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Isometric Actions and Harmonic Morphisms

Radu Pantil ie

Introduction

It is well known that a Riemannian foliation with minimal leaves has the property
that it produces harmonic morphisms, that is,its leaves are locally fibers of sub-
mersive harmonic morphisms.This is an immediate consequence of the fact that
Riemannian submersions with minimal fibers are harmonic morphisms.

More generally, a Riemannian foliation (of codimension not equal to 2) pro-
duces harmonic morphisms if and only if the vector field determined by the mean
curvatures of the leaves is locally a gradient vector field. This is a consequence
of the fundamental equation of Baird and Eells [1] (see Proposition 1.2 in the next
section). Although this condition is quite simple, few examples of such Riemann-
ian foliations were known; our work will provide many new ones.

For a 1-dimensional Riemannian foliation, the condition just stated is equiva-
lent to the fact that the foliation is locally generated by Killing fields (a result due
to Bryant [6]), but this is not true for foliations of dimension greater than 1. In this
paper we show that, for a foliation locally generated by Killing fields, the con-
dition depends only on the integrability tensor of the horizontal distribution and
the induced local action. Thus we obtain a useful criterion for a foliation locally
generated by Killing fields to produce harmonic morphisms. This is done in Sec-
tion 1 (Theorem1.13). In Section 2 we derive a few consequences, thus obtaining
the following classes of Riemannian foliations (of codimension6= 2) that produce
harmonic morphisms:

(a) foliations locally generated by Killing fields and with integrable orthogonal
complement;

(b) foliations generated by the local action of an abelian Lie group of isometries;
(c) foliations generated by the action of a unimodular closed subgroup of the

isometry group;
(d) foliations generated by the action of a Lie group of isometries whose orbits

are naturally reductive homogeneous Riemannian manifolds;
(e) foliations formed by the fibers of principal bundles for which the total space

is endowed with a metric such that the structural group acts as an isometry
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group and the connection induced on the determinant bundle of the adjoint
bundle is flat.

We remark that the omitted case of codimension 2 is much simpler. In this case
a foliation produces harmonic morphisms if and only if it is conformal and its
leaves are minimal (see [23]).

I am deeply indepted to J. C. Wood for help and thoughtful guidance.

1. Characterization of the Isometric Actions
That Produce Harmonic Morphisms

Foliations whose leaves are locally fibers of (submersive) harmonic morphisms
were introduced in [23]. We recall the following definition.

Definition 1.1. Let(M, g) be a (connected) Riemannian manifold and letV be
(the tangent bundle of ) a foliation on it.

We will say thatV produces harmonic morphisms on(M, g) if each point ofM
has an open neighborhoodO that is the domain of a submersive harmonic mor-
phismϕ :

(
O, g

∣∣
O

)→ (N, h) whose fibers are open subsets of the leaves ofV.
Since harmonic morphisms are harmonic maps that are horizontally (weakly) con-
formal [9; 14], a foliation that produces harmonic morphisms is, in particular, a
conformal foliation. Riemannian foliations that produce harmonic morphisms can
be easily characterized as follows. (For the general characterization of conformal
foliations that produce harmonic morphisms, see [3; 6; 17].)

Proposition 1.2. Let V be a Riemannian foliation on(M, g) of codimV 6= 2.
Then the following assertions are equivalent:

(i) V produces harmonic morphisms;
(ii) the mean curvature formtrace(VB)[ of V is closed.

Proof. Suppose (i) holds; letVB be the second fundamental form ofV and let
ϕ :
(
O, g

∣∣
O

) → (N, h) be a submersive harmonic morphism whose fibers are
open subsets of leaves ofV. Let λ be the dilation ofϕ. Recall the following fun-
damental formula (due to Baird and Eells [1]):

trace(VB)+ (n− 2)H(grad(logλ)) = 0,

whereH is the “horizontal” distribution (i.e., the orthogonal complement ofV )
and we have denoted by the same letter the projection onto it.

SinceV is Riemannian,λmust be basic (i.e., constant along the leaves ofV ), so
H(grad(logλ)) = grad(logλ) and (ii) follows. Conversely, if (ii) holds, letλ be a
positive smooth function defined on an open subsetU ofM such that trace(VB) =
−(n− 2)grad(logλ). Thenλ is basic.

By restrictingλ, if necessary, to an open subset ofU, we can suppose that
there exists a Riemannian submersionϕ :

(
U, g

∣∣
U

) → (N, h) whose fibers are
connected open subsets of leaves ofV. Sinceλ is basic, it descends to a positive
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smooth functioňλ onN. Thenϕ :
(
U, g

∣∣
U

)→ (N, λ̌2h) is a harmonic morphism
and (i) follows.

