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Abstract In a general and nonmetrical framework, we introduce the class of CR qua-
ternionic manifolds containing the class of quaternionic manifolds, whilst in dimension
three it particularizes to, essentially, give the conformal manifolds. We show that these
manifolds have a rich natural Twistor Theory and, along the way, we obtain a heaven
space construction for quaternionic manifolds.
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532 S. Marchiafava et al.

0 Introduction

In this paper, we introduce the class of CR quaternionic manifolds which contains the
class of quaternionic manifolds whilst in dimension three it, essentially, reduces to the
class of conformal manifolds endowed with the twistorial structure of [14]. Particular
classes of such manifolds were already considered, see, e.g., [1,5,6] , under certain
dimensional assumptions and/or in a metrical framework.

To define the corresponding notion of almost CR quaternionic structure we intro-
duce and study the CR quaternionic vector spaces. The idea of the definition of these
structures is based on the fact that a linear quaternionic structure on a real vector space
E has an associated 2-sphere Z of ‘admissible’ linear complex structures on E (the left
multiplications by unit imaginary quaternions). Then a linear CR quaternionic struc-
ture on a vector space U is given by an injective linear map ι from U into a quaternionic
vector space E such that, for any admissible J ∈ Z , we have im ι + J (im ι) = E ;
that is, (E, J, ι) corresponds to a linear CR structure on U (see Sect. 1 ). Further, by
duality we obtain the notion of linear co-CR quaternionic structure (see Sect. 2 ).

One of the main ingredients in the study of these vector spaces is a faithful covariant
functor from the category determined by them to the category of holomorphic vector
bundles over the sphere (Theorem 3.4 ). This leads to the classification of (co-)CR
quaternionic vector spaces (Corollary 3.7 ).

To define the adequate notion of integrability for the almost CR quaternionic struc-
tures recall that an almost quaternionic structure is integrable (in the sense of [20] ) if
and only if there exists a compatible connection such that the associated almost com-
plex structure on the space of admissible linear complex structures be integrable (see
[9, Remark 2.10(2) ] ). The straight generalization of this fact leads to the introduction
of a suitable almost CR structure (see the paragraph before the Definition 4.4 ) on the
space of admissible linear complex structures of the quaternionic bundle defining an
almost CR quaternionic structure.

This construction is motivated, also, by Theorem 4.6. Furthermore, similarly to the
three-dimensional case, the twistor space of a CR quaternionic manifold M is a CR
manifold Z . We prove (Corollary 5.4 ) that any real-analytic CR quaternionic structure
on a manifold M is induced by an embedding of M in a (germ unique) quaternionic
manifold N such that T N |M is generated, as a quaternionic vector bundle, by T M .

We mention that the notions introduced in this paper are discussed and compared
through several examples. Also, some embedding and decomposition results, reducing
the study to special examples of CR quaternionic structures, are given (Corollary 3.7 ,
Theorem 5.3 and Corollary 5.4 ).

It is well known (see, e.g., [17] and the references therein) that the study of the
twistorial properties of the three-dimensional conformal manifolds, endowed with a
conformal connection, significantly contributed to a better understanding of the anti-
self-dual (Einstein) manifolds. One of the aims of this paper is to give a first indication
that the study of CR quaternionic manifolds will lead to a better understanding of
quaternionic(-Kähler) manifolds.

The co-CR quaternionic manifolds, which appear as the natural generalizations of
both the quaternionic manifolds and the three-dimensional Einstein–Weyl spaces, will
be studied elsewhere [16].
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Twistor theory for CR quaternionic manifolds 533

1 Linear CR and co-CR structures

Unless otherwise stated, all the vector spaces are assumed real and finite dimensional
and all the linear maps are assumed real.

A linear complex structure on a vector space U is a linear map J : U → U such
that J 2 = −IdU . Then UC is the direct sum of the ±i eigenspaces of J . Hence, any
linear complex structure on U is given by a complex vector subspace C ⊆ UC such
that UC = C ⊕C . More generally, we have the following, mutually dual, definitions.

Definition 1.1 Let be U a vector space and C ⊆ UC a complex vector subspace.

(1) C is a linear CR structure on U if C ∩ C = {0}.
(2) C is a linear co-CR structure on U if C + C = UC .

A complex vector subspace C ⊆ UC is a linear CR structure on U if and only if
its annihilator {α ∈ (UC )∗ |α|C = 0 } is a linear co-CR structure on U∗.

Let U and U ′ be vector spaces endowed with linear (co-)CR structures C and C ′,
respectively. A (co-)CR linear map is a linear map t : (U,C) → (U ′,C ′) such that
t (C) ⊆ C ′; if, further, t is injective then we say that (U,C) is a (co-)CR vector
subspace of (U ′,C ′).

Proposition 1.2 For any CR vector space (U,C) we have the following facts:

(i) The canonical map ι : U → UC/C is injective.
(ii) C = ι−1(ker(J + i)) , where J is the linear complex structure of E = UC/C.

(iii) im ι+ J (im ι) = E.
(iv) (E, ι) is unique, up to complex linear isomorphisms, with the properties (i) , (ii)

and (iii).

Proof The first assertion is equivalent to C ∩ C = {0}.
To prove (ii) , let ι1,0 be the composition of the complexification of ι followed by the

projection from EC onto the i eigenspace of J . Then ι1,0(u⊗λ) = λ ι(u) = u⊗λ+C ,
for any u ∈ U and λ ∈ C . Thus, ι−1(ker(J + i)) = ker(ι1,0) = C .

