
HARMONIC MORPHISMS WITH ONE-DIMENSIONAL FIBRES
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Abstract

We study harmonic morphisms by placing them into the context of conformal foli-
ations. Most of the results we obtain hold for fibres of dimension one and codomains
of dimension not equal to two. We consider foliations which produce harmonic mor-
phisms on both compact and noncompact Riemannian manifolds.

By using integral formulae, we prove an extension to one-dimensional foliations
which produce harmonic morphisms of the well-known result of S. Bochner concerning
Killing fields on compact Riemannian manifolds with nonpositive Ricci curvature.

From the noncompact case, we improve a result of R. L. Bryant [9] regarding
harmonic morphisms with one-dimensional fibres defined on Riemannian manifolds
of dimension at least four with constant sectional curvature. Our method gives an
entirely new and geometrical proof of Bryant’s result.

The concept of homothetic foliation (or, more generally, homothetic distribution)
which we introduce, appears as a useful tool both in proofs and in providing new
examples of harmonic morphisms, with fibres of any dimension.

Introduction

Harmonic morphisms are maps, between Riemannian manifolds, which pull-
back (local) harmonic functions to (local) harmonic functions. By the well-known
result, independently proved by B. Fuglede [13] and T. Ishihara [20] , harmonic
morphisms are harmonic maps which are horizontally (weakly) conformal.

One of the problems in the theory of harmonic morphisms was suggested to
me by J. C. Wood : Given a Riemannian manifold, find and classify all harmonic
morphisms which can be defined on it.

As was pointed out by P. Baird and J. Eells in [2] , there is a significant differ-
ence between the case when the codomain of a harmonic morphism is of dimension
two and the case when it is not. In [2] , P. Baird and J. Eells proved that a hor-
izontally conformal map which takes values in a two-dimensional Riemannian
manifold is a harmonic morphism if and only if its fibres are minimal. Also, it
is well-known that, in the case of a codomain of dimension two, the property of
being a harmonic morphism is preserved under conformal changes of the metric
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on the codomain. When the codomain is not of dimension two, a harmonic mor-
phism is characterised by the property that it is horizontally conformal and the
parallel displacement defined by the horizontal distribution (i.e. the distribution
orthogonal to the fibres), preserves the mass of the fibres—here the fibres are
given the mass density λ2−n where λ denotes the dilation (see Proposition 1.6 ,
below). This generalizes the well-known fact that a Riemannian submersion is
harmonic if and only if its fibres are minimal, and this holds if and only if the par-
allel displacement defined by the horizontal distribution preserves volumes. From
this it follows that the (nonconstant) map and the metric on the domain of a har-
monic morphism determine, up to a homothety, the metric on the codomain (see
Proposition 1.12 , below).

Harmonic morphisms with (regular) fibres of dimension one defined on three-
dimensional Riemannian manifolds, have been deeply investigated in several pa-
pers by P. Baird and J. C. Wood, see the Bibliography of Harmonic Morphisms
[18] , maintained by S. Gudmundsson.

In higher dimensions, if ϕ : (Mn+1, g) → (Nn, h) is a nonconstant harmonic
morphism, then by a basic result, due to P. Baird [1] , if n ≥ 4 then ϕ is sub-
mersive, and if n = 3 then ϕ can have only isolated critical points. Moreover
in [1] there is constructed a harmonic morphism defined on a (deformed) four-
dimensional sphere, whose (regular) fibres have dimension one and which has
two (isolated) critical points. Other examples of harmonic morphisms S4 → S3 ,
which are homotopic to the suspension of the Hopf fibration S3 → S2 are given
by P. Baird and A. Ratto in [3] . In [28] , Y. L. Ou and J. C. Wood proved that
up to homotheties the only quadratic polynomial R4 → R3 which is a harmonic
morphism is the one which restricts to the Hopf fibration S3 → S2 . Orthogonal
projection R4 → R3 is another harmonic morphism. This illustrates one of the
main results from R. L. Bryant’s paper [9] , that if ϕ : (Mn+1, g) → (Nn, h) is
a submersive harmonic morphism, n ≥ 3 and (M, g) is simply-connected with
constant sectional curvature, then ϕ is one of the following two types: either (i)
the foliation induced on (M, g) is Riemannian with leaves generated by a Killing
field or (ii) ϕ is horizontally homothetic and has geodesic fibres orthogonal to a
foliation formed of umbilical hypersurfaces.

A very fruitful idea, due to J. C. Wood [37] , was to place the study of harmonic
morphisms into the framework of conformal foliations. An illustration of this is
the paper [4] of P. Baird and J. C. Wood. The origins of many of our results can
be found in these papers. To formalize these ideas, say that a foliation produces
harmonic morphisms if its leaves can be locally given as fibres of submersive har-
monic morphisms. In [9] , R. L. Bryant pointed out that any conformal foliation
of codimension not equal to two produces harmonic morphisms if and only if a
certain one-form is closed (see Proposition 1.16 , below). In particular, if the mean
curvature forms of a conformal foliation V and of its orthogonal complement H
are closed then V produces harmonic morphisms. It turns out that a conformal
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foliation V for which its orthogonal complement H has closed mean curvature
form has the property that it can be locally defined by horizontally homothetic
submersions (Proposition 1.18). Following a suggestion of J. C. Wood , we shall
call such foliations homothetic. Some of the properties of homothetic foliations,
together with new examples of harmonic morphisms given by them, are presented
in Section 1 . For instance, there we prove that a foliation with minimal leaves of
codimension not equal to two produces harmonic morphisms if and only if it is a
homothetic foliation (Corollary 1.24). Also, we prove that if a foliation V of codi-
mension not equal to two, is generated by the action of a Lie group of isometries
which admits a bi-invariant metric, and is such that the canonical representation
of an isotropy group is irreducible, then V produces harmonic morphisms (Theo-
rem 1.27). This result can be viewed as an extension of Bryant’s observation [9]
that nonvanishing Killing fields, defined on Riemannian manifolds of dimension
not equal to three, generate foliations which produce harmonic morphisms.

In Section 2 we present some particular results which appear when the fibres
of a harmonic morphism are one-dimensional. We prove the converse of the
above mentioned observation of R. L. Bryant thus showing that a Riemannian
one-dimensional foliation of codimension not equal to two produces harmonic
morphisms if and only if is locally generated by Killing fields (Proposition 2.3).
This can be generalized to homothetic foliations to prove that a homothetic one-
dimensional foliation of codimension not equal to two produces harmonic mor-
phisms if and only if is locally generated by conformal vector fields (Proposition
2.5). Theorem 2.9 is a global version of a result of R. L. Bryant [9, Theorem 1]
which gives a local normal form for the metric of the total space of a harmonic
morphism with one-dimensional fibres. On the way a simpler proof for Bryant’s
local result is obtained. Section 2 also contains a few technical results which will
be often used in the sequel.

Sections 3 and 4 contain results on foliations which produce harmonic mor-
phisms on compact Riemannian manifolds. In Section 3 , the results are related
to the mixed curvature of the almost product Riemannian structure induced by
the foliation. For a one-dimensional foliation V this is just the Ricci curvature
restricted to V . We prove that on a compact Riemannian manifold with neg-
ative Ricci curvature there exists no one-dimensional foliation which produces
harmonic morphisms and admits a global density (Theorem 3.4). This is an
extension of the well-known result of S. Bochner on Killing fields. Theorem
4.12(i) is an extension of a result of M. Berger, concerning Killing fields on com-
pact even-dimensional Riemannian manifolds with positive sectional curvature,
to homothetic one-dimensional foliations which produce harmonic morphisms. In
Section 4 other results on harmonic morphisms with fibres of dimension one are
obtained from integral formulae involving the mass of the fibre and the scalar
curvatures of the domain and codomain. In Section 3 it is also proved that if a
pair of complementary orthogonal foliations have mean curvature vectors which
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are gradient vector fields, then the mixed curvature is nonpositive (in particular,
the sectional curvature cannot be positive) (Proposition 3.7). From this, some
consequences to homothetic foliations which produce harmonic morphisms are
derived.

In Section 5 we prove (Theorem 5.7) that, on an Einstein manifold with di-
mension at least four, any one-dimensional foliation which produces harmonic
morphisms and has integrable orthogonal complement is either Riemannian and
locally generated by Killing fields or is homothetic and has geodesic leaves. In
Corollary 5.9 we prove that this still holds if we replace the integrability as-
sumption on the orthogonal complement with the condition that the foliation
be homothetic. As with the other results in this section this does not require
the compactness or the completeness of the manifold. Section 5 , also contains
other similar (but local) results, proved under the hypothesis that certain compo-
nents of the curvature tensor are basic or zero. All these conditions are satisfied
by manifolds with constant sectional curvature and, in this way, we obtain a
completely new proof for the above mentioned main result from [9]. In fact,
we improve Bryant’s result by showing that, instead of a simple foliation on a
simply-connected manifold, we can consider an orientable foliation which admits
a global density (Theorem 5.14). In Section 5 we also prove a Kaluza-Klein type
result (Proposition 5.4 ).

I am deeply indebted to J. C. Wood for help and thorough guidance.

1. Foliations which produce harmonic morphisms

Let (M, g) be a Riemannian manifold and V (the tangent bundle of) a foli-
ation or, more generally, a distribution on it. We shall denote the orthogonal
complement of V by H . Then, H and V will be called the horizontal and vertical
distributions, respectively. The corresponding projections will be denoted by the
same letters H and V . We shall denote by X, Y horizontal vector fields, i.e.
sections of H and by U, V vertical vector fields, i.e. sections of V .

Recall that, given a submersive harmonic morphism ϕ : (M, g) → (N, h) , the
connected components of its fibres form a conformal foliation. Conversely, we
make the following definition (cf. [37]):

Definition 1.1. Let (M, g) be a Riemannian manifold (it will always be assumed
that M is connected) and let V be (the tangent bundle of) a foliation on it.

We will say that V produces harmonic morphisms on (M, g) if each point of
M has an open neighbourhood O which is the domain of a submersive harmonic
morphism ϕ : (O, g|O)→ (N, h) whose fibres are open subsets of the leaves of V .

Remark 1.2. When codimV = 2 , V produces harmonic morphisms if and only
if it is conformal and its leaves are minimal [37] ; in this case any local submersion
ϕ on M whose fibres are open subsets of the leaves can be made into a harmonic
morphism. Indeed, it suffices to choose a metric on the codomain such that ϕ is
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horizontally conformal.
We will see (as an immediate consequence of Corollary 1.14) that, when codimV 6=

2 and V produces harmonic morphisms, then each local submersion ϕ : O → N
on M for which the first Betti number of the total space O is zero and whose
fibres are open subsets of the leaves of V can be made to be a harmonic morphism
(i.e. there exists a Riemannian metric h on N such that ϕ : (O, g|O)→ (N, h) is
a harmonic morphism).

Definition 1.3. Let V be a conformal foliation on the Riemannian manifold
(M, g) . A smooth positive function λ : O → R on an open subset O of M will
be called a local dilation of V if V|O is a Riemannian foliation on (O, λ2 g|O). If
O = M then we shall call λ a (global) dilation of V .

Remark 1.4. 1) It is obvious that local dilations for a conformal foliation V
can be found in the neighbourhood of each point; in fact, this is equivalent to
the definition of its conformality. If V is simple, i.e. its leaves are the fibres of
a (horizontally conformal) submersion ϕ , then it admits a (global) dilation, for
example, the dilation of ϕ .

2) A smooth positive function λ is a local dilation for V if and only if(
LU(λ2 g)

)
(X, Y ) = 0

for any vertical vector field U and any horizontal vector fields X, Y , where L
denotes Lie differentiation. Hence, if we multiply a local dilation of a conformal
foliation by a smooth positive function which is constant along the leaves then
we obtain another local dilation of the foliation. Conversely, if two local dilations
λj , j = 1, 2 , of a conformal foliation V have the same domain then λ2 = λ1 ρ
where the factor ρ is a smooth positive function, constant along the leaves of V .

3) Let V be a foliation, not necessary conformal. Let H denote its orthogonal
complement. Recall that its second fundamental form HB is the horizontal V-
valued tensor field defined by

(1.1) HB(X, Y ) =
1

2
V(∇XY +∇YX) ,

where X, Y are horizontal vector fields (see [32, Ch.IV, 3.16]). A simple calcula-
tion (see [5]) gives the following formula

(LU g)(X, Y ) = −2g
(HB(X, Y ), U

)
,

where, U, X, Y are as above.
It follows quickly that any local dilation λ of a conformal foliation V is char-

acterised by the relation

(1.2) trace(HB) = nV(grad(log λ)) ,

where n = codimV .
Note that formula (1.1) shows that V is a conformal foliation if and only if H
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is an umbilical distribution, i.e. HB(X,X) is independent of X for g(X,X) = 1 ,
if H is integrable this condition says that its integral submanifolds are umbilical
(see [32]).

Let ϕ : (Mm, g) → (Nn, h) be a horizontally conformal submersion with dila-
tion λ . Let τ denote the tension field of ϕ and VB the second fundamental of the
foliation V induced by the fibres, then we have the fundamental equation [2] (see
[5] for a different proof):

(1.3) τ + trace(VB) + (n− 2)H(grad(log λ)) = 0 .

From this, P. Baird and J. Eells concluded:

Proposition 1.5 ([2]). (a) When n = 2 , ϕ is a harmonic morphism if and only
if its fibres are minimal.

(b) When n 6= 2 any two of the following assertions imply the remaining as-
sertion:

(i) ϕ is a harmonic morphism,
(ii) ϕ has minimal fibres,
(iii) ϕ is horizontally homothetic (i.e. λ is constant along horizontal curves).