Remark 1.3. (1) If a Riemannian foliation produces harmonic morphisms then
its mean curvature is a basic vector field. This follows from the fundamental equa-
tion and from the fact that the dilation of a horizontally conformal submersion
whose fibers form a Riemannian foliation is basic.

Note also that, as a horizontal 1-form, trace(VB)[ is basic if and only if

d(trace(VB)[)(V,X) = 0

for any verticalV and horizontalX.
(2) If V produces harmonic morphisms and if its leaves are the fibers of the

Riemannian submersionϕ : (M, g)→ (N, h), thenϕ can be lifted to a harmonic
morphism whose domain is a Riemannian covering space of(M, g) (see the proof
of Corollary1.15).

It is well known [19] that the foliations whose mean curvatures are locally gradi-
ent vector fields can be characterized in terms of the associated Bott connection,
defined as follows (see [22]).

Definition 1.4. LetV be a foliation on(M, g) and letH be its orthogonal com-

plement. The (adapted) Bott connection
◦∇ onV is defined by

◦∇EV = V [HE,V ] + V(∇VEV )
for E ∈0(TM) andV ∈0(V ), where∇ is the Levi–Civita connection of(M, g).

The following proposition is well known (see [19]).

Proposition 1.5. LetV be a foliation ofdimV = r on (M, g). Then the follow-
ing assertions are equivalent.

(i) The mean curvature form ofV is closed.
(ii) The connection induced by

◦∇ on3r(V ) is flat.
(iii) The identity component of the holonomy group of

◦∇ is contained inSL(r).

Proof. Recall [19] that trace(
◦
R) = d(trace(VB))[, where

◦
R is the curvature form

of
◦∇. The equivalence (i)⇐⇒ (ii) is now obvious. The equivalence (ii)⇐⇒

(iii) follows from the holonomy theorem (see [15]).

Remark 1.6. It is obvious that a Riemannian foliationV is locally generated by
Killing fields if and only if it is locally generated by infinitesimal automorphisms
ofH (= V⊥) that, when restricted to any leaf ofV, are Killing fields.

Motivated by the last remark, from now on we shall suppose that we have a fo-
liation V on (M, g) that is locally generated by infinitesimal automorphisms of
its orthogonal complementH—that is, vertical vector fieldsV whose local flows
preserveH; equivalently,LV (0(H)) ⊆ 0(H) or [V,X] = 0 for any basic vec-
tor fieldX (see [20; 22]). It seems difficult to characterize such foliations, but
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we give some examples (see [20; 22]): (i) foliations for whichH is integrable;
(ii) foliations locally generated by Killing fields (or, more generally, by confor-
mal vector fields); and (iii) foliations formed by the connected components of the
fibers of a principal bundle endowed with a principal connectionH (for which, as
is well known, the fundamental vector fields are infinitesimal automorphisms).

Let I be the integrability tensor field ofH that is theV-valued horizontal tensor
field characterized byI(X, Y ) = −V [X, Y ] with X, Y ∈ 0(H), where the nega-
tive sign is included for convenience. For later use we prove the following lemma.

Lemma 1.7. Let V be an infinitesimal automorphism ofH tangent toV. Then
H∗(LVI ) = 0.

Proof. Letψ be a local diffeomorphism from the local flow ofV. Recall that ifX
andY are basic thenH[X, Y ] is basic and thatψ∗X = X for any basicX. Hence

ψ∗(I(X, Y )) = −ψ∗(V [X, Y ]) = −(ψ∗[X, Y ] − ψ∗(H[X, Y ])
)

= −([ψ∗X,ψ∗Y ] −H[X, Y ])

= −([ψ∗X,ψ∗Y ] −H[ψ∗X,ψ∗Y ])

= −V [ψ∗X,ψ∗Y ] = I(ψ∗X,ψ∗Y )
for any basicX andY.

Let {X1, . . . , Xn,V1, . . . ,Vr} be a local frame field onM such thatXj ∈0(H) are
basic andVα ∈ 0(V ) are infinitesimal automorphisms ofH (i.e., [Vα,X] = 0 for
any basicX) that locally generateV (r = dimV, n = codimV ). We shall always
denote “horizontal” indices byj, k, l and “vertical” indices byα, β, γ.

Lemma 1.8 [19]. Let
◦
R be the curvature form of

◦∇. Then
◦
R
β

αjk = 0βαγ I γjk,
◦
R
β

αjγ = Xj(0βαγ ),
◦
Rδ
αβγ = Rδ

αβγ .

Here{0βαγ } are Christoffel symbols of the Levi–Civita connection of(M, g) defined
byV(∇VαVβ) = 0γβαVγ , andR is the curvature form of the Levi–Civita connection
of (M, g).

Proof. SinceVα is an infinitesimal automorphism ofH, we have that [Vα,X] =
0 for any basic vector fieldX. Then
◦
R
β

αjkVβ =
◦
R(Xj,Xk)Vα

= ◦∇Xj (
◦∇XkVα)−

◦∇Xk (
◦∇XjVα)−

◦∇[Xj,Xk ]Vα

= V [Xj,V [Xk,Vα]] −V [Xk,V [Xj,Vα]] −V [H[Xj,Xk],Vα]

− V(∇V [Xj,Xk ]Vα)

= −V(∇V [Xj,Xk ]Vα) = V(∇I(Xj,Xk)Vα) = I γjkV(∇VγVα) = I γjk0βαγVβ.
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Also,
◦
R
β

αjγVβ =
◦
R(Xj,Vγ )Vα

= ◦∇Xj (
◦∇VγVα)−

◦∇Vγ(
◦∇XjVα)−

◦∇[Xj,Vγ ]Vα

= V [Xj,V(∇VγVα)] −
◦∇Vγ(V [Xj,Vα])

= V [Xj, 0
β
αγVβ ]

= Xj(0βαγ )Vβ + 0βαγV [Xj,Vβ ]

= Xj(0βαγ )Vβ.
The lemma is proved.

In order to give the necessary and sufficient condition for a foliation locally gen-
erated by Killing fields to produce harmonic morphisms, we need the following
definition.

Definition 1.9. LetV be an orientable foliation of dimensionr on a smooth
manifoldM. LetH be a complementary distribution (i.e.,V ⊕H = TM), and let
I be its integrability tensor. Letω be a volume form onV (i.e., a vertical nonvan-
ishingr-form).

Suppose thatV is locally generated by local frames{Vα} such that:

(1) V ∗(LVαω) = 0; and
(2) Vα is an infinitesimal automorphism ofH for anyα.

We define the 2-form trace(adI ) onM by

trace(adI ) = cαβαIβ,
whereI = Vα ⊗ I α and [Vα,Vβ ] = cγαβVγ .
Example 1.10. LetV be an orientable foliation on(M, g), letH = V⊥, and let
ω be a volume form forV with respect tog. Let {Vα} be a local frame forV made
up of Killing fields. Then:

(i) the {Vα} satisfy (1) and (2) of Definition 1.9;
(ii) more generally, the{Vα} satisfy (1) of Definition 1.9 if and only if their re-

strictions to each leaf is divergence-free.

It can be shown directly that Definition 1.9 is independent of the local frame{Vα}
of V such that (1) and (2) hold. This also follows from the following proposition.

Proposition 1.11. Let V,H, I, ω, {Vα} be as in Definition 1.9, and let
◦
R be the

curvature form of
◦∇. Then:

(a) trace(adI ) = trace(
◦
R);

(b) V ∗(LI(X,Y )ω) = trace(adI )(X, Y )ω for any basic vector fieldsX andY.

Moreover, the following assertions are equivalent:
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(i) trace(adI ) = 0;
(ii) at least locally there can be defined smooth positive basic functionsρ such

that V ∗(LX(ρω)) = 0 for any horizontal fieldX;
(iii) V ∗(LI(X,Y )ω) = 0 for any basic vector fieldsX andY.

In particular, if the first Betti number ofM is 0 and (i) holds, thenV is taut (i.e.,
there exists a Riemannian metric onM with respect to which the leaves ofV are
minimal).

Proof. To prove (a), letg be a Riemannian metric onM such thatH = V⊥ andω
is equal to the induced volume form onV, and let

◦∇ be the adapted Bott connec-
tion onV corresponding tog. Because [Vα,Vβ ] is an infinitesimal automorphism
ofH, we have thatX(cγαβ) = 0 for anyX ∈H.

Also note that (1) is equivalent to the fact thatVα,when viewed as a vector field
tangent to the leaves ofV, is divergence-free. Hence, using the same notation as in
Lemma 1.8, we have that0βαβ = 0. But the Levi–Civita connection is torsion-free
and hence0ββα = cβαβ + 0βαβ = cβαβ.

Now, from Lemma 1.8 we have that
◦
Rα
αjk = 0ααγ I γjk = cαγαI γjk,
◦
Rα
αjγ = Xj(0ααγ ) = Xj(cαγα) = 0.

Also, since
◦∇ restricted to any leaf is equal to the Levi–Civita connection of the

leaf, which is a metric connection, we have that
◦
Rα
αβγ = 0 and so (a) follows. Note

that assertion (a) is equivalent to the fact that trace(adI ) is the curvature form of
the connection induced by

◦∇ on3r(V ).
To prove (b), first show that the left-hand side is equal toVα(I

α(X, Y ))ω,where
{Vα} is a local frame forV satisfying (1) and (2). Then, apply Lemma 1.7 to prove
that trace(adI )(X, Y ) = Vα(I α(X, Y )).

It is easy to see that (ii) is equivalent to the fact that the mean curvature ofV
with respect tog is closed. The equivalence (i)⇐⇒ (ii) now follows from Propo-
sition 1.5. The equivalence (i)⇐⇒ (iii) follows from (b).

Remark 1.12. (1) LetV be a foliation onM endowed with a volume formω and a
complementary distributionH. Defineη to be the horizontal 1-form characterized
byV ∗(LXω) = −η(X)ω for any horizontal fieldX. Thenη is the mean curvature
form of V with respect to any Riemannian metricg onM such thatg(ω, ω) = 1.

If (1) and (2) of Definition 1.9 are satisfied, then a straightforward calculation
shows thatη is basic (which is equivalent to dη(V,X) = 0 for any verticalV and
horizontalX). This gives a more direct argument for the facts that (a) any Rie-
mannian foliation locally generated by Killing fields has basic mean curvature and
(b) the differential of the mean curvature form is zero when evaluated on a pair
consisting of a vertical and a horizontal vector.

(2) Note that trace(adI ) is well-defined also for nonorientable foliations (in
which caseω is defined just up to the sign).
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We now state the main result of this section.

Theorem 1.13. Let V be a Riemannian foliation on(M, g) of codimV 6= 2,
and letI be the integrability tensor field of its orthogonal complement. Suppose
that V is locally generated by Killing fields. Then the following assertions are
equivalent:

(i) V produces harmonic morphisms;
(ii) trace(adI ) = 0.

Proof. This follows from Proposition 1.2, Proposition 1.5, and Proposition 1.11.

Remark 1.14. It iseasy to see that Theorem1.13holds more generally for Rie-
mannian foliations locally generated by infinitesimal automorphisms of the hori-
zontal distribution that, when restricted to any leaf, are divergence-free (cf. Exam-
ple 1.10).

When the foliation is simple, the result of Theorem1.13 takes amore concrete
form.

Corollary 1.15. Let ϕ : (M, g)→ (N, h), dimN 6= 2, be a Riemannian sub-
mersion whose fibers are connected and locally generated by Killing fields, and
let I be the integrability tensor of the horizontal distribution. Then the following
assertions are equivalent:

(i) ϕ lifts to a harmonic morphism̃ϕ : (M̃, g̃)→ (Ñ, h̃),where(M̃, g̃)→ (M, g)

is a Riemannian regular covering and̃N → N is a regular covering such that
h̃ and the pull-back ofh to Ñ are conformally equivalent;

(ii) trace(adI ) = 0.

(See [21, Part I, Sec. 14.6] for the definition of regular coverings.)

Proof. From Theorem1.13 it follows that it is sufficient to prove that ifV (=
kerϕ∗) produces harmonic morphisms then (i) holds.

Let M̃ → M be the regular covering that corresponds to the cohomology class
[a] ∈H1(M;R) induced by the differentials of the logarithms of the dilations of
the (local) harmonic morphisms produced byV (= kerϕ∗). (From the fundamen-
tal equation it follows thata can be also defined as the1-form obtained by applying
the musical isomorphism[ to −1

n−2 trace(VB).) It is obvious that the pull-back of
[a] to M̃ is zero; letλ be a smooth positive function oñM such that d(logλ) is
equal to the pull-back ofa to M̃.

Sincea is basic (see Remark 1.3(1)), there exists a regular coveringÑ → N

whose pull-back byϕ is M̃ → M. It is obvious thatϕ lifts to a smooth map
ϕ̃ : M̃ → Ñ.

Let g̃ be the pull-back ofg to M̃ and leth̄ be the pull-back ofh to Ñ. Then
ϕ̃ : (M̃, g̃)→ (Ñ, λ2h̄) is a harmonic morphism and the corollary is proved.

Remark 1.16. If in Corollary1.15 we havethatH1(M;R) = 0 orH1(N;R) =
0, then assertion (i) can be replaced by the following stronger assertion:
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(i′) there exists a Riemannian metrich1 onN that is conformally equivalent toh
such thatϕ : (M, g)→ (N, h1) is a harmonic morphism.

The same improvement can be made if the foliation formed by the fibers is gen-
erated by acommutingfamily of Killing fields {V1, . . . ,Vr} (in particular, if the
foliation is generated by an abelian Lie group of isometries). To see this, defineλ

by g(V1∧ · · · ∧ Vr, V1∧ · · · ∧ Vr) = λ2n−4, n = dimN. Thenλ is the dilation
of the induced harmonic morphism. (Note that here the leaves are flat, since they
are locally generated by parallel vector fields.)

In some cases, trace(adI ) can be defined in a different way. To show this we need
the following.

Definition 1.17. Letg be a Lie algebra andh ⊆ g a Lie subalgebra of it. We
shall denote the induced projection byπ : g→ g/h and the adjoint representation
of g by ad.

Suppose that trace(adA) = 0 for anyA ∈ h. Then traceB ad: g → R natu-
rally descends to a linear functional ong/h, which we shall denote by the same
traceB ad.

Lemma 1.18. Let h be a Lie subalgebra ofg. Suppose thattrace(adA) = 0 for
anyA ∈ h. Also, suppose that there exists a linear subspacem ⊆ g such that
h⊕m = g and [h,m] ⊆ m. Then

trace(adA) = cβαβAα

for anyA = AαUα ∈m ∼= g/h and where{Ua}a = {Uj }j ∪ {Uα}α is a basis ofg
such that{Uj }j ⊆ h, {Uα}α ⊆ m, andccab are the corresponding structural con-
stants ofg given by[Ua,Ub] = ccabUc.
Remark 1.19. Note that, ifh is a compact Lie subalgebra ofg, then both of the
assumptions of Lemma1.18 aresatisfied.

The following lemma is immediate.

Lemma 1.20. Let V be a foliation on(M, g) that is generated by the action of a
closed subgroupG of the isometry group of(M, g). Also, letg be the Lie algebra
ofG and forx ∈M let hx ⊆ g be the Lie algebra of the isotropy group atx ∈M.

Let (traceB ad)x be the descended linear functional ong/hx ∼= Vx, and let
traceBadbe the induced vertical1-form onM. Thentrace(adI ) = (traceBad)(I ).

Remark 1.21. LetV be a foliation on(M, g) that is locally generated by Killing
fields. Some special circumstances are needed for traceB ad to be well-defined,
but to simplify the exposition we shall write traceB ad= 0 to mean that, in the
neighborhood of each point, a local frame{Vα} for V can be found that is made up
of Killing fields and is such thatcαβα = 0, where thecαβγ are defined by [Vα,Vβ ] =
c
γ

αβVγ .
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2. Applications

The following two corollaries follow immediately from Theorem1.13.

Corollary 2.1. A foliation of codimension6= 2 that is locally generated by
Killing fields and has integrable orthogonal complement produces harmonic mor-
phisms.

Corollary 2.2. A foliation of codimension6= 2 that is locally generated by
Killing fields and for whichtraceB ad= 0 produces harmonic morphisms.

Corollary 2.2 admits the following partial converse.

Proposition 2.3. Let V be a foliation of codimension6= 2 that produces har-
monic morphisms on(M, g) and is locally generated by Killing fields. LetI be
the integrability tensor of the orthogonal complementH of V.

Suppose that, on each leafL of V, a pointx ∈ L can be found such thatVx is
spanned by{I(X, Y ) | X, Y ∈Hx}. ThentraceB ad= 0.

Proof. From Theorem1.13 it follows that we need only prove thatVx is spanned
by {I(X, Y ) | X, Y ∈Hx} at each pointx ∈M. Obviously this holds on an open
(nonempty) subset of each leafL of V. By Lemma 1.7, these subsets are also
closed; the proof follows from the fact that the leaves are connected.

Next we give an example of a Riemannian foliation locally generated by Killing
fields and for which trace(adI ) = 0 butI 6= 0 and traceB ad 6= 0.

Example 2.4. LetF be a Riemannian foliation locally generated by Killing
fields that produces harmonic morphisms on(M, g). Suppose that the orthogonal
complement ofF is not integrable (see the examples that follow). LetG be the
Lie group defined by

G = {( a b

0 a−1

) ∣∣ a > 0, b ∈R}.
EndowG with a right invariant metricγ and consider the Riemannian product

manifold(M ×G, g+ γ ). LetV = F × TG. It is obvious thatV is a foliation lo-
cally generated by Killing fields that produces harmonic morphisms on(M ×G,
g+γ ). Notice, however, that the orthogonal complementH of V is nonintegrable
and also that traceB ad 6= 0.