Assertion (iii) is an immediate consequence of the fact that the complex vector
space UC is generated by U .

Let (E ′, J ′) be a complex vector space and let ι′ : U → E ′ be an injective linear
map such that (1) C = ι−1(ker(J ′ + i)) and (2) im ι′ + J ′(im ι′) = E ′. Then the
complex extension of ι′ to UC is, by (2) , surjective and, by (1) , its kernel is C . This
shows that (iv) holds. 
�

The following two results are immediate consequences of Proposition 1.2.

Corollary 1.3 Any linear CR structure on a vector space U corresponds to a pair
(E, ι) , unique up to complex linear isomorphisms, where E is a complex vector space
and ι : U → E is an injective linear map such that im ι + J (im ι) = E, with J the
linear complex structure of E.

Corollary 1.4 Let C and C ′ be linear CR structures on U and U ′ corresponding to
the pairs (E, ι) and (E ′, ι′) , respectively.
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534 S. Marchiafava et al.

Let t : U → U ′ be a map. Then the following assertions are equivalent:

(i) t is a CR linear map.
(ii) There exists a complex linear map˜t : E → E ′ with the property ι′ ◦ t =˜t ◦ ι.

Furthermore, if (i) holds then there exists a unique˜t satisfying (ii).

The duals of Proposition 1.2 and of Corollaries 1.3 and 1.4 can be easily formulated.

2 CR quaternionic and co-CR quaternionic vector spaces

Let H be the associative algebra of quaternions. The automorphism group of H is
SO(3) acting trivially on R and canonically on ImH (= R

3).
A linear quaternionic structure on a vector space E is an equivalence class of mor-

phisms of associative algebras from H to End(V ) where two such morphisms σ and
τ are equivalent if there exists a ∈ SO(3) such that τ = σ ◦ a. A quaternionic vector
space is a vector space endowed with a linear quaternionic structure [2] (see [9] ).

Let E be a quaternionic vector space and let σ be a representative of its linear
quaternionic structure. Obviously, the unit sphere Z of σ(ImH ) depends only of the
linear quaternionic structure of E ; any J ∈ Z is an admissible linear complex structure
on E .

Also, σ ∗ : H → End(E∗) such that σ ∗(q) is the transpose of σ(q), (q ∈ H ) ,
defines a linear quaternionic structure on E∗ which depends only of the linear qua-
ternionic structure of E .

Definition 2.1 A linear CR quaternionic structure on a vector space U is a pair (E, ι)
where E is a quaternionic vector space and ι : U → E is an injective linear map such
that im ι+ J (im ι) = E , for any J ∈ Z .

A linear co-CR quaternionic structure on U is a pair (E, ρ) with ρ : E → U a
(surjective) linear map such that (E∗, ρ∗) is a linear CR quaternionic structure on U∗.

A (co-)CR quaternionic vector space is a vector space endowed with a linear
(co-) CR quaternionic structure.

Example 2.2 (1) Let q1 , . . . , qk+1 ∈ S2, (k ≥ 1) , be such that qi �= ±q j , if i �= j .
For j = 1, . . . , k let e j = (0, . . . , 0

︸ ︷︷ ︸

j−1

, q j , q j+1, 0, . . . , 0
︸ ︷︷ ︸

k− j

). Denote V0 = R and, for

k ≥ 1 , let Vk = R
k+1 +Re1 +· · ·+Rek . If we denote Uk = V ⊥

k then (Uk,H
k+1)

is a CR quaternionic vector space; note that, dim Uk = 2k + 3 , U0 = ImH .

(2) Let V ′
0 = {0} and, for k ≥ 1 , let V ′

k be the vector subspace of H
2k+1 formed of all

vectors of the form (z1 , z1 + z2 j , z3 − z2 j , . . . , z2k−1 + z2k j ,−z2k j) , where
z1 , . . . , z2k are complex numbers. If we denote U ′

k = V ′
k
⊥ then (U ′

k,H
2k+1) is a

CR quaternionic vector space. Note that, dim U ′
k = 4k + 4 , and U ′

0 = H .
(3) Let E = H

k and let U = (ImH)l × H
k−l , for some k ≥ l. Then (U, E) is a CR

quaternionic vector space.

Recall (see [9] ) that a linear map t : E → E ′ between quaternionic vector spaces is
quaternionic, with respect to some map T : Z → Z ′ between the spaces of admissible
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Twistor theory for CR quaternionic manifolds 535

linear complex structures on E and E ′, if t ◦ J = T (J ) ◦ t , for any J ∈ Z . Then, if
t �= 0 , we have that T is unique and an orientation preserving isometry.

A map t : (U, E, ι) → (U ′, E ′, ι′) between CR quaternionic vector spaces is CR
quaternionic linear (with respect to some map T : Z → Z ′ ) if there exists a map
˜t : E → E ′ which is quaternionic linear (with respect to T ) such that ι′ ◦ t =˜t ◦ ι.

By duality, we obtain the notion of co-CR quaternionic linear map.
Note that, if (U, E, ι) is a CR quaternionic vector space then the inclusion ι :

U → E is CR quaternionic linear. Dually, if (U, E, ρ) is a co-CR quaternionic vector
space then the projection ρ : E → U is co-CR quaternionic linear.

3 (Co-)CR quaternionic vector spaces and holomorphic bundles over the sphere

Let (U, E, ι) be a CR quaternionic vector space and let Z(= S2) be the space of
admissible linear complex structures of E . For J ∈ Z , we denote U J = ι−1(E J )

where E J is the eigenspace of J corresponding to −i. Dually, U J = ρ(E J ) for a
co-CR quaternionic vector space (U, E, ρ).

Proposition 3.1 Let (U, E, ι) and (U ′, E ′, ι′) be CR quaternionic vector spaces. Let
t : U → U ′ be a nonzero linear map and let T : Z → Z ′ be a map.

Then the following assertions are equivalent:

(i) t is CR quaternionic, with respect to T .
(ii) T is a holomorphic diffeomorphism and, for any J ∈ Z , we have

t (U J ) ⊆ (U ′)T (J ). (3.1)

Furthermore, if assertion (i) or (ii) holds then there exists a unique linear map
˜t : E → E ′ which is quaternionic, with respect to T , and such that ι′ ◦ t =˜t ◦ ι.

The dual statement holds true, for nonzero linear maps between co-CR quaternionic
vector spaces.

Proof It is obvious that if (i) holds then (3.1) holds, for any J ∈ Z . If, further, t �= 0,
the fact that T is a holomorphic diffeomorphism is an immediate consequence of
[9, Proposition 1.5]. This proves (i)�⇒(ii).

To prove the converse, let E = Z × E → Z be the complex vector bundle whose
fibre over each J ∈ Z is (E, J ). Alternatively, E is the quotient of the trivial holo-
morphic vector bundle Z × EC through the holomorphic vector bundle E0,1 → Z ,
whose fibre over each J ∈ Z is E J . It follows that E is a holomorphic vector bundle,
over Z = CP1, isomorphic to 2kO(1) , where dim E = 4k and O(1) is the dual of
the tautological line bundle over CP1. Moreover, from the long exact sequence of
cohomology groups of 0 −→ E0,1 −→ Z × EC −→ E −→ 0 we obtain a natu-
ral complex linear isomorphism EC = H0(Z , E). Obviously, U = Z × U is a CR
submanifold of E (equivalently, for any (J, u) ∈ U , the complex structure of T(J,u)E
induces a linear CR structure on T(J,u)U ). Define, similarly, E ′ and U ′ and note that
(3.1) holds, for any J ∈ Z , if and only if there exists a (necessarily unique) morphism
of complex vector bundles T : E → E ′, over T , such that T |U = T × t . Thus, if
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536 S. Marchiafava et al.

(ii) holds then, by identifying Z = Z ′(= CP1) , T = IdZ , there exists a holomorphic
section T of HomC(E, E ′) such that T |U = IdZ × t . Then T induces a complex linear
map τ : EC → (E ′)C such that τ |U = t and, for any J ∈ Z , we have τ(E J ) ⊆ (E ′)J ;
moreover, τ descends to the complex linear map TJ : (E, J ) → (E ′, J ). It follows
that τ = TJ ⊕ T−J , (J ∈ Z) , and, in particular, τ is the complexification of some
(real) linear map˜t : E → E ′. This completes the proof of (ii)�⇒(i). 
�

Let E be a quaternionic vector space, E0,1 the holomorphic vector subbundle of
Z × EC whose fibre over each J ∈ Z is E J , and E the quotient of Z × EC through
E0,1.

Definition 3.2 (1) Let (U, E, ι) be a CR quaternionic vector space. U = E0,1 ∩
(Z×UC ) is called the holomorphic vector bundle of (U, E, ι).

(2) Let (U, E, ρ) be a co-CR quaternionic vector space. The holomorphic vector bun-
dle of (U, E, ρ) is the dual of the holomorphic vector bundle of (U∗, E∗, ρ∗).

Next, we explain how the holomorphic vector bundle U of a co-CR quaternionic
vector space (U, E, ρ) can be constructed directly, without passing to the dual CR
quaternionic vector space. For this, note that, with the same notations as above, ρ
induces an injective morphism of holomorphic vector bundles E0,1 → Z × UC .
Then U is the quotient of Z × UC through E0,1. Furthermore, we have the following
commutative diagram, where R is the ‘twistorial representation’ of ρ:

0

��

0

��
Z × kerρC ��

��

Z × kerρC

��
0 �� E0,1 ��

��

Z × EC ��

IdZ ×ρC

��

E ��

R
��

0

0 �� E0,1 �� Z × UC ��

��

U ��

��

0

0 0

Then, similarly to the proof of Proposition 3.1 , there exists a natural complex linear
isomorphism UC = H0(Z ,U). Moreover, the conjugation of UC (EC ) induces a
conjugation (that is, an involutive antiholomorphic diffeomorphism) on U (E) which
descends to the antipodal map on Z . Then there exists a natural isomorphism between
U and the vector space of holomorphic sections of U which intertwines the conjuga-
tions.

Also, note that H1(Z ,U) = 0 (this follows, e.g., from the long exact sequence of
cohomology groups determined by the second row of the above diagram).

The following fact will be used later on.
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Twistor theory for CR quaternionic manifolds 537

Proposition 3.3 Let (U, E, ι) be a CR quaternionic vector space and let U be its
holomorphic vector bundle.

The quotient of Z × UC through U is isomorphic to 2kO(1) , where dim E = 4k.

