International Publishing, Leyden, 1977.

[23] X. Mo, Harmonic morphisms via deformation of metrics for horizontally conformal maps,
Harmonic morphisms, harmonic maps and related topics, Brest 1997, C.K. Anand, P.
Baird, E. Loubeau and J.C. Wood (editors), Pitman Research Notes in Mathematics,
CRC Press, 1999, pp 13-21.

[24] R. Pantilie, On submersive harmonic morphisms, Harmonic morphisms, harmonic maps
and related topics, Brest 1997, C.K. Anand, P. Baird, E. Loubeau and J.C. Wood (editors),
Pitman Research Notes in Mathematics, CRC Press, 1999, pp 23-29.

[25] R. Pantilie, Harmonic morphisms with one-dimensional fibres, Internat. J. Math., 10
(1999), no. 4, 457-501.

[26] R. Pantilie, Conformal actions and harmonic morphisms, Math. Proc. Cambridge Philos.
Soc., (to appear).



HARMONIC MORPHISMS WITH 1-DIM FIBRES ON EINSTEIN 4-MANIFOLDS 29

[27] B.L. Reinhart, Differential geometry of foliations. The fundamental integrability problem,
Ergebnisse der Mathematik und Ihrer Grenzgebiete, 99, Springer-Verlag, Berlin-New York,
1983.

[28] N.E. Steenrod, The topology of fibre bundles, Princeton Mathematical Series 14. Princeton:
Princeton University Press 1951.

[29] J.G. Timourian, Fibre bundles with discrete singular set, J. Math. Mech., 18 (1968) 61-70.
[30] J.C. Wood, Harmonic morphisms, foliations and Gauss maps, Complex differential geom-

etry and non-linear differential equations, 145-183, Contemp. Math. 49, Amer Math. Soc.,
Providence, RI, 1986.

University of Leeds, Dept. of Pure Mathematics, Leeds LS2 9JT, UK.
E-mail address: pmtrp@amsta.leeds.ac.uk


