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Isometric Actions and Harmonic Morphisms

RADU PANTILIE

Introduction

Itis well known that a Riemannian foliation with minimal leaves has the property
that it produces harmonic morphisms, thatitis Jeaves are locally fibers of sub-
mersive harmonic morphism$his is an immediate consequence of the fact that
Riemannian submersions with minimal fibers are harmonic morphisms.

More generally, a Riemannian foliation (of codimension not equal to 2) pro-
duces harmonic morphisms if and only if the vector field determined by the mean
curvatures of the leaves is locally a gradient vector field. This is a consequence
of the fundamental equation of Baird and Eells [1] (see Proposition 1.2 in the next
section). Although this condition is quite simple, few examples of such Riemann-
ian foliations were known; our work will provide many new ones.

For a 1-dimensional Riemannian foliation, the condition just stated is equiva-
lent to the fact that the foliation is locally generated by Killing fields (a result due
to Bryant [6]), but this is not true for foliations of dimension greater than 1. In this
paper we show that, for a foliation locally generated by Killing fields, the con-
dition depends only on the integrability tensor of the horizontal distribution and
the induced local action. Thus we obtain a useful criterion for a foliation locally
generated by Killing fields to produce harmonic morphisms. This is done in Sec-
tion 1 (Theorem.13). In Section 2 we derive a few consequences, thus obtaining
the following classes of Riemannian foliations (of codimens#8) that produce
harmonic morphisms:

(a) foliations locally generated by Killing fields and with integrable orthogonal
complement;

(b) foliations generated by the local action of an abelian Lie group of isometries;

(c) foliations generated by the action of a unimodular closed subgroup of the
isometry group;

(d) foliations generated by the action of a Lie group of isometries whose orbits
are naturally reductive homogeneous Riemannian manifolds;

(e) foliations formed by the fibers of principal bundles for which the total space
is endowed with a metric such that the structural group acts as an isometry
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group and the connection induced on the determinant bundle of the adjoint
bundle is flat.

We remark that the omitted case of codimension 2 is much simpler. In this case
a foliation produces harmonic morphisms if and only if it is conformal and its
leaves are minimal (see [23]).

| am deeply indepted to J. C. Wood for help and thoughtful guidance.

1. Characterization of the Isometric Actions
That Produce Harmonic Morphisms

Foliations whose leaves are locally fibers of (submersive) harmonic morphisms
were introduced in [23]. We recall the following definition.

DEerINITION 1.1, Let(M, g) be a (connected) Riemannian manifold ancdUdie
(the tangent bundle of) a foliation on it.

We will say thatV produces harmonic morphisms oM, g) if each point ofM
has an open neighborho@? that is the domain of a submersive harmonic mor-
phismg: (O, g{o) — (N, h) whose fibers are open subsets of the leavas of

Since harmonic morphisms are harmonic maps that are horizontally (weakly) con-
formal [9; 14], a foliation that produces harmonic morphisms is, in particular, a
conformal foliation. Riemannian foliations that produce harmonic morphisms can
be easily characterized as follows. (For the general characterization of conformal
foliations that produce harmonic morphisms, see [3; 6; 17].)

ProrosiTiON 1.2, Let V be a Riemannian foliation oW, g) of codimV # 2.
Then the following assertions are equivalent

(i) V produces harmonic morphisms
(i) the mean curvature formace¥B)” of V is closed.

Proof. Suppose (i) holds; le¥B be the second fundamental form Bfand let

Q! (O, g\o) — (N, h) be a submersive harmonic morphism whose fibers are
open subsets of leaves Yf Let A be the dilation ofp. Recall the following fun-
damental formula (due to Baird and Eells [1]):

traceVB) + (n — 2)H(grad(logx)) = 0,

where? is the “horizontal” distribution (i.e., the orthogonal complement)f
and we have denoted by the same letter the projection onto it.

SinceV is Riemanniani must be basic (i.e., constant along the leavaég)oso
‘H(gradlog 1)) = gradlog ) and (ii) follows. Conversely, if (ii) holds, letbe a
positive smooth function defined on an open subsef M such that trac€’B) =
—(n — 2)gradlog ). Thenx is basic.

