
Mathematical Proceedings of the Cambridge Philosophical
Society
http://journals.cambridge.org/PSP

Additional services for Mathematical Proceedings of the Cambridge
Philosophical Society:

Email alerts: Click here
Subscriptions: Click here
Commercial reprints: Click here
Terms of use : Click here

Conformal actions and harmonic morphisms

R. PANTILIE

Mathematical Proceedings of the Cambridge Philosophical Society / Volume 129 / Issue 03 / November 2000, pp 527 - 548
DOI: null, Published online: 17 January 2001

Link to this article: http://journals.cambridge.org/abstract_S0305004100004618

How to cite this article:
R. PANTILIE (2000). Conformal actions and harmonic morphisms. Mathematical Proceedings of the Cambridge
Philosophical Society, 129, pp 527-548

Request Permissions : Click here

Downloaded from http://journals.cambridge.org/PSP, IP address: 152.11.242.100 on 17 Sep 2013



Math. Proc. Camb. Phil. Soc. (2000), 129, 527

Printed in the United Kingdom c© 2000 Cambridge Philosophical Society

527

Conformal actions and harmonic morphisms

By R. PANTILIE†
Department of Pure Mathematics, University of Leeds, Leeds LS2 9JT

e-mail pmtrp@amsta.leeds.ac.uk

(Received 5 July 1999; revised 22 September 1999)

Abstract

We give necessary and sufficient conditions for a conformal foliation locally gener-
ated by conformal vector fields to produce harmonic morphisms. Natural construc-
tions of harmonic maps and morphisms are thus obtained. Also we obtain reducibil-
ity results for harmonic morphisms induced by (infinitesimal) conformal actions on
Einstein manifolds.

0. Introduction

Harmonic morphisms are smooth maps between Riemannian manifolds which pull
back germs of harmonic functions to germs of harmonic functions. By a basic result
of Fuglede and Ishihara [8, 11] harmonic morphisms are harmonic maps which are
horizontally weakly conformal.

In order to capture all the harmonic morphisms which can be defined (maybe
just locally) on a given Riemannian manifold it is natural to consider the problem of
finding foliations whose leaves can be given locally as fibres of (submersive) harmonic
morphisms [22], i.e. foliations which produce harmonic morphisms. By the above-
mentioned basic result, these must be conformal foliations. For example on a two-
dimensional Riemannian manifold a foliation produces harmonic morphisms if and
only if it is locally generated by conformal vector fields. But this is not true in higher
dimensions. In this paper we give necessary and sufficient conditions for a foliation
locally generated by conformal vector fields to produce harmonic morphisms.

In Section 1 we review some basic facts concerning foliations which produce har-
monic morphisms. Then in Section 2 we exploit well-known relations between the
mean curvature form and the adapted Bott connection of a distribution on a Rieman-
nian manifold to obtain the formulae needed to prove, in Section 3, the character-
isation of the (infinitesimal) conformal actions which produce harmonic morphisms.
This (Theorem 3·2) generalizes the result which we have previously obtained for
isometric actions [15].

In Section 4 we consider homothetic foliations locally generated by conformal
vector fields. Homothetic foliations are ones whose leaves are locally the fibres of
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horizontally homothetic maps; they are important since a foliation with minimal
leaves produces harmonic morphisms if and only if it is a homothetic foliation [14].
The result of Theorem 3·2 when applied to a homothetic foliation shows that the
condition of producing harmonic morphisms depends, in this case, just on the corre-
sponding smooth (infinitesimal) action and on the integrability tensor of the orthog-
onal complement of the foliation. It follows that most of the natural constructions
of Riemannian foliations locally generated by Killing fields and which produce har-
monic morphisms, which we have obtained in [15], can be generalized to homothetic
foliations locally generated by conformal vector fields.

In Section 5 we give the geometric characterization of homothetic (infinitesimal)
actions which induce homothetic foliations and their relations with harmonic mor-
phisms. Some examples of such actions are also given.

The consideration of foliations locally generated by homothetic vector fields is
motivated by the fact that on a Ricci-flat manifold any foliation V locally gener-
ated by conformal vector fields and which produces harmonic morphisms is either
locally generated by homothetic vector fields or any harmonic morphism produced
by V can be locally decomposed into a harmonic morphism with geodesic fibres,
constant dilation and integrable horizontal distribution followed by another har-
monic morphism. This is shown in Section 6 (Theorem 6·1(iii)) in which are obtained
reducibility results for foliations locally generated by conformal vector fields and
which produce harmonic morphisms on Einstein manifolds.

1. Foliations which produce harmonic morphisms

Foliations whose leaves are locally fibres of (submersive) harmonic morphisms were
introduced in [22]. We recall the following definition.

Definition 1·1. Let (M, g) be a (connected) Riemannian manifold and let V be (the
tangent bundle of) a foliation on it.

We shall say that V produces harmonic morphisms on (M, g) if each point of M has
an open neighbourhood U which is the domain of a submersive harmonic morphism
ϕ: (U, g|U )→ (N,h) whose fibres are open subsets of the leaves of V.

By the well-known result of Fuglede and Ishihara [8, 11] harmonic morphisms
are harmonic maps which are horizontally weakly conformal. It follows that any
foliation which produces harmonic morphisms is a conformal foliation.

Definition 1·2. (1) Let V be a conformal foliation on the Riemannian manifold
(M, g). A smooth positive function λ:U → R on an open subset U of M will be called
a local dilation of V if V|U is a Riemannian foliation on (U, λ2 g|U ). If U = M then
λ is called a (global) dilation of V.

(2) Let V be a foliation which produces harmonic morphisms on the Riemannian
manifold (M, g). Let λ be a local dilation of V which restricts to give dilations of
harmonic morphisms which locally define V. Then ρ = λ2−n is called a local density
of V. If λ is globally defined on M then ρ is called a (global) density.

The terminology of Definition 1·2(2) is motivated by the following fact.

Remark 1·3. Let V be a foliation which produces harmonic morphisms on (M, g).
Let ω be a local volume form for V and H = V⊥. A positive smooth function ρ is
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a local density for V if and only if ρω is invariant under the parallel displacement
determined by H [6, 14].

A foliation of codimension two produces harmonic morphisms if and only if it is
conformal and has minimal leaves [22]. This follows from the corresponding result
for harmonic morphisms due to Baird and Eells [2]. For foliations of codimension
not equal to 2 we have the following reformulation of a result of Bryant [6].

Proposition 1·4. Let V be a conformal foliation on (M, g) of codim V� 2 and H

its orthogonal complement. Let VB and HB be the second fundamental forms of V and
H, respectively.

Then, V produces harmonic morphisms on (M, g) if and only if the one-form

(n− 2) trace (HB)[ − n trace (VB)[ (1·1)

is closed. (Here trace (HB) =
∑

a
HB(Xa, Xa), trace (VB) =

∑
r

VB(Vr, Vr) for local
orthonormal frames {Xa} and {Vr} of H and V, respectively and where [:TM → T ∗M
is the ‘musical’ isomorphism induced by g.)