Proof The dual of the quotient of Z × UC through U is the annihilator V of U in
Z × UC . By definition, U = ι−1(E0,1) and, hence, V = ι∗((E∗)0,1) = (E∗)0,1 =
2kO(−1). 
�

Let (U, E, ρ) and (U ′, E ′, ρ′) be co-CR quaternionic vector space and let U and U ′,
respectively, be their holomorphic vector bundles. Let t : (U, E, ρ) → (U ′, E ′, ρ′)
be a co-CR quaternionic linear map, with respect to some map T : Z → Z ′. Then t
induces a morphism of holomorphic vector bundles T : U → U ′ which intertwines
the conjugations. Furthermore, the above diagram can be easily generalized with t and
T instead of ρ and R.

Theorem 3.4 There exists a covariant functor F from the category of co-CR qua-
ternionic vector spaces, whose morphisms are the co-CR quaternionic linear maps,
to the category of holomorphic vector bundles over CP1, given by F(U ) = U and
F(t) = T .

Moreover, if F(U ) = U and F(U ′) = U ′ then for any morphism of holomorphic
vector bundles T : U → U ′, which intertwines the conjugations, there exists a unique
co-CR quaternionic linear map t : U → U ′ such that F(t) = T .

Therefore two co-CR quaternionic vector spaces are isomorphic if and only if there
exists an isomorphism, which intertwines the conjugations, between their holomor-
phic vector bundles. Furthermore, for any positive integer k there exists a nonempty
finite set of isomorphism classes of co-CR quaternionic vector spaces (U, E, ρ) with
dimE = 4k.

Proof Let (U, E, ρ) and (U ′, E ′, ρ′) be co-CR quaternionic vector spaces and let U
and U ′, respectively, be their holomorphic vector bundles. Let T : U → U ′ be a
morphism of holomorphic vector bundles which intertwines the conjugations. Then T
induces, through the isomorphisms UC = H0(Z ,U) , U ′ C = H0(Z ′,U ′) , a linear
map t : U → U ′. Furthermore, t satisfies the dual of assertion (ii) of Proposition 3.1
(with respect to the identity map of CP1). Thus, t is co-CR quaternionic linear and,
obviously, F(t) = T . The last assertion follows from Proposition 3.5 , below. 
�
Proposition 3.5 Let (U, E, ρ) be a co-CR quaternionic vector space and let U be its
holomorphic vector bundle, dimE = 4k, dim(kerρ) = l.

Then U = ⊕l+1
j=1 a jO( j) , where a1, . . . , al+1 are nonnegative integers satisfying

the relations
∑l+1

j=1 a j = 2k − l and
∑l+1

j=1 ja j = 2k; moreover, a j is even if j is
odd. Conversely, any holomorphic vector bundle of this form corresponds to a co-CR
quaternionic vector space.

Proof As H1(Z ,U) = 0 , from the theorem of Birkhoff and Grothendieck (see [8] )
it follows that U = ⊕r

j=−1 a jO( j) for some nonnegative integers a−1, a0, . . . , ar .

Let J1, . . . , Jp ∈ Z be distinct, (p ≥ 1). Under the isomorphism UC = H0(Z ,U)
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538 S. Marchiafava et al.

the complex vector space
⋂p

j=1 ρ(E
Jp ) corresponds to the space of holomorphic sec-

tions of U which are zero at J1, . . . , Jp. Consequently, the complex dimension of
⋂p

j=1 ρ(E
Jp ) is equal to h0(Z ,U ⊗ O(−p)) , where h0 = dimCH0. Hence,

h0 (Z ,U ⊗ O(−1)) =
r

∑

j=1

ja j = 2k, h0 (Z ,U ⊗ O(−2)) =
r

∑

j=2

( j − 1)a j = l.

(3.2)

The second relation of (3.2) implies that r − 1 ≤ l. By combining the first relation of
(3.2) with the fact that the degree of U is

∑r
j=−1 ja j = 2k we obtain a−1 = 0. Now,

from (3.2) and the fact that the complex rank of U is
∑r

j=0 a j = 2k − l we obtain
a0 = 0. The fact that a j is even if j is odd follows from [18, (10.7)].

The last statement is an immediate consequence of Example 3.6 , below. 
�
The duals of Theorem 3.4 and Proposition 3.5 can be easily formulated.
The definition of (co-)CR vector subspace can be easily extended to give the cor-

responding notion of (co-)CR quaternionic vector subspace.
Now, we give examples of holomorphic vector bundles of (co-)CR quaternionic

vector spaces.

Example 3.6 (1) The holomorphic vector bundles of the CR quaternionic vector
spaces (H ,H ) and (ImH ,H ) are 2O(−1) and O(−2) , respectively.