Note that in above proposition it is unnecessary for ϕ to be submersive (see
[5]).

Let ω denote a local volume form of V . It can easily be seen [29] that, the
fundamental equation (1.3) is equivalent to

(1.4) V∗
(
LX(λ2−n ω)

)
= λ2−n g(X, τ)ω ,

for any horizontal vector field X . Thus, we have the following:

Proposition 1.6 ([29]). A horizontally conformal submersion with dilation λ
is a harmonic morphism if and only if the parallel displacement defined by the
horizontal distribution preserves the mass of the fibres, where the fibres are given
the mass density λ2−n .

Definition 1.7. Let V be a foliation of codimension n , which produces harmonic
morphisms on (M, g) . Let λ be a local dilation of V which restricts to give
dilations of harmonic morphisms which locally define V . Then ρ = λ2−n is called
a local density of V . If λ is globally defined on M then ρ is called a (global)
density.

We next discuss how much the metric of M can be changed preserving the
property of producing harmonic morphisms.

Proposition 1.8. Let V be a foliation on (M, g) , with dimV = p and codimV =
n . Let r and s be smooth positive functions on M . Let gH and gV denote the
horizontal and the vertical components of g , and set g̃ = s2 gH + r2 gV .

(a) If n 6= 2 , then, any two of the following assertions imply the remaining
assertion:
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(i) V produces harmonic morphisms on (M, g) ,
(ii) V produces harmonic morphisms on (M, g̃) ,
(iii) rp sn−2 is locally the product of a function constant on horizontal curves

and a function constant on vertical curves.
(b) If n = 2 , then the same implications are true after replacing (iii) with:

(iii′) r is constant along horizontal curves.

Proof. Suppose that V is conformal and let λ and λ̃ be local dilations of V with
respect to g and g̃ , respectively. Then λ̃ = a s−1λ , where a is a smooth positive
function which is constant along vertical curves.

Let ω and ω̃ be local volume forms of V with respect to g and g̃ , respectively.
Then ω̃ = rp ω .

It follows that

(1.5) λ̃2−n ω̃ = a2−n(sn−2 rp)(λ2−nω) .

To prove that (i),(ii)⇒(iii) note that (1.5) and Proposition 1.6 implies that if

λ2−n and λ̃2−n are local densities of V with respect to g and g̃ , respectively, then

(1.6) sn−2 rp = an−2 b ,

where b is a smooth positive function constant along horizontal curves.
To prove that (i),(iii)⇒(ii) , suppose that λ2−n is a local density of V with

respect to g and choose smooth positive functions a and b which satisfy (1.6) and
such that a is constant along vertical curves and b is constant along horizontal
curves. Now, (1.5) implies that λ̃ = a s−1λ corresponds to a local density of V
with respect to g̃ .

The proof of (ii),(iii)⇒(i) is similar. �

Corollary 1.9. Let V be a foliation with codimV 6= 2 on (M, g) . Let a and b be
smooth positive functions on M such that a is constant along vertical curves and b
is constant along horizontal curves. Then the following assertions are equivalent:

(i) V produces harmonic morphisms on (M, g) ,
(ii) V produces harmonic morphisms on (M, a2 b2 g) .
If codimV = 2 then (i)⇐⇒ (ii) if and only if the function a is constant on M .

Proof. This is an immediate consequence of Proposition 1.8 . �

Proposition 1.8 suggests the following:

Definition 1.10. Let V be a distribution of dimension p and codimension n on
the Riemannian manifold (M, g). For a positive smooth function σ on M we
define the metric σg by

σg = σ2 gH + σ
4−2n
p gV ,

where, gH and gV are the horizontal and the vertical components of g , respec-
tively.
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Proposition 1.11. Let V be a conformal foliation on (M, g) and let σ be a pos-
itive smooth function on M . Then,

(i) V is also a conformal foliation on (M, σg) . Furthermore, λ is a local dilation
of V with respect to g if and only if λσ−1 is a local dilation with respect to σg .

(ii) V produces harmonic morphisms on (M, g) if and only if it produces har-
monic morphisms on (M, σg) .

(iii) If V produces harmonic morphisms and admits a global dilation λ such
that λ2−n is a density for V with respect to g then, V is a Riemannian foliation
with minimal leaves on (M, λg) .

Proof. Statement (i) follows from Remark 1.4(2) whilst (ii) follows from Propo-
sition 1.8.

If codimV = 2 assertion (iii) is obvious. If codimV 6= 2 first note that if λ
is a local dilation of V with respect to g then V is a Riemannian foliation on
(M, λg) . Now the proof of Proposition 1.8 shows that if λ2−n is a density for V
then the constant function λ̃ = 1 is a dilation which corresponds to a density for
V with respect to λg . Thus, by (1.3) the leaves of V are minimal submanifolds
of (M, λg) . �

The next result shows that the metric on the codomain is much more rigid.

Proposition 1.12. Let ϕj : (M, g) → (N, hj) , j = 1, 2 , be nonconstant
harmonic morphisms having the same fibres. Suppose that N is connected and
dimN 6= 2 .

Then, h1 and h2 are homothetic.

Proof. Let λj be the dilation of ϕj (j = 1, 2) . Then λ2 = λ1 σ where σ : M → R
is a smooth positive function, constant along the fibres.

Recall from Proposition 1.6 that the property that ϕj is a harmonic morphism
is equivalent to the property that the parallel displacement defined by the horizon-
tal distribution preserves λ2−n

j ω , where n = dimN and ω is a local volume form
for the vertical distribution. Hence, σ is also constant along horizontal curves.

It follows that σ is constant on M , and the proposition is proved. �

An immediate consequence of Proposition 1.12 is the following:

Corollary 1.13. A foliation of codimension q 6= 2 which produces harmonic
morphisms is given by a Haefliger structure [19] with values in the groupoid of
germs of homothetic diffeomorphisms of the sheaf of germs of Riemannian metrics
on Rq .

Corollary 1.14. Let (M, g) be a Riemannian manifold with zero first Betti num-
ber. Let V be a foliation of codimension not equal to two which produces harmonic
morphisms on (M, g) .

Then, V admits a global density λ2−n . Furthermore, V is a Riemannian folia-
tion with minimal leaves on (M, λg) .
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Proof. Let ϕj : (Oj, g|Oj) → (Nj, hj) be submersive harmonic morphisms whose
fibres are open subsets of leaves of V and M = ∪

j
Oj.

If λj is the dilation of ϕj then for any indices j, k we can write λk = λj ρjk ,
where in view of Proposition 1.12 , ρjk is constant on each component of Oj ∩Ok.

It is obvious that
{
Oj, log(ρjk)

}
determines an element of H1(M ;R) . Since

this group is trivial, for each j we can find aj constant on each component of Oj

such that ρjk = aj a
−1
k on Oj ∩Ok , for all j, k .

It follows that for each j, k we have λj aj = λk ak on Oj ∩Ok and hence we can
define λ : M → R such that λ = λj aj , on Oj . It is obvious that λ2−n is a global
density for V .

The last assertion follows from Proposition 1.11(iii) . �

In the following theorem we attach assertion (iv) to a well-known list of equiv-
alent assertions (see [25, Appendix B]).

Theorem 1.15. Let M be a compact manifold with zero first Betti number.
For a foliation V on M with compact leaves the following assertions are equiv-

alent:
(i) the holonomy group of each leaf of V is finite,
(ii) there exists a metric g on M such that V is a Riemannian foliation on

(M, g),
(iii) there exists a metric g on M such that the leaves of V are minimal sub-

manifolds of (M, g),
(iv) there exists a metric g on M such that V produces harmonic morphisms

on (M, g).
Moreover, if codimV = 2 , is not necessary to assume that the first Betti number

of M is zero.

Proof. It is well-known that the assertions (i), (ii) and (iii) are equivalent. More-
over, if any of these properties holds then there exists a metric g on M such that
V is a Riemannian foliation with minimal leaves on (M, g) . (To see this let h be
a metric on M with respect to which V has minimal leaves and let k be a metric
on M with respect to which V is Riemannian. If H is the orthogonal complement
of V with respect to h let g = hV + kH where, hV is the vertical component of h
and kH is the horizontal component of k .) But any Riemannian foliation with
minimal leaves produces harmonic morphisms.

Conversely, suppose that V produces harmonic morphisms on (M, g) . If codimV
= 2 then by Proposition 1.5 , V has minimal leaves (see [37]). If codimV 6= 2 then
by Corollary 1.14 , there exists a global density λ2−n of V , and V is a Riemannian
foliation with minimal leaves on (M, λg) . �

We now characterise conformal foliations which produce harmonic morphisms.
Recall that a conformal foliation V of codimV = 2 produces harmonic morphisms
if and only if its leaves are minimal. For codimV 6= 2 , the situation is more
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complicated and we have the following reformulation of a result of R. L. Bryant
[9] (see [5] for another treatment).

Proposition 1.16. Let V be a conformal foliation on (M, g) of codimV 6= 2 and
H its orthogonal complement. Let VB and HB be the second fundamental forms
of V and H , respectively.

Then, V produces harmonic morphisms on (M, g) if and only if the vector field

(n− 2) trace(HB)− n trace(VB)

is locally a gradient vector field. (Here trace(HB) =
∑

j
HB(Xj, Xj) , trace(VB) =∑

α
VB(Uα, Uα) for local orthonormal frames {Xj} and {Uα} of H and V , respec-

tively.)

Proof. Note that the following relation holds

(1.7) (n− 2) trace(HB)− n trace(VB) = n(n− 2) grad(log λ) ,

if and only if:

trace(HB) = nV(grad(log λ)) ,(1.7a)

and

trace(VB) = −(n− 2)H(grad(log λ)) .(1.7b)

By Remark 1.4(3) , (1.7a) holds if and only λ is a local dilation of V . This
together with the fundamental equation (1.3) , imply that (1.7a) and (1.7b) hold
if and only if V , restricted to the domain of λ , produces harmonic morphisms
and λ2−n is a density of it. �

Note that Corollary 1.14 can be proved using (1.7) .
Let p = dimV . By the mean curvature form of V we mean the one-form

1
p

(trace(VB))[ obtained by applying the musical isomorphism [ : TM → T ∗M

with similar terminology for H . Then we have.

Corollary 1.17. Let V be a conformal foliation with codimV 6= 2 and let H be
its orthogonal complement. Then any two of the following assertions imply the
remaining assertion:

(i) V produces harmonic morphisms,
(ii) V has closed mean curvature form,
(iii) H has closed mean curvature form.

Proof. This is an immediate consequence of Proposition 1.16 and the fact that
(trace(VB))[ is closed if and only if trace(VB) is locally a gradient and similar for
H . �

We now introduce a new sort of foliations midway between conformal and
Riemannian foliations.
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Proposition 1.18. For a conformal foliation V on the Riemannian manifold
(M, g) the following assertions are equivalent:

(i) the leaves of V can be, locally, given as fibres of horizontally homothetic
submersions;

(ii) each point of M has an open neighbourhood on which there can be defined
a local dilation of V which is constant along horizontal curves;

(iii) any local dilation λ of V , defined on an open subset O with zero first Betti
number, is a product λ = a b , where a and b are positive smooth functions such
that a is constant along vertical curves and b is constant along horizontal curves;

(iv) the mean curvature of the orthogonal complement of V is locally a gradient
vector field.

Proof. The equivalence (i)⇐⇒ (ii) is obvious. Also, by Remark 1.4(2) it follows
that (ii)⇐(iii).

By the same remark, if (ii) holds then, any local dilation λ : O → R of V is,
locally, a product λ = a b as in (iv). If on the same open subset of O , we also have
λ = a1 b1 then, a−1 a1 = b b−1

1 = const. . Hence the differentials of the logarithms
of the factors a , b from the local decompositions of λ define closed one-forms on
O. If the first Betti number of O is zero then these one-forms are exact and the
implication (ii)⇒(iii) is proved.

The equivalence (ii)⇐⇒ (iv) follows from Remark 1.4(3) . �

Remark 1.19. 1) If a conformal foliation satisfies one of the properties from the
above proposition then the holonomy groupoid of each leaf is formed of germs of
homothetic diffeomorphisms.

2) In (iv) above instead of H1(O;R) = 0 we could ask that the first basic
cohomology group (see [34]) of V|O be zero. This follows from the fact that the
set of differentials {d a} define a closed basic one-form on O .

3) Alternatively, we could ask that the orthogonal complement H|O of V|O
to be an Ehresmann connection [8] with trivial holonomy (in particular, H|O is
integrable). To see this, note that the set of differentials {d b} define a closed
one-form which, when restricted to a leaf L , is exact (because it coincide with
d(λ|L)). When H is an Ehresmann connection with trivial holonomy these exact
forms can be matched together to define an exact form on O.

The notion of local dilations for conformal foliations can be generalized to
conformal distributions, although, in this case, these might not exist. Neverthe-
less, if a conformal distribution admits local dilations then these share the same
properties (Remark 1.4(2) and (3)) as the local dilations of a conformal foliation.
Moreover, assertions (ii), (iii) and (iv) from Proposition 1.18 remain equivalent for
conformal distributions which admit local dilations in a neighbourhood of each
point.

Proposition 1.18 suggests the following definition.
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Definition 1.20. Let V be a distribution on the Riemannian manifold (M, g).
We will say that V is homothetic if it is conformal and the mean curvature of its
orthogonal complement is locally a gradient vector field.