For a proof of Proposition 1·4 the reader can consult [4], [6] or [14].

Remark 1·5. (1) If V produces harmonic morphisms then any local density ρ of
it is characterized by

n grad (log ρ) = −(n− 2) trace (HB) + n trace (VB).

(2) The vertical component of the exterior derivative of the one-form given by (1·1)
is always zero (see Proposition 2·18(a) below).

Proposition 1·6. Let V be a foliation which produces harmonic morphisms on
(M, g). Then there exists a Riemannian regular covering ξ: (M̃, g̃) → (M, g) with the
following properties:

(i) ξ∗(V) admits a global density;
(ii) if η: (P, k) → (M, g) is any Riemannian regular covering such that η∗(V) ad-

mits a global density then there exists a unique Riemannian regular covering
σ: (P, k)→ (M̃, g̃) such that η = ξ ◦ σ.

Moreover, ξ is the unique Riemannian regular covering satisfying (i) and (ii).

Proof. Let [a] ∈ H1(M,R) be the cohomology class defined by the differentials of
the logarithms of the local densities of V and let ξ: M̃ →M be the regular covering
corresponding to it.

Let g̃ = ξ∗(g). It is obvious that ξ∗(V) produces harmonic morphisms on (M̃, g̃).
Also ξ∗[a] = 0 ∈ H1(M̃,R). Hence, there exists a positive smooth function ρ: M̃ →

(0,∞) such that ξ∗(a) = d log ρ.
Then ρ is a global density of ξ∗(V).
Let η: (P, k)→ (M, g) be any other Riemannian regular covering such that η∗(V)

admits a global density. If H and K are the (Abelian) groups of ξ and η, respectively,
then ξ and η correspond to surjective group morphisms π1(M )→ H and π1(M )→ K,
respectively, where π1(M ) is the fundamental group of M (see [19, part I, section
14·6]).

Now, η∗(V) admits a global density if and only if η∗(ξ) is a trivial covering and this



530 R. Pantilie
happens if and only if the image of the injective group morphism π1(P ) → π1(M )
is contained in the kernel of the group morphism π1(M ) → H. But the image of
π1(P ) → π1(M ) is equal to the kernel of π1(M ) → K and hence the latter can be
factorized π1(M ) → H → K. The surjective group morphism H → K induces a
Riemannian regular covering σ: (P, k)→ (M̃, g̃) having the required properties.

The uniqueness of ξ is obvious.

The following simple lemma will be used later on (cf. [18, chapter IV, example
4·10]).

Lemma 1·7. Let V be a foliation on (M, g) and let V ∈ Γ(V) be a conformal vector
field.

Then [V,X] = 0 for any basic vector field X.

Proof. Let H = V⊥ and X ∈ Γ(H) a basic vector field. Then [V,X] ∈ Γ(V).
But V is conformal and hence we can write

0 = (LV g)(W,X) = −g(W, [V,X])

for any W ∈ Γ(V). Hence [V,X] = 0.

The result of Lemma 1·7 is equivalent to the fact that any conformal vector field
tangent to a foliation V is an infinitesimal automorphism of the orthogonal comple-
ment of V.

2. Mean curvature forms and adapted Bott connections

In this section we recall [17] that the exterior derivative of the mean curvature
form of a distribution is the curvature form of the connection induced on the de-
terminant bundle of the distribution by its adapted Bott connection. By using this,
or by direct calculation we obtain formulae for the exterior derivative of the mean
curvature form of a distribution. Some of these formulae apply to prove that if a
conformal foliation V has integrable orthogonal complement H and if V and H

both have basic mean curvature forms then V produces harmonic morphisms.
Let V and H be two complementary orthogonal distributions (not necessarily

integrable) on (M, g). We shall denote by the same symbols V and H the induced
projections on V and H, respectively.

Definition 2·1 (see [18, 20]). The adapted Bott connection ∇H on H is defined by

∇HEX = H[VE,X] + H(∇HEX)

for E ∈ Γ(TM ), X ∈ Γ(H) where ∇ is the Levi–Civita connection of (M, g).

The adapted Bott connection ∇V on V is defined similarly by reversing the roles
of V and H.

Remark 2·2 (see [18, 20]). It is easy to see that ∇H is compatible with the metric

induced by g on H if and only if H is totally geodesic. Nevertheless, since ∇HX =

H∇X for any X ∈ Γ(H) we have that ∇HX(g|H) = 0.

Let HI be the integrability tensor of H which is the V-valued horizontal two-form
defined by HI(X,Y ) = −V[X,Y ] for X, Y ∈ Γ(H).
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Proposition 2·3. Let H be a distribution on (M, g). Then

d(trace (HB)[)(X,Y ) = g(trace (HB),HI(X,Y )) , (2·1)

d(trace (HB)[)(X,V ) = ∇VX(trace (HB)[)(V ) (2·2)

for any horizontal vectors X,Y and vertical vector V .

Proof. This is a straightforward calculation using the fact that trace (HB) is a
vertical vector field.

Let n = dim H and let
∧
nH be the determinant line bundle of H.

Let HR ∈ Γ(End(H)⊗∧2(T ∗M )) be the curvature form of ∇H. Then the curvature

form of the connection induced by ∇H on
∧
nH is trace (HR) ∈ Γ(

∧
2(T ∗M )).

Proposition 2·4 (see [17]). Let H be a distribution on (M, g). Then

trace (HR) = d(trace (HB)[).

Proof. Let ωH be a local volume form of H considered with respect to the metric
induced by g.

Recall that trace (HR) = dAwhereA is any local connection form of the connection

induced by ∇H on
∧
nH. Thus it suffices to show that

∇HEω
H

= −g(E, trace (HB))ω
H

(2·3)

for any E ∈ TM .
If E ∈H then the right-hand side of (2·3) is zero. Also, the left-hand side is zero

because if E ∈H then ∇HE(g|H) = 0 (see Remark 2·2).

If E ∈ V then ∇HEω
H = H∗(LEω

H). Thus, if E ∈ V then (2·3) reduces to a well-
known formula (see [22]).

Proposition 2·5 (see [18, 20]). Let X ∈ Γ(H) be a horizontal vector field. Then the
following assertions are equivalent:

(i) ∇HVX = 0 for any V ∈ Γ(V);
(ii) H[X,V ] = 0 for any V ∈ Γ(V);
(iii) LX(Γ(V)) ⊆ Γ(V).

If H is integrable then the following assertions can be added:
(iv) LX ◦ V = V ◦LX ;
(v) LX ◦ H = H ◦LX ;
(vi) X is an infinitesimal automorphism of V (i.e. (ξt)∗(V) ⊆ V where (ξt) is the

local flow of X).

Proof. The equivalences (i)⇐⇒ (ii) and (ii)⇐⇒ (iii) are trivial.
It is easy to see that if H is integrable then (iv)⇐⇒ (ii)⇐⇒ (v). Also, (ii)⇐⇒ (vi)

follows easily from [12, chapter 1, corollary 1·10].