By restricting A, if necessary, to an open subsetlaf we can suppose that
there exists a Riemannian submersimn(U, g|U) — (N, h) whose fibers are
connected open subsets of leave3’ofinceA is basic, it descends to a positive
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smooth functiork. on N. Theng: (U, g|,,) — (N. x2h) is a harmonic morphism
and (i) follows. O

ReMARK 1.3. (1) If a Riemannian foliation produces harmonic morphisms then
its mean curvature is a basic vector field. This follows from the fundamental equa-
tion and from the fact that the dilation of a horizontally conformal submersion
whose fibers form a Riemannian foliation is basic.

Note also that, as a horizontal 1-form, tr@g)® is basic if and only if

d(traceVB)*)(V, X) =0

for any verticalV and horizontalX.

(2) If v produces harmonic morphisms and if its leaves are the fibers of the
Riemannian submersign: (M, g) — (N, h), theng can be lifted to a harmonic
morphism whose domain is a Riemannian covering spac&¥p$) (see the proof
of Corollary1.15).

It is well known [19] that the foliations whose mean curvatures are locally gradi-
ent vector fields can be characterized in terms of the associated Bott connection,
defined as follows (see [22]).

DEeFINITION 1.4, LetV be a foliation onM, g) and letH be its orthogonal com-
plement. Thegdapted Bott connectiorV on is defined by

VeV = VIHE, V] + V(VyeV)
for Ee'(TM) andV € I'(V), whereV is the Levi—Civita connection afM, g).

The following proposition is well known (see [19]).

ProrosiTION 1.5. LetV be a foliation ofdimVY = r on (M, g). Then the follow-
ing assertions are equivalent.

() The mean curvature form df is closed.
(i) The connection induced byon A"(V) is flat.
(iii) The identity component of the holonomy groupvois contained irfSL(r).

Prooof. Recall [19] that traceloe) = d(tracaVB))’, whereR is the curvature form
of V. The equivalence (i¥x= (ii) is now obvious. The equivalence (ik—=
(iii) follows from the holonomy theorem (see [15]). O

REMARK 1.6. It is obvious that a Riemannian foliatidhis locally generated by
Killing fields if and only if it is locally generated by infinitesimal automorphisms
of # (= V1) that, when restricted to any leaf bf are Killing fields.

Motivated by the last remark, from now on we shall suppose that we have a fo-
liation V on (M, g) that is locally generated by infinitesimal automorphisms of
its orthogonal complemeri{—that is, vertical vector field¥ whose local flows
preserveH; equivalently,Ly (I'(H)) € I'(H) or [V, X] = 0 for any basic vec-

tor field X (see [20; 22]). It seems difficult to characterize such foliations, but
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we give some examples (see [20; 22]): (i) foliations for whi¢his integrable;

(ii) foliations locally generated by Killing fields (or, more generally, by confor-

mal vector fields); and (iii) foliations formed by the connected components of the

fibers of a principal bundle endowed with a principal connectiptior which, as

is well known, the fundamental vector fields are infinitesimal automorphisms).
Let 7 be the integrability tensor field 6{ that is theV-valued horizontal tensor

field characterized by(X, Y) = —V[X, Y] with X,Y € I'(#), where the nega-

tive sign is included for convenience. For later use we prove the following lemma.

LemMma 1.7. LetV be an infinitesimal automorphism 6{ tangent to). Then
H*(Lyl) = 0.

Proof. Let ¢ be a local diffeomorphism from the local flow &f Recall that ifX
andY are basic the{[ X, Y] is basic and thay,. X = X for any basicX. Hence

Yul(X, V) = = (VIX, Y1) = = (u[X, Y] = Y (HX, Y])

= V[ X, ¥ Y] = 1(Y X, ¥.Y)
for any basicX andY. O
Let{Xy, ..., X,, V4,...,V,} be alocal frame field o such thatX; e I'(¥) are
basic andV, € I'(V) are infinitesimal automorphisms &f (i.e., [V,, X] = O for

any basicX) that locally generat® (r = dim), n = codimV’). We shall always
denote “horizontal” indices by, k, [ and “vertical” indices by, 8, y.