Remark 1.21. Note that, unlike conformal distributions, homothetic distribu-
tions always admit local dilations, even if nonintegrable. Indeed, if V is a homo-
thetic distribution with codimV = n and H is its orthogonal complement, then
any local smooth positive function λ on M which has the property

(1.9) n grad(log λ) = trace(HB) ,

is a local dilation of V .
Moreover, if V is a homothetic distribution and λ is a local dilation of it defined

on an open set O such that λ = a b as in (iii) from Proposition 1.18 , then any
other local dilation defined on O is of this form.

Proposition 1.22. Let V be a foliation on (M, g) with orthogonal complement
H.

If H is a homothetic distribution then the parallel displacement defined by it is
formed of (local) homothetic diffeomorphisms between leaves of V .

Conversely, if H is conformal, integrable and the parallel displacement defined
by it is formed of (local) homothetic diffeomorphisms between leaves of V , then
it is a homothetic distribution.

Proof. If H is conformal and integrable then it admits local dilations. Let λ be
a local dilation of H . Then for any horizontal vector field X invariant under the
holonomy of V (i.e. for any basic vector field X ) we have:

(1.10) LX(λ2 (g|V)) = 0 .

If (ψt) is the local flow of X , then (1.10) is equivalent to the fact that for any t
we have

(1.11) (ψt)
∗(λ2(g|V)) = λ2(g|V) .

The proof follows from (1.11) by using the fact that, if H is conformal, then it
is homothetic if and only if in the neighbourhood of each point a local dilation
can be found, which is constant along the leaves of V . �

Proposition 1.23. Let V be a homothetic foliation of codimension not equal to
two on (M, g). Then, the following assertions are equivalent:

(i) V produces harmonic morphisms;
(ii) the mean curvature of V is locally a gradient vector field.
In particular, a homothetic foliation whose orthogonal complement is a homo-

thetic distribution produces harmonic morphisms with umbilical fibres.

Proof. Since V is homothetic we have that trace(HB) is, locally, a gradient vector
field. From Proposition 1.16 it follows that V produces harmonic morphisms if
and only if trace(VB) is, locally, a gradient vector field.
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The last assertion follows from the fact that (see Remark 1.4(3) ) V is umbilical
if and only if H is a conformal distribution. �

Corollary 1.24. Let V be a foliation with minimal leaves and codimV 6= 2 .
Then, V produces harmonic morphisms if and only if it is homothetic.

Remark 1.25. 1) In Proposition 1.23 condition (ii) is a bit more general than
saying H is homothetic since it is not assumed to be conformal.

2) Any Riemannian foliation is homothetic.
3) Given a horizontally homothetic submersion the connected components of

its fibres form a homothetic foliation. However, note that if ϕ : (M, g)→ (N, h)
is a horizontally conformal submersion such that its fibres form a homothetic foli-
ation then it is not true, in general, that ϕ is horizontally homothetic. If the first
Betti number of M is zero then ϕ can be factorised into a horizontally homothetic
submersion followed by a conformal diffeomorphism. (By Remark 1.19(2)(3) this
factorization can also be done when the first Betti number of N is zero or when
the horizontal distribution H is an Ehresmann connection with trivial holonomy,
in which case H is integrable and M is diffeomorphic with the product of N and
the fibre.)

Example 1.26. 1) Double-warped-products (see [33], and the references therein).
If (Mp, g) and (N q, h) are Riemannian manifolds and r : M → R and s : N → R
are positive smooth functions then the double-warped-product of (Mp, g) and
(N q, h) is defined to be:

Ms × rN = (M ×N, s2 π∗Mg + r2 π∗Nh) ,

where, πM and πN are the projections onto M and N , respectively.
The projections πM : Ms × rN → (M, g) and πN : Ms × rN → (N, h) are

horizontally homothetic so their fibres define a pair of complementary orthogonal
homothetic foliations. Conversely, any Riemannian manifold endowed with a pair
of complementary orthogonal homothetic foliations is canonically locally isomet-
ric to a double-warped-product. Hence, by Proposition 1.23 , when p, q 6= 2 both
of the foliations induced by the factors of a double-warped-product produce har-
monic morphisms. More precisely, if p 6= 2 the following projection is a harmonic
morphism with umbilical fibres:

(1.12) πM : Ms × rN −→ (M, r
2q
p−2 g) .

The fact that the above projection is a harmonic morphism also follows from
Proposition 1.11(iii) .

A concrete example of a warped product is provided by the open subsets in
spheres (Sp+q\Sp−1

0 , gp+q), where Sp−1
0 = Rp∩Sp+q and Rp ≡

{
x ∈ Rp+q+1 |xp+1 =

. . . = xp+q+1 = 0
}

and gp+q is the restriction of the canonical metric on Sp+q .
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The warped-product is the one induced by the following diffeomorphism:

Φ : Sp+q \ Sp−1
0 −→ Sp+ × Sq

Φ(x, y) =
(
(x, |y|), 1

|y|
y
)
.

where, Sp+ =
{
x ∈ Sp+1 |xp+1 > 0

}
. To make Φ an isometry we must give

Sp+ × Sq the warped-product structure Sp+ ×r Sq where, r(x1, . . . , xp+1) = xp+1.
Thus, if p 6= 2 , (1.12) particularises to give the following harmonic morphism

with umbilical fibres:

ϕ : (Sp+q \ Sp−1
0 , gp+q) −→ (Sp+, r

2q
p−2 gp)

ϕ(x1, . . . , xp+q+1) =
(
x1, . . . , xp,

√
(xp+1)2 + . . .+ (xp+q+1)2

)
.

By Proposition 1.12 any other metric on Sp+ with respect to which ϕ above
is a harmonic morphism is homothetic to the one considered. Also, note that,
although ϕ can be extended to a continuous map on Sp+q , the considered metric
on the codomain cannot be extended over the points where the extension of ϕ
takes values.

The last example can be viewed as the projection of the action of a group of
isometries. In Theorem 1.27 below we shall give a generalization of this idea.

2) Double-twisted-products(see [33], and the references therein). These are de-
fined in the same way as double-warped-products, but now r, s : M ×N → R. It
is easy to see that a Riemannian manifold endowed with a pair of complementary
orthogonal foliations which are both umbilical (equivalently, both conformal) is,
canonically, locally isometric to a double-twisted-product.

If p 6= 2 , it follows from Proposition 1.8 that the foliation V induced by the sec-
ond factor of the double-twisted-product Ms × rN produces harmonic morphism
if and only if the function rq · sp−2 is, locally, the product of a function constant
on M and a function constant on N .

If p = 2 , then V produces harmonic morphisms if and only if r is a function
defined on N . In this case, V has totally geodesic leaves and Ms × rN is isometric

to the twisted product Ms × Ñ where Ñ = (N, r2 h) .
It follows that a pair of complementary orthogonal umbilical foliations both of

codimension not equal to two are both homothetic if and only if each of them
produces harmonic morphisms.

The following theorem can be viewed as an extension of a result of R. L. Bryant
[9] that any Killing field, on a Riemannian manifold of dimension not equal to
three, generates a foliation which produces harmonic morphisms.

Theorem 1.27. Let G be a Lie group which acts as an isometry group on the
Riemannian manifold (M, g). Suppose that the following conditions are satisfied:

(i) The orbits of the action of G on M have the same codimension not equal to
two.
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(ii) There exists on G a bi-invariant Riemannian metric.
(iii) The canonical representation of an isotropy group is irreducible.
Then, the connected components of the orbits form a Riemannian foliation with

umbilical leaves which produces harmonic morphisms.

Proof. The fact that (i) implies that the connected components of the orbits
form a Riemannian foliation is well-known (see [32, Ch.IV, 4.10]). Let V be this
foliation.

Let U be a vector field on M which is induced by an element of g , the Lie
algebra of G , via the action. Then U is a Killing field on (M, g) and hence, for
any vertical field V and basic field X , we have:

0 = (LU g)(V,X) = −g(V, [U,X]) .

Since [U,X] is vertical (X being basic), we get that [U,X] = 0. This means
that the action commutes with the (local) flows of the basic fields. Hence the
(local) flow of a basic field is formed of (local) automorphisms of the action of G
on M , and, in particular, any two orbits have conjugate isotropy groups.

Let γ be a metric on g which is invariant under the action of the adjoint group
AdG (its existence is assured by (ii)). If H is the isotropy group at x ∈ M of an
orbit F , and h its Lie algebra, let l be its orthogonal complement with respect
to γ . Then, as is well-known, there exists a natural isomorphism between TxF
and l , under which the canonical representation of H on TxF corresponds to
the restriction, to l , of the adjoint representation of H on g . Now, (iii) implies
that the metrics on TxF induced by g and γ must be homothetic (see [22, vol.I,
Appendix 5]).

Thus, there exists a smooth positive function ρ on M , such that, up to the
isomorphisms described above, we have ρ(x)−2 γ = gx|TxF , for each x ∈ M .
Moreover, since G acts by isometries, ρ is constant along leaves of V .

Since the basic vector fields are infinitesimal automorphisms of the action of G
on M , their flows are formed of isometries between orbits, considered with the
metrics induced by ρ2 g . Thus the orthogonal complement H of V is a conformal
distribution with dilation ρ. Moreover, since ρ is constant along the leaves of V we
see that H is homothetic. By Proposition 1.23 , V produces harmonic morphisms
with umbilical fibres. �

Example 1.28. The special orthogonal group SO(q+1) acts on Sp+q to give the
same Riemannian foliation which produces harmonic morphisms as in Example
1.26(1). (Recall that SO(q+1) admits a bi-invariant Riemannian metric and that
the isotropy group is, in this case, SO(q) which acts irreducible on Rq .)

Similarly, let Q∗ be formed of the regular points of the quadric Q , defined by:

Q =
{
x ∈ Rp+q+1 |

p∑
j=1

(xj)2 +

p+q+1∑
j=p+1

cj(x
j)2 = 0

}
.
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Then, the theorem above implies that the principal orbits of the action of SO(p)
on Q∗ form a Riemannian foliation with umbilical leaves which produces har-
monic morphisms.

More general examples of this type can be obtained by considering other hy-
persurfaces of Rp+q+1 which are invariant under the action of SO(p) .

2. Some basic facts on harmonic morphisms
with one-dimensional fibres

In this section we present, for later use, a few facts about one-dimensional
foliations which produce harmonic morphisms. Here, V will always denote a one-
dimensional foliation.

The following lemma will be used several times in this paper. The case n = 2
was used by P. Baird and J. C. Wood in [4, §3] .

Lemma 2.1. Let V be a conformal one dimensional foliation on (Mn+1, g). Then,
the following assertions are equivalent.

(i) V produces harmonic morphisms;
(ii) each point has a neighbourhood on which a local dilation λ of V , can be

found, such that, if V is a vertical field with g(V, V ) = λ2n−4 , then [V,X] = 0 for
any basic field X .

Proof. From (1.4) it follows that assertion (i) is equivalent to the possibility of
finding in the neighbourhood of each point a local dilation λ of V such that

(2.1) V∗(LX(λ2−n ω)) = 0

for any basic vector field X and where ω is a local volume of V .
If V is as in (ii) and θ is its dual vertical one-form (i.e. θ is the unique vertical

one-form such that θ(V ) = 1 ) then λn−2 θ is a local volume form of V . Hence
(2.1) is equivalent to (LX θ)(V ) = 0 which is equivalent to [V,X] = 0 . �

Remark 2.2. 1) From the proof above we see that (ii) is a characterisation for
those local dilations which restrict to give dilations of harmonic morphisms which
locally define the foliation.

2) If V is as above, let θ be its dual vertical one-form. Using the fact that
[V,X] = 0 for any basic vector field X , it follows that the two-form Ω = d θ is
basic. In fact, θ and Ω are, respectively, the connection form and the curvature
form of a principal (local) connection (see Theorem 2.9).

The implication (iii)⇒(i) from the following proposition is due to R. L. Bryant
[9] .

Proposition 2.3. For n 6= 2 , let V be a one-dimensional Riemannian foliation
on (Mn+1, g) and let H be its orthogonal complement. Then, the following asser-
tions are equivalent:

(i) V produces harmonic morphisms,
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(ii) H is a homothetic distribution,
(iii) V is locally generated by Killing fields.
Furthermore, if V is orientable and the first Betti number of M is zero then

(iii) above can be replaced by
(iii′) V is globally generated by a Killing field.

Proof. (i) ⇐⇒ (ii) This follows from Proposition 1.23 , since, being Riemannian,
V is homothetic and, being of codimension one, H is conformal.

(ii)⇒(iii) Let ρ be a local dilation of H which is constant along the leaves of
V and let V be a local vertical field such that g(V, V ) = ρ−2 .

Because ρ is constant along the leaves of V we have

(2.2) (LV g)(V, V ) = 0 .

Because ρ is a local dilation of H we have

(2.3) (LX(ρ2 g))(V, V ) = 0

for any horizontal vector field X . It is easy to see that (2.3) is equivalent to
g([X, V ], V ) = 0 . This implies that for any horizontal vector field we have

(2.4) (LV g)(V,X) = 0 .

Since V is Riemannian we have

(2.5) (LV g)(X, Y ) = 0 ,

for any horizontal vector fields X and Y .
Equations (2.2),(2.4) and (2.5) show that V is a Killing field.
(iii)⇒(ii) Since dimV = 1 , the orthogonal complement H of V is a conformal

distribution.
As in the proof of Theorem 1.27 , if V is a (local) nonvanishing Killing field,

which (locally) generates V , and |V | its norm then |V |−1 is a local dilation for
the horizontal distribution H . Moreover, H is homothetic, since |V | is constant
along the leaves of V .