(2) Let (U, E, ρ) be a co-CR quaternionic vector space whose holomorphic vector
bundle U has complex rank 1 ; equivalently, 2k − l = 1, where dimE = 4k. Then
U = O(2k). Thus, the holomorphic vector bundle of the CR quaternionic vector
space (Uk−1,H

k) of Example 2.2(1) is O(−2k). Moreover, from Theorem 3.4
and [18, (10.7)] , we obtain that (U, E, ρ) is isomorphic, as a co-CR quaternionic
vector space, to the dual of (Uk−1,H

k).
(3) It is straightforward to show that the holomorphic vector bundle of the CR qua-

ternionic vector space (U ′
k,H

2k+1) of Example 2.2(2) is 2O(−2k − 1) , (k ≥ 0).
(4) LetU1 andU2 be co-CR quaternionic vector spaces, and let Z1 and Z2 be the spaces

of admissible linear complex structures of the corresponding quaternionic vector
spaces, respectively. Then any orientation preserving isometry Z1 = Z2 deter-
mines a unique linear co-CR quaternionic structure on U1 ⊕ U2 which restricts
to the given linear co-CR quaternionic structures on U1 and U2. The resulting
co-CR quaternionic vector space is called the direct sum (product) of the co-CR
quaternionic vector spaces U1 and U2 , with respect to the isometry Z1 = Z2. Let
U1 and U2 be the holomorphic vector bundles of U1 and U2 , respectively. Then
U1 ⊕ U2 is the holomorphic vector bundle of U1 ⊕ U2.

In the following classification result, the notations are as in Example 2.2 ,

Corollary 3.7 Let U be a CR quaternionic vector space. Then there exists a CR qua-
ternionic linear isomorphism between U and a direct sum in which each term is of
the form Uk or U ′

k for some natural number k ; moreover, the terms are unique, up to
order.
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Twistor theory for CR quaternionic manifolds 539

Furthermore, let Wn be the CR quaternionic vector subspace of U corresponding
to the direct sum of all terms up to U(n/2)−1 or U ′

(n−1)/2 , according to n even or
odd, respectively, (n > 1). Then the filtration {Wn}n>1 is canonical (that is, it doesn’t
depend on the isomorphism).

Proof This is an immediate consequence of Theorem 3.4 , Proposition 3.5 , Example
3.6 and [8, Proposition 2.4]. 
�

The dual of Corollary 3.7 can be easily formulated.

Proposition 3.8 Let k and l be positive integers, l < 2k. The set of CR quaternionic
vector subspaces U of H

k of codimension l is a nonempty open set of the Grassmannian
of real vector subspaces of codimension l of H

k .

Proof Let a, b ∈ N with b < 2k − l and such that 2k = (2k − l − b)a + b(a + 1).
Obviously, if a is even then b is even, whilst if a is odd then 2k − l − b is even.

By Proposition 3.5 , there exists a CR quaternionic vector subspace U of H
k of

codimension l whose holomorphic vector bundle is U = (2k−l−b)O(a)⊕ b O(a+1).
From Theorem 3.4 we obtain that the closed subgroup G of GL(k,H ) which pre-

serves U is isomorphic to an open set of the space of real sections of End(U). But
End(U) = ((2k − l − b)2 + b2)O ⊕ b(2k − l − b)O(1)⊕ b(2k − l − b)O(−1) and,
hence, dim G = (2k − l)2.

Therefore the orbit of U under GL(k,H ) in the Grassmannian of real vector sub-
spaces of codimension l of H

k has dimension 4k2 − (2k − l)2 = l(4k − l). 
�
It can be shown that the set of CR quaternionic vector subspaces U of H

k of
codimension l , (l < 2k) , is a nonempty open set of the Grassmannian of real vector
subspaces of codimension l of H

k , with respect to the Zariski topology (induced by
the Plücker embedding). Furthermore, by duality, we obtain the corresponding fact
for co-CR quaternionic vector spaces.

Remark 3.9 The co-CR quaternionic and CR quaternionic vector spaces define aug-
mented and strengthen H -modules, in the sense of [10,18], respectively. However, the
associated holomorphic vector bundles introduced by us are different from the sheaves
introduced in [18].

4 CR quaternionic manifolds and their CR twistor spaces

A (smooth) bundle of associative algebras is a vector bundle whose typical fibre is
a (finite-dimensional) associative algebra and whose structural group is the group of
automorphisms of the typical fibre. Let A and B be bundles of associative algebras.
A morphism of vector bundles ρ : A → B is called a morphism of bundles of asso-
ciative algebras if ρ restricted to each fibre is a morphism of associative algebras.

Recall that a quaternionic vector bundle over a manifold M is a real vector bundle
E over M endowed with a pair (A, ρ) where A is a bundle of associative algebras,
over M , with typical fibre H and ρ : A → End(E) is a morphism of bundles of asso-
ciative algebras; we say that (A, ρ) is a linear quaternionic structure on E (see [7] ).
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Standard arguments (see [9] ) apply to show that a quaternionic vector bundle of (real)
rank 4k is just a (real) vector bundle endowed with a reduction of its structural group
to Sp(1) · GL(k,H ).

Note that, a manifold is almost quaternionic if and only if its tangent bundle is
endowed with a linear quaternionic structure (see [9,20] ).

Let (A, ρ) be a linear quaternionic structure on the vector bundle E . We denote
Q = ρ(Im A) and by Z the sphere bundle of Q.

Recall, also, that an almost CR structure on a manifold M is a complex vector
subbundle C of T CM such that C ∩ C = {0}. An (integrable almost) CR structure is
an almost CR structure whose space of sections is closed under the usual bracket.

Definition 4.1 Let E be a quaternionic vector bundle on a manifold M and let ι :
T M → E be an injective morphism of vector bundles. We say that (E, ι) is an almost
CR quaternionic structure on M if (Ex , ιx ) is a linear CR quaternionic structure on
Tx M , for any x ∈ M .

An almost CR quaternionic manifold is a manifold endowed with an almost CR
quaternionic structure.

If ι is an isomorphism then the definition gives the notion (see [9] ) of almost
quaternionic manifold.