LEmma 1.8 [19]. Let R be the curvature form o¥. Then

»B %
R = nyljk’
»B

Repy = X;(TJ,),
D8 _ pd
Raﬁy - Raﬂy'

Here{l"fy} are Christoffel symbols of the Levi—Civita connectiori&f g) defined
by V(Vy,Vp) = Fg’avy, andR is the curvature form of the Levi—Civita connection
of (M, g).

Proof. SinceV,, is an infinitesimal automorphism &, we have thatV,, X] =
0 for any basic vector field. Then

RE. Vs = R(X;, Xi)Va
= Vx,; (Vx, Vo) = Vx, (Vx;Vo) — Vix; xq Ve
= V[X;, V[Xi, VoIl = V[Xi, VIX), Vo]l = VIHIX;, Xi], Val
= V(Vyx;. xqVe)
= —V(Vyix;.x1Ve) = V(Y x0Va) = DV(Vy, Vo) = 1T V.
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Also,
o ﬂ o
RY. Vi = R(X;, V)V
= Vx;(Vy, Vo) = Vv, (Vx; Vo) — Vix; v, 1 Ve
= V[X;, V(Vy,Vo)] = Vv, (V[X}, Vu])
= V[X;, T}, Vg]
= X;(T'f)Vs + L, VIX;, Vs
= X; (T} )Vp.
The lemma is proved. ]

In order to give the necessary and sufficient condition for a foliation locally gen-
erated by Killing fields to produce harmonic morphisms, we need the following
definition.

DeriniTION 1.9.  LetV be an orientable foliation of dimensionon a smooth
manifold M. Let H be a complementary distribution (i..@® H = TM), and let
I be its integrability tensor. Leb be a volume form oW (i.e., a vertical nonvan-
ishingr-form).

Suppose tha¥ is locally generated by local fram¢g, } such that:
(1) V*(Ly,w) = 0; and
(2) V, is an infinitesimal automorphism @{ for anyc.

We define the 2-form tragad/) on M by
tracgadl) = cgalﬁ,

wherel =V, ® I* and [V, V] = C;’,svr

ExaMpLE 1.10. Let)Y be an orientable foliation o, g), let H = V1, and let

 be a volume form fol” with respect tq. Let {V,} be alocal frame foi’ made

up of Killing fields. Then:

(i) the {V,} satisfy (1) and (2) of Definition 1.9;

(ii) more generally, thdV,} satisfy (1) of Definition 1.9 if and only if their re-
strictions to each leaf is divergence-free.

It can be shown directly that Definition 1.9 is independent of the local frgiipe
of V such that (1) and (2) hold. This also follows from the following proposition.

ProrosiTION 1.11. . LetV, H, I, w, {V,} be as in Definition 1.9, and et be the
curvature form ofVv. Then

(a) tracdadl) = trace(loe);
(b) V*(Lix.vyw) = tracgad! )(X, Y)w for any basic vector field¥ andY.

Moreover, the following assertions are equivatent
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(i) trace(adl) = 0,
(i) at least locally there can be defined smooth positive basic functieueh
that V*(Lx (pw)) = 0 for any horizontal fieldx;
(i) V*(Lyx.ryw) = 0 for any basic vector fieldX andY.

In particular, if the first Betti number off is 0 and (i) holds, thernV is taut(i.e.,
there exists a Riemannian metric dfwith respect to which the leaves dfare
minimal).

Proof. To prove (a), leg be a Riemannian metrig a¥ such that{ = V* andw

is equal to the induced volume form oh and letV be the adapted Bott connec-
tion onV corresponding tg. BecauseV,, Vg] is an infinitesimal automorphism
of H, we have thai(c);) = 0 for any X € H.

Also note that (1) is equivalent to the fact thgt when viewed as a vector field
tangent to the leaves ¥f is divergence-free. Hence, using the same notation as in
Lemma 1.8, we have th&, = 0. But the Levi—Civita connection is torsion-free
and hencd’),, = cf; + I'fy = ;.

Now, from Lemma 1.8 we have that

Do o qV o gV
RaijFayIijCya]jk’

R

ajy — Xi(Fo?ty) = X./'(C)(ja) =0.

Also, sinceV restricted to any leaf is equal to the Levi—Civita connection of the

leaf, which is a metric connection, we have tﬁ%%y = 0 and so (a) follows. Note
that assertion (a) is equivgllent to the fact that ttadé) is the curvature form of
the connection induced By on A"(V).