The last assertion follows from the fact that when the first Betti number of
M is zero and V is orientable we can find a global density λ2−n of V (which is
also a local dilation for H) and a vertical vector field V defined on M , such that
g(V, V ) = λ2n−4 . �

Remark 2.4. 1) Note that if n = 2 then (i)⇒(ii) ⇐⇒ (iii). In fact, in this
case, a one-dimensional foliation V produces harmonic morphisms on (M3, g) if
and only if its leaves are geodesics (see [4]). Thus, being of codimension one, H
is a Riemannian distribution. However, if n = 2 then (ii)⇒(i) fails, as simple
examples show.

2) If in the above proposition we further assume that H is integrable then we
can add the assertion
(iv) V induces, locally, a warped product structure on (M, g) .
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One might guess that a similar proposition, to the one above, holds, in general,
for any conformal one-dimensional foliation, just by replacing ‘Killing fields’, with
‘conformal fields’. It is not difficult to see that this is not true, the actual situation
being described by the following:

Proposition 2.5. For n ≥ 3, let V be a one-dimensional foliation on (Mn+1, g).
Then, any two of the following assertions imply the remaining assertion.

(i) V produces harmonic morphisms,
(ii) V (or H) is homothetic,
(iii) V is locally generated by conformal vector fields.
Furthermore, if V is orientable and the first Betti number of M is zero then

(iii) above can be replaced by
(iii′) V is (globally) generated by a conformal field.

Proof. (i),(ii)⇒(iii) Let λ2−n be a local density for V . By Proposition 1.18 , we
can suppose that λ = a b , where a is constant along leaves and b is constant along
horizontal curves.

Let W be a local vertical vector field such that g(W,W ) = a2n−4 b−2 . It is a
straightforward calculation to check that W is a local conformal vector field on
(M, g) .

(ii),(iii)⇒(i) Since V is homothetic, by Proposition 1.18 , we can find a local
dilation b of V which is constant along horizontal curves.

Let W be a local conformal vector field which (locally) generates V . We can
suppose that b and W are defined on the same open subset of M . It is easy to
see that, since W is conformal, we have that b2 g(W,W ) is constant along leaves.

We can choose a smooth positive local function a on M such that g(W,W ) =
a2n−4 b−2. Hence a is constant along the leaves and thus λ = a b is a local dilation
of V .

If V is a local field, tangent to the leaves and such that g(V, V ) = λ2n−4 then,
from the fact that W is conformal it follows that [V,X] = 0 for any basic X.
Hence, by Lemma 2.1 , V is a foliation which produces harmonic morphisms.

(iii),(i)⇒(ii) Let λ2−n be a local density for V . Let V be a local vector field,
tangent to the leaves and such that g(V, V ) = λ2n−4 , and let W be a local
conformal vector field tangent to the leaves. (We can suppose that V and W are
defined on the same open set.)

Since W is conformal, for any basic X we have (LW g)(W,X) = 0 , and hence,
[W,X] = 0 . But by Lemma 2.1 we also have [V,X] = 0 , for any basic X . Hence
if b is such that W = bV , then b is constant on horizontal curves.

Since λ is a local dilation of the conformal foliation V , from Remark 1.4 , we
see that

(2.6) (LW g)(V, V ) = W (log(λ−2))g(V, V ) .

Relation (2.6) together with W = bV implies after a straightforward calculation
that λn−1 b is constant along leaves. Thus, we can write λ = r s where r , s are
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positive smooth functions on M such that r is constant along the leaves and s
is constant along horizontal curves. From Proposition 1.18 , we get that V is a
homothetic foliation. �

Remark 2.6. Note that, if in Proposition 2.5 we have n = 2 , the implication
(ii),(iii)⇒(i) fails, the other implications still holding.

If n = 1 , then (i)⇐⇒ (iii) but they do not imply (ii).

The following lemmas will be used, mainly in the last section (cf. [4, Remark
5.3]).

Lemma 2.7. Let V be a one-dimensional homothetic foliation on (M, g). Then,
at least away of the points where V is Riemannian, its orthogonal complement is
integrable.

Proof. By Proposition 1.18 , V admits a local dilation λ whose gradient is vertical.
The points x ∈M , where V is not Riemannian are characterised by (gradλ)x 6=
0 . Hence, in a neighbourhood of such a point, the level hypersurfaces of λ are
integral submanifolds of the horizontal distribution. �

Lemma 2.8. Let ϕ : (Mn+1, g) → (Nn, h) be a harmonic morphism with one-
dimensional fibres. Let λ denote the dilation of ϕ let V be a (local) vertical vector
field on M such that g(V, V ) = λ2n−4.

Then, the following assertions are equivalent:
(i) the fibres of ϕ form a homothetic foliation at least away of the interior of

the set {x ∈M | d(V (σ))(x) = 0 6= (V (σ))(x)} .
(ii) for any basic field X , we have V (X(log λ)) = 0 .

Proof. Let µ be the vertical one-form on M such that for any horizontal fields
X, Y we have (LV g)(X, Y ) = µ(V )g(X, Y ) . Hence, by the definition of λ we
have µ(V ) = −2V (log λ) .

Let H be the horizontal distribution and HB its second fundamental form.
Using (1.2) we obtain the following relation:

µ = − 2

n
(trace(HB))[ .

Hence, V is homothetic if and only if µ is closed.
By Lemma 2.1 , for any basic X we have [V,X] = 0 , and hence:

(dµ)(V,X) = −V (µ(X))−X(µ(V ))− µ[V,X] = −X(µ(V ))

= 2X(V (log λ)) = 2V (X(log λ)) .

The lemma follows. �

In [4, Proposition 3.5] , P. Baird and J. C. Wood gave a global description of
the metric of a Riemannian manifold of dimension three, on which a harmonic
morphism can be defined. In [9, Theorem 1] , R. L. Bryant gave a local description
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of the metric of the total space of a submersive harmonic morphism with one-
dimensional fibres (with no restriction on the dimension of the total space). The
following theorem explains how this result can be globalized, giving also a simpler
proof of Bryant’s local result.

Theorem 2.9. Let ϕ : (Mn+1, g) → (Nn, h) , n ≥ 1 , be a submersive harmonic
morphism with connected one-dimensional fibres of the same homotopy type. Let
λ be the dilation of ϕ and suppose that V (= kerϕ∗) is orientable.

Then, there exists:
(i) a principal bundle π : P → N with group G = (R,+) or G = (S1, ·) ,
(ii) a principal connection θ ∈ Γ(T ∗P ) on π ,
(iii) a diffeomorphic embedding ι : M → P

such that:
1) π ◦ ι = ϕ ,
2) g = λ−2(ϕ∗h) + λ2n−4(ι∗θ)2 .
Furthermore, if the fibres are all diffeomorphic to circles, or are all complete

with respect to the metric induced by λg , then ι is onto, and hence, ϕ itself is a
principal bundle and the horizontal distribution is a principal connection on it.

Note that by the result of P. Baird [9] we know that ϕ is automatically sub-
mersive except when n ≤ 3 .

Proof. Let V be a vertical field such that g(V, V ) = λ2n−4. By Lemma 2.1 , the
horizontal distribution H is invariant under the local flow of V . Thus, the inte-
gral curves of V are the fibres of a local principal bundle, and H is a principal
connection on it. If θ is the vertical one-form dual to V then, it is obvious that
λg = ϕ∗h+ θ2 . (This establishes [9, Theorem 1] .)

To end the proof we shall prove the following assertions:
(a) If the fibres are diffeomorphic to circles then ϕ is a principal bundle with
group (S1, ·) .
(b) If the fibres are diffeomorphic to R then, there exists a diffeomorphic embed-
ding ι : M → N × R , such that π1 ◦ ι = ϕ , and a principal connection on the
trivial principal bundle π1 : N × R→ N , with group (R,+) , such that H is the
restriction to M of it.

From now on all the considerations which will be made in this proof, will be
done with respect to the metric λg on M .

For x ∈ M , let Ix ⊆ R be the open interval which is the domain of the (max-
imal) geodesic with velocity Vx. Let Q =

{
(x, r) ∈ M × R | r ∈ Ix

}
, and define

Ψ : Q→M , by Ψ(x, r) = exp rVx .
If the fibres are all circles then Q = M × R . Since θ is relatively closed, by

Stokes theorem the fibres have the same length. Hence Ψ descends to a map
M×S1 →M which is a free action of (S1, ·) on M . Thus assertion (a) is proved.

Suppose now that the fibres are diffeomorphic to R . If they are all complete
with respect to the metric induced from λg then, Q = M ×R and Ψ represents a
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free action of (R,+) on M , and thus the proof of the theorem is finished. Other-
wise, since ϕ is a submersion, we can find local sections of it in the neighbourhood
of each point of N . Let S be a family of such sections whose domains form an
open covering {Os}s∈S of N .

Let s , t ∈ S . For x ∈ Os ∩ Ot , let as t(x) be the (unique) real number such
that t(x) = Ψ

(
s(x), as t(x)

)
.

It is obvious that {as t}s,t∈S is a cocycle with values in (R,+) , which induces a
principal bundle. This bundle is trivial because R is contractible.

Moreover, set As = s∗θ ; then the family of one-forms {As}s∈S , defines a prin-
cipal connection on this bundle.

The total space N × R of this bundle, can be retrieved, as usual, from the co-
cycle {as t}s,t∈S as the space of equivalence classes [x, r] , under the identifications
[x, r] ≡ [x, as t(x)r] , x ∈ Os ∩Ot .

For x ∈ M , let s ∈ S be such that ϕ(x) ∈ Os and rx ∈ Is(ϕ(x)) be the real
number which satisfies x = Ψ(s(ϕ(x)), rx) . (Note that rx depends just on x and
s.). We can define ι : M → N×R , by ι(x) = [ϕ(x), rx] , x ∈M , and the theorem
follows. �

Remark 2.10. The proof of above theorem, can be simplified considerably when
H is an Ehresmann connection (see [8] for the definition of Ehresmann connec-
tion).

It is not difficult to prove that a sufficient condition for H to be an Ehresmann
connection is that V be a complete vector field.

3. Mixed curvature and harmonic morphisms

To prove the results in this section we shall use a formula which relates the
curvature of a Riemannian manifold to the geometric properties of a pair of com-
plementary orthogonal distributions on it. Equivalent forms of it are already
known (see [33] and the references therein), a fact which we discovered whilst
writing this paper. However, we believe our proof is more direct.

Let (M, g) be a Riemannian manifold and H, V a pair of complementary or-
thogonal distributions on it, with dimH = p and dimV = q . As before, H and V
will be called the horizontal and the vertical distribution, respectively. Also, the
corresponding projections will be denoted with the same letters H and V and we
shall denote by X, Y horizontal vector fields and by U, V vertical vector fields.
Let VB and VI be the second fundamental form and integrability tensor of V ,
respectively. Recall that they are the unique H-valued vertical tensor fields which
satisfy

VB(U, V ) =
1

2
H(∇UV +∇VU) ,

VI(U, V ) = −H[U, V ] .
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Note the minus sign above.
Recall that trace(VB) is q times the mean curvature of V , i.e. if {Uα} is a

local orthonormal frame for V then trace(VB) =
∑

α
VB(Uα, Uα) . We shall also

consider the trace free part VB 0 defined by

VB 0 = VB − 1

q
trace(VB)⊗ gV

where gV is the vertical component of g . Also, HB ,HI ,HB0 are defined similarly
by reversing the roles of V and H .

As in [33] we denote by smix the mixed scalar curvature which is the sum of the
sectional curvatures of all planes spanned by a horizontal and a vertical vector
from an orthonormal frame adapted to the decomposition TM = H ⊕ V . This
invariant was introduced in [10] .

Proposition 3.1. With the notations above we have

div(trace(HB)) + div(trace(VB)) +
p− 1

p

∣∣ trace(HB)
∣∣2 +

q − 1

q

∣∣ trace(VB)
∣∣2

+
1

4

∣∣HI∣∣2 +
1

4

∣∣VI∣∣2 =
∣∣HB 0

∣∣2 +
∣∣VB 0

∣∣2 + smix .(3.1)

To prove this we first establish a preliminary lemma.
Let {Ea} = {Xj, Uα} be a local orthonormal frame on (M, g) adapted to the

decomposition TM = H⊕V . We shall always denote by j, k ‘horizontal’ indices,
by α, β ‘vertical’ indices whilst a, b, c will be any kind of indices. Let ∇ be the
Levi-Civita connection of (M, g) and let (Γabc) be the Christoffel symbols of (M, g)
with respect to the chosen local frame (i.e. ∇EaEb = ΓcbaEc , note the order of the
indices). Recall that Γabc = −Γbac ; we shall frequently use this without comment.
Then it is easy to see that we have the following relations:

Γjαβ = VBj
αβ +

1

2
VIjαβ ,

Γαjk = HBα
jk +

1

2
HIαjk .

(3.2)

Lemma 3.2. With the notations above the following relations hold:

div(trace(HB)) + | trace(HB)|2 =
∑
j,α,β

(
Uα(Γαjj)− ΓβααΓβjj

)
,

div(trace(VB)) + | trace(VB)|2 =
∑
j,k,α

(
Xj(Γ

j
αα)− ΓkjjΓ

k
αα

)
.

Proof. We will prove just the first formula, the proof of the second one then
follows by reversing roles of V and H .