Example 2·6 (see [18, 20]). (1) Suppose that V is integrable. Then any basic vector
field X ∈ Γ(H) for V with respect to H is an infinitesimal automorphism of V. In
fact, if V is integrable a horizontal vector field X ∈ Γ(H) is basic if and only if any
of the assertions (i), (ii), (iii) or (vi) holds.
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(2) If H is integrable then, by Lemma 1·7, any conformal vector field X which is

horizontal is an infinitesimal automorphism of V.

We recall (cf. [20, 4·34]) the following definition which does not require any as-
sumption on the distribution H.

Definition 2·7. Let E ∈ Γ(TM ). The horizontal divergence divHE of E is defined by

H∗(LEω
H

) = divHE ω
H
,

where ωH is any local volume form of H (considered with the metric induced by g).

(The vertical divergence divV is defined similarly, note that

div E = divH E + divV E

for any E ∈ Γ(TM ).)
It is not difficult to see that divHE is globally well-defined (i.e. it does not depend

on ωH). In fact, a standard calculation gives the following proposition.

Proposition 2·8. Let E ∈ Γ(TM ). Then divHE is the (pointwise) trace of the linear
endomorphism H −→H defined by Y 7−→H(∇YE).

Remark 2·9. (1) Obviously, if H is integrable and X ∈ Γ(H) then the restriction
of divH X to each leaf L of H is equal to the divergence of the restriction of X to
(L, g|L).

(2) If V ∈ Γ(V) then divH V = −g(trace (HB), V ) (see [22]).

Lemma 2·10. (a) Suppose that X ∈ Γ(H) satisfies any of the assertions (i), (ii) or (iii)
of Proposition 2·5. Then

HR(V,W )X = H(∇VI(V,W )X)

for any vertical V and W .
(b) Suppose that H is integrable and let X, Y ∈ Γ(H) and V ∈ Γ(V) be such that

[V,X] = 0 = [V, Y ]. Then

HR(V,X)Y = ∇HV (H∇YX).

Proof. (a) Let V, W ∈ Γ(V). Then

HR(V,W )X = [∇HV ,∇
H

W ]X −∇H[V,W ]X

= −∇HV[V,W ]X −∇
H

H[V,W ]X = H(∇VI(V,W )X).

(b) We have

HR(V,X)Y = [∇HV ,∇
H

X]Y −∇H[V,X]Y

= ∇HV (∇HXY ) = ∇HV (H∇XY )

= ∇HV (H[X,Y ] + H∇YX).

Because H is integrable we have that H[X,Y ] = [X,Y ] and from [V,X] =
0 = [V, Y ], by using the Jacobi identity, we obtain that [V, [X,Y ]] = 0. Hence

∇HV (H[X,Y ]) = 0 and the lemma follows.
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Let

{
Xa

}
be a local frame for H over the open subset U ⊆ M and let

{
Vr
}

be a
local frame for V over U . We shall denote ‘horizontal’ indices by a, b, c and ‘vertical’
indices by r, s, t.

Lemma 2·11. (a) Suppose that
{
Xa

}
are infinitesimal automorphisms of V.

Then

d(trace (HB)[)rs = (caba + divHXb)VIbrs, (2·4)

where
{
ccab
}

are defined by H[Xa, Xb] = ccabXc.
(b) If both H and V are locally generated by infinitesimal automorphisms of V and

H, respectively, and H is integrable then

V∗(d(trace (HB)[)) = divH(VI).

Proof. (a) This follows from Propositions 2·4, 2·8 and Lemma 2·10(a).
(b) This follows from (a) and the fact that V∗(LX(VI)) = 0 for any infinitesimal

automorphism X ∈ Γ(H) of V.

(Note that it seems to be impossible to formulate invariantly assertion (a) of Lemma
2·11.)

Proposition 2·12 (see [17]). If V is integrable then d(trace (HB)[)(V,W ) = 0 for
any vertical V and W .

Proof. This follows from Lemma 2·11 because if V is integrable then any basic
vector field for V with respect to H is an infinitesimal automorphism of V.

Proposition 2·13. Suppose that both V and H are integrable. Then the following
assertions are equivalent.

(i) The mean curvature form of H is closed;
(ii) The mean curvature form of H is basic (for V).

Proof. This follows from Propositions 2·3 and 2·12.

Proposition 2·14. Suppose that H is integrable and locally generated by infinitesi-
mal automorphisms of V and let V ∈ Γ(V) and X ∈ Γ(H) be infinitesimal automor-
phisms of H and V, respectively. Then

d(trace (HB)[)(V,X) = V (divHX) = −∇VX(trace (HB)[)(V ). (2·5)

Proof. This follows from Propositions 2·3, 2·4, 2·8 and Lemma 2·10(b).

By reversing the roles of V and H in Proposition 2·3 and Lemma 2·11 and Propo-
sition 2·14 we obtain the corresponding formulae for d(trace (VB)[).

The following lemma holds for any complementary orthogonal distributions H

and V.

Lemma 2·15. Let f be any smooth function on M. Then

∇HV (H∗(df ))(X) = ∇VX(V∗(df ))(V ) (2·6)

for any vertical V and horizontal X.
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Proof. LetX and V be vector fields which are horizontal and vertical, respectively.

The following relation is trivial

V (X(f ))−X(V (f ))− [V,X](f ) = 0. (2·7)

But (2·7) is equivalent to the following

V (X(f ))−H[V,X](f ) = X(V (f ))−V[X,V ](f )

which is obviously equivalent to (2·6).

From some of the above results we obtain the following.

Proposition 2·16. Let V be a foliation of codim V = n� 2 which produces har-
monic morphisms on (M, g). Then the following assertions are equivalent.

(i) The mean curvature form of V is basic;
(ii) The mean curvature form of H is invariant under the parallel displacement

determined by H (i.e. ∇VX(trace (HB)[)(V ) = 0).

Proof. Recall that trace (HB)[ = nV∗(d log λ) (see [4]) for any local dilation λ of V.
Also, recall that from the fundamental equation of Baird and Eells ([2], see also

[4]) it follows that the assertion (i) is equivalent to the fact that trace (VB)[ =
−(n− 2)H∗(d log λ) for any local density λ2−n of V.

Now the equivalence (i)⇐⇒ (ii) follows from Lemma 2·15.

Theorem 2·17. Let V be a conformal foliation on (M, g) of codim V� 2. Suppose
that the orthogonal complement H of V is integrable.

Then any two of the following assertions imply the remaining assertion.
(i) V produces harmonic morphisms;

(ii) The mean curvature form of V is basic ( for H);
(iii) The mean curvature form of H is basic ( for V).
Moreover, if any two of (i), (ii) or (iii) hold then both V and H have closed mean

curvature forms.

Proof. If (i) holds then the equivalence (ii)⇐⇒ (iii) follows from Proposition 2·16.
Suppose that both the assertions (ii) and (iii) hold. Then (i) follows from Proposi-

tions 2·13 and 1·4.

Proposition 2·18. (a) If V is integrable then

d(trace (HB)[)(V,W ) = 0 = d(trace (VB)[)(V,W ) (2·8)

for any vertical V and W .
(b) Let V be a conformal foliation on (M, g). Then the following assertions are equiv-

alent.
(i) For any local dilation λ of V the one-form trace (VB)[ + (n − 2)H∗(d log λ) is

basic (n = dim H);
(ii) For any horizontal X and vertical V we have

d((n− 2) trace (HB)[ − n trace (VB)[)(X,V ) = 0. (2·9)

Proof. (a) The first equality of (2·8) follows from Proposition 2·12.
The second equality of (2·8) follows from (2·1) of Proposition 2·3 by reversing the

roles of H and V.
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(b) Let λ be a local dilation of V and recall that trace (HB) = nV(grad (log λ)).

Hence, by applying (2·2) of Proposition 2·3 and Lemma 2·15 we obtain that

((n− 2)d(trace (HB)[)− nd(trace (VB)[))(X,V )

= (n− 2)∇VX(trace (HB)[)(V ) + n∇HV (trace (VB)[)(X)

= n(n− 2)∇VX(V∗(d log λ))(V ) + n∇HV (trace (VB)[)(X)

= n(n− 2)∇HV (H∗(d log λ))(X) + n∇HV (trace (VB)[)(X)

for any horizontal X and vertical V and the proof of (i) ⇐⇒ (ii) follows from the
fact that the basic vector fields (for V) are precisely those horizontal vector fields
which are infinitesimal automorphisms of V (see Example 2·6(1)).

3. The characterization of the conformal actions which produce harmonic morphisms

On a two-dimensional Riemannian manifold a foliation (of dimension one) pro-
duces harmonic morphisms if and only if it is locally generated by conformal vector
fields. This follows from the fact that a harmonic morphism to a one-dimensional
Riemannian manifold is essentially a harmonic function and, if the domain is two-
dimensional, then any harmonic function is locally the real part of a conformal map.
If the manifold has dimension greater than two then it is not true that any foliation
locally generated by conformal vector fields produces harmonic morphisms. In this
section we shall give necessary and sufficient conditions for a foliation locally gener-
ated by conformal vector fields to produce harmonic morphisms (Theorem 3·2). To
state this result we need the following:

Proposition 3·1. Let V be a foliation on (M, g) locally generated by conformal vector
fields (i.e. in the neighbourhood of each point a local frame for V made up of conformal
vector fields can be found). Let H be the orthogonal complement of V and let HI be its
integrability tensor.

Let {Vr} be a local frame of V made up of conformal vector fields. Define trace (ad(HI))
by trace (ad(HI)) = csrs

HIr where HI = Vr ⊗HIr and [Vr, Vs] = ctrsVt. Then this is a
well-defined horizontal two-form which is independent of the frame {Vr}.

Proof. Let U be the domain of a local dilation λ. Then V|U , viewed as a foliation
on (U, λ2g|U ), is Riemannian.

Let {Vr} be a local frame of V, over a subset of U , made up of conformal vector
fields of (M, g). Then Vr are Killing fields with respect to λ2g|U . From [15, proposition
1·10] it follows that trace (ad(HI)) = csrs

HIr is a well-defined horizontal two-form
which is independent of the frame {Vr}.

We now state the main result of this section.

Theorem 3·2. Let V be a conformal foliation of codim V = n � 2 on (Mm, g),
m > 3. Suppose that V is locally generated by conformal vector fields and let H be its
orthogonal complement.

Then the following assertions are equivalent:
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(i) V produces harmonic morphisms;

(ii) The mean curvature form of V is basic and the following relation holds:

trace (ad(HI)) =
m− 2
n

g(trace (HB),HI). (3·1)

Proof. By Proposition 1·4, V produces harmonic morphisms if and only if

(n− 2)d(trace (HB)[)− nd(trace (VB)[) = 0. (3·2)

By Proposition 2·18(a) the left-hand side of (3·2) is automatically zero when eval-
uated on a pair of vertical vectors.

Let λ be a local dilation of V.
Let V ∈ Γ(V) be a conformal vector field on (M, g). It is obvious that V when

restricted to any leaf L of V is a conformal vector field on (L, g|L). Using this it is
easy to see that

divV V = −(m− n)V (log λ). (3·3)

Let X ∈ Γ(H) be a basic vector field. Then

∇HV (H∗(d log λ))(X) = V (X(log λ)) = X(V (log λ))

= − 1
m− nX(divV V ) =

1
m− n∇

H

V (trace (VB)[)(X), (3·4)

where we have also applied Lemma 1·7 and Proposition 2·14 (reversing the roles of
H and V in the latter). From Proposition 2·18(b) and (3·4) it follows that the left-
hand side of (3·2) is zero when evaluated on a pair made up of a vertical vector and
a horizontal vector if and only if V has basic mean curvature form.

Now, using Lemma 2·11(a) (with the roles of H and V reversed) and (3·3) it is
easy to see that

d(trace (VB)[)(X,Y ) = trace (ad(HI))(X,Y )− m− n
n

g(trace (HB),HI(X,Y )) (3·5)

for any horizontal X and Y . By combining (3·5) and Proposition 2·3 we obtain that
the left-hand side of (3·2) is zero when evaluated on a pair of horizontal vectors if
and only if (3·1) holds. The theorem is proved.

Remark 3·3. By Proposition 2·16 the first condition of Theorem 3·2(ii) (i.e. V has
basic mean curvature form) can be replaced with the fact that the mean curvature
form of H is invariant under the parallel displacement determined by H.

Corollary 3·4. Let V be a foliation on (Mm, g), m > 3, which is locally generated
by conformal vector fields and has integrable orthogonal complement. Then the following
assertions are equivalent.

(i) V produces harmonic morphisms;
(ii) V has basic mean curvature form.
Moreover, if either assertion (i) or (ii) holds then both V and its orthogonal complement

have closed mean curvature forms.

Proof. The equivalence (i) ⇐⇒ (ii) is an immediate consequence of Theorem 3·2.
The last assertion follows from Proposition 2·3, Lemma 2·11, Proposition 2·14 and
Theorem 3·2.
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The following result of [15, theorem 1·12] can be viewed as a consequence of

Theorem 3·2.

Corollary 3·5. Let V be a Riemannian foliation of codim V � 2 on (Mm, g),
m > 3, and let HI be the integrability tensor field of its orthogonal complement. Suppose
that V is locally generated by Killing fields.

Then the following assertions are equivalent:
(i) V produces harmonic morphisms;

(ii) trace (ad(HI)) = 0 .

Proof. It is obvious that V has basic mean curvature. Also, trace (HB) = 0 and the
proof follows from Theorem 3·2.

4. Homothetic foliations locally generated by conformal vector fields

A one-dimensional foliation of codimension greater than two which is locally gen-
erated by conformal vector fields produces harmonic morphisms if and only if it is a
homothetic foliation. This was proved in [14] (see also Corollary 4·6 below) where the
notion of homothetic foliation was introduced. From there we recall the following:

Definition 4·1. Let V be a distribution on the Riemannian manifold (M, g). We
shall say that V is homothetic if it is conformal and the mean curvature form of its
orthogonal complement is closed.

Then, a conformal foliation is homothetic if and only if in a neighbourhood of
each point a local dilation can be defined which is constant along horizontal curves.
(Equivalently, any local dilation can be locally decomposed as the product of a func-
tion constant along horizontal curves and a function constant along vertical curves.)
From this it follows that the homothetic foliations are characterised by the property
that their leaves are locally fibres of horizontally homothetic submersions. Also, note
that by Proposition 1·4 a foliation of codimension not equal to 2 which has minimal
leaves produces harmonic morphisms if and only if it is a homothetic foliation. (See
[1] for other relations between harmonic maps and minimal submanifolds.)

From results of Sections 2 and 3 we obtain necessary and sufficient conditions for
a foliation to be homothetic.

Corollary 4·2. Let V be a conformal foliation on (M, g) with integrable orthogonal
complement H. If both V and H have basic mean curvature forms then V is a homo-
thetic foliation. If further codim V � 2 and dim M > 3 then V produces harmonic
morphisms.

Proof. This is an immediate consequence of Theorem 2·17.

Proposition 4·3. Let V be a foliation of codim V = n on (Mm, g) which is locally
generated by conformal vector fields and let H be its orthogonal complement.

If V is homothetic then g(trace (HB),HI) = 0.
Conversely, if g(trace (HB),HI) = 0 then the following assertions are equivalent:
(i) V is a homothetic foliation;

(ii) the mean curvature form of V is basic;
(iii) the mean curvature form of H is invariant under the parallel displacement

determined by H;
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(iv) in the neighbourhood of each point of M there a exists a local dilation λ of V

such that for any horizontal vector X and conformal vector field V tangent to V

we have X(V (log λ)) = 0.

Proof. The first assertion is an immediate consequence of formula (2·1) from
Proposition 2·3.

Suppose now that g(trace (HB),HI) = 0.
The equivalence (i)⇐⇒ (iii) follows from Proposition 2·3.
From the proof of Theorem 3·2 it follows that

1
m− n∇

V

V (trace (VB)[)(X) = X(V (log λ)) = ∇HV (H∗(d log λ))(X) (4·1)

for any X ∈ Γ(H), any conformal vector field V ∈ Γ(V) and any local dilation λ of
V. The first equality of (4·1) implies that (ii)⇐⇒ (iv).

From the second equality of (4·1) and (2·2) of Proposition 2·3 we obtain that
(iii)⇐⇒ (iv) and the proposition is proved.

Theorem 4·4. Let V be a foliation of codim V� 2 on (Mm, g), m > 3, which is
locally generated by conformal vector fields. Then any two of the following assertions
imply the remaining assertion.

(i) V produces harmonic morphisms;
(ii) V is homothetic;
(iii) trace (ad(HI)) = 0.

Proof. This is a consequence of Proposition 4·3 and of Theorem 3·2.

Remark 4·5. (1) There is another way to prove that in Theorem 4·4 if (ii) holds
then (i) ⇐⇒ (iii). To see this let λ be a local dilation of V which is constant along
horizontal curves. Then, with respect to λ2g, V is a Riemannian foliation locally
generated by Killing fields. Thus, condition (ii) of Theorem 3·2 says the same thing
when written for a local frame made up of fields which are conformal with respect
to g and when written for the same frame but made up of Killing fields with respect
to λ2g. Moreover, since λ is constant along horizontal curves, V produces harmonic
morphisms with respect to g if and only if it produces harmonic morphisms with
respect to λ2g [14, corollary 1·9]. The proof now follows from Corollary 3·5.

(2) It is not difficult to see using Theorem 4·4 that the following classes of foliations
of codimension not equal to two produce harmonic morphisms:

(i) Homothetic foliations locally generated by conformal fields and with inte-
grable orthogonal complement;

(ii) Homothetic foliations generated by the local action of an Abelian Lie group
of conformal transformations;

(iii) Homothetic foliations generated by the action of a unimodular closed sub-
group of the group of conformal transformations;

(iv) Homothetic foliations formed by the fibres of principal bundles for which the
total space is endowed with a metric such that the structural group acts by
conformal transformations and the connection induced on the determinant
bundle of the adjoint bundle is flat.
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From Theorem 4·4 we obtain the following.

Corollary 4·6. Let V be a foliation of codim V� 2 on (Mm, g), m > 3 which is
locally generated by conformal vector fields. Suppose that the orthogonal complement H

of V is integrable. Then the following assertions are equivalent.
(i) V produces harmonic morphisms;

(ii) V is homothetic.

Remark 4·7. If dim V = 1 then (i) and (ii) of Corollary 4·6 imply that V is locally
generated by conformal vector fields [14, proposition 2·5].

Next we give a construction of a foliation which produce harmonic morphisms has
basic mean curvature form but is nowhere homothetic.

Example 4·8. Let ϕ: (Mn+1, h) → (Nn, h̄) , n > 1, be a Riemannian submersion
with geodesic fibres and let V be the foliation formed by the fibres of ϕ.

Suppose that V is a local vertical field such that h(V, V ) = 1. Because ϕ has
geodesic leaves we have that [V,X] = 0 for any basic X.

Let θ = V [ and Ω = dθ. It is easy to see that Ω = 0 if and only if the horizontal
distribution H is integrable. Also, Ω is basic and since dΩ = ddθ = 0 at least locally
we can find a basic one-form A such that Ω = −dA.

Thus dθ = Ω = −dA and hence d(A+ θ) = 0. It follows that at least locally we can
write A + θ = dσ for some smooth local function σ on M. Note that the horizontal
component of dσ is basic, being equal to A.

Supposing that σ is defined on the whole M , let gσ be the Riemannian metric on
M defined by

gσ = e−2σ ϕ∗(h̄) + e(2n−4)σ θ2.

Then ϕ: (M, gσ)→ (N, h̄) is a harmonic morphism [6]. Moreover, the mean curva-
ture form of V with respect to gσ is (2 − n)A and therefore is basic. However, the
connected components of the fibres of ϕ form a homothetic foliation with respect to
gσ only over the set of points where the horizontal distribution is integrable. Thus
if H is nowhere integrable then V is nowhere homothetic with respect to gσ.

Let ρ be any function which has the same properties as σ (i.e. ϕ: (M, gρ)→ (N, h̄)
is a harmonic morphism, the mean curvature form of V with respect to gρ is basic
and V is nowhere homothetic on (M, gρ)). Then, there exists a unique constant c ∈ R
such that ρ− c σ is, at least locally, a basic function.