To prove (b), first show that the left-hand side is equaltal “(X, Y))w, where
{V,} is a local frame foiV satisfying (1) and (2). Then, apply Lemma 1.7 to prove
that tracéad/)(X,Y) = V,(I%(X, Y)).

It is easy to see that (ii) is equivalent to the fact that the mean curvatu’e of
with respect t is closed. The equivalence (8= (ii) now follows from Propo-
sition 1.5. The equivalence (8= (iii) follows from (b). O

REMARk 1.12. (1) Le®V be afoliation oM/ endowed with a volume forra and a
complementary distributiol. Definen to be the horizontal 1-form characterized
by V*(Lxw) = —n(X)w for any horizontal fieldX. Theny is the mean curvature
form of V with respect to any Riemannian metgion M such thaig(w, w) = 1

If (1) and (2) of Definition 1.9 are satisfied, then a straightforward calculation
shows tha is basic (which is equivalent toydV, X) = O for any verticalvV and
horizontal X). This gives a more direct argument for the facts that (a) any Rie-
mannian foliation locally generated by Killing fields has basic mean curvature and
(b) the differential of the mean curvature form is zero when evaluated on a pair
consisting of a vertical and a horizontal vector.

(2) Note that tracéad!) is well-defined also for nonorientable foliations (in
which casew is defined just up to the sign).
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We now state the main result of this section.

THeoreM 1.13. Let V be a Riemannian foliation ot, g) of codim)y # 2,

and let/ be the integrability tensor field of its orthogonal complement. Suppose
that V is locally generated by Killing fields. Then the following assertions are
equivalent

(i) V produces harmonic morphisms
(i) trace(adl) = 0.

Proof. This follows from Proposition 1.2, Proposition 1.5, and Proposition 1.11.

O
REMARK 1.14. Itiseasy to see that Theorehi3holds more generally for Rie-
mannian foliations locally generated by infinitesimal automorphisms of the hori-
zontal distribution that, when restricted to any leaf, are divergence-free (cf. Exam-
ple 1.10).

When the foliation is simple, the result of Theorérth3 takes anore concrete
form.

CoroLLARY 1.15. Letg: (M, g) — (N, h), dimN # 2, be a Riemannian sub-
mersion whose fibers are connected and locally generated by Killing fields, and
let I be the integrability tensor of the horizontal distribution. Then the following
assertions are equivalent
(i) ¢ lifts to aharmonic morphisra: (M, ) — (N, h), where(M, §) — (M, g)

is a Riemannian regular covering amd — N is a regular covering such that

h and the pull-back of: to N are conformally equivalent
(i) trace(adl) = 0.

(See [21, Part I, Sec. 14.6] for the definition of regular coverings.)

Proof. From Theorent.13 it follows that it is sufficient to prove that iV (=
kerg,) produces harmonic morphisms then (i) holds.

Let M — M be the regular covering that corresponds to the cohomology class
[a] € HY(M; R) induced by the differentials of the logarithms of the dilations of
the (local) harmonic morphisms producedby= kerg,). (From the fundamen-
tal equation it follows that can be also defined as the 1-form obtained by applying
the musical isomorphismto n;_lz traceVB).) It is obvious that the pull-back of
[a] to M is zero; let be a smooth positive function aif such that dlog 1) is
equal to the pull-back af to M.

Sinceaq is basic (see Remark 1.3(1)), there exists a regular cove¥ing N
whose pull-back by is M — M. It is obvious thaty lifts to a smooth map
@: M — N.

Let g be the pull-back of to M and leth be the pull-back of: to N. Then
@: (M, 3) — (N, A2h) is a harmonic morphism and the corollary is proved:

REMARK 1.16. If in Corollary1.15 we haveéhat HY(M; R) = 0 or HY(N; R) =
0, then assertion (i) can be replaced by the following stronger assertion:
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(i") there exists a Riemannian metfi¢ on N that is conformally equivalent th
such thaty: (M, g) — (N, hy) is a harmonic morphism.