We have
trace(HB) =

∑
j,α

HBα
jj·Uα =

∑
j,α

Γαjj·Uα .
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For a vector field A , define Ab;a by ∇EaA = Ab;aEb , then, we have

div(trace(HB)) = (trace(HB))a;a = (trace(HB))j;j + (trace(HB))α;α

= Xj((trace(HB))j) + Γjaj(trace(HB))a

+ Uα((trace(HB))α) + Γαaα(trace(HB))a .

Now the first term from the right-hand side is zero and hence we can write

div(trace(HB)) =
∑
j,k,α,β

(ΓjαjΓ
α
kk + Uα(Γαkk) + ΓαβαΓβkk)

=
∑
j,k,α,β

(−ΓαjjΓ
α
kk + Uα(Γαkk)− ΓβααΓβkk)

= −| trace(HB)|2 +
∑
k,α,β

(Uα(Γαkk)− ΓβααΓβkk) .

The lemma is proved. �

Proof of Proposition 3.1. Let R denote the curvature tensor of (M, g) and {Γab}
the components of the local connection form of ∇ with respect to {Ea} given by
Γcb(Ea) = Γcba , then,∑

j,α

Rjαjα =
∑
j,α

Rj
αjα =

∑
j,α,a

(dΓjα + Γja ∧ Γaα)jα

=
∑
j,α,a

{Xj(Γ
j
αα)− Uα(Γjαj)− Γjα([Xj, Uα]) + ΓjajΓ

a
αα − ΓjaαΓaαj}

=
∑

j,k,α,β,a

{Xj(Γ
j
αα) + Uα(Γαjj) − Γjαkg(Xk, [Xj, Uα])

− Γjαβg(Uβ, [Xj, Uα])− ΓajjΓ
a
αα + ΓajαΓaαj}

=
∑
j,α,a

{Xj(Γ
j
αα) + Uα(Γαjj)− ΓajjΓ

a
αα}

+
∑

j,k,α,β,a

{−Γjαkg(Xk,∇XjUα −∇UαXj)− Γjαβg(Uβ,∇XjUα −∇UαXj) + ΓajjΓ
a
αα}

= div(trace(HB)) + div(trace(VB)) + | trace(HB)|2 + | trace(VB)|2

+
∑

j,k,α,β,a

(−ΓjαkΓ
k
αj + ΓjαkΓ

k
jα − ΓjαβΓβαj + ΓjαβΓβjα + ΓajαΓaαj)

= div(trace(HB)) + div(trace(VB)) + | trace(HB)|2 + | trace(VB)|2

−
∑
j,k,α,β

(ΓαjkΓ
α
kj + ΓjαβΓjβα) +

∑
j,k,α,β,a

(−ΓjαkΓ
j
kα − ΓαjβΓαβj + ΓajαΓaαj) .

Since the last sum is zero, using relations (3.2) we obtain the left-hand side of
the formula. �
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Application. When dimM = 2 , the formula says that, if on a surface we
have a pair of orthogonal foliations by curves, then the sum of the divergences
of the curvature vectors of the curves at their intersection point is equal to the
Gauss curvature of the surface at that point. Hence, if a closed surface admits a
one-dimensional foliation, then, since its orthogonal complement is another one-
dimensional foliaton, by the divergence theorem the total curvature of any metric
on it is zero. This gives a particular case of the well-known Hopf theorem, that
the Euler number of a closed manifold which admits a nonvanishing tangent vec-
tor field is zero.

Suppose for the rest of this section that dimM ≥ 3 . The following Proposition
is a generalization to conformal one-dimensional foliations of the corresponding
results for Riemannian one-dimensional foliations from [31] .

Proposition 3.3. Let (M, g) be compact.
(i) If (M, g) has nonpositive Ricci curvature, then any conformal one-dimensional

foliation is Riemannian and its orthogonal complement is a totally geodesic foli-
ation. Further, Ricci(U,U) = 0 for any U tangent to the foliation.

(ii) If (M, g) has negative Ricci curvature then there exists no one-dimensional
conformal foliation on it.

Proof. By passing to a finite covering, if necessary, we can suppose that both the
foliation V and the manifold M are oriented.

Since V is conformal we have HB 0 = 0. But, as for any codimension one
foliation, H is also conformal. Hence VB 0 = 0.

Next, note that, because V is one-dimensional, the mixed curvature is equal to
the Ricci curvature restricted to V .

Thus integrating (3.1) gives∫
M

Ricci(U,U) vg =

∫
M

{p− 1

p
| trace(HB)|2 +

1

4
|HI|2

}
vg

where U is a unit vector field tangent to V and vg is the volume element of (M, g).
The proposition follows. �

By a well-known result of S. Bochner (see [21, Ch.II, Theorem 4.3]) any Killing
field on a compact Riemannian manifold with nonpositive Ricci tensor is parallel.
The following theorem can be viewed as an extension of that result.

Theorem 3.4. On a compact Riemannian manifold with nonpositive Ricci cur-
vature any one-dimensional foliation which produces harmonic morphisms and
admits a global density is locally generated by parallel vector fields. In partic-
ular, it is Riemannian, has geodesic leaves and its orthogonal complement is a
totally geodesic Riemannian foliation. Hence the foliation corresponds to a local
Riemannian product structure of the manifold. In particular, the universal cover
of (M, g) is a Riemannian product. If M is simply-connected or the foliation is
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simple and the base space is simply-connected, then the foliation corresponds to a
Riemannian product structure on (M, g) .

Proof. If the dimension of the manifold is three then the leaves are geodesics.
This together with Proposition 3.3 , gives the result.

Assume that the manifold has dimension greater than three. As before, by
passing to a finite covering, if necessary, we can suppose that both the foliation
V and the manifold M are oriented.

By Proposition 3.3 the foliation is Riemannian; hence, by the proof of Propo-
sition 2.3 , it is globally generated by a Killing field, namely ρ−1U where ρ is a
global density for V and U is a unit vertical vector field. Now, Bochner’s result
mentioned above implies that the foliation is generated by parallel vector fields.
Hence V is a Riemannian foliation by geodesics and its orthogonal complement
is a totally geodesic Riemannian foliation.

The fact that V induces on the universal cover of (M, g) a Riemannian product
structure follows from the de Rham decomposition theorem. If the foliation is
simple then the leaves are compact and hence any curve in the base space ad-
mits (global) horizontal lifts, which induce an isometry between the fibres over
the endpoints of the curve. Since the horizontal distribution is integrable, this
isometry depends only on the homotopy class of the curve. It follows that when
the base space is simply-connected, this isometry depends only on the two fibres
and the theorem is proved. �

Remark 3.5. 1) From the proof of Corollary 1.14 it follows that any local density
of a foliation which produces harmonic morphisms corresponds to a local section
of a regular covering ξ ∈ H1(M ;R) . Thus in the hypothesis of Theorem 3.4 we
can replace the condition of the existence of a global density with the condition
that the holonomy group of ξ to be finite.

2) In Proposition 3.3(i) and Theorem 3.4 we can replace the condition on the
Ricci curvature by the condition:

∫
M

Ricci(U,U) vg ≤ 0 for any vector field U
tangent to the foliation.

3) The above mentioned result of S. Bochner can be proved by using (3.1) .
In fact, if V is a Killing field on (M, g) which generates the (possibly singular)
foliation V , and σ = |V | then σ−1 is a dilation for the homothetic distribution H
(see the proof of Proposition 2.3). By (1.9) we have trace(VB) = grad(log(σ−1)) .
It is easy to see that, in this case, (3.1) gives (sign convention for the Laplacian
as in [7])

(3.3) σ∆σ + | gradσ|2 +
1

4
σ2
∣∣HI∣∣2 = Ricci(V, V ) .

If σ attains a maximum at a point where V is not zero then the left hand side
of (3.3) is nonnegative from which the result follows.

4) Recall that, by another well-known result of S. Bochner, on a compact
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Riemannian manifold with positive Ricci curvature there exists no harmonic one-
forms (in particular, the first Betti number of such a manifold is zero). As is
well-known (see [7]) this can be proved by using the Weitzenböck formula for the
Hodge Laplacian acting on exterior forms. Also formula (3.1) can be obtained
from the Weitzenböck formula applied to a local volume form of one of the two
distributions.

By Corollary 1.14 , any foliation which produces harmonic morphisms on a
simply-connected manifold admits a global density and hence in this case the
hypotheses of the above theorem can be weakened. Also, we have the following:

Corollary 3.6. Any nonconstant submersive harmonic morphism with fibres of
dimension one which is defined on a compact Riemannian manifold such that
the Ricci curvature Ricci(U,U) is nonpositive when U is tangent to the fibres is
totally geodesic (up to a conformal transformation of the codomain if this is two-
dimensional). Hence, if the total space or the base space is simply-connected, up to
a homothety of the codomain (up to a conformal transformation of the codomain
if this is two-dimensional), it is a projection of a Riemannian product.

In order to apply it to nonnegative curvature, note that formula (3.1) can also
be written

div(trace(HB)) + div(trace(VB)) +
∣∣ trace(HB)

∣∣2 +
∣∣ trace(VB)

∣∣2
+

1

4

∣∣HI∣∣2 +
1

4

∣∣VI∣∣2 =
∣∣HB∣∣2 +

∣∣VB∣∣2 + smix .(3.4)

The next result applies to arbitrary foliations, not necessary conformal.

Proposition 3.7. Let (M, g) be a compact Riemannian manifold.
(i) Let V and H be two complementary orthogonal foliations whose mean cur-

vatures are (globally) gradient vector fields. If the mixed curvature is nonnegative
then V and H are totally geodesic and hence they induce on (M, g) a local Rie-
mannian product structure. Thus, the universal cover of (M, g) is globally a
Riemannian product.

(ii) If the mixed curvature is positive then there exists no pair of complementary
orthogonal foliations on (M, g) for which the mean curvatures are gradient vector
fields.

Proof. If trace(HB) = grad(log u) and trace(VB) = grad(log v) for some smooth
positive functions u and v on M , then, (3.4) gives the following:
(3.5)
−∆(log u)−∆(log v) + | grad(log u)|2 + | grad(log u)|2 = |HB|2 + |VB|2 + smix .

Equation (3.5) can be written as follows:

(3.6) −u−1∆u− v−1∆v = |HB|2 + |VB|2 + smix .
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Since gradu and grad v are orthogonal (the former being vertical whilst the
latter is horizontal) relation (3.6) can be written as follows:

−u−1v−1∆(uv) = |HB|2 + |VB|2 + smix .

The proof follows by multiplying by u v and integrating over M . �

Corollary 3.8. Let (M, g) be compact and with zero first Betti number. Let V
be a homothetic foliation with codimV 6= 2 which produces harmonic morphisms
on (M, g) and has integrable orthogonal complement.

(i) Then the total mixed curvature
∫
M
smix vg is nonpositive.

(ii) If the mixed curvature is nonnegative then it is identically zero and V and
H are totally geodesic. Hence, the universal cover of (M, g) is globally a Rie-
mannian product.

On a compact Riemannian manifold with positive sectional curvature there ex-
ists no homothetic foliation which produces harmonic morphisms and has inte-
grable orthogonal complement.

In Theorem 4.12(i) we shall prove that for one-dimensional foliations the last
assertion from above proposition is true, without the integrability assumption on
H , when dimM is even and greater than two.

Proof. Since V is homothetic the mean curvature form of H is closed. But V
produces harmonic morphisms and hence, by Corollary 1.17 , the mean curvature
form of V is also closed. Since the first Betti number of M is zero both mean
curvatures are globally gradient vector fields. The proof follows from Proposition
3.7. �

Remark 3.9. 1) Recall (Remark 1.25) that Riemannian foliations are homo-
thetic, as are the foliations with minimal leaves of codimension not equal to two
and which produce harmonic morphisms.

2) If codimV = 1 then the integrability assumption on the orthogonal comple-
ment of V , made above, can be removed. Further, the mixed curvature is equal
to the restriction of the Ricci curvature to its orthogonal complement.

3) Corollary 3.8 admits further consequences in a similar way to Corollary 3.6.

Theorem 3.10. Let (M, g) be a compact Riemannian manifold of dimension at
least four, with zero first Betti number and with Ricci curvature of constant sign.

Then, there exists no orientable one-dimensional homothetic foliation which
produces harmonic morphisms on (M, g) and which has integrable orthogonal
complement.

Note that, by Lemma 2.7 , the integrability of the orthogonal complement above
is automatic except on the set where V is Riemannian.

Proof. Suppose that there exists a foliation V with the stated properties. By
Corollary 3.8 the Ricci curvature of (M, g) is nonpositive. Since M has zero
Betti number, V admits a global density. From Theorem 3.4 it follows that V
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is locally generated by parallel vector fields. Moreover, being orientable and
admiting a global density, as in the proof of Theorem 3.4 , V must be globally
generated by a parallel vector field. Hence, the first Betti number of M is nonzero.
Contradiction! �

Corollary 3.11. On a compact Riemannian manifold with positive Ricci curva-
ture, there exists no nonvanishing Killing field with integrable orthogonal comple-
ment.

The following immediate consequence of Proposition 3.1 slightly improves Propo-
sition 5.9 and Proposition 5.10 from [35] .

Corollary 3.12. If V is a Riemannian foliation on (M, g) , and smix < 0 at least
at one point of M , then V cannot be totally geodesic.