To see this note that because the induced foliation is nowhere homothetic then we
must have:

(i) M =
{
x ∈ M |V (V (ρ)) = 0

}
. (Otherwise on some open subset of M the

level hypersurfaces of V (ρ) would be integral submanifolds of the horizontal
distribution.)

(ii) The interior of the set
{
x ∈M |V (ρ) = 0

}
is empty. (Otherwise the restriction

of V to some open subset of M would be Riemannian.)
Thus we have V (ρ) = c, for some constant c� 0. Hence dρ = c θ +B.
Then B must be basic (because X(V (ρ)) = 0 for any horizontal X) and hence

0 = cdθ + dB which is equivalent to dB = −cΩ.
It follows that d(ρ− c σ) = dρ− cdσ = c θ +B − c θ − cA = B − cA.
Because B − cA is a closed basic one-form, at least locally, we can find a basic
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function whose differential is equal to d(ρ− c σ) and hence ρ− c σ is, at least locally,
a basic function.

5. Homothetic actions and harmonic morphisms

Recall that a vector field V on a Riemannian manifold (M, g) is homothetic if
LVg = a g for some constant a ∈ R (see [23]).

The first thing to note about a foliation locally generated by homothetic vector
fields is the following.

Proposition 5·1. Let V be a foliation on (M, g) locally generated by homothetic vector
fields. Then either V is Riemannian and locally generated by Killing vector fields or V

is nowhere Riemannian.

Proof. Let P = {x ∈M |V is Riemannian at x }.
It is obvious that P is closed. Also let {Vr} be a local frame of V, over the connected

open subset U , made up of homothetic vector fields. It is obvious that if U wP�6
then Vr are Killing fields and thus U ⊆ P . Hence P is also open and since M is
connected either P = M or P =6.

From Proposition 4·3 we obtain the following.

Corollary 5·2. Let V be a foliation locally generated by homothetic vector fields on
the Riemannian manifold (M, g).

Then V is a homothetic foliation if and only if g(trace (HB),HI) = 0.
In particular, a foliation locally generated by homothetic vector fields and with inte-

grable orthogonal complement is a homothetic foliation.

Proof. Let V be a homothetic vector field on (M, g) which is tangent to the foli-
ation. Then it is easy to see that LV g = −2V (log λ)g where λ is any local dilation
of the foliation. But V is homothetic and hence V (log λ) is a constant function. The
proof now follows from (i)⇐⇒ (iv) of Proposition 4·3.

Remark 5·3. Let V be a conformal foliation on (M, g) and define the vertical one-
form µ by the relation (LVg)(X,Y ) = µ(V ) g(X,Y ) where V is vertical and X, Y
are horizontal [21]. Then µ = −2 V∗(d(log λ)) where λ is a local dilation of V and
because trace (HB) = nV(grad (log λ)) we have µ = −(2/n) trace (HB)[ (see [4]).

By Corollary 5·2, if V is locally generated by homothetic vector fields then V is
a homothetic foliation if and only if µ(HI) = 0.

Proposition 5·4. Let V be a one-dimensional foliation of codim V� 2 on (Mm, g),
m > 3, which is not a Riemannian foliation and is locally generated by homothetic vector
fields. Then the following assertions are equivalent:

(i) V produces harmonic morphisms;
(ii) V is a homothetic foliation;
(iii) H is integrable.

Proof. It is easy to see that because V is locally generated by homothetic vector
fields its mean curvature form is basic.

The proof now follows from Theorem 3·2 and Corollary 5·2.



Conformal actions and harmonic morphisms 541
Note that in Proposition 5·4 the equivalence (ii) ⇐⇒ (iii) holds also when codim

V = 2 = dim M .

Proposition 5·5 (cf. [21, proposition 2·83]). Let V be a foliation on (Mm, g) locally
generated by homothetic vector fields. Then there exists a Riemannian foliation W ⊆V

locally generated by Killing fields. Moreover, if V is not Riemannian then dim V =
dim W + 1.

Proof. Suppose that V is not Riemannian. Then by Proposition 5·1 the foliation
V is nowhere Riemannian. Since V is conformal we can find local dilations of it in
the neighbourhood of each point. Let λ be a local dilation of V defined on the open
subset U ⊆M . For x ∈ U let

Wx = {V ∈Vx | V (log λ) = 0 } = Vx w grad (log λ)⊥x .

Since any two local dilations of V differ by a factor which is constant along the
leaves it follows that Wx does not depend on λ. Because V is nowhere Riemannian,
Wx�Vx. Also grad (log λ) is nonvanishing and hence dim(grad (log λ)⊥x ) = m − 1
where m = dim M . We have

dim Wx = dim(Vx w grad (log λ)⊥x )
= dim Vx + dim(grad (log λ)⊥x )− dim(Vx + grad (log λ)⊥x ).

}
(5·1)

It follows that the minimal value of dim Wx occurs if and only if Vx+grad (log λ)⊥x =
TxM . If this is the case then dim Wx = dim Vx + (m− 1)−m = dim Vx − 1. Since
Wx ⊂ Vx, Wx�Vx it follows that dim Wx = dim Vx − 1. Thus W = (Wx)x∈M
defines a distribution on M. Then W is integrable because it is the intersection of
two transversal foliations.

Let V ∈ Γ(V) be a homothetic vector field. It is easy to see that if Vx ∈Wx then
V ∈ Γ(W). Since V is locally generated by homothetic vector fields it follows that
W is locally generated by Killing fields. (This also implies that W is integrable since
any Killing field which is tangent to V must be tangent to W and the bracket of
any two Killing fields is a Killing field.)

We can now characterise geometrically the homothetic (infinitesimal) actions
which induce homothetic foliations and their relations with harmonic morphisms.

Theorem 5·6. Let V be a foliation locally generated by homothetic vector fields and
let H be its orthogonal complement.

Then the following assertions are equivalent:
(a) V is a homothetic foliation;
(b) Either V is Riemannian and locally generated by Killing fields or there exists a

Riemannian foliation W ⊆ V locally generated by Killing fields such that dim V =
dim W + 1 and the distribution F = W⊕H is integrable.

Moreover, if (a) or (b) hold and dim V > 2, codim V > 3 then the following assertions
are equivalent:

(i) V produces harmonic morphisms;
(ii) the restriction of W to any leaf of F produces harmonic morphisms.

Proof. The equivalence (a) ⇐⇒ (b) follows from Corollary 5·2 and Proposition
5·5.

Let V ∈ Γ(V) be a homothetic vector field which is not Killing. (Such a vector
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field can be found in the neighbourhood of each point of M because V is locally
generated by homothetic vector fields and W�V.) Note that for any Killing field
W ∈ Γ(W) we have that [V,W ] is also Killing and hence [V,W ] ∈ Γ(W). Using this
fact together with Theorem 3·2 and Corollary 5·2 it is not difficult to see that the
assertions (i), and (ii) are equivalent.

Remark 5·7. (1) If V is homothetic then the leaves of F are level hypersurfaces
of the local dilations of V which are constant along horizontal curves.

(2) In Theorem 5·6 if (a) or (b) hold and codim V = 1 then (i)⇐⇒ (ii).

Let G be a Lie group which acts to the right by homotheties on (M, g) and for
a ∈ G let ρ(a) ∈ (0,∞) be the conformal factor of the homothetic transformation
induced by a ∈ G on (M, g). Then it is easy to see that ρ:G→ (0,∞) is a morphism
of Lie groups (hence, if ρ is nonconstant, G is isomorphic to a semi-direct product of
kerρ and ((0,∞), ·)). In particular, if G is compact then ρ is constant. Nevertheless,
if G is compact then there might exist local morphisms of Lie groups G → (0,∞)
(see Example 5·8(3), below) which can be used to construct homothetic local actions.

Here are a few examples of morphisms of Lie groups ρ:G→ (0,∞).

Example 5·8. (1) For K = R,C,H define ρ:Gln(K)→ (0,∞) by ρ(a) = |det a|.
(2) For K = R,C,H define ρ:COn(K) → (0,∞) by |Au| = ρ(A)|u| for u ∈ Kn and

A ∈ COn(K).
(3) The canonical morphisms Un → S1 and Spinc

n → S1 when composed with
the exponential of arg:S1 \ {−1} → (−π, π) induce local morphisms of Lie groups
Un → (0,∞) and Spinc

n → (0,∞), respectively.

From now on we shall suppose that G acts freely on M. In this case there exists a
natural isomorphism of vector bundles V = M × g where g is the Lie algebra of G.

Hence HI can be viewed as a g-valued two form on M which has properties sim-
ilar to the properties of the curvature form of a principal connection (in particular,
R∗a(

HI) = Ad a−1 · HI where Ra is the transformation induced by a ∈ G on M ).
Also ρ∗ can be viewed as a vertical one form on M. Moreover, we have that ρ∗ = µ

(see Remark 5·3 for the definition of µ).
It follows from Corollary 5·2 that the foliation induced by the free action of G on

(M, g) is homothetic if and only if ρ∗(HI) = 0.
By identifying G with an orbit we can induce on it a metric which we shall denote

by γ. Then it is easy to see that ρ−2γ is right invariant.
Suppose that ρ is nonconstant and let V be the foliation on G formed by the

connected components of the fibres of ρ. This is generated by the action of the
normal subgroup H = ker ρ. Then it is obvious that H acts by isometries on (G, γ)
and hence V is a Riemannian foliation on it.

Also, H (= V⊥) is a (one-dimensional) homothetic foliation with geodesic leaves
for which ρ−1 is a global dilation.

Thus both V and H produce harmonic morphisms and, in particular, ρ induces a
harmonic function on (G, γ) (which gives another argument for the fact that if G is
compact then ρ cannot be globally defined unless is constant).

Example 5·9. Let G and ρ be as in Example 5·8(1) or (2) and let h = |dx · x−1|2.
Then g = ρ2 h has all the above properties.
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Next we show that the results of Theorem 5·6 takes a more concrete form in the

case of homothetic free actions.

Proposition 5·10. Let G be a Lie group which acts freely by homotheties on (M, g)
and let VG be the induced foliation. Let ρ:G → (0,∞) be the corresponding morphism
of Lie groups and let H = ker ρ.

Then the following assertions are equivalent:
(i) VG is a homothetic foliation;
(ii) there exists a hypersurface N of M such that H acts by isometries on (N, g|N ) to

generate a Riemannian foliation VH and such that M = N ×H G.
Further, if (i), or (ii), holds and 2 6 dim G 6 dim M−3 then VG produces harmonic

morphisms if and only if VH produces harmonic morphisms.

Proof. Let H be the orthogonal complement of VG and let W be the foliation
induced by the isometric (free) action of H on M. Then, assertion (i) is equivalent to
the fact that ρ∗(HI) = 0 which, since HI is the integrability tensor of H, is equivalent
to the fact that the distribution F = W⊕H is integrable.

Suppose that (i) holds and let N be a leaf of F. Then VH = W|N and the impli-
cation (i)⇒(ii) follows.

The implication (i)⇐(ii) is now obvious.
The last assertion follows from the fact that if (i) holds then HI is h-valued and

R∗a(
HI) = Ada−1 · HI.

Remark 5·11. In Proposition 5·10 we also have that if (i), or (ii), holds then g is
determined by ρ and the induced metric h on N .

To see this recall that we identified the metric γ induced on G with an orbit.
Suppose the identification and N were chosen so that the identity element of G
is contained in N . Then H acts by isometries on (N × G, π∗N (h) + π∗G(γ)) (where
πN :N ×G→ N and πG:N ×G→ G are the canonical projections) and (M, g) is the
induced isometric quotient.

Example 5·12. Let ρ:G → (0,∞) be as in Example 5·8 and let H = ker ρ. Then
trace (ad h) = 0 (here, as above, h is the Lie algebra of H).

Let (Q,M,H) be a principal bundle whose total space is endowed with a Rie-
mannian metric h such that H acts by isometries on (Q, h). (Note that any such
h corresponds to a triple (γ,H, k) where γ is a Riemannian metric on the vector
bundle AdQ→M , H is a principal connection on (Q,M,H) and k is a Riemannian
metric on M.)

From Remark 5·11 it follows that a metric (and just a local metric, for ρ from Ex-
ample 5·8(3)) can be found on P = Q×HGwith respect to which the foliation induced
by G is homothetic (but not Riemannian) and produces harmonic morphisms.

6. Conformal actions and harmonic morphisms on Einstein manifolds

In this section we study foliations which are locally generated by conformal vector
fields and produce harmonic morphisms on Einstein manifolds. Note that, as before,
no compactness or completeness assumptions are made. The main results of this
section are the following:
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Theorem 6·1. Let (Mm, g), m > 3 be an Einstein manifold (Ricci = c g, c ∈ R). Let

V be a foliation of codim V� 2 locally generated by conformal vector fields.
Suppose that V produces harmonic morphisms on (Mm, g). Then either V is Rieman-

nian and locally generated by Killing fields or the set of points where V is Riemannian
has empty interior. Moreover, we have the following:

(i) if c > 0 then either V is Riemannian and locally generated by Killing vector
fields or any harmonic morphism produced by V can be locally decomposed into
a harmonic morphism with geodesic fibres and integrable horizontal distribution
followed by another harmonic morphism;

(ii) if c < 0 then at least outside the points where V is Riemannian any harmonic
morphism produced by V can be locally decomposed into a harmonic morphism
with geodesic fibres and integrable horizontal distribution followed by another har-
monic morphism;

(iii) if c = 0 then either V is locally generated by homothetic vector fields or any
harmonic morphism produced by V can be locally decomposed into a harmonic
morphism with geodesic fibres, constant dilation and integrable horizontal distri-
bution followed by another harmonic morphism.

Corollary 6·2. Let (Mm, g), m > 3 be an Einstein manifold (Ricci = c g) and let
V be a foliation on it of codim V� 2 and locally generated by conformal vector fields.