For the next application, we recall the following definition (cf. [4, 7.84]).

Definition 2.5. Let(Lp, h) be a locally homogeneous Riemannian manifold
(i.e., a Riemannian manifold whose tangent bundle admits, in a neighborhood
of each point, local frames made up of Killing fields). Then(Lp, h) is called
naturally reductiveif each pointx ∈ L has an open neighborhood on which
a local frame{Vα}α=1, ...,p made up of Killing fields can be found such that
h([Vα,Vβ ],Vγ )+ h(Vβ, [Vα,Vγ ]) = 0 atx.
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Since any skew-symmetric endomorphism is trace-free, we have the following.

Lemma 2.6. Let (L, h) be a naturally reductive locally homogeneous Riemann-
ian manifold. ThentraceB ad= 0.

Our next result follows from Corollary 2.2 and Lemma 2.6.

Proposition 2.7. A foliation of codimension6= 2 that is locally generated by
Killing fields and whose leaves are naturally reductive produces harmonic mor-
phisms.

Remark 2.8. Recall that any locally homogeneous Riemannian manifold that is
locally symmetric is naturally reductive; thus, Proposition 2.7 holds also for fo-
liations that are locally generated by Killing fields and whose leaves are locally
symmetric.

Using Proposition 2.7, we obtain another proof for the following result from [17].

Theorem 2.9. LetG be a Lie group that acts as an isometry group on the Rie-
mannian manifold(M, g), and suppose that the following conditions are satisfied:

(i) the orbits of the action ofG onM have the same codimension6= 2;
(ii) there exists onG a bi-invariant Riemannian metric;

(iii) the canonical representation of an isotropy group is irreducible.

Then the connected components of the orbits form a Riemannian foliation with
umbilical leaves that produces harmonic morphisms.

Proof. It is well known (see [20, Chap. IV, 4.10]) that (i) implies that the connected
components of the orbits form a Riemannian foliation. LetV be this foliation.

By choosing an AdG invariant metric on the Lie algebra ofG and restricting it
to the orthogonal complement of the Lie algebra of the isotropy group atx ∈M,
we can induce a metric̄hx onVx that by (iii) must be homothetic togx

∣∣
Vx (see [15,

Vol. I, Apx. 5]). Thenh̄ is a metric onV that can be extended to a metrich onM
such thath

∣∣
H = g

∣∣
H, whereH is the orthogonal complement ofV.

Becauseh
∣∣
V is induced by an AdG invariant metric,V has naturally reductive

leaves with respect toh. But g andh are homothetic when restricted to a leaf and
hence the leaves ofV are also naturally reductive with respect tog. Moreover,
since

(a) V has totally geodesic leaves with respect toh and
(b) g andh are conformal when restricted toV and equal when restricted toH,
it follows that the leaves ofV are umbilical with respect tog.

Remark 2.10. Note that the same argument can be applied to show that the Ricci
tensor of each leaf is proportional with the induced metric (see [4, 7.44]). Hence,
each leaf is an Einstein manifold in Theorem 2.9.

Theorem 2.11. LetG be a closed subgroup of the isometry group of(M, g) that
generates a foliationV of codimension6= 2.
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(i) Suppose that the Lie algebrag ofG satisfiestrace(adg) = 0. ThenV pro-
duces harmonic morphisms.

(ii) Conversely, ifV produces harmonic morphisms and if, on each orbitQ, a
point x ∈ Q can be found such thatVx is spanned by{I(X, Y ) | X, Y ∈ Hx},
where I is the integrability tensor of the orthogonal complement ofV, then
trace(adg) = 0.

Proof. (i) It is sufficient to prove that traceB ad= 0. LetH be the isotropy group
of G atx ∈M. SinceG is a closed subgroup of the isometry group, we have that
H is compact and hence we can findm ⊆ g such thatg = h⊕m and [h,m] ⊆ m.

Let {A1, . . . , Ar} be a basis ofh and{Ar+1, . . . , As} a basis ofm. Let {cγαβ} be
the corresponding structural constants ofg. Because trace(adg) = 0, we have∑s

α=1 c
α
αβ = 0 forβ = 1, . . . , s. Also, [h,m] ⊆ m implies thatcγαβ = 0 forα, γ =

1, . . . , r andβ = r +1, . . . , s.
Letβ ∈ {r +1, . . . , s}. Then

∑s
α=r+1 c

α
αβ = −

∑r
α=1 c

α
αβ = 0 and it follows that

(traceB ad)x = 0.
(ii) Note that if a point of an orbit has the assumed property then, on each com-

ponent of that orbit, a point can be found with the same property. The proof now
follows from Proposition 2.3.