4. Harmonic morphisms with one-dimensional fibres
defined on compact manifolds

Throughout this section ϕ : (Mn+1, g) → (Nn, h) , n ≥ 1, will denote a non-
constant harmonic morphism defined on a compact Riemannian manifold. Recall
that, by a result of P. Baird [1] , ϕ is automatically submersive if n ≥ 4 . Since
closed, all the fibres of ϕ are compact. As is well known [13] if ϕ is nonconstant
then it is open, hence it is surjective and N is also compact. Let λ denote the
dilation of ϕ ; we shall denote by the same letter h the metric on N and the metric
λg on M of Definition 1.10 . This metric should be seen just as an auxiliary tool
and thus, whenever we denote a geometric object on the total space of ϕ without
mentioning a metric then it should be understood that the metric considered is
g.

Definition 4.1. We define the mass of a (regular) fibre of ϕ to be the positive
number

m =

∫
fibre

λ2−n vfibre .

Where vfibre is the volume measure of the fibre induced by the metric (see [23]).

By Proposition 1.6 the mass is independent of the (regular) fibre and it can be
defined without any restriction on the dimensions.

Theorem 4.2. Let ϕ : (Mn+1, g) → (Nn, h) , (n ≥ 1) be a submersive harmonic
morphism and let SM =

∫
M
sM vg , SN =

∫
N
sN vh be the total scalar curvature

of (M, g) and (N, h), respectively. Then

SM −mSN = n(n− 1)‖V(gradg(log λ))‖2

−(n− 1)(n− 2)‖H(gradg(log λ))‖2 − 1

4
‖I‖2 .

(4.1)
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Let n 6= 2 . Then∫
M

λ2(sM−λ2 sN) vg = n(n− 5)

∫
M

λ2|V(gradg(log λ))|2 vg

−(n2 − 3n+ 6)

∫
M

λ2|H(gradg(log λ))|2 vg −
1

4

∫
M

λ2|I|2 vg .
(4.2)

Here, I = HI is the integrability tensor of the horizontal distribution H.

Before proving this we need some preparations. The following lemma can be
obtained by a straightforward computation.

Lemma 4.3. Let σ = log λ, and (as before) let V be a local vertical field such
that g(V, V ) = e(2n−4)σ, and θ its dual vertical 1-form. Then, for any basic X
and Y we have:

H(g∇XY ) =H(h∇XY )−X(σ)Y − Y (σ)X +H(gradh σ)h(X, Y ) ,

V(g∇XY ) =
{
e(−2n+2)σ V (σ)h(X, Y )− 1

2
Ω(X, Y )

}
V ,

H(g∇VX) =− V (σ)X +
1

2
e(2n−2)σ (iXΩ)#h ,

V(g∇VX) =(n− 2)X(σ)V ,

H(g∇V V ) =− (n− 2)e(2n−2)σH(gradh σ) ,

V(g∇V V ) =(n− 2)V (σ)V .

Here, g∇ and h∇ are, respectively, the Levi-Civita connections of (M, g) and
(M,h), and Ω = d θ.

We shall also use the horizontal Laplacian of the associated Riemannian sub-
mersion with geodesic fibres. This was introduced in [6] and it can be defined as
follows:

Definition 4.4. If ϕ : M → (N, h) is a submersion endowed with a distribution
H which is complementary to kerϕ∗ , then the horizontal Laplacian ϕ∗∆N is
the second-order differential operator which on a local function f defined in the
neighbourhood of the point x ∈M acts as follows:

(ϕ∗∆N)(f) = −
∑
j

{
Xj(Xj(f))− ((ϕ∗∇N)XjXj)(f)

}
;

here, {Xj} is a local orthonormal frame of H (considered with the metric induced
by h ) formed of basic vector fields (i.e. sections of H which are projectable by ϕ
to vector fields on N ) , and ∇N is the Levi-Civita connection of (N, h) .

Remark 4.5. Note that (ϕ∗∆N)(f ◦ϕ) = (∆Nf)◦ϕ for any local smooth function
f on N .
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Lemma 4.6. Let ϕ : (Mn+1, g) → (Nn, h) be a submersive harmonic morphism
and let ∆M and ∆N be the Laplace operators on (M, g) and (N, h) , respectively.
Then

∆Mf = e2σ (ϕ∗∆N)(f)− e(−2n+4)σ
{
V (V (f))− 2(n− 1)V (f)V (σ)

}
.

Remark 4.7. Note that V (V (f)) is just minus the ‘vertical’ Laplacian [6] ap-
plied to f , of the Riemannian submersion with geodesic fibres associated to ϕ :
(M, g) → (N, h). More generally, the ‘vertical’ Laplacian of ϕ : (M, g) → (N, h)

is defined by (∆fibref)(x) = (∆ϕ−1(ϕ(x))(f |ϕ−1(ϕ(x))))(x) where ∆ϕ−1(ϕ(x)) is the
Laplacian of the fibre through x endowed with the metric induced by g . If ϕ is
a Riemannian submersion with totally geodesic fibres, then the sum of the hori-
zontal and the vertical Laplacians is equal to the Laplacian of the total space.

Proof of Theorem 4.2. Recall from the previous section that smix is the sum of the
sectional curvatures of all planes on (M, g) spanned by a horizontal and a vertical
vector from an orthonormal frame adapted to the decomposition TM = H⊕ V .
Let sH denote twice the sum of the sectional curvatures of all planes on (M, g)
spanned by the horizontal vectors of a frame as above.

Using the previous two lemmas and the fact that I = V ⊗ Ω , after a straight-
forward computation the following relation can be obtained. (Another way to
obtain it is to use the previous two lemmas together with Corollary 2.2.4 , from
[17] .)

sH−e2σ sN = −2(n− 1)∆Mσ − (n− 1)(n− 2)e2σ|H(gradh σ)|2

−2(n− 1)e(−2n+4)σ V (V (σ)) + (3n− 4)(n− 1)e(−2n+4)σ V (σ)2 − 3

4
|I|2 .

(4.3)

Using (1.2) , (1.3) together with Lemma 4.6 and (3.1) , we obtain:

smix = (n− 2)∆Mσ + 2(n− 1)e(−2n+4)σ V (V (σ))

−(3n− 4)(n− 1)e(−2n+4)σ V (σ)2 +
1

4
|I|2 .

(4.4)

But it is obvious that sM = sH + 2smix and hence from (4.3) and (4.4) we
obtain

sM−e2σ sN = −2∆Mσ +
2(n− 1)

n
enσ∆fibre(e−nσ)

+n(n− 1)|V(gradg σ)|2 − (n− 1)(n− 2)|H(gradg σ)|2 − 1

4
|I|2 .

(4.5)

Integrating (4.5) gives (4.1) . Relation (4.5) can also be written as follows:

e2σ sM − e4σ sN = −∆M(e2σ) +
2(n− 1)

n− 2
enσ∆fibre(e(−n+2)σ)

+n(n− 5)e2σ|V(gradg σ)|2 − (n2 − 3n+ 6)e2σ|H(gradg σ)|2 − 1

4
e2σ|I|2 .

(4.6)
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Integrating (4.6) gives (4.2), since∫
M

enσ∆fibre(e(−n+2)σ) vg =

∫
N

vh

∫
fibre

∆fibre(e(−n+2)σ) vfibre = 0

�

Remark 4.8. 1) Suppose that n = 1 , i.e. ϕ : (M2, g)→ R is a harmonic function
defined on the surface (M2, g) . Then, equation (4.4) above reads:

K = −∆(log | dϕ|) ,
where, K is the Gauss curvature of (M, g) . As is well-known this can be proved,
also, by using the local isothermal coordinates induced by ϕ .

2) Computing λ2(sH + smix) , by adding (4.3) and (4.4) from the above proof,
there can be obtained formula (2.2) from [26] applied to harmonic morphisms
with fibres of dimension one.

Proposition 4.9. Let ϕ : (Mn+1, g)→ (Nn, h) , n ≥ 2 be a submersive harmonic
morphism. If U is a unit vector field tangent to the fibres of ϕ then

SM ≤ mSN +

∫
M

Ricci(U,U) vg

and equality holds if and only if ϕ has geodesic fibres and H is integrable.

Note that since, Ricci(U,U) is quadratic in U , we do not need V to be ori-
entable.

Proof. First recall that Ricci(U,U) = smix , then take the sum of (4.3) and (4.4)
and use the definition of m. �

Corollary 4.10. Let ϕ : (Mn+1, g)→ (Nn, h) , n ≥ 2 , be a submersive harmonic
morphism.

(i) If ϕ induces a Riemannian foliation on (M, g) then SM ≤ mSN and equality
holds if and only if ϕ is totally geodesic (up to a conformal transformation of the
codomain if n = 2).

(ii) If ϕ has geodesic fibres and H is integrable then SM ≥ mSN and equality
holds if and only if ϕ is totally geodesic (up to a conformal transformation of the
codomain if n = 2).

From Lemma 2.7 it follows that when the set of the points where V is Riemann-
ian has measure zero then the integrability assumption on H in (ii) is superfluous.

Proof. (i) This is a trivial consequence of formula (4.1) from Theorem 4.2.
(ii) If n = 2 , then (4.1) from Theorem 4.2 gives the result. If n 6= 2 , by Proposi-
tion 1.5(b) we have H(gradg λ) = 0 . Now apply formula (4.1) . �

Corollary 4.11. If n ∈ {3, 4, 5} then
∫
M
λ2(sM − λ2 sN) vg ≤ 0. For n ∈ {3, 4}

equality holds if and only if ϕ is totally geodesic and for n = 5 equality holds if
and only if ϕ has geodesic fibres and H is integrable.
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Therefore, for n ∈ {3, 4, 5} if (Mn+1, g) , (Nn, h) are compact with sM ≥ 0 , sN ≤ 0
and at least one of these inequalities is strict then there exists no nonconstant sub-
mersive harmonic morphism ϕ : (Mn+1, g)→ (Nn, h) .

This improves Theorem 2.5 from [26] for the dimensions considered.

Proof. This is an immediate consequence of formula (4.2) from Theorem 4.2. �

To end this section we prove two results on homothetic one-dimensional fo-
liations which produce harmonic morphisms on compact manifolds, the first of
them being a generalization (refered to in Section 3) of a well-known result of
M. Berger (see [21, Ch.II, Corollary 5.7]) concerning Killing fields. To prove the
first of these two results we shall use a computation (Lemma 5.1) from the next
section.

Theorem 4.12. Let M be compact with dimension at least four.
(i) If dimM is even and (M, g) has positive sectional curvature then there exists

no homothetic one-dimensional foliation which produces harmonic morphisms on
(M, g).

(ii) If (M, g, J) is Kähler and has zero first Betti number then any homothetic
one-dimensional foliation which produces harmonic morphisms on (M, g) is Rie-
mannian and locally generated by Killing fields.

Proof. (i) Since (M, g) has positive sectional curvature it has, in particular, pos-
itive Ricci curvature. Thus from Bochner’s result (see Remark 3.5(4) ) it follows
that the first Betti number of M is zero .

Suppose that there exists a homothetic foliation V which produces harmonic
morphisms on (M, g) . Because the first Betti number of M is zero, by Corollary
1.14 , V admits a global density λ2−n , where n + 1 = dimM . We shall denote
by h = λg the associated Riemannian metric on M which makes V a Riemannian
foliation with geodesic leaves.

Since V is homothetic, by Proposition 1.18 , λ is of the form ea+b with (d a)V =
(d b)H = 0. At a point x ∈M where a− b attains a minimum we have

0 ≤ (h∇ d a)(V, V )− (h∇ d b)(V, V ) = −(h∇ d b)(V, V ) ,

0 ≤ (h∇ d a)(X,X)− (h∇ d b)(X,X) = (h∇ d a)(X,X) ,
(4.7)

where, V is as before and X is any horizontal vector at x .
Now, evaluated at x , the first formula from Lemma 5.1 gives

R(X, V,X, V ) = −(n− 2)e(2n−4)(a+b) (h∇ d a)(X,X)

+e−2(a+b) (h∇ d b)(V, V )h(X,X) +
1

4
e(4n−6)(a+b) h(iXΩ, iXΩ) ,

(4.8)

for any horizontal vector X.
Since Ω is skew-symmetric it must have even rank at each point. But dimM

is even and iV Ω = 0 and hence there must be a horizontal vector X at x such
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that iXΩ = 0. By (4.7) and (4.8) , the sectional curvature of the plane spanned
by X and V would be nonpositive, contradicting the hypothesis.
(ii) Since the first Betti number of M is zero the foliation V must admit a global
density. By passing to a two-fold covering if necessary, we can suppose that V is
oriented. Hence, by Proposition 2.5 , it must be generated by a conformal vector
field. But by a well-known result of A. Lichnerowicz (see [7, 2.125(ii)]) on a
compact Kähler manifold of complex dimension greater than two any conformal
vector field is Killing.

The theorem is proved. �

Remark 4.13. 1) Note that statement (i) from Theorem 4.12 fails if dimM
is odd , for example the Hopf maps S2n+1 → CP n are harmonic Riemannian
submersions.

2) In Theorem 4.12(i) , if the sectional curvature K of (Mn+1, g) satisfies K ≥
a2 > 0 on M for some positive constant a , then the compactness assumption on
M can be replaced by the weaker condition that (M, g) is complete. This follows
from a well-known result of S. B. Myers (see [7, 6.51]) , because in this case the
Ricci curvature is ≥ na2 g . (A similar remark can be made for Corollary 3.11 .)

Corollary 4.14. Let (M, g) be a compact Riemannian manifold of even dimen-
sion at least four, with zero first Betti number and whose sectional curvature has
constant sign.

Then, there exists no orientable one-dimensional homothetic foliation which
produces harmonic morphisms on (M, g) .