Suppose that V produces harmonic morphisms on (Mm, g).
(i) If c > 0 then any harmonic morphism produced by V can be locally decomposed

into two harmonic morphisms in which the first one either has geodesic fibres and
integrable horizontal distribution or is induced by an isometric quotient.

(ii) If c < 0 then at least outside a set with empty interior any harmonic morphism
produced by V can be locally decomposed into two harmonic morphisms in which
the first one either has geodesic fibres and integrable horizontal distribution or is
induced by an isometric quotient.

Note that Corollary 6·2 is an extension of corollary 5·9 from [14].

Theorem 6·3. Let (Mm, g) be a Ricci-flat Riemannian manifold and let V be a ho-
mothetic foliation on it of dim V > 2, codim V > 3 and locally generated by conformal
vector fields.

Suppose that V produces harmonic morphisms on (Mm, g). Then one of the following
assertions hold.

(a) V is Riemannian and locally generated by Killing fields.
(b) There exists a Riemannian foliation W ⊆ V, dim W = dim V − 1, locally

generated by Killing fields and such that F = W ⊕H is integrable and the restriction
of W to any leaf of F produces harmonic morphisms.

(c) Any harmonic morphism produced by V can be locally decomposed into two har-
monic morphisms in which the first one has geodesic fibres, constant dilation and inte-
grable horizontal distribution.

Corollary 6·4. Let (Mm, g) be a Ricci-flat Riemannian manifold and let V be a
foliation on it, locally generated by conformal vector fields and with integrable orthogonal
complement, dim V > 2, codim V > 3.

Suppose that V produces harmonic morphisms on (Mm, g). Then one of the following
assertions hold.
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(a) V is Riemannian and locally generated by Killing fields.
(b) There exists a Riemannian foliation W ⊆ V, dim W = dim V − 1, locally

generated by Killing fields and such that F = W ⊕H is integrable and the restriction
of W to any leaf of F produces harmonic morphisms.

(c) Any harmonic morphism produced by V can be locally decomposed into two har-
monic morphisms in which the first one has geodesic fibres, constant dilation and inte-
grable horizontal distribution.

The proofs of the above results are based on results obtained in the previous
sections. We also need a few lemmas some of which are well-known.

Lemma 6·5 (cf. [13]). Let V be a one-dimensional foliation on (M, g). Then the fol-
lowing assertions are equivalent.

(i) V is a homothetic foliation with geodesic leaves and integrable orthogonal
complement;

(ii) V is locally generated by (nowhere zero) conformal vector fields V ∈ Γ(V) such
that dV [ = 0.

Proof. Conformal vector fields V ∈ Γ(TM ), LVg = 2µ g, such that dV [ = 0 are
characterized by the relation∇V = µIdTM . Now it is obvious that any such V which
is nowhere zero generates a conformal foliation with geodesic leaves and integrable
orthogonal complement. Moreover, e−|V | is a local dilation for it whose gradient is
tangent to the leaves and thus V generates a homothetic foliation.

Conversely, if V satisfies (i) then it produces harmonic morphisms. But V is homo-
thetic and hence V is locally generated by conformal vector fields [14, proposition
2·5]. Now, it is easy to see that a conformal vector field V which generates a foliation
with geodesic leaves and integrable orthogonal complement satisfies dV [ = 0.

Lemma 6·6 (see [23]). Let V be a conformal vector field on the Einstein manifold
(Mm, g), LVg = 2σg, Ricci = c g. Then

∇dσ = − c

m− 1
σg (6·1)

and, in particular,
∆σ =

cm

m− 1
σ. (6·2)

Proof. Formula (6·1) follows after a straightforward but tedious computation (see
[23]).

Lemma 6·7. Let f be a smooth function on (M, g) such that ∇df = −kfg for some
constant k ∈ R. Then

kf 2 + |df |2 = constant.

Proof. This is obvious.

Lemma 6·8. Let V be a foliation (codim V > 0) on (M, g) and let V ∈ Γ(V) be such
that ∇V [ = µ g for some smooth function µ on M.

If for some x ∈M we have that Vx = 0 then µ(x) = 0.

Proof. Let X ∈ Γ(V⊥) be a basic vector field. Then [V,X] ∈ Γ(V). But

[V,X] = ∇VX −∇XV = ∇VX − µX.
Thus if Vx = 0 then [V,X]x = −µ(x)Xx ∈Vx and hence µ(x) = 0.
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Lemma 6·9. Let V be a foliation on (M, g) and let grad f ∈ Γ(V) be such that
∇df = −kfg for some nonnegative constant k > 0.

If for some x ∈ M we have that (grad f )x = 0 then grad f = 0. Moreover, if k > 0
then f = 0.

Proof. If k = 0 then | grad f | = constant.
If k > 0 and for some x ∈ M we have that (grad f )x = 0 then by Lemma 6·8 we

have f (x) = 0. The proof now follows from Lemma 6·7.

Proof of Theorem 6·1. Let H be the orthogonal complement of V. Let V ∈ Γ(V)
be a conformal vector field. Then at least locally we can write LVg = −2V(log λ)g
for some local dilation λ of V. By Lemma 1·7 we have that V is an infinitesimal
automorphism of H.

Because V produces harmonic morphisms from Theorem 3·2 it follows that the
mean curvature form of V is basic. Applying Proposition 2·14 with the roles of V

and H reversed we obtain that for any basic vector field X ∈ Γ(H) we have that
X(V (log λ)) = 0. It follows that grad (V(log λ)) ∈ Γ(V).

Now recall that (M, g) is an Einstein manifold and thus it is an analytic manifold
(see [5]). From the regularity of solutions for elliptic operators and (6·2) it follows
that V(log λ) is an analytic function. Hence either V is Riemannian or the interior
of the set where V is Riemannian is empty.

From Lemmas 6·5 and 6·6 it follows that if grad (V(log λ)) is nowhere zero then
it generates a one-dimensional homothetic foliation F with geodesic leaves and in-
tegrable orthogonal complement. Moreover F ⊆ V. Also, note that if c = 0 then
grad (V(log λ)) is a parallel vector field.

Let x ∈ M and suppose that for any conformal vector field V ∈ Γ(V) we have
that grad (V(log λ)) = 0 at x.

If c� 0 then from Lemma 6·8 it follows that V is Riemannian at x. This establishes
assertion (ii). Further, if c > 0 then from Lemma 6·9 it follows that V is Riemannian
in a neighbourhood of x and this establishes assertion (i).

If c = 0 then from Lemma 6·9 it follows that in a neighbourhood of x we have that
V is generated by homothetic vector fields.

Proof of Corollary 6·2. This follows from assertions (i) and (ii) of Theorem 6·1.

Proof of Theorem 6·3. This follows from Theorem 5·6 and Theorem 6·1.

Proof of Corollary 6·4. This follows from Proposition 4·3 and Theorem 6·3.
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