The same improvement can be made if the foliation formed by the fibers is gen-
erated by acommutingfamily of Killing fields {V4, ..., V,} (in particular, if the
foliation is generated by an abelian Lie group of isometries). To see this, define
by g(Vin--- AV, ViA---AV,) = A?""4 n = dimN. Thenx is the dilation
of the induced harmonic morphism. (Note that here the leaves are flat, since they
are locally generated by parallel vector fields.)

In some cases, tracad/) can be defined in a different way. To show this we need
the following.

DEeFINITION 1.17. Letg be a Lie algebra anfl € g a Lie subalgebra of it. We
shall denote the induced projectiony g — g/h and the adjoint representation
of g by ad

Suppose that tragadA) = 0 for any A € . Then trace> ad: g — R natu-
rally descends to a linear functional gy, which we shall denote by the same
traceo ad

LemMma 1.18. Leth be a Lie subalgebra ofi. Suppose thatraceladA) = 0 for
any A € h. Also, suppose that there exists a linear subspace g such that
h@m=gand[h, m] € m. Then

tracqadA) = cl, A”

foranyA = A*U, e m = g/h and wherg{U,}, = {U;}; U {U,}« is a basis ofg
such that{U;}; C b, {U,}« € m, andc, are the corresponding structural con-
stants ofg given by[U,, U] = ¢S, U..

ReEMARK 1.19. Note that, iff) is a compact Lie subalgebra gf then both of the
assumptions of Lemmh18 aresatisfied.

The following lemma is immediate.

LemMma 1.20. LetV be a foliation on(M, g) that is generated by the action of a
closed subgrou of the isometry group ofM, g). Also, letg be the Lie algebra
of G and forx € M let ), C g be the Lie algebra of the isotropy groupat M.
Let (traceo ad), be the descended linear functional gfh, = V., and let
traceoadbe the induced verticdtHform onM. Thentracgad/) = (tracecad)(/).

REMark 1.21. LetV be afoliation on(M, g) that is locally generated by Killing
fields. Some special circumstances are needed for tradeo be well-defined,
but to simplify the exposition we shall write trasead = 0 to mean that, in the
neighborhood of each point, a local frarfig, } for V can be found that is made up
of Killing fields and is such thatg, = 0, where therg, are defined byY,, V] =

v
CopVy-
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2. Applications
The following two corollaries follow immediately from Theorehi3.

CoroLLARY 2.1. A foliation of codimension£ 2 that is locally generated by
Killing fields and has integrable orthogonal complement produces harmonic mor-
phisms.

CoroLLARY 2.2. A foliation of codimension# 2 that is locally generated by
Killing fields and for whichtraceo ad = 0 produces harmonic morphisms.

Corollary 2.2 admits the following partial converse.

ProrosiTION 2.3. LetV be a foliation of codimensiogt 2 that produces har-
monic morphisms oM, g) and is locally generated by Killing fields. Létbe
the integrability tensor of the orthogonal complemehof V.

Suppose that, on each lekfof V, a pointx € L can be found such tha, is
spanned byI(X,Y) | X,Y € H.}. Thentrace- ad= 0.

Proof. From Theoreni.13 itfollows that we need only prove th¥} is spanned
by {I(X,Y) | X,Y € H,} at each point € M. Obviously this holds on an open
(nonempty) subset of each leafof V. By Lemma 1.7, these subsets are also
closed; the proof follows from the fact that the leaves are connected. O

Next we give an example of a Riemannian foliation locally generated by Killing
fields and for which trac@d/) = 0 but/ # 0 and trace ad # 0.

ExampLE 2.4. LetF be a Riemannian foliation locally generated by Killing
fields that produces harmonic morphisms(af g). Suppose that the orthogonal
complement ofF is not integrable (see the examples that follow). Gebe the
Lie group defined by

G = {(gab,l) |a>0, beR}.

EndowG with a right invariant metrigz and consider the Riemannian product
manifold(M x G, g+ y). LetV = F x TG. Itis obvious thal’ is a foliation lo-
cally generated by Killing fields that produces harmonic morphismgx G,
g+7). Notice, however, that the orthogonal complentRrdf V is nonintegrable
and also that tracead # 0.

For the next application, we recall the following definition (cf. [4, 7.84]).