Proof. This follows from Theorem 3.4 and Theorem 4.12(i) . �

5. Some local and global results
for one-dimensional foliations which produce harmonic morphisms

All of the main results of this section hold for Riemannian manifolds of dimen-
sion at least four. None of the results of this section requires the compactness or
the completeness of the manifold.

If the manifold has dimension at least four then by Proposition 2.3 a one-
dimensional Riemannian foliation produces harmonic morphisms on it if and only
if it is locally generated by Killing fields and from Corollary 1.24 it follows that
a foliation by geodesics produces harmonic morphisms if and only if it is homo-
thetic.

The first main result of this section concerns a one-dimensional foliation V
which has integrable orthogonal complement and which produces harmonic mor-
phisms on an Einstein manifold. We prove that V is one of these two types. Also,
we prove that this still holds if we replace the integrability assumption on the
orthogonal complement by the condition that the foliation be homothetic.

In [9, Theorem 3] R. L. Bryant considered a submersive harmonic morphism ϕ
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with connected one-dimensional fibres defined on a simply-connected Riemann-
ian manifold of dimension at least four and with constant sectional curvature.
Bryant’s result is that ϕ is one of the following two types: either there exists a
nonvanishing Killing field tangent to the fibres of ϕ or the fibres are geodesics
orthogonal to an umbilical foliation by hypersurfaces. We improve this result by
showing that, on a Riemannian manifold with constant sectional curvature any
orientable one-dimensional foliation which produces harmonic morphisms and
admits a global density is either Riemannian and its leaves are generated by a
nonvanishing Killing field or is homothetic and the leaves are geodesics orthogo-
nal to an umbilical foliation by hypersurfaces. In this way an entirely new proof
for Bryant’s result is obtained.

In this section V will always denote a one-dimensional foliation which produces
harmonic morphisms on (Mn+1, g) (n ≥ 1) and ρ = e(2−n)σ will denote a local
density of it. As before, h = eσg will denote the associated (local) metric on M
with respect to which V is Riemannian and has geodesic leaves and H will denote
the orthogonal complement of V .

Using Lemma 4.3, the following lemma can be obtained by a straightforward
computation. Another way to obtain it is to use Lemma 4.3 and S. Gudmunds-
son’s fundamental equations of a horizontally conformal submersion [17].

Lemma 5.1. Let X, Y, Z be horizontal and V vertical vectors on M , such that
g(V, V ) = e(2n−4)σ ; then the curvature tensor of (M, g) has the following compo-
nents

R(X, V, Y, V ) =− 1

2
(n− 2)e(2n−4)σ(LH(gradh σ) h)(X, Y )

− (n− 2)e(2n−4)σ{nX(σ)Y (σ)− |H(gradh σ)|2h h(X, Y )}
+ e−2σ{V (V (σ))− (n− 1)V (σ)2}h(X, Y )

+
1

4
e(4n−6)σ h(iXΩ, iY Ω) ,

(5.1)

R(X,Y, Z, V ) = −1

2
e(2n−4)σ(h∇Ω)(X, Y, Z)

+
1

2
(n− 1)e(2n−4)σ{X(σ)Ω(Y, Z) + Y (σ)Ω(Z,X)− 2Z(σ)Ω(X, Y )}

− e−2σ{X(V (σ))− (n− 2)X(σ)V (σ)}h(Y, Z)

+ e−2σ{Y (V (σ))− (n− 2)Y (σ)V (σ)}h(X,Z)

+
1

2
e(2n−4)σ{Ω(X, gradh σ)h(Y, Z)− Ω(Y, gradh σ)h(X,Z)} .

(5.2)

Here, as before, h∇ denote the Levi-Civita connection of (M,h).

A similar, but longer, formula can be given for the case R(X, Y, Z,H) when
X, Y, Z, H are horizontal [30].
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The first formula of the following lemma follows after a straightforward compu-
tation using (5.1) and Gudmundsson’s formula given in [17, Theorem 2.2.3(5)] .
The second formula follows from (5.2) .

Lemma 5.2. Suppose that V restricted to the domain of the local density ρ =
e(2−n)σ is a simple foliation (i.e. the leaves are the fibres of a submersion) and let
ϕ : (O, g|O) → (N, h̄) be the induced harmonic morphism. If Ricci denotes the
Ricci tensor of (M, g) and N Ricci denotes the Ricci tensor of (N, h̄) , then,

Ricci(X, Y ) = (NRicci)(ϕ∗X,ϕ∗Y )− 1

2
e(2n−2)σ h(iXΩ, iY Ω)

−e−2σ (∆Mσ)h(X, Y )− (n− 1)(n− 2)X(σ)Y (σ) ,
(5.3)

Ricci(X, V ) =
1

2
e(2n−2)σ (hd∗Ω)(X) + (n− 1)e(2n−2)σ Ω(X, gradh σ)

+ (n− 1)X(V (σ))− (n− 1)(n− 2)X(σ)V (σ) .
(5.4)

where h d∗ is the codifferential on (M,h) .

Remark 5.3. If in above formulae we put n = 2 we obtain particular cases of
formulae of P. Baird and J. C. Wood [4, Proposition 4.2] .

A consequence of Lemma 5.2 is the following Kaluza-Klein type result:

Proposition 5.4. For n ≥ 3 , let ϕ : (Mn+1, g) → (Nn, h̄) be a harmonic mor-
phism with one-dimensional geodesic fibres.

(a) If H is integrable then the following assertions are equivalent:
(i) (M, g) is Einstein,
(ii) (N, h̄) is Einstein and the following relation holds

(n− 1)V (V (σ))− (n− 1)(n− 2)(V (σ))2 = e(2n−2)σ cN − 1

2
e(4n−4)σ

∣∣Ω∣∣2
h

where cN is the Einstein constant of (Nn, h̄) .
(b) When n = 4 and M and N are oriented consider, also, the following

assertion:
(iii) Ω is the pull-back of a (anti-)self-dual form on (N, h̄).

Then, any two of the assertions (i), (ii) and (iii) imply the remaining assertion.

Proof. (a) By Proposition 1.5, we have that X(σ) = 0 for any horizontal X .
Lemma 2.1 implies that [V,X] = 0 and hence X(V (σ)) = V (X(σ)) = 0 . By
hypothesis, Ω = 0 so, from (5.4) for any horizontal X we have Ricci(X, V ) = 0.
Similarly, from (5.3) we get:

(5.5) Ricci(X, Y ) = (NRicci)(ϕ∗X,ϕ∗Y )− e−2σ (∆Mσ)h(X, Y ) .

It follows that (M, g) is Einstein if and only if (N, h̄) is.
(b) Let Ω̄ be the two-form on N such that ϕ∗(Ω̄) = Ω . Note that (hd∗Ω)|H = 0
if and only Ω̄ is coclosed on (N, h̄) .

If (iii) holds the equivalence (i) ⇐⇒ (ii) can be proved in a similar way to
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(a) , using the fact that any closed (anti-)self-dual form is coclosed and that, for
any two-form ω on a four-dimensional oriented Euclidean space (E4, <,>) and
u, v ∈ E, we have:

(5.6) < iuω, ivω >=
1

2
|ω|2 < u, v > +2 < iuω+, ivω− >

where, ω+ and ω− are, respectively, the self-dual and the anti-self-dual compo-
nents of ω.

To prove (i),(ii)⇒(iii) first note that, by (5.4) , Ω̄ is coclosed.
Now, recall that (5.6) gives the decomposition of the symmetric bilinear map

(u, v) 7→< iuω, ivω > into its ‘spherical’ part and its ‘trace-free’ part. Also, the
bilinear map (u, v) 7→< iuα, ivβ > induces a natural isomorphism between the
space of ‘trace-free’ symmetric bilinear maps and Λ2

+(E) ⊗ Λ2
−(E). Using these

facts it is easy to see that at each point Ω̄ is either self-dual or anti-self-dual.
If N± = { y ∈ N | (Ω̄±)y = 0 } then by the Baire category theorem at least one

of the two sets N+ and N− has nonempty interior. If N+ has nonempty interior
then by Aronszajn’s unique continuation theorem (see [11] and recall that Ω̄ , and
hence also Ω̄+ , is closed and coclosed) Ω̄+ = 0 and hence Ω̄ is anti-self-dual. �

Remark 5.5. 1) From Lemma 2.7 we see that if the foliation given by the fibres
of ϕ is nowhere Riemannian then H is automatically integrable.

2) Since the decomposition of two-forms into self-dual and anti-self-dual forms
is conformally invariant, the condition that Ω be the pull-back of a (anti-)self-dual
form is equivalent to the condition that Ω restricted to the horizontal distribution
be (anti-)self-dual.

The following elementary algebraic lemma will be used several times in this
section.

Lemma 5.6. Let E be an Euclidean linear space of dimension at least two and
α a linear function on it such that for any pair of orthogonal vectors {u, v} we
have α(u)α(v) = 0.

Then α = 0.

Proof. Let u, v ∈ E be orthogonal and such that |u| = |v|. Since u+ v , u− v are
also orthogonal we get that 0 = α(u+ v)α(u− v) = α(u)2 − α(v)2.

Thus α(u) = ±α(v) and since by hypothesis at least one of must be zero they
are both zero. The lemma is proved. �

Recall that on a Riemannian manifold of dimension at least four a Riemannian
foliation with one-dimensional leaves produces harmonic morphisms if and only
if it is locally generated by Killing fields (Proposition 2.3) and a foliation by
geodesics produces harmonic morphisms if and only if it is homothetic (Corollary
1.24). The next few results give conditions under which these are the only possible
types of one-dimensional foliations which produces harmonic morphisms. They
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require a technical lemma which will be proved at the end of the section (Lemma
5.17).

Theorem 5.7. Let (Mn+1, g) be an Einstein manifold of dimension n + 1 ≥ 4,
and let V be a one-dimensional foliation with integrable orthogonal complement.

Then V produces harmonic morphisms if and only if either
(i) V is Riemannian and locally generated by Killing fields or
(ii) V is homothetic and its leaves are geodesics.
Moreover, if both (i) and (ii) occur then (Mn+1, g) is Ricci flat.

Proof. By passing to a Riemannian covering if necessary, we can suppose that V
admits a global density.

By the remarks above we need to prove just the ‘only if’ part.
If H is integrable, then from (5.3) , for any orthogonal pair {X, Y } formed of

basic vector fields we have:

(5.7) N Ricci(ϕ∗X,ϕ∗Y ) = (n− 1)(n− 2)X(σ)Y (σ) .

Since n ≥ 3 and the left-hand side of (5.7) is a basic function we get that
X(σ)Y (σ) is a basic function.

Also, from (5.4) we obtain that V (X(σ)) = X(V (σ)) = (n− 2)V (σ)X(σ) .
Hence:

0 =V (X(σ)Y (σ)) = V (X(σ))Y (σ) +X(σ)V (Y (σ))

=2(n− 2)V (σ)X(σ)Y (σ) .

If, at a point x we have that V (σ)(x) 6= 0 , then this holds in an open neigh-
bourhood O of x. It follows that X(σ)Y (σ) = 0 on O .

Using Lemma 5.6 we see that grad σ restricted to O is vertical and hence, from
Proposition 1.5 , it follows that V restricted to O has geodesic leaves. Thus, we
have proved that at each point either V is Riemannian or geodesic. Using Lemma
5.17 we get that locally either (i) or (ii) holds.

To prove that this alternative holds globally first recall that, being Einstein,
(M, g) is analytic (see [7, 5.26]).

On an open subset where V has geodesic leaves, by (3.1), σ satisfies the equa-
tion

(5.8) −n∆σ + n(n− 1)| gradg σ|2 = c

where, c is the Einstein constant of (M, g) and ∆ is the Laplacian of (M, g) .
Hence, by the regularity of solutions for elliptic equations (see [7, page 467]) we
get that σ is analytic on any open set where V has geodesic leaves.

Also, σ is analytic on an open set where V is Riemannian since, by (3.1), on
such open sets σ satisfies the equation

(5.9) ∆σ =
1

n− 2
c .
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Because the alternative (i) or (ii) holds locally, σ is analytic on M .
Now suppose that locally both (i) and (ii) occur. In this case, being analytic,

σ satisfies both (5.8) and (5.9) on M . It is easy to see that this implies that
| gradg σ|2 = 2c/n(n − 2) is constant on M . Also, if locally both (i) and (ii)
occur, there must be at least one point x ∈ M where (grad σ)x = 0 . Thus, if
locally both situations (i) and (ii) occur then σ is constant on M and (M, g) is
Ricci flat. �

Remark 5.8. In the above proof the fact that σ is analytic on an open subset
of M where V has geodesic leaves follows, also, from the fact that if (M, g) is
Einstein and ϕ a local harmonic morphism with geodesic fibres produced by V
then by Proposition 5.4 the codomain of ϕ is also Einstein and hence is analytic
in harmonic coordinates (see [7, 5.26]). Thus, ϕ is an analytic horizontally confor-
mal (actually, homothetic) submersion between analytic Riemannian manifolds.
Hence, the dilation of ϕ is analytic.

Next we prove that Theorem 5.7 still holds if we replace the integrability as-
sumption on H with the condition that V be a homothetic foliation.

Corollary 5.9. Let (M, g) be an Einstein manifold of dimension at least four
endowed with a one-dimensional homothetic foliation V .

Then V produces harmonic morphisms if and only if either
(i) V is Riemannian and locally generated by Killing fields or
(ii) V has geodesic leaves and integrable orthogonal complement.
Moreover, if both (i) and (ii) occur then (M, g) is Ricci flat.

Proof. Again we need to prove just the ‘only if’ part.
Let

F1 =
{
x ∈M | V is Riemannian at x

}
,

F2 =
{
x ∈M | V is geodesic at x

}
.

By Lemma 2.7 we have that H , the orthogonal complement of V , is integrable
at least on M \ F1 . From Theorem 5.7 it follows that on M \ F1 either V
is Riemannian or geodesic. Using Lemma 5.17 we get that locally either V is

Riemannian or geodesic, i.e. M =
◦
F1 ∪

◦
F2 , where

◦
F means the interior of F . If

◦
F1 ∩

◦
F2 6= ∅ then, by the proof of Theorem 5.7 ,

◦
F2 ⊆

◦
F1 . Hence, V is either

Riemannian or geodesic, on M . If V is not Riemannian then H is integrable, by
Lemma 2.7 .

The last assertion follows from Theorem 5.7 . �

Remark 5.10. For the alternative (i) or (ii) from the above corollary to hold
locally it is enough to suppose that the Ricci tensor take the value zero when
evaluated on a pair formed of a horizontal and a vertical vector.

In the next two propositions we shall assume curvature conditions which are
automatically satisfied when (M, g) has constant sectional curvature.
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Proposition 5.11. For n ≥ 3 , let V be a one-dimensional foliation on (Mn+1, g).
Suppose that the orthogonal complement of V is integrable, that for any horizontal
vector X we have Ricci(X, V ) = 0 and that for any pair {X, Y } of orthogonal
basic vector fields the function e(−2n+4)σ R(X, V, Y, V ) is basic.

Then V produces harmonic morphisms if and only if locally either
(i) V is Riemannian and generated by a Killing field or
(ii) V is homothetic and its leaves are geodesic.

Proof. Again we need to prove just the ‘only if’ part.
By Lemma 5.17 and Proposition 2.3 , it is sufficient to prove that at each point
V is either Riemannian or geodesic.

Let {X, Y } be a pair of basic vector fields orthonormal with respect to h. Then
the hypothesis together with (5.1) implies that
(5.10)

e(−2n+4)σ R(X, V, Y, V ) = −1

2
(n− 2)(LH(gradh σ) h)(X, Y )− n(n− 2)X(σ)Y (σ).

Also, with the given hypotheses, from (5.4) we see that

(5.11) V (X(σ)) = X(V (σ)) = (n− 2)X(σ)V (σ) .

Since the left-hand side of (5.10) is basic by hypothesis, we can write

0 =
1

2
V ((LH(gradh σ) h)(X, Y )) + nV (X(σ)Y (σ)) .

Hence using the properties of the Lie derivative together with (5.11) we get

0 =
1

2
(LV (LH(gradh σ) h))(X, Y ) +

1

2
(LH(gradh σ) h)([V,X], Y )

+
1

2
(LH(gradh σ) h)(X, [V, Y ]) + 2n(n− 2)V (σ)X(σ)Y (σ) .

Since [LA,LB] = L[A,B] , for any vector fields A,B , and [V,X] = 0 for any
basic field X , we get

0 =
1

2
(L[V,H(gradh σ)] h)(X, Y ) +

1

2
(LH(gradh σ)(LV h))(X, Y )

+2n(n− 2)V (σ)X(σ)Y (σ) .

Since V is a Riemannian foliation with respect to h , the last relation becomes

0 =
1

2
(L[V,H(gradh σ)] h)(X, Y ) + 2n(n− 2)V (σ)X(σ)Y (σ) .

Now, from (5.11) one can easily obtain

[V,H(gradh σ)] = (n− 2)V (σ)H(gradh σ) .
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From the last two relations we obtain

0 =
1

2
(n− 2)V (σ)(LH(gradhσ) h)(X, Y ) +

1

2
(n− 2)X(V (σ))Y (σ)

+
1

2
(n− 2)Y (V (σ))X(σ) + 2n(n− 2)V (σ)X(σ)Y (σ) .

The last relation together with (5.10) and (5.11) gives

(5.12) e(−2n+4)σ V (σ)R(X, V, Y, V ) = 2(n− 1)(n− 2)V (σ)X(σ)Y (σ) .

If at a point x we have that V is not Riemannian (i.e. V (σ)(x) 6= 0) then
(5.12) together with the fact that e(−2n+4)σ R(X, V, Y, V ) is basic gives us that in
a neighbourhood O of x we have V (X(σ)Y (σ)) = 0 . Using (5.11) , this implies
that X(σ)Y (σ) = 0 . Using Lemma 5.6 , we get that in O , gradh σ is vertical.
Now apply Lemma 5.17 . �

Proposition 5.12. For n ≥ 4 , let V be a one-dimensional foliation on the
Riemannian manifold (Mn+1, g) and let R be its Riemannian curvature tensor.
Suppose that V produces harmonic morphisms and that for any triple {X, Y, Z}
of orthogonal basic vector fields the function e(−2n+4)σ R(X, Y, Z, V ) is basic.

Then except, possibly, at the points where the orthogonal complement of V is
integrable, we have that X(V (σ)) = 0 for any horizontal X .

If n = 3 and, together with the above curvature assumption, we have that
Ricci(X, Y ) is basic for any pair of orthogonal basic vector fields {X, Y } then
X(V (σ)) = 0 for any horizontal X .

Proof. Let {X, Y, Z} be orthogonal basic fields. Put them into (5.2) and multiply
by e(−2n+4)σ. Then, the first term from the right hand side is basic by a simple
calculation. The terms in the last three lines are zero and we conclude that the
second term from the right hand side of (5.2) is basic.

Hence, for any triple {X, Y, Z} of orthogonal basic fields the following relation
holds:

V (X(σ))Ω(Y, Z) + V (Y (σ))Ω(Z,X) = 2V (Z(σ))Ω(X, Y ) .

Rewriting this after a circular permutation of the vectors in the frame and then
subtracting the second relation from the first gives the following:

(5.13) V (X(σ))Ω(Y, Z) = V (Z(σ))Ω(X, Y ) .

Hence, if {T,X, Y, Z} are orthogonal basic fields we have the following:

V (T (σ))V (X(σ))Ω(Y, Z) = V (T (σ))V (Z(σ))Ω(X, Y )

= −V (Z(σ))V (T (σ))Ω(Y,X) = −V (Z(σ))V (X(σ))Ω(T, Y )

= −V (X(σ))V (Z(σ))Ω(T, Y ) = −V (X(σ))V (T (σ))Ω(Y, Z) .

And hence

V (T (σ))V (X(σ))Ω(Y, Z) = 0 .
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It follows that on S
(

=
{
x ∈ M |Ωx 6= 0

})
for any pair {X, Y } of orthogonal

basic fields we have V (X(σ))V (Y (σ)) = 0 . By Lemma 5.6 this implies that on
S we have V (X(σ)) = 0 for any basic vector field X .

Suppose now that dimM = 4 and let S be defined as above. Then, it suffices
to prove that V is homothetic on S and on the interior of M \ S .

Let {X, Y } be a pair of orthogonal basic vector fields defined on the interior
of M \ S . Then from (5.3) we obtain that X(σ)Y (σ) is a basic function. If X
and Y have the same length with respect to h then this applies also to the pair
{X + Y,X − Y } and hence X(σ)2 − Y (σ)2 is a basic function. Hence X(σ)2 and
Y (σ)2 are basic and thus X(σ) and Y (σ) are basic.

Since dimM = 4 and iV Ω = 0 (here, as before, i denotes the interior product)
each point from S has an open neighbourhood on which a unique basic vector
field Z can be defined such that iZΩ = 0 and h(Z,Z) = 1 .

We can choose basic vector fields X and Y such that {X, Y, Z} is an orthonor-
mal local frame for H with respect to h . Since, on S , Ω 6= 0 we have that
Ω(X, Y ) 6= 0 . By (5.13) and the way Z was chosen we have:

V (Z(σ))Ω(X, Y ) = V (X(σ))Ω(Y, Z) = 0 .

Hence V (Z(σ)) = 0 .
Now, a simple calculation gives the following relations:

h(iXΩ, iY Ω) = 0 ,

h(iXΩ, iXΩ) = h(iY Ω, iY Ω) .

The first of the above relations together with (5.3) applied to {X, Y } gives that
the function X(σ)Y (σ) is basic. The second of the above relations together with
(5.3) applied to {X + Y,X − Y } gives that the function X(σ)2 − Y (σ)2 is basic.
Hence X(σ) and Y (σ) are basic. �

Proposition 5.13. Let V be a one-dimensional foliation which produces har-
monic morphisms on (Mn+1, g) . Suppose that the following conditions are satis-
fied, for any horizontal X :

(i) X(V (σ)) = 0 ,
(ii) Ricci(X, V ) = 0 .
Then V is homothetic.

Proof. By Lemma 2.8 it is sufficient to prove that V is homothetic on the interior
S of the set {x ∈M | d(V (σ))(x) = 0 6= (V (σ))(x)} .

By (5.4) on S we have

(5.14) e(2n−2)σ
{1

2
(hd∗Ω)(X)+(n−1)Ω(X, gradh σ)

}
= (n−1)(n−2)X(σ)V (σ),

for any basic vector field X .
By hypothesis the right hand side above is a basic function on S . Also, the sec-

ond factor from the left hand side of (5.14) is basic and thus, if this second factor
is nonzero, then e(2n−2)σ is a basic function. This implies that V is Riemannian
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and, in particular, homothetic.
If the second factor from the left hand side of (5.14) is zero on an open subset

S0 of S then the right hand is also zero and hence V has geodesic fibres on S0 .
From Corollary 1.24 it follows that V is homothetic on S0 . �

It is obvious that a space with constant sectional curvature satisfies the curva-
ture assumptions of all of the previous theorems of this section. In fact, in this
case, we have the following:

Theorem 5.14. For n ≥ 3 let (Mn+1, g) be a Riemannian manifold with con-
stant sectional curvature and V a one-dimensional foliation on (Mn+1, g).

Then, V produces harmonic morphisms if and only if either
(i) V is Riemannian and locally generated by Killing fields or
(ii) V is a homothetic foliation by geodesics with integrable orthogonal comple-

ment.
Moreover, both (i) and (ii) can occur only if (Mn+1, g) is flat.
Furthermore, if V is orientable and admits a global density then (i) can be re-

placed by
(i′) V is (globally) generated by a nonvanishing Killing field.

Proof. Again we need to prove just the ‘only if’ part.
From Theorem 5.7 , Proposition 5.12 and Proposition 5.13 we obtain that at

each point either V is Riemannian or geodesic.
Using Lemma 5.17 we get that locally either V is Riemannian or geodesic. In

particular, V is homothetic. Now the proof of the alternative (i) or (ii) follows
from Corollary 5.9 .

If both (i) and (ii) hold then, from formula (5.1) , it follows that (M, g) is flat.
The fact that (i) can be replaced by (i′) when V is orientable and admits a

global density follows from the proof of Proposition 2.3 . �

Corollary 5.15. For n ≥ 3 let (Mn+1, g) be a Riemannian manifold with con-
stant sectional curvature and let ϕ : (Mn+1, g) → (Nn, h) be a submersive har-
monic morphism with orientable vertical distribution.

Then, either
(i) the fibres of ϕ form a Riemannian foliation generated by a Killing field or
(ii) ϕ is horizontally homothetic and has geodesic fibres orthogonal to an um-

bilical foliation by hypersurfaces.

Lemma 5.16. Let Mm be a manifold and F1, F2 ⊆ M , closed subsets such that
M = F1 ∪ F2.

Then, M = cl(
◦
F1) ∪ cl(

◦
F2) .

Proof. Suppose that there exists x /∈ cl(
◦
F1) ∪ cl(

◦
F2) . Then there exists an

open neighbourhood O of x , which is homeomorphic with Rm and such that

O ∩ cl(
◦
Fj) = ∅ , j = 1, 2 .
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For j = 1, 2 , let Gj = O∩Fj . Since Fj is closed, Gj is closed in O . Also, since
O is open we have that the interior of Gj in O is the same as its interior in M ,
which is empty by the way O was chosen.

Hence, Gj is nowhere dense in O . From M = F1 ∪ F2 we get that Rm ≈ O =
G1 ∪G2 . But this is impossible, by the Baire category theorem. �

Lemma 5.17. Let V be a one-dimensional foliation with geodesic leaves on (M, g)
and let H be its orthogonal complement. Let f : M → R be a smooth function
such that at each point x ∈M either V(grad f)x = 0 or H(grad f)x = 0.

Then each point of M has an open neighbourhood O such that either V(grad f) =
0 on O or H(grad f) = 0 on O .

Proof. Let

F1 =
{
x ∈M | V(grad f)x = 0

}
,

F2 =
{
x ∈M |H(grad f)x = 0

}
.

By hypothesis, M = F1 ∪ F2 and hence, by Lemma 5.16 , we have that

(5.15) M = cl(
◦
F1) ∪ cl(

◦
F2) .

Let V be a local unit vertical vector field, then, [V,X] = 0 for any basic vector
field X . Also, using (5.15) we see that for any basic vector field X , we have:

(5.16) V (X(f)) = X(V (f)) = 0 .

Note that H is integrable on M \F1 , because on this set the level hypersurfaces
of f are integral manifolds for H . Using this fact together with (5.16) and the
hypothesis it is easy to see that H(grad f) and V(grad f) are, locally, gradient
vector fields. Thus, we can find local smooth functions a and b such that:

f = a+ b and,

V(grad a) = 0 = H(grad b)

It follows that F1 is the set of critical points of b , and F2 is the set of critical
points of a . Since locally, M is diffeomorphic to the product between an open
subset of a leaf and a local base, the lemma quickly follows. �
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