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0. Introduction

The generalized complex structures [1,2] contain, as particular cases, the complex and symplectic structures. Although
for the latter structures there exist well known definitions which give the corresponding morphisms (holomorphic maps
and Poisson morphisms, respectively), it still lacks a suitable notion of holomorphic map with respect to which the class of
generalized complex manifolds to become a category.

In this paper we introduce such a notion (Definition 4.1) based on the following considerations. Firstly, holomorphic
maps between generalized complex manifolds should be invariant under B-field transformations. This is imposed by the
fact that the group of (orthogonal) automorphisms of the Courant bracket (which defines the integrability in Generalized
Complex Geometry) on a manifold is the semidirect product of the group of diffeomorphisms and the additive group of
closed two-forms on the manifold [1]. Secondly, by [1], underlying any linear generalized complex structure there are:

• a linear Poisson structure (that is, a constant Poisson structure on the vector space; see Section 1), and
• a linear co-CR structure (that is, a linear CR structure on the dual vector space; see Section 3),

both of which are preserved under linear B-field transformations. Moreover, these two structures determine, up to a (non-
unique) linear B-field transformation, the given generalized linear complex structure.

A generalized complex linear map is a co-CR linear Poisson morphism (Definition 3.1). It follows quickly that a linear map
is generalized complex if and only if, up to linear B-fields transformations, it is the product of a (classical) complex linear
map, between complex vector spaces, and a linear Poisson morphism, between symplectic vector spaces (Proposition 3.2).

A holomorphic map between generalized (almost) complex manifolds is a map whose differential is generalized complex
(Definition 4.1). Then, essentially, all of the abovementioned (linear) facts hold, locally, in the setting of generalized complex
manifolds (Theorem 4.4 and Proposition 4.5).
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The first examples are the classical holomorphic maps, the Poisson morphisms between symplectic manifolds and their
products (Example 4.6).

Other large classes of natural examples can be obtained by working with compact or nilpotent Lie groups (Examples 4.7
and 4.8).

Further motivation for our notion of holomorphicity comes from generalized Kähler geometry. For example, if
(g, b, J+, J−) is the bi-Hermitian structure corresponding to a generalized Kähler manifold (M, L1, L2) then the holomorphic
functions of (M, L1) and (M, L2) are the bi-holomorphic functions of (M, J+, J−) and (M, J+,−J−), respectively (Remark 5.1).
Other natural properties of the holomorphic maps between generalized Kähler manifolds are obtained in Sections 5 and 6
(Remark 5.6(2) and Corollaries 6.7 and 6.8).

Along the way, we obtain results on generalized Kähler manifolds, such as the factorization result Theorem 6.10; see,
also, Corollaries 5.7, 6.3 and 6.4, the first of which is a significant improvement of [3, Theorem A].

The paper is organized as follows. In Section 1, after recalling [4] some basic facts on linear Dirac structures, we give
explicit descriptions (Proposition 1.3) for the pull-back and push-forward of a linear Dirac structure, which we then use to
show that any linear Dirac structure is, in a natural way, the pull-back of a linear Poisson structure (Corollary 1.5; cf. [5,
6]), which we call the canonical (linear) Poisson quotient (cf. [6]), of the given linear Dirac structure. The smooth version
(Theorem 2.3; cf. [4–6]) of this result is proved in Section 2 together with some other results on Dirac structures. For
example, there we show (Corollary 2.5) that, locally, any regular Dirac structure is, up to a B-field transformation, of the
form V ