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Abstract We initiate the study of the generalized quaternionic manifolds by classifying the
generalized quaternionic vector spaces, and by giving two classes of nonclassical examples
of such manifolds. Thus, we show that any complex symplectic manifold is endowed with a
natural (nonclassical) generalized quaternionic structure, and the same applies to the heaven
space of any three-dimensional Einstein–Weyl space. In particular, on the product Z of any
complex symplectic manifold M and the sphere, there exists a natural generalized complex
structure, with respect to which Z is the twistor space of M .
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1 Introduction

There are several natural notions which are similar or generalize the complex manifolds. One
of these is based on the idea that, at each point, instead of a single linear complex structure,
one considers a quaternionic family of linear complex structures. Then, the corresponding
integrability condition is in the spirit of Twistor Theory, thus obtaining the basic objects of
Quaternionic Geometry (see [7] and the references therein).

On the other hand, one may consider a linear complex structure on the direct sum of
the tangent and cotangent bundles, which is orthogonal with respect to the canonical inner
product (corresponding to the natural identification of the tangent bundle with its bidual).
Then, the corresponding integrability condition is provided by a generalization [4] of the
usual bracket on vector fields, thus leading to the Generalized Complex Geometry (see [5]).
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R. Pantilie

In this note, we initiate the natural unification of these two Geometries, under the
framework of Twistor Theory.

In Sects. 2 and 3, we review the generalized complex and the quaternionic vector spaces,
respectively. Then, in Sect. 4, we classify the generalized quaternionic vector spaces (The-
orem 4.4). We mention that, although the formulation of this result is elementary, its proof
requires a covariant functor which, to any pair formed of a quaternionic vector space and a
real subspace, associates a coherent analytic sheaf over the Riemann sphere.

Finally, in Sect. 5, we introduce the notion of generalized quaternionic manifold, and we
present two classes of nonclassical examples, provided by the complex symplectic mani-
folds (Example 5.2) and by the heaven space of any three-dimensional Einstein–Weyl space
(Example 5.3).

I am grateful to the referee for useful suggestions.

2 Generalized complex vector spaces

A generalized linear complex structure [5] on a (finite dimensional real) vector space V is
a linear complex structure on V × V ∗ which is orthogonal with respect to the inner product
corresponding to the canonical pairing of V and V ∗.

Before taking a closer look to the generalized linear complex structures, we recall (see [5])
the linear B-field transformations. These can be defined as the orthogonal transformations of
V ×V ∗ which restrict to the identity on V ∗. More concretely, any linear B-field transformation
is given by (X, α) �→ (X, ιX b + α), for any (X, α) ∈ V × V ∗, where b is a two-form on V .

Indeed, any linear B-field transformation maps V onto an isotropic complement of V ∗,
and any such subspace of V × V ∗ is the graph of a unique two-form on V (seen as a linear
map from V to V ∗).

In what follows, we shall use several times this canonical correspondence between linear
B-field transformations and isotropic complements of V ∗ in V × V ∗.

Let J be a generalized linear complex structure on V . There are two extreme cases:
J V ∗ = V ∗ and V ∗ ∩ J V ∗ = {0}.

In the first case, we obtain, inductively, that there exists a J -invariant isotropic complement
W of V ∗ in V × V ∗. Consequently, J V ∗ = V ∗ if and only if, up to a linear B-field
transformation, we have

J =
(

J 0
0 J ∗

)
,

where J is a linear complex structure on V and we have denoted by J ∗ the opposite of the
transpose of J .

Similarly, on taking W = J V ∗, we obtain that V ∗ ∩ J V ∗ = {0} if and only if, up to a
linear B-field transformation, we have

J =
(

0 ω−1

−ω 0

)
,

where ω is a linear symplectic structure on V (seen as a linear isomorphism from V onto
V ∗).

Note that if J and K are linear generalized complex structures on V and W , respectively,
then the product J ×K is defined, in the obvious way, through the isomorphism (V × W )×
(V × W )∗ = (V × V ∗) × (W × W ∗).
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Proposition 2.1 [5] Any linear generalized complex structure is, up to a linear B-field trans-
formation, the product of the linear generalized complex structures given by a (classical)
linear complex structure and a linear symplectic structure.

Proof If J is a generalized linear complex structure on V then

(
V ∗ ∩ J V ∗)⊥ = (

V ∗)⊥ + J (
V ∗)⊥ = V ∗ + J V ∗ .

Thus, if U is a complement of V ∗ ∩ J V ∗ in V ∗ then U ∩ J U = {0} and U + J U is
nondegenerate (with respect to the canonical inner product).

Then, the orthogonal complement of U +J U is a nondegenerate complex vector subspace
of (V × V ∗, J ) for which V ∗ ∩ J V ∗ is a maximal isotropic subspace.

It follows that, up to a linear B-field transformation, (V, J ) is the product of two
generalized complex vector spaces (V1, J1) and (V2, J2) satisfying J1V ∗

1 = V ∗
1 and

V ∗
2 ∩ J2V ∗

2 = {0}. �	
The following fact will be used later on.

Lemma 2.2 Let ρ : E → U be a surjective linear map and let V = U × (kerρ)∗.
Then, any section of ρ induces an isomorphism V × V ∗ = E × E∗ which preserves the

canonical inner products. Moreover, any two such isomorphisms differ by a linear B-field
transformation.

Proof This is a quick consequence of the fact that any section of ρ corresponds to a splitting
E = U × (kerρ). �	

3 Brief review of the quaternionic vector spaces

Let H be the (unital) associative algebra of quaternions. Its automorphism group is SO(3)

acting trivially on R and canonically on ImH .
A linear hypercomplex structure on a vector space E is a morphism of associative algebras

from H to End(E). The automorphism group of H acts on the space of linear hypercomplex
structures on E in an obvious way, thus giving the canonical equivalence relation on it.

A linear quaternionic structure on a vector space is an equivalence class of linear hyper-
complex structures. A vector space endowed with a linear quaternionic (hypercomplex)
structure is a quaternionic (hypercomplex) vector space.

Let E be a quaternionic vector space and let ρ : H → End(E) be a representative of
its linear quaternionic structure. Then Z = ρ(S2) is the space of admissible linear complex
structures on E . Obviously, Z depends only of the linear quaternionic structure of E .

Let E and E ′ be quaternionic vector spaces and let Z and Z ′ be the corresponding spaces of
admissible linear complex structures, respectively. A linear map t : E → E ′ is quaternionic,
with respect to some function T : Z → Z ′, if t ◦ J = T (J ) ◦ t , for any J ∈ Z . It follows
that if t �= 0, then T is unique and an orientation preserving isometry [7].

The basic example of a quaternionic vector space is H
k , (k ∈ N), endowed with the

linear quaternionic structure given by its (left) H -module structure. Furthermore, if E is a
quaternionic space, dim E = 4k, then there exists a linear quaternionic isomorphism from
H

k onto E .
The classification (see [11]) of the real vector subspaces of a quaternionic vector space is

much harder. It involves two important particular subclasses, dual to each other.
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Definition 3.1 [8] A linear CR quaternionic structure on a vector space U is a pair (E, ι),
where E is a quaternionic vector space and ι : U → E is an injective linear map such that
im ι + J (im ι) = E , for any admissible linear complex structure J on E .

A vector space endowed with a linear CR quaternionic structure is a CR quaternionic
vector space.

By duality, we obtain the notion of co-CR quaternionic vector space.
It is convenient to work with the category whose objects are pairs formed of a quaternionic

vector space E and a real vector subspace U . Then, a CR quaternionic vector space (U, E, ι)

corresponds to the pair (im ι, E) (and, by duality, a co-CR quaternionic vector space (U, E, ρ)

corresponds to the pair (ker ρ, E)).
There exists a covariant functor from this category to the category of coherent analytic

sheaves over the sphere. To describe it, let Z (= S2) be the space of admissible linear complex
structures on E and denote by E0,1 the holomorphic vector subbundle of Z × EC whose
fibre, over each J ∈ Z , is the eigenspace of J corresponding to −i .

Let τ be the restriction to E0,1 of the morphism of trivial holomorphic vector bundles
determined by the complexification of the projection E → E/U . Denote by U− and U+ the
kernel and cokernel of τ , respectively. Then, U = U+ ⊕ U− is the (coherent analytic) sheaf
of (U, E) [11].

For example, (U, E) is a CR quaternionic vector space if and only if U = U− (which is
a holomorphic vector bundle whose Birkhoff–Grothendieck decomposition contains only
terms of Chern number at most −1). The simplest concrete examples are (H , H ) and
(ImH , H ) which correspond to 2O(−1) and O(−2), respectively; their duals are (0, H )

and (R, H ) which correspond to 2O(1) and O(2), respectively. See [8,9,11] for further
examples and the related Twistor Theory.

Remark 3.2 (1) Let E and E ′ be quaternionic vector spaces and let T : Z → Z ′ be an
orientation preserving isometry between their spaces of admissible linear complex structures
Z and Z ′, respectively. Then, {J × T (J )}J∈Z , is the space of admissible linear complex
structures of the product E × E ′, with respect to T . As any quaternionic vector space is
determined, up to linear quaternionic isomorphisms, by its dimension, E × E ′ does not
depend of T .

Moreover, if E and E ′ are endowed with the real vector subspaces U and U ′, respectively,
such that either the sheaf of (U, E) or the sheaf of (U ′, E ′) is torsion free then [11, Corollary
4.2(i)] the product (U ×U ′, E × E ′) is well-defined, up to a linear quaternionic isomorphism.

(2) Let (U, E) be a pair formed of a quaternionic vector space E and a real vector subspace
U ; denote by U the sheaf of (U, E).

Then U− is the holomorphic vector bundle of a canonically defined CR quaternionic vector
space (U−, E−) ⊆ (U, E).

Also, there exist pairs (V, F) and (Ut , Et ) such that (V, F) corresponds to a co-CR quater-
nionic vector space (that is, the projection E → E/V defines a linear co-CR quaternionic
structure on E/V ), the sheaf Ut of (Ut , Et ) is the torsion subsheaf of U , and U+ = Ut ⊕ V ,
(U, E) = (U−, E−) × (Ut , Et ) × (V, F), where V is the holomorphic vector bundle of
(V, F).

Moreover, the filtration {0} ⊆ (U−, E−) ⊆ (U−, E−) × (Ut , Et ) ⊆ (U, E) is canonical
[11, Corollary 4.2(ii)] .

We end this section with the following fairly obvious fact which will be used later on.
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Proposition 3.3 Let (U, E) and (V, F) be pairs formed of a quaternionic vector space and
a real subspace such that the sheaf of (U, E) is torsion, whilst (V, F) corresponds to a co-CR
quaternionc vector space.

Then, any morphism from (U, E) to (V, F) is zero.

4 Generalized quaternionic vector spaces

The notions of linear quaternionic structure and generalized linear complex structure suggest
the following.

Definition 4.1 A generalized linear hypercomplex/quaternionic structure on a vector space
V is a linear hypercomplex/quaternionic structure on V × V ∗ whose admissible linear com-
plex structures are orthogonal with respect to the inner product.

A generalized hypercomplex/quaternionic vector space is a vector space endowed with a
generalized linear hypercomplex/quaternionic structure.

Obviously, any generalized linear hypercomplex structure determines a generalized linear
quaternionic structure.

Also, if V is a generalized quaternionic vector space, then the sheaf of the pair (V ∗, V ×V ∗)
is invariant under linear B-field transformations.

There are two basic classes of generalized quaternionic vector spaces.

Example 4.2 To any co-CR quaternionic vector space (U, E, ρ), we associate on V = U ×
(kerρ)∗, by using Lemma 2.2, a generalized linear quaternionic structure which is unique,
up to linear B-field transformations.

We, thus, obtain the generalized quaternionic vector space given by the co-CR quater-
nionic vector space (U, E, ρ).