Example 4.2 (1) Let (M, c) be a three-dimensional conformal manifold and let L =
(�3T M)1/3 be the line bundle of M . Then, E = L ⊕ T M is an oriented vec-
tor bundle of rank four endowed with a (linear) conformal structure such that
L = (T M)⊥. Therefore E is a quaternionic vector bundle and (M, E, ι) is an
almost CR quaternionic manifold, where ι : T M → E is the inclusion. More-
over, any almost CR quaternionic structure on a three-dimensional manifold M
is obtained this way from a conformal structure on M .

(2) Let M be a hypersurface in an almost quaternionic manifold N . Then (T N |M , ι)

is an almost CR quaternionic structure on M , where ι : T M → T N |M is the
inclusion.

(3) More generally, let N be an almost quaternionic manifold. Let M be a submanifold
of N such that, at some point x ∈ M , we have that (Tx M, Ex , ιx ) is a CR quatern-
ionic vector space, where ι is the inclusion T M → T N |M . Then, Proposition 3.8
implies that by passing, if necessary, to an open neighbourhood of x in M we have
that (T N |M , ι) is an almost CR quaternionic structure on M .

Definition 4.3 Let (M, E, ι) be an almost CR quaternionic manifold. An almost qua-
ternionic connection ∇ on (M, E, ι) is a connection on E which preserves Q; if,
further, ∇ is torsion-free (i.e., d∇ ι = 0 ) then it is a quaternionic connection.

It is well known that if M is an almost quaternionic manifold endowed with an
almost quaternionic connection ∇ then the sphere bundle Z of M becomes equipped
by an almost complex structure I∇ , which is uniquely defined and integrable if one
uses quaternionic connections; (Z , I∇) is the twistor space of M [20].

For any almost CR quaternionic manifold (M, E, ι) , endowed with an almost qua-
ternionic connection ∇, we introduce a natural almost CR structure on the total space
of the bundle π : Z → M of admissible linear complex structures on E .
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For any J ∈ Z , let BJ ⊆ T C
J Z be the horizontal lift, with respect to ∇, of ι−1(E J ),

where E J ⊆ EC
π(J ) is the eigenspace of J corresponding to −i. Then, by defining

CJ = BJ ⊕ (ker dπ)0,1J , (J ∈ Z) , we obtain an almost CR structure C on Z .
The following definition is motivated by [9, Remark 2.10(2) ].

Definition 4.4 An (integrable almost) CR quaternionic structure on M is a triple
(E, ι,∇) , where (E, ι) is an almost CR quaternionic structure on M and ∇ is an
almost quaternionic connection of (M, E, ι) such that the almost CR structure C is
integrable.

A CR quaternionic manifold is a manifold endowed with a CR quaternionic struc-
ture. If (M, E, ι,∇) is a CR quaternionic manifold then (Z , C) is its twistor space.

From [9, Remark 2.10] it follows that a CR quaternionic structure (E, ι,∇) for
which ι is an isomorphism is a quaternionic structure.

With the same notations as in Definition 4.4 , the quadruple (Z ,M, π, C) is an
almost twistorial structure which we call the almost twistorial structure of (M, E, ι,∇)
(see [15] for the definition of almost twistorial structures).

Proposition 4.5 Let M be endowed with an almost CR quaternionic structure (E, ι)
and let ∇ be an almost quaternionic connection of (M, E, ι) ; denote T JM = ι−1(E J ) ,
for any J ∈ Z.

The following assertions are equivalent:

(i) The almost twistorial structure of (M, E, ι,∇) is integrable.
(ii) T (�2(T JM)) ⊆ E J and R(�2(T JM))(E J ) ⊆ E J , for any J ∈ Z, where T and

R are the torsion and curvature forms, respectively, of ∇.

Proof This is an immediate consequence of Theorem A.3 , below. 
�

Theorem 4.6 Let M be endowed with an almost CR quaternionic structure (E, ι) ,
rank E = 4k, dim M = 4k − l , (0 ≤ l ≤ 2k −1). Let ∇ be a quaternionic connection
on (M, E, ι). If 2k − l �= 2 then the almost twistorial structure of (M, E, ι,∇) is
integrable.

Proof If 2k − l = 1 then, as T JM is one-dimensional, for any J ∈ Z , the proof is
an immediate consequence of Proposition 4.5. Assume 2k − l ≥ 3 and note that, as
the complexification of the structural group of E is SL(2,C) · GL(2k,C) , we have
that, locally, EC = E ′ ⊗C E ′′ where E ′ and E ′′ are complex vector bundles of ranks
2 and 2k, respectively. Moreover, we have ∇C = ∇′ ⊗ ∇′′, where ∇′ and ∇′′ are
connections on E ′ and E ′′, respectively. Also, Z = P(E ′) such that if J ∈ Zx cor-
responds to the line [u] ∈ P(E ′

x ) then the eigenspace of J corresponding to −i is
equal to {u ⊗ v | v ∈ E ′′

x } , (x ∈ M). Then assertion (ii) of Proposition 4.5 holds if
and only if R′(X,Y )(u) ∈ [u] , for any u ∈ E ′

x \ {0} and X,Y ∈ Tx M , such that
ι(X), ι(Y ) ∈ {u ⊗ v | v ∈ E ′′

x } , (x ∈ M) , where R′ is the curvature form of ∇′.
The proof now follows quickly from the Bianchi identity R ∧ ι = 0 , by using that
dim(ι−1({u ⊗ v | v ∈ E ′′

x })) ≥ 3, (x ∈ M). 
�
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Example 4.7 (1) Let (M, c, D) be a three-dimensional Weyl space; that is, (M, c) is
a conformal manifold and D is a torsion free conformal connection on it. With
the same notations as in Example 4.2(1) , let DL be the connection induced by D
on L . Then ∇ = DL ⊕ D is a quaternionic connection on (M, E, ι) ; in particular,
(M, E, ι,∇) is a CR quaternionic manifold.

