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1. Introduction

Let XE be the space of (real) vector subspaces of a vector space E. Then, XE is a disjoint
union of Grassmannians and GL(E) acts transitively on each of its components.

If E is endowed with a linear geometric structure, corresponding to the Lie subgroup
G ⊆ GL(E), then it is natural to ask whether or not the action induced by G on XE

is still transitive on each component and, if not, to find explicit representatives for each
orbit.

For example, if E is a Euclidean vector space and, accordingly, G is the orthogo-
nal group, then the orthonormalization process shows that G acts transitively on each
component of XE .

Suppose, instead, that E is endowed with a linear complex structure J ; equivalently,
E = C

k and G = GL(k, C). Then, for any vector subspace U of E we have a decompo-
sition U = F × V , where F is a complex vector subspace of E and V is totally real
(that is, V ∩ JV = 0); obviously, the filtration 0 ⊆ F ⊆ U is canonical. Consequently,
the subspaces C

m × R
l, where 2m + l � 2k, are representatives for each of the orbits of

GL(k, C) on XCk .
The corresponding decomposition for the real subspaces of a hypercomplex vector

space (that is, E = H
k and G = GL(k, H)) was obtained in [2].

By using a different method, we obtain the decomposition and the canonical fil-
tration for the real subspaces of a quaternionic vector space; that is, E = H

k and
G = Sp(1) · GL(k, H). This involves a covariant functor from the category of pairs (U, E),
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where E is a quaternionic vector space and U ⊆ E is a real vector subspace (with the
obvious morphisms induced by the linear quaternionic maps), to the category of coher-
ent sheaves on the Riemann sphere. We mention that a similar functor appeared in [7]
(see [8]).

2. Complex and (co-)CR vector spaces

A linear complex structure on a (real) vector space U is a linear map J : U → U such that
J2 = − IdU . Then, on associating to any linear complex structure the −i eigenspace of
its complexification, we obtain a (bijective) correspondence between the space of linear
complex structures on U and the space of complex vector subspaces C of UC such that
C ⊕ C̄ = UC.

This suggests that we consider the following two less restrictive conditions for a complex
vector subspace C of UC:

(1) C ∩ C̄ = 0,

(2) C + C̄ = UC.

Furthermore, conditions (1) and (2) are dual to each other. That is, C ⊆ UC satisfies (1)
if and only if AnnC ⊆ (UC)∗ satisfies (2), where Ann C = {α ∈ (UC)∗ | α|C = 0} is the
annihilator of C.

Now, it is a standard fact that if C ⊆ UC satisfies (1), then it is called a linear CR
structure on U .

Therefore, a complex vector subspace C of UC satisfying C + C̄ = UC is called a linear
co-CR structure on U [6].

Thus, a complex vector subspace of UC is a linear co-CR structure on U if and only if
its annihilator is a linear CR structure on U∗.

A vector space endowed with a linear (co-)CR structure is a (co-)CR vector space.
If U is a vector subspace of a vector space E, endowed with a linear complex structure

J , then C = UC ∩ EJ is a linear CR structure on U , where EJ is the −i eigenspace of J .
Moreover, if we further assume that U + JU = E, then (E, J) is, up to complex linear
isomorphisms, the unique complex vector space, containing U , such that C = UC ∩ EJ .

Thus, we have the following fact.

Proposition 2.1 (see [6]). Any CR vector space corresponds to a pair (U, E), where
(E, J) is a complex vector space and U is a vector subspace of E such that U +JU = E.

We also have the following dual fact.

Proposition 2.2 (see [6]). Any co-CR vector space corresponds to a pair (V, E),
where (E, J) is a complex vector space and V is a vector subspace of E such that
V ∩ JV = 0.

Proof. Let (E, J) be a complex vector space and let V ⊆ E be totally real; that is,
V ∩ JV = 0. Let U = E/V and let π : E → U be the projection. Then, π(EJ) is a linear
co-CR structure on U and the proof follows quickly. �
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Let (E, J) be a complex vector space and let U be a vector subspace of E. Then,
obviously, F = U ∩ JU is invariant under J , and therefore (F, J |F ) is a complex vector
subspace of (E, J). Moreover, (F, J |F ) is the biggest complex vector subspace of (E, J)
contained by U . Consequently, if V is a complement of F in U , then V is totally real
in E.

Thus, we have a decomposition U = F ⊕ V ; moreover, the filtration 0 ⊆ F ⊆ U is
canonical.

As already suggested, it is useful to consider pairs (U, E), with E a complex vector
space and U a vector subspace of E. A morphism t : (U, E) → (U ′, E′), between two such
pairs, is a complex linear map t : E → E′ such that t(U) ⊆ U ′. Also, there is an obvious
notion of product: (U, E) × (U ′, E′) = (U × U ′, E × E′).