Note that, this construction gives a (classical) quaternionic vector space if and only if ρ

is an isomorphism; equivalently, V = E as quaternionic vector spaces.
By duality, we obtain the generalized quaternionic vector space given by a CR quaternionic

vector space.

Example 4.3 Let (V, J, ω) be a vector space endowed with a linear complex structure J
and a linear symplectic structure ω. Denote by JJ and Jω the generalized linear complex
structures on V given by J and ω, respectively.

Then, JJ Jω = −Jω JJ if and only if ω(1,1) = 0. Thus, if (V, J, ω) is a complex
symplectic vector space, then {aJJ + bJω + cJJ∗ω | (a, b, c) ∈ S2} defines a generalized
linear quaternionic structure on V .

We, thus, obtain the generalized hypercomplex vector space given by the complex sym-
plectic vector space (V, J, ω).

Note that, if a �= ±1 then Ja,b,c = aJJ + bJω + cJJ∗ω is given, up to a linear B-field
transformation, by a linear symplectic structure. Indeed, if a �= ±1, the i-eigenspace La,b,c

of Ja,b,c is formed of all (X, α) satisfying

(b2 + c2)α = (
a(bJ ∗ − c) + i(cJ ∗ + b)

)
ω(X) ; (4.1)

in particular, the projection of La,b,c onto V C is equal to V C .

Let V and W be generalized quaternionic vector space, and let ZV and ZW be the cor-
responding spaces of admissible generalized linear complex structures. Let T : ZV → ZW
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be an orientation preserving isometry. Then, {J × T (J )}J ∈ZV is the space of admissible
generalized linear complex structures of the product of V and W , with respect to T .

Note that, if V and W are given by the linear complex symplectic structures (JV , ωV )

and (JW , ωW ), respectively, then the resulting generalized linear quaternionic structure on
V × W is given by the product of (JV , ωV ) and (JW , ωW ), if T maps JJV , JωV to JJW ,
JωW , respectively. However, if, instead, T maps JJV , JωV to JωW , JJW , respectively, then
the resulting product is not given by a linear complex symplectic structure.

Nevertheless, from Theorem 4.4, below, it follows that if either the sheaf of (V ∗, V × V ∗)
or the sheaf of (W ∗, W × W ∗) is torsion free, then V × W does not depend of T .

Here is the main result of this section.

Theorem 4.4 Any generalized quaternionic vector space is, up to a linear B-field transfor-
mation, a product of the generalized quaternionic vector spaces given by a CR quaternionic
vector space and a finite family of complex symplectic vector spaces; moreover, the factors
are unique, up to ordering.

To prove Theorem 4.4, we, firstly, consider the case when the sheaf of the pair (V ∗, V ×V ∗)
is torsion free.

Proposition 4.5 Let V be a generalized quaternionic vector space such that the sheaf of
(V ∗, V × V ∗) is torsion free.

Then, up to a linear B-field transformation, V is given by a unique (up to isomorphisms)
CR quaternionic vector space.

Proof Let V be the sheaf of (V ∗, V × V ∗), and let V± be its positive/negative parts.
The canonical inner product induces an isomorphism V = V∗ which is equal to its trans-

pose and preserves the decompositions into the positive and negative parts. As the posi-
tive/negative parts of V∗ are (V∓)∗, this corresponds to an isomorphism V− = (V+)∗.

Thus, under the decomposition (V ∗, V × V ∗) = (U−, E−) × (U+, E+) into a product
of a CR quaternionic and a co-CR quaternionic vector space, the canonical inner product
corresponds to an isomorphism E− = E∗+ with respect to which U− is the annihilator of U+.

Therefore, if U ′+ is a complement of U+ in E+, then its annihilator corresponds to a
complement U ′− of U− in E−. Moreover, we may choose U ′+ so that (U ′+, E+) is a CR
quaternionic vector space and, consequently, (U ′−, E−) is a co-CR quaternionic vector space.
Then, U ′− × U ′+ is an isotropic complement to V ∗ defining a linear B-field transformation
which is as required. �	

Secondly, we consider the case when the sheaf of (V ∗, V × V ∗) is torsion.