DEFINITION 2.5. Let(L”?, h) be a locally homogeneous Riemannian manifold
(i.e., a Riemannian manifold whose tangent bundle admits, in a neighborhood
of each point, local frames made up of Killing fields). Th@tr, i) is called
naturally reductiveif each pointx € L has an open neighborhood on which

a local frame{V,}4=1...., made up of Killing fields can be found such that
h([ Vi, V], Vy)) + h(Vg, [Va, V,]) = 0 atx.
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Since any skew-symmetric endomorphism is trace-free, we have the following.

LemMma 2.6. Let (L, k) be a naturally reductive locally homogeneous Riemann-
ian manifold. Therraceo ad= 0.

Our next result follows from Corollary 2.2 and Lemma 2.6.

ProrosiTION 2.7. A foliation of codimension# 2 that is locally generated by
Killing fields and whose leaves are naturally reductive produces harmonic mor-
phisms.

REMARk 2.8. Recall that any locally homogeneous Riemannian manifold that is
locally symmetric is naturally reductive; thus, Proposition 2.7 holds also for fo-
liations that are locally generated by Killing fields and whose leaves are locally
symmetric.

Using Proposition 2.7, we obtain another proof for the following result from [17].

THEOREM 2.9. LetG be a Lie group that acts as an isometry group on the Rie-
mannian manifold M, g), and suppose that the following conditions are satisfied

(i) the orbits of the action off on M have the same codimensign2;
(i) there exists orG a bi-invariant Riemannian metrjc
(iii) the canonical representation of an isotropy group is irreducible.

Then the connected components of the orbits form a Riemannian foliation with
umbilical leaves that produces harmonic morphisms.

Proof. Itis wellknown (see [20, Chap. IV, 4.10]) that (i) implies that the connected
components of the orbits form a Riemannian foliation. LVdde this foliation.

By choosing an Ad5 invariant metric on the Lie algebra 6f and restricting it
to the orthogonal complement of the Lie algebra of the isotropy group=at,
we can induce a metric, onV, that by (i) must be homothetic tg, ’vx (see [15,
Vol. I, Apx. 5]). Thenh is a metric o) that can be extended to a methion M
such that:|,, = g|,,. where is the orthogonal complement bf

Becauseh\v is induced by an Ad; invariant metric,) has naturally reductive
leaves with respect th. But g andi are homothetic when restricted to a leaf and
hence the leaves df are also naturally reductive with respectgoMoreover,
since

(a) V has totally geodesic leaves with respeck tand
(b) ¢ andh are conformal when restricted and equal when restricted 19,

it follows that the leaves op are umbilical with respect tg. O
REMARK 2.10. Note that the same argument can be applied to show that the Ricci

tensor of each leaf is proportional with the induced metric (see [4, 7.44]). Hence,
each leaf is an Einstein manifold in Theorem 2.9.

THEOREM 2.11. LetG be a closed subgroup of the isometry group 8, g) that
generates a foliation” of codimensionz 2.
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(i) Suppose that the Lie algebgeof G satisfietracgadg) = 0. ThenV pro-
duces harmonic morphisms.

(ii) Conversely, ifY produces harmonic morphisms and if, on each othita
pointx € Q can be found such that, is spanned by{/(X,Y) | X,Y € H,},
where I is the integrability tensor of the orthogonal complement)afthen
traceg(adg) = 0.

Proof. (i) It is sufficient to prove that tracead = 0. Let H be the isotropy group
of G atx € M. SinceG is a closed subgroup of the isometry group, we have that
H is compact and hence we can fimd< g suchthag = hdmand [, m] € m.
Let{Ay,..., A} be abasis of and{A, 1, ..., A} a basis ofn. Let {cgﬂ} be
the corresponding structural constantsgofBecause tragadg) = 0, we have
Y a—1Cey=0forg=1...,5 Also, [h, m] C mimpliesthat), = Ofora, y =
1L...,randg=r+1,...,s.
LetBe{r+1....,s}.Then} | _ . cés =—>,_jcss = 0anditfollows that
(traceo ad), = 0.
(i) Note that if a point of an orbit has the assumed property then, on each com-
ponent of that orbit, a point can be found with the same property. The proof now
follows from Proposition 2.3. O

CoroLLARY 2.12. LetG be a compact Lie group of isometries @¥, g). If the
principal orbits of G have codimensioné 2 then their connected components
form a Riemannian foliation that produces harmonic morphisms.