Corollary 2.12. LetG be a compact Lie group of isometries of(M, g). If the
principal orbits ofG have codimension6= 2 then their connected components
form a Riemannian foliation that produces harmonic morphisms.

In particular, if (M, g) is compact and if the principal orbits of the isometry
group are of codimension6= 2, then their connected components form a Riemann-
ian foliation that produces harmonic morphisms.

Remark 2.13. LetG be a Lie group and letg be its Lie algebra. Recall that
if G is connected then trace(adg) = 0 if and only ifG is unimodular (i.e., if
its left and right invariant Haar measures—which are unique up to multiplicative
constants—are equal). Also, the condition trace(adg) = 0 is automatically satis-
fied in the following cases:

(1) G is nilpotent (in particular,G is Abelian);
(2) G is semisimple;
(3) G is compact (more generally, AdG is relatively compact inGl(g));
(4) G is a general linear group.

For (1) this follows from the fact that ifA∈ g then adA : g→ g is a nilpotent lin-
ear endomorphism. For (2) and (3) this follows from the fact that, in these cases,
the adjoint group AdG preserves a nondegenerate symmetric bilinear form. For
(4) it can be checked directly that trace(ad(gln)) = 0.

Note that ifG is as in (2), (3), or (4) then it is a reductive Lie group (i.e., its
derived Lie algebra [g, g] is semisimple). Since for any reductive Lie algebrag
we haveg = z⊕ [g, g], wherez is the center ofg and [g, g] is semisimple, it fol-
lows that any reductive Lie groupG with Lie algebrag satisfies trace(adg) = 0.
Moreover, any foliation generated by a reductive Lie groupG of isometries whose
isotropy group is a reductive Lie subgroup ofG produces harmonic morphisms.
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Theorem 2.14. Let ξ = (P,N,G) be a principal bundle,dimN 6= 2, whose
total spaceP is endowed with a Riemannian metricg that is invariant by the ac-
tion ofG. LetH be the induced principal connection onξ, and leth be the(unique)
Riemannian metric onN such that the projectionπ : (P, g) → (N, h) is a Rie-
mannian submersion.

Then the following assertions are equivalent.

(i) The connection induced byH on the determinant bundle of the adjoint
bundleAd ξ is flat.

(ii) The identity componentH of the holonomy group ofH satisfies
det(AdG H ) = 1.

(iii) The projectionπ lifts to a harmonic morphism̃π : (P̃, g̃)→ (Ñ, h̃), where
(P̃, g̃)→ (P, g) is a Riemannian regular covering and̃N → N is a regular
covering such that̃h and the pull-back ofh to Ñ are conformally equivalent.
Moreover,(P̃, Ñ,G) is in a natural way a principal bundle.

Proof. The equivalence (i)⇐⇒ (ii) follows from the holonomy theorem (see
[15]).

It is obvious that trace(adI ) is a basic form that is the pull-back of the curvature
form of the determinant bundle of Adξ. Hence, (i) is equivalent to the fact that
the fibers ofπ form a (Riemannian) foliation that produces harmonic morphisms.

Now, from Corollary1.15 itfollows that it is sufficient to prove that(P̃, Ñ,G) is
in a natural way a principal bundle. Using the same notation as in Corollary1.15
(with P = M), this follows from the fact thatP̃ is the total space ofξ + η ∈
H1(N,G × K), whereη ∈ H1(N,K) is the regular covering corresponding to
[b] ∈H1(N,R) and [b] is such thatπ∗ [b] = [a].

Remark 2.15. LetV be a foliation on(M, g) generated by the action of the closed
subgroupG of the isometry group of(M, g).

Then it can be proved, directly by using the mass invariance chracteristic prop-
erty of harmonic morphisms (see [17]), thatV produces harmonic morphisms if
and only if the identity componentH of the holonomy group atx of the orthogo-
nal complement ofV satisfies det(AdG H ) = 1. (The holonomy group ofH (=
V⊥) atx ∈M is formed of thosea ∈G such thatx andxa can be joined by a hor-
izontal path; cf. [5].) In this way another proof can be obtained for the result of
Theorem1.13applied to foliationsglobally generated by closed subgroups of the
isometry group.

Corollary 2.16. Let (P,N,G) be a principal bundle,dimN ≥ 3, whose total
spaceP is endowed with a Riemannian metricg that is invariant by the action
of G. LetH ⊆ G be a closed subgroup and suppose thattrace(adh) = 0 and
trace(adg) = 0. LetE = P ×G G/H be the total space of the associated bundle.