Proposition 4.6 Let V be a generalized quaternionic vector space such that the sheaf of
(V ∗, V × V ∗) is torsion.

Then, up to a linear B-field transformation, V is a product of generalized quaternionic
vector spaces given by complex symplectic vector spaces; moreover, the factors are unique,
up to ordering.

Proof Let Z be the space of admissible linear complex structures on V × V ∗ and let V be
the sheaf of (V ∗, V × V ∗).

Suppose, firstly, that the support of V is formed of two (necessarily, antipodal) points
±J ∈ Z ; equivalently, V ∗ ∩J (V ∗) �= 0 and for any I ∈ Z \ {±J }, we have V ∗ ∩I(V ∗) =
{0}.

Let U = V ∗ ∩ J (V ∗), and let K ∈ Z be such that J K = −KJ . Then, K(V ∗) is a
J -invariant isotropic complement of V ∗, and KU = K(V ∗) ∩ J (K(V ∗)).
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It follows that, up to a suitable linear B-field transformation, we have that (V, J ) =
(V1, J1) × (V2, J2) such that V1 × V ∗

1 = U ⊕ KU , and, also, J1 and J2 are given by
a linear complex and symplectic structures, respectively. Consequently, E = U ⊕ KU is a
quaternionic vector subspace of V ×V ∗ which is nondegenerate with respect to the canonical
inner product, and its orthogonal complement is V2 × V ∗

2 ; in particular, the latter is preserved
by K. Therefore V contains the sheaf of (V ∗

2 , V2 × V ∗
2 ) which, necessarily, is the sheaf of a

co-CR quaternionic vector space. Thus, V2 = {0}; equivalently, J (V ∗) = V ∗.
Then, under the linear B-field transformation corresponding to K(V ∗), we have that J and

K are given by a linear complex structure J and a linear symplectic structure ω, respectively,
which, as J and K anti-commute, define a linear complex symplectic structure on V .

In general, the support of V is {±Jk}k=1,...,l ⊆ Z ; denote Uk = V ∗∩Jk(V ∗), k = 1, . . . , l.
If I ∈ Z\{±Jk}k=1,...,l then from [11, Theorem 3.1] it follows that we have Uk ∩I(Uk) = {0}
and Uk +I(Uk) is a quaternionic vector subspace of V ×V ∗, for any k = 1, . . . , l; moreover,
the sum

∑l
k=1(Uk + I(Uk)) is direct.

Now, inductively (and similarly to the case l = 1), we obtain an orthogonal decomposition
V × V ∗ = ⊕l

k=1(Uk + I(Uk)), and the proof follows. �	

We can, now, give the:

Proof of Theorem 3.4 Let Z be the space of admissible linear complex structures on V × V ∗
and let V be the sheaf of (V ∗, V × V ∗).

There exists a quaternionic vector subspace Et of V × V ∗ such that, if we denote Ut =
Et ∩ V ∗, then the sheaf of (Ut , Et ) is the torsion part of V; in particular, dim Ut = 1

2 dim Et .
Consequently, U⊥

t = E ⊥
t + V ∗ and dim(E ⊥

t ∩ V ∗) = 1
2 dim E ⊥

t .
By using Proposition 3.3, we obtain that Et is nondegenerate with respect to the canonical

inner product. Hence, E ⊥
t is a nondegenerate quaternionic vector subspace of V × V ∗ for

which E ⊥
t ∩ V ∗ is a maximal isotropic subspace.