(2) If in Examples 4.2(2) and 4.2(3) we assume N quaternionic then we obtain exam-
ples of CR quaternionic manifolds.

5 Quaternionic manifolds as heaven spaces

We recall the following definition (cf. [4,19] ).

Definition 5.1 Let (M, C) be a CR manifold, dim M = 2k − l , rank C = k − l.
We say that (M, C) is realizable if M is an embedded submanifold, of codimen-

sion l , of a complex manifold N such that C = T CM ∩ (T 0,1 N )|M .
Suppose, further, that (M, C) is endowed with a conjugation τ ; that is, τ is an invol-

utive CR diffeomorphism from (M, C) onto (M, C). We say that (M, C, τ ) is realizable
if (M, C) is realizable and τ is the restriction of a conjugation on the corresponding
complex manifold.

We have the following straight extension of the notion of realizability.

Definition 5.2 Let (M, E, ι,∇) be a CR quaternionic manifold and let (Z , C) be its
twistor space. We say that (M, E, ι,∇) is realizable if M is an embedded submanifold
of a quaternionic manifold N such that E = T N |M , as quaternionic vector bundles,
and C = T CZ ∩ (T 0,1 Z N )|M , where Z N is the twistor space of N .

Theorem 5.3 Let (M, E, ι,∇) be a CR quaternionic manifold and let (Z , C, τ ) be its
twistor space, endowed with the conjugation given, on the fibres of Z, by the antipodal
map. Then the following assertions are equivalent:

(i) (M, E, ι,∇) is realizable.
(ii) (Z , C, τ ) is realizable.

Proof As the implication (i)�⇒(ii) is trivial, it is sufficient to prove (ii)�⇒(i).
If (ii) holds then (Z , C) is an embedded submanifold, of codimension l , of a complex

manifold Z1 such that C = T CZ ∩ (T 0,1 Z1)|Z , where dim M = 4k − l , rank E = 4k ;
in particular, dimC Z1 = 2k + 1. Also, τ extends to an involutive anti-holomorphic
diffeomorphism τ1 : Z1 → Z1.

Note that, the fibres of π : Z → M are complex projective lines embedded in Z1
as complex submanifolds whose normal bundles, by Proposition 3.3 , are isomorphic
to 2kO(1). Then, [12] and [19, Proposition 2.5] imply that M is a submanifold of
a complex manifold N1 , dimC N1 = 4k , which parametrizes a holomorphic family
of complex projective lines which contains {π−1(x)}x∈M . Furthermore, if tx ⊆ Z1
is the complex projective line corresponding to any x ∈ N1 then the (holomorphic)
tangent space to N1 at x is canonically isomorphic to the space of sections of the
normal bundle of tx in Z1. Moreover, as H1(CP1,End(2kO(1))) = 0 , we may apply
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[13, Theorem 7.4] to obtain that we may assume the normal bundle of tx in Z1 iso-
morphic to 2kO(1) , for any x ∈ N1.

As τ1 preserves the fibres of π and maps the complex projective lines parame-
trized by N1 to complex projective lines, from [12] we obtain that τ1 induces an
involutive anti-holomorphic diffeomorphism σ of N1. Moreover, as the fixed point
set N of σ is nonempty (M ⊆ N ) we, also, have that N is real analytic and its
complexification is N1 ; in particular, dim N = 4k. Then N is an almost quatern-
ionic manifold whose bundle of admissible linear complex structures is Z1. Further-
more, the complex structure J of Z1 and the projection π1 : Z1 → N are such that
(dπ1)J : (TJ Z1,JJ ) → (Tπ1(J )N , J ) is complex linear, for any J ∈ Z1. Hence,
locally, there exist sufficiently many admissible complex structures on N to apply
[3, Theorem 2.4] , thus, obtaining that N is a quaternionic manifold.

To complete the proof we have to show that the map M ↪→ N is a continuous
embedding. This is an immediate consequence of the facts that Z is embedded in
Z1 and that the topologies of M and N are equal to the quotient topologies of Z
and Z1 with respect to the (open) projections π : Z → M and π1 : Z1 → N ,
respectively. 
�

In the real-analytic case, the result of Theorem 5.3 can be improved as follows.

Corollary 5.4 Any real-analytic CR quaternionic manifold (M, E, ι,∇) is realizable.
Moreover, the corresponding embedding into a quaternionic manifold is germ unique
(that is, if φ : M → N and φ′ : M → N ′ are embeddings, satisfying Definition 5.1 ,
there exist open neighbourhoods U and U ′ of ϕ(M) and ϕ′(M) , respectively, and a
quaternionic diffeomorphism ψ : U → U ′ such that ψ ◦ ϕ = ϕ′).