Proposition 2.3 (see [2]). Any pair formed of a complex vector space and a real
vector subspace admits a decomposition, unique up to the order of factors, as a (finite)
product, in which each factor is either (C, C), (R, C) or (0, C).

Proof. Let (E, J) be a complex vector space and let U be a vector subspace of E.
We have seen that U = F × V , where F = U ∩ JU and V is a complement of F in U .
From the fact that V ∩ JV = 0, it follows that F ∩ (V + JV ) = 0.

Let E′ ⊆ E be a complex vector subspace complementary to F ⊕ (V + JV ). We
obviously have that (U, E) is isomorphic to (F, F ) × (V, V + JV ) × (0, E′).

To complete the proof, just note that (F, F ), (V, V + JV ) and (0, E′) decompose as
products, in which each factor is of the form (C, C), (R, C) and (0, C), respectively. �

If we apply Proposition 2.3 to the pair corresponding to a (co-)CR vector space, then
we obtain the following facts, dual to each other.

(1) The pair corresponding to a CR vector space admits a decomposition, unique up
to the order of factors, as a product, in which each factor is either (C, C) or (R, C).

(2) The pair corresponding to a co-CR vector space admits a decomposition, unique
up to the order of factors, as a product, in which each factor is either (R, C) or
(0, C).

Thus, we have the following result.

Corollary 2.4. Any pair formed of a complex vector space and a real vector subspace
admits a decomposition as a product of the pair corresponding to a CR vector space and
the pair corresponding to a co-CR vector space.

3. Quaternionic vector spaces

The automorphism group of the (unital) associative algebra of quaternions is SO(3, R),
acting trivially on R and canonically on Im H(= R

3). Thus, if E is a vector space, then
there exists a natural action of SO(3, R) on the space of morphisms of associative algebras
from H to End(E); that is, on the space of linear hypercomplex structures on E. The
(non-empty) orbits of this action are the linear quaternionic structures on E.
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A quaternionic (hypercomplex) vector space is a vector space endowed with a linear
quaternionic (hypercomplex) structure (see [1,4]).

Let E be a quaternionic vector space and let ρ : H → End(E) be a representative of its
linear quaternionic structure. Then, obviously, the space Z = ρ(S2) of admissible linear
complex structures on E depends only on the linear quaternionic structure of E. We
denote by EJ the −i eigenspace of J ∈ Z.

The linear quaternionic structure on E corresponds to a linear quaternionic structure
on its dual E∗ given by the morphism of associative algebras from H to End(E∗), which
maps any q ∈ H to the transpose of ρ(q̄). Thus, any admissible linear complex structure
J on E corresponds to the admissible linear complex structure J∗, which is the opposite
of the transpose of J ; note that, (E∗)J∗

is the annihilator of EJ .
Let E and E′ be quaternionic vector spaces and let Z and Z ′ be the corresponding

spaces of admissible linear complex structures, respectively. A linear quaternionic map
from E to E′ is a linear map t : E → E′ such that, for some function T : Z → Z ′, we
have that t ◦ J = T (J) ◦ t for any J ∈ Z; consequently, if t �= 0, then T is unique and an
orientation preserving isometry (see [4]).

The (left) H-module structure on H
k determines a linear quaternionic structure on

it. Moreover, for any quaternionic vector space E, with dimE = 4k, there exists a
linear quaternionic isomorphism from E onto H

k. The group of linear quaternionic auto-
morphisms of H

k is Sp(1) · GL(k, H), acting on H
k by (±(a, A), q) �→ aqA−1, for any

±(a, A) ∈ Sp(1) · GL(k, H) and q ∈ H
k (see [4]).

We end this section by showing how to define the product of two quaternionic vector
spaces E and E′. Let T : Z → Z ′ be an orientation preserving isometry between the
spaces of admissible linear complex structures on E and E′.

If ρ : H → End(E) represents the linear quaternionic structure of E, then T is the
restriction of a unique linear map T̃ : ρ(H) → End(E′) such that T̃ ◦ ρ determines the
linear quaternionic structure on E′.

Then, q �→ (ρ(q), T̃ (ρ(q))), q ∈ H, defines the product linear quaternionic structure on
E × E′ (with respect to T ).

Note that, although the product of two quaternionic vector spaces is well defined (that
is, it does not depend on the particular isometry T ), it does not make the category
of quaternionic vector spaces abelian. Nevertheless, it is obvious that the category of
hypercomplex vector spaces is abelian.

4. Pairs formed of a quaternionic vector space and a real vector subspace

The category of quaternionic vector spaces is a full subcategory of the category whose
objects are pairs (U, E), where E is a quaternionic vector space and U ⊆ E is a real
vector subspace. The morphisms between two such pairs (U, E) and (U ′, E′) are the
linear quaternionic maps t : E → E′ such that t(U) ⊆ U ′ (see [2]).

If U is a real vector subspace of a quaternionic vector space E, we call (AnnU, E∗) the
dual of (U, E).
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We shall see that there are three basic subcategories of the category of pairs formed of
a quaternionic vector space and a real vector subspace, two of which are related to the
Twistor Theory (see [6]).

Definition 4.1. Let E be a quaternionic vector space and let Z be its space of admis-
sible linear complex structures.

If ι : U → E is an injective linear map, then (E, ι) is a linear CR quaternionic structure
on U if im ι + J(im ι) = E for any J ∈ Z.

A CR quaternionic vector space is a vector space endowed with a linear CR quater-
nionic structure.

By duality, we obtain the notion of a co-CR quaternionic vector space.
To any co-CR quaternionic vector space (U, E, ρ) we associate the pair (ker ρ, E). Thus,

the category of co-CR quaternionic vector spaces is a full subcategory of the category of
pairs formed of a quaternionic vector space and a real vector subspace; by duality, the
latter also includes the category of CR quaternionic vector spaces.

See [6] for further information on (co-)CR quaternionic vector spaces.

Remark 4.2.

(1) Let U be a real vector subspace of a quaternionic vector space E. Then, (U, E) is
given by a CR quaternionic vector space if and only if its dual is given by a co-CR
quaternionic vector space.

(2) Any quaternionic vector space E is both CR and co-CR quaternionic. When we
consider E a CR quaternionic vector space, the associated pair is (E, E), while when
we consider E a co-CR quaternionic vector space, the associated pair is (0, E).

We shall construct a covariant functor from the category of pairs, formed of a quater-
nionic vector space and a real vector subspace, to the category of coherent analytic
sheaves, over the sphere, endowed with a conjugation covering the antipodal map (see [3]
for the basic properties of coherent analytic sheaves and [7] for coherent analytic sheaves,
over the sphere, endowed with a conjugation covering the antipodal map, briefly called
‘σ-sheaves’).

For this, firstly note that if E is a quaternionic vector space, with Z(= S2) the space
of admissible linear complex structures, then

E0,1 =
⋃

J∈Z

{J} × EJ

is a holomorphic vector subbundle of Z × EC. Now, if U ⊆ E is a real vector subspace,
then the projection E → E/U induces, by restriction, a morphism of holomorphic vector
bundles E0,1 → Z × (E/U)C. Let U− and U+ be the kernel and cokernel, respectively, of
this morphism of holomorphic vector bundles.

Definition 4.3. We call U = U− ⊕ U+ the (coherent analytic) sheaf of (U, E).
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The proof of the following proposition is straightforward.

Proposition 4.4. The association (U, E) �→ U defines a covariant functor F from the
category of pairs, formed of a quaternionic vector space E and a real vector subspace
U ⊆ E, to the category of coherent sheaves, on the sphere, endowed with a conjugation
covering the antipodal map. Furthermore, F has the following properties.

(i) For any morphism t : (U, E) → (U ′, E′), we have that F(t) maps F(U, E)± to
F(U ′, E′)±.

(ii) If (U, E) is given by a (co-)CR quaternionic vector space, then F(U, E) is its holo-
morphic vector bundle.

With the same notation as in Proposition 4.4, if U = U+, then E/U is the space of
(global) sections of U intertwining the antipodal map and the conjugation.

We now give the basic examples of pairs whose sheaves are torsion free (cf. [2,7]; see
also [6,8]).

Example 4.5. Let q1, . . . , qk+1 ∈ S2, k � 1, be such that qi �= ±qj if i �= j. For
j = 1, . . . , k, let

ej = (0, . . . , 0︸ ︷︷ ︸
j−1

, qj , qj+1, 0, . . . , 0︸ ︷︷ ︸
k−j

).

Define U0 = R and, for k � 1, let Uk = R
k+1 + Re1 + · · · + Rek.

Then, the sheaf of (Uk, Hk+1) is O(2k + 2) for any k ∈ N. Note that the projection
H

k+1 → H
k+1/Uk defines a co-CR quaternionic vector space and the sheaf of the dual of

(Uk, Hk+1) is O(−2k − 2) for any k ∈ N.

Example 4.6. Let V0 = {0} and, for k � 1, let Vk be the vector subspace of H
2k+1

formed of all vectors of the form

(z1, z1 + z2j, z3 − z2j, . . . , z̄2k−1 + z2kj,−z2kj),

where z1, . . . , z2k are complex numbers.
Then, the sheaf of (Vk, H2k+1) is 2O(2k + 1) for any k ∈ N. Note that the projection

H
2k+1 → H

2k+1/Vk defines a co-CR quaternionic vector space and the sheaf of the dual
of (Vk, H2k+1) is 2O(−2k − 1) for any k ∈ N.