We have thus shown that (V ∗, V × V ∗) = (E⊥
t ∩ V ∗, E⊥

t ) × (Ut , Et ). Therefore, up to a
linear B-field transformation, V is a product of two generalized quaternionic vector spaces V1

and V2 such that the sheaf of (V ∗
1 , V1 × V ∗

1 ) is torsion free, whilst the sheaf of (V ∗
2 , V2 × V ∗

2 )

is torsion.
By Propositions 4.5 and 4.6, the proof is complete. �	

5 Generalized quaternionic manifolds

Recall [5] (see, also, [10]) that a generalized complex structure on a manifold M is an orthog-
onal complex structure on T M ⊕ T ∗M for which the space of sections of its i-eigenbundle
is closed under the Courant bracket [4], defined by

[(X, α); (Y, β)] = ([X, Y ]; LXβ − LYα − 1
2 d(ιXβ − ιY α)

)
,

for any sections (X, α) and (Y, β) of T M ⊕ T ∗M .
A generalized almost quaternionic structure on a manifold M is a linear quaternionic

structure on T M ⊕ T ∗M compatible to the canonical inner product.
Let M be a generalized almost quaternionic manifold, and let Z be the bundle of admissible

generalized linear complex structures on T M ⊕ T ∗M . Note that, Z is the sphere bundle of
an oriented Riemannian vector bundle of rank three; in particular, its fibres are Riemann
spheres.
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Any connection D on T M ⊕ T ∗M , compatible with its linear quaternionic structure and
the inner product, induces a connection K on Z ; in particular, T Z = K ⊕ (kerdπ), where
π : Z → M is the projection.

At each J ∈ Z , let JJ be the direct sum of J and the linear complex structure of ker dπJ ,
where we have identified KJ = Tπ(J )M , through dπ . Then J is a generalized almost
complex structure on Z .

Definition 5.1 If J is a generalized complex structure then (M, D) is a generalized quater-
nionic manifold and (Z , J ) is its twistor space.

Obviously, the (classical) quaternionic manifolds (see [7] and the references therein)
are generalized quaternionic. Also, from [3], it follows that the generalized hyper-Kähler
manifolds are generalized quaternionic.

We add the following two classes of examples.

Example 5.2 Let (M, J, ω) be a complex symplectic manifold. Then, by using Example 4.3,
we obtain a generalized almost quaternionic structure on M whose bundle of admissible
linear complex structure is M × S2.

Furthermore, let D be any compatible connection on T M ⊕ T ∗M which induces the
trivial connection on M × S2. Then, a straightforward calculation shows that the induced
generalized almost complex structure on M × S2 is integrable. Thus, (M, D) is a generalized
quaternionic manifold.

Note that, Example 5.2, also, gives ‘generalized hypercomplex manifolds’.

Example 5.3 Let (N 3, c,∇) be a three-dimensional Einstein–Weyl space and let (M4, g) be
its heaven space (see [1] and the references therein). Then, (M4, g) is an anti-self-dual Ein-
stein manifold, with nonzero scalar curvature, and ∇ corresponds to a twistorial submersion
ϕ : (M4, g) → (N 3, c,∇) [6] (see [9]).

As ϕ is horizontally conformal, at each x ∈ M4, the differential of φ defines a lin-
ear co-CR quaternionic structure on Tϕ(x)N , and hence, ϕ induces a generalized almost
quaternionic structure on M4. Recall (Example 4.2) that this is induced by the isomorphism
T M = H ⊕ V ∗, where V = ker dϕ, H = V ⊥, and we have used the musical isomor-
phisms determined by g. Furthermore, through this isomorphism, the Levi–Civita connection
of (M4, g) corresponds to a connection D on T M ⊕ T ∗M with respect to which (M4, D) is
a generalized quaternionic manifold.

The twistor space of (M4, D) is obtained from the twistor space (Z , J ) of (M4, g), as
follows.

There exists a (pseudo-)Kähler metric g̃ on Z with respect to which the projection π :
(Z , g̃) → (M, g) is a Riemannian submersion with geodesic fibres (see [2] and the references
therein).

On the other hand, ϕ corresponds to a one-dimensional holomorphic foliation Ṽ on (Z , J ),
orthogonal to the fibres of π .

Then, L(T 0,1 Z + Ṽ , i ω), where ω is the Kähler form of (Z , J, g̃), is the −i- eigenbundle
of the generalized complex structure J on Z such that (Z , J ) is the twistor space of (M4, D).
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