In particular, if (M, g) is compact and if the principal orbits of the isometry
group are of codimensiog 2, then their connected components form a Riemann-
ian foliation that produces harmonic morphisms.

REMARK 2.13. LetG be a Lie group and lej be its Lie algebra. Recall that

if G is connected then tracadg) = O if and only if G is unimodular (i.e., if

its left and right invariant Haar measures—which are unique up to multiplicative
constants—are equal). Also, the condition triachy) = 0 is automatically satis-
fied in the following cases:

(1) G isnilpotent (in particularG is Abelian);

(2) G is semisimple;

(3) G is compact (more generally, Ad is relatively compact irGi(g));

(4) G is ageneral linear group.

For (1) this follows from the fact that il € g then adA: g — g is a nilpotent lin-
ear endomorphism. For (2) and (3) this follows from the fact that, in these cases,
the adjoint group Ads preserves a nondegenerate symmetric bilinear form. For
(4) it can be checked directly that traeelgl,,)) = 0.

Note that if G is as in (2), (3), or (4) then it is a reductive Lie group (i.e., its
derived Lie algebrag, g] is semisimple). Since for any reductive Lie algelgra
we haveg = 3 @ [g, g], wherej is the center of and [g, g] is semisimple, it fol-
lows that any reductive Lie grou@ with Lie algebrag satisfies traceadg) = 0.
Moreover, any foliation generated by a reductive Lie gréupf isometries whose
isotropy group is a reductive Lie subgroup@®@fproduces harmonic morphisms.



464 RADU PANTILIE

THEOREM 2.14. Let&é = (P, N, G) be a principal bundledim N # 2, whose
total spaceP is endowed with a Riemannian metgi¢hat is invariant by the ac-
tion of G. LetH be the induced principal connection §nand leti be the(uniqué
Riemannian metric oV such that the projectiorr: (P, g) — (N, h) is a Rie-
mannian submersion.

Then the following assertions are equivalent.

(i) The connection induced By on the determinant bundle of the adjoint
bundleAd ¢ is flat.

(if) The identity componeri{ of the holonomy group of satisfies
det(Adg H) = 1.

(i) The projectionr lifts to a harmonic morphisn# : (P, §) — (N, i), where
(P, 3) — (P, g) is a Riemannian regular covering aid — N is a regular
covering such thai and the pull-back of: to N are conformally equivalent.
Moreover,(P, N, G) is in a natural way a principal bundle.

Proof. The equivalence (ix= (ii) follows from the holonomy theorem (see
[15]).

Itis obvious that tracead!) is a basic form that is the pull-back of the curvature
form of the determinant bundle of Ad Hence, (i) is equivalent to the fact that
the fibers ofr form a (Riemannian) foliation that produces harmonic morphisms.

Now, from Corollaryl.15 itfollows that it is sufficient to prove tha®, N, G) is
in a natural way a principal bundle. Using the same notation as in CordltEsy
(with P = M), this follows from the fact thaP is the total space of + 5 €
HYN, G x K), wheren € HYN, K) is the regular covering corresponding to
[b] € HY(N, R) and p] is such thatr*[b] = [a]. O

RemARk 2.15. LetV be afoliation on(M, g) generated by the action of the closed
subgroupG of the isometry group ofM, g).

Then it can be proved, directly by using the mass invariance chracteristic prop-
erty of harmonic morphisms (see [17]), thatproduces harmonic morphisms if
and only if the identity componeri{ of the holonomy group at of the orthogo-
nal complement ol satisfies detAds H) = 1. (The holonomy group ot (=
V1) atx € M is formed of those € G such thate andxa can be joined by a hor-
izontal path; cf. [5].) In this way another proof can be obtained for the result of
Theoreml.13applied to foliationgylobally generated by closed subgroups of the
isometry group.

CoroLLARY 2.16. Let (P, N, G) be a principal bundledim N > 3, whose total
spaceP is endowed with a Riemannian metgdhat is invariant by the action
of G. Let H C G be a closed subgroup and suppose thratgadh) = 0 and
trace(adg) = 0. Let E = P xs G/H be the total space of the associated bundle.