The next class of pairs is taken from [2].

Example 4.7. For k � 1 and q ∈ S2, let Wk,q be the real vector subspace of H
k

formed of all vectors of the form

(a1 + b1q + b2i, a2 + b2q + b3i, . . . , ak−1 + bk−1q + bki, ak + bkq), (4.1)

where a1, b1, . . . , ak, bk are real numbers, and we have assumed that q �= ±i; if q = ±i,
then we replace i by j in (4.1).
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Then, for any p ∈ S2 \ {±q} we have that Wk,q ∩ pWk,q = 0, while Wk,q ∩ qWk,q

has dimension two. Together with [7, Proposition 3.1], this implies that the sheaf of
(Wk,q, H

k) is the indecomposable torsion sheaf with conjugation, supported at ±q, and
of Chern number 2k.

5. The main results

Now, we can prove the following.

Theorem 5.1 (cf. [2]). Any pair formed of a quaternionic vector space and a real
vector subspace admits a decomposition, unique up to the order of factors, as a (finite)
product, in which each factor is given by one of the Examples 4.5, 4.6 or 4.7, or is the
dual of one of the Examples 4.5 or 4.6.

Proof. Let U be the sheaf of (U, E). By the dual of [6, Proposition 4.7], we have
that U− is the holomorphic vector bundle of a CR quaternionic vector space (U−, E−).
Furthermore, from the diagram of the proof of [7, Theorem 4.8] (adapted to the
case of sheaves with conjugations), we obtain that there exists an injective morphism
t : (U−, E−) → (U, E), which induces an injective linear map E−/U− → E/U ; equiva-
lently, U− = E− ∩ t−1(U). Therefore, t admits a cokernel (U+, E+) whose sheaf is, obvi-
ously, U+.

Thus, we may assume that U = U+ and, consequently, we have an exact sequence

0 → E0,1 → Z × (E/U)C → U → 0. (5.1)

Then, the cohomology exact sequence of (5.1) gives a canonical isomorphism (which
intertwines the conjugations) (E/U)C = H0(Z,U).

Furthermore, the morphism (0, E) → (U, E) determines a surjective sheaf morphism
E → U whose kernel is Z × UC (with the corresponding morphism to E given by the
inclusion Z × UC → Z × EC followed by the projection Z × EC → E). Thus, we also have
that

0 → Z × UC → E → U → 0. (5.2)

The cohomology exact sequence of (5.2), together with the isomorphisms (E/U)C =
H0(Z,U) and EC = H0(Z, E), shows that the inclusion U → E is determined by U .

Now, tensorising (5.2) with O(−2), where O(−1) is the tautological line bundle over
Z(= CP 1), and by passing to cohomology, we deduce that H1(Z,U ⊗O(−2)) = 0; equiv-
alently, in the Birkhoff–Grothendieck decomposition of U there are no trivial terms.
Together with Examples 4.5–4.7, this completes the proof. �

Let (U, E) be a pair formed of a quaternionic vector space and a real vector subspace.
Then, (U, E) is a torsion pair if it corresponds to a torsion sheaf; equivalently, (U, E)

is a product of pairs as in Example 4.7.
The pair (U, E) is torsion free if its sheaf is torsion free; equivalently, it is a holomorphic

vector bundle.
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Corollary 5.2.

(i) Let (U, E) and (U ′, E′) be pairs formed of a quaternionic vector space and a real
vector subspace. Suppose that either (U, E) or (U ′, E′) are torsion free. Then,
(U ×U ′, E ×E′) does not depend on the particular isometry used to define E ×E′.

(ii) Any pair (U, E) formed of a quaternionic vector space and a real vector subspace
decomposes uniquely as the product of a torsion pair and (the pairs given by) a
CR quaternionic vector space and a co-CR quaternionic vector space; moreover,
the filtration (0, 0) ⊆ (U−, E−) ⊆ (U−, E−) × (Ut, Et) ⊆ (U, E) is canonical, where
(Ut, Et) is the torsion pair and (U−, E−) is the CR quaternionic vector space.

Proof. If U is a holomorphic vector bundle over S2 and T : S2 → S2 is a holomorphic
diffeomorphism, then T−1(U) is isomorphic to U and, furthermore, the same holds for
bundles, endowed with a conjugation covering the antipodal map, and their pull-backs
through orientation preserving isometries. Assertion (i) follows quickly.

Assertion (ii) follows from (i) and the proof of Theorem 5.1. �

Finally, note that the ‘augmented (strengthened) H-modules’ of [5] (respectively, [7])
are just pairs whose decompositions contain no terms of the form (H, H) (respectively,
(0, H)); equivalently, in the decompositions of their sheaves there are no terms of Chern
number −1 (respectively, 1).
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