Then there exists, at least locally, Riemannian metrics onE and onN with re-
spect to which the natural projectionE → N is (suitably restricted) a harmonic
morphism.
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Proof. It is well known that(P,E,H ) is in a natural way a principal bundle (see
[15]). From Theorem 2.14 it follows that both of the foliations induced onP by
the actions ofG andH produce harmonic morphisms. Thus, at least locally, we
can find metrics onE andN with respect to which the projectionsP → E and
P → N are harmonic morphisms. Since the first of these is surjective this implies
that the projectionE → N can also be made, at least locally, a harmonic mor-
phism (see [8, 2.31] and [11, Prop.1.1]).

It is obvious that Corollary 2.16 still holds if dimN = 1 6= dimG− dimH.

Corollary 2.17. Let (G, g) be a Lie group endowed with a right(left) invariant
Riemannian metric. LetK ⊆ H ⊆ G be closed subgroups such thattrace(adk) =
0, trace(adh) = 0, anddimG− dimH ≥ 3.

Then there exists, at least locally, Riemannian metrics onG/H andG/K with
respect to which the natural projectionG/K → G/H is (suitably restricted) a
harmonic morphism.

It is obvious that Corollary 2.17 still holds if

dimG− dimH = 1 6= dimH − dimK.

Example 2.18. (1) A 1-dimensional Riemannian foliation produces harmonic
morphisms if and only if it is locally generated by Killing fields. This result is
due to Bryant [6] and the “if ” part follows also from Corollary 2.2 (see also[17,
Prop. 2.3]).

(2) The foliation formed on (an open subset of ) a hypersphereSn by the inter-
sections with it of a parallel family of planes inRn+1 of codimension6= 2 produces
harmonic morphisms. This follows from Corollary 2.1 or Theorem 2.9, and can
also be proved by noting that the foliation is induced by one of the projections
of a warped product (see[17, Ex. 1.26(1)]). Similar examples can be obtained on
Euclidean spaces and hyperbolic spaces.

(3) LetK = R,C,H and consider onGln(K), n ≥ 2, the following well-known
right invariant Riemannian metric:

g =
n∑

i,j=1

|dxik · (x−1)kj |2.

Let K ⊆ H ⊆ G ⊆ Gln(K) be closed subgroups such that trace(adk) = 0,
trace(adh) = 0, and dimG − dimH 6= 2 6= dimG − dimK. Then, at least lo-
cally, a metric can be found onG/H (which is unique up to homotheties) such
that the projectionG→ G/H becomes, suitably restricted, a harmonic morphism.
(If G or G/H has zero first Betti number then this metric can be defined glob-
ally onG/H.) Also, at least locally, a metric can be found on the total space of
the projectionG/K → G/H such that the induced foliation produces harmonic
morphisms. (IfG/K andG/H both have zero first Betti number then there can
be defined (global) metrics on them such thatG/K → G/H becomes a harmonic
morphism.)
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For instance, the foliations formed by the fibers of the following natural maps
produce harmonic morphisms:

Glp+q(K)→ Gp+q,p(K)×Gp+q,q(K),
Glp+q(K)→ Vp+q,p(K)×Gp+q,q(K),
Glp+q(K)→ PGlp+q(K),

whereGp+q,p(K) for p, q ≥ 1 is the Grassmanian manifold ofp-dimensional
subspaces ofKp+q, Vp+q,p(K) is the Stiefel manifold ofp-frames onKp+q, and
for the first projectionp + q ≥ 3 if K = R. If K = H then the first Betti number
of Glp+q(K) is zero and hence in these cases, on the image of each of the three
maps just displayed, a metric can be found such that the induced map becomes a
harmonic morphism.

In particular, consider onGl+2 (R) the coordinates given byx = ( x1 x3
x2 x4

)
. With

respect to these coordinates we have

g = 1

(x1x4 − x2x3)2
{(x 2

3 + x 2
4)(dx

2
1 + dx 2

2)+ (x 2
1 + x 2

2)(dx
2
3 + dx 2

4)

− 2(x1x3+ x2x4)(dx1dx3+ dx2dx4)}.
Hence on the images of the following two maps there exist Riemannian metrics,
unique up to homotheties, with respect to which the induced maps are harmonic
morphisms:

ϕ1 : Gl+2 (R)→ PGl+2 (R),

given by the natural projection; and

ϕ2 : Gl+2 (R)→ R2 × RP 1,

given byϕ2(x1, x2, x3, x4) = ((x1, x2), [x3 : x4]). If K = C,H then we can also
consider the foliation induced by the mapGl2(K)→ KP 1×KP 1.

Other examples can be obtained by considering other linear Lie groups.
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