Then there exists, at least locally, Riemannian metric&@nd onN with re-
spect to which the natural projectiai — N is (suitably restricted a harmonic
morphism.
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Proof. Itis well known that(P, E, H) is in a natural way a principal bundle (see
[15]). From Theorem 2.14 it follows that both of the foliations inducedrohy

the actions ofG and H produce harmonic morphisms. Thus, at least locally, we
can find metrics orE and N with respect to which the projection’® — E and

P — N are harmonic morphisms. Since the first of these is surjective this implies
that the projectiorE — N can also be made, at least locally, a harmonic mor-
phism (see [8, 2.31] and [11, Prdb1]). O

It is obvious that Corollary 2.16 still holds if diN =1 # dimG — dim H.

CoRrOLLARY 2.17. Let(G, g) be aLie group endowed with a rigfieft) invariant
Riemannian metric. L&k € H C G be closed subgroups such thedceadt) =
0, tracgadh) = 0, anddimG — dim H > 3.

Then there exists, at least locally, Riemannian metric&¢H and G/K with
respect to which the natural projectiai/K — G/H is (suitably restricted a
harmonic morphism.

It is obvious that Corollary 2.17 still holds if
dmG —dimH =1# dimH — dimK.

ExampLE 2.18. (1) A 1-dimensional Riemannian foliation produces harmonic
morphisms if and only if it is locally generated by Killing fields. This result is
due to Bryant [6] and the “if” part follows also from Corollary 2.2 (see dlish
Prop. 2.3]).

(2) The foliation formed on (an open subset of) a hyperspKéngy the inter-
sections with it of a parallel family of planesR ! of codimension# 2 produces
harmonic morphisms. This follows from Corollary 2.1 or Theorem 2.9, and can
also be proved by noting that the foliation is induced by one of the projections
of a warped product (sd&7, Ex. 126(1)]). Similar examples can be obtained on
Euclidean spaces and hyperbolic spaces.

(3) LetK = R, C, Hand consider o/,,(K), n > 2, the following well-known
right invariant Riemannian metric:

g= Y ldri- (xH%
i,j=1

Let K € H € G C GI,(K) be closed subgroups such that treadt) = O,
traceadh) = 0, and dimG — dim H # 2 # dimG — dim K. Then, at least lo-
cally, a metric can be found o@/H (which is unique up to homotheties) such
that the projectiol; — G/H becomes, suitably restricted, a harmonic morphism.
(If G or G/H has zero first Betti number then this metric can be defined glob-
ally on G/H.) Also, at least locally, a metric can be found on the total space of
the projectionG/K — G/H such that the induced foliation produces harmonic
morphisms. (IfG/K andG/H both have zero first Betti number then there can
be defined (global) metrics on them such t6dkK — G/H becomes a harmonic
morphism.)
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For instance, the foliations formed by the fibers of the following natural maps
produce harmonic morphisms:

Glp+q(K) — Gp+q,p(K) X GPJrqqq(K)’
Glpig(K) = Vpig p(K) X Gpig 4 (K),
Glyig(K) = PGy (K),

whereG,,,,(K) for p,q > 1is the Grassmanian manifold ptdimensional
subspaces dk”*4, V,., ,(K) is the Stiefel manifold op-frames orlK”*¢, and
for the first projectiorp + ¢ > 3 if K = R. If K = H then the first Betti number
of Gl,44(K) is zero and hence in these cases, on the image of each of the three
maps just displayed, a metric can be found such that the induced map becomes a
harmonic morphism.

In particular, consider oG/ (R) the coordinates given by = (1; ;3). With
respect to these coordinates we have

1

N m{(x32 +x)(dxf + dxd) + (xf + x2)(dx] + dx)

— 2(x1x3 + x2x4) (dx1dx3 + dxodxy)}.

Hence on the images of the following two maps there exist Riemannian metrics,
unique up to homotheties, with respect to which the induced maps are harmonic
morphisms:

01: Gl;(R) — PGZ;(R),

given by the natural projection; and
92: GIf(R) — R? x RP%,

given bygo(xy, x2, x3, x4) = ((x1, x2), [x3 : x4]). If K = C, H then we can also
consider the foliation induced by the méaj,(K) — KP! x KPL
Other examples can be obtained by considering other linear Lie groups.
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