Proof Any real analytic CR manifold is realizable and the corresponding embedding
is germ unique [4] ; moreover, locally, any real-analytic CR function is the restriction
of a unique holomorphic function on the corresponding complex manifold. It follows
quickly that Theorem 5.3 can be applied to obtain that (M, E, ι,∇) is realizable. The
unicity is a consequence of the fact that any quaternionic map is determined by a
holomorphic map between the corresponding twistor spaces, preserving the twistor
lines [9]. 
�

If (M, E, ι,∇) is a real-analytic CR quaternionic manifold we call the corresponding
quaternionic manifold the heaven space of (M, E, ι,∇).
Corollary 5.5 Let (M, E, ι,∇) be a CR quaternionic manifold and let (Z , C, τ ) be its
twistor space, endowed with the conjugation given, on the fibres of Z, by the antipodal
map. If (Z , C, τ ) is realizable then (M, E, ι) admits quaternionic connections ∇′ such
that the twistor space of (M, E, ι,∇′) is equal to (Z , C).

Proof This is an immediate consequence of Theorem 5.3. 
�

Appendix A. An integrability result

Let E be a vector bundle on a manifold M and let α : T M → E be a morphism of
vector bundles. Let (P,M,GL(n,R)) be the frame bundle of E , where n = rank E .
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Define an R
n-valued one-form θ on P by θ(X) = u−1(α (dπ(X))) , for any u ∈ P

and X ∈ Tu P , where π : P → M is the projection. Then θ is the tensorial form which
corresponds to the E-valued one-form α.

Let ∇ be a connection on E .

Definition A.1 The torsion (with respect to α) of ∇ is the E-valued two-form T on
M defined by T = d∇α ; if T = 0 then ∇ is called torsion-free.

Note that, the tensorial two-form which corresponds to the torsion of ∇ is dθ |H ,
where H ⊆ T P is the principal connection corresponding to ∇ (cf. [11] ).

The next result will be useful later on.

Lemma A.2 Let u0 ∈ P, X ∈ Hu0 and let u be any (local) section of P tangent to
X (in particular, uπ(u0) = u0 ). Then for any vector field Y on P, we have

u0 (X (θ(Y ))) = ∇dπ(X)
(

α
(

dπ(Y |u(M))
))

.

Proof Let Y̌ = dπ(Y |u(M)). Then α(Y̌ ) is a section of E and θ(Y |u(M)) gives the
components of α(Y̌ ) with respect to u. The proof quickly follows (cf. the relation of
the Lemma from [11, vol 1, p. 115] ). 
�

Let F be a complex submanifold of the Grassmannian Grq(C
n) on which the com-

plexification G of the structural group of E acts transitively (q ≤ n) , and assume that
∇ is a G-connection.

We shall denote by (P,M,G) the bundle of complex G-frames on E . Let Z =
P ×G F and suppose that the dimension of α−1(p) does not depend of p ∈ Z .

Let C0 ⊆ T CZ be horizontal (with respect to ∇) and such that dπp(C0) = α−1(p),
for any p ∈ Z . Define C = C0 ⊕ (ker dπ)0,1, where π : Z → M is the projection.

Note that, if the dimension of α−1(p) ∩ α−1(p) does not depend of p ∈ Z then
(Z ,M, π, C) is an almost twistorial structure, in the sense of [15].

Theorem A.3 The following assertions are equivalent:

(i) C is integrable.
(ii) T (X,Y ) ∈ p and R(X,Y )(p) ⊆ p , for any p ∈ Z and X,Y ∈ α−1(p) , where

T and R are the torsion and curvature forms, respectively, of ∇, and p ∈ Z is
considered a vector space.

Proof Fix V ∈ F and let H be the closed subgroup of G which preserves V . Then
Z = P/H and let ψ : P → Z be the projection. If we denote D = (dψ)−1(C)
then, as ψ is a surjective submersion, C is integrable if and only if D is integrable. Let
H ⊆ T P be the principal connection corresponding to ∇C and let B(V ) ⊆ H C be
such that B(V )u is the horizontal lift of α−1(u(V )) , for any u ∈ P . Then, we have
D = B(V )⊕ (P × h)⊕ (P × g) , where g and h are the Lie algebras of G and H ,
respectively, and we have used that ker dπ = P ×g , with π : P → M the projection,
and gC = g ⊕ g (as complex Lie algebras). Note that, Ra(B(V )) = B(a−1(V ))
for any a ∈ G, where R denotes the action of G on P . Also, A ∈ h if and only if
A(V ) ⊆ V whilst if A ∈ g then A(V ) = {0}. Thus, by using the same notation for
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elements of g and the corresponding fundamental vector fields, we obtain the following
relation (cf. [11, Proposition III.2.3] ): for any A ∈ h ⊕ g ,

[A, � (B(V ))] ⊆ � (B (A(V )+ V )) = � (B(V )).

We have thus shown that assertion (i) holds if and only if, for any sections X and Y
of B(V ), we have that [X,Y ] is a section of D . Let� and� be the tensorial forms on
P corresponding to T and R, respectively. By applying [11, Corollary II.5.3] , Lemma
A.2 and [15, Proposition 2.6(b)] , we obtain that (i) is equivalent to the condition that
�(X,Y ) ∈ h and �(X,Y ) ∈ V , for any X,Y ∈ B(V ). 
�
Remark A.4 With notations as in the proof of Theorem 4.6 , the bracket of any section
of P × h and the sections of B(V ) which are basic with respect to ψ is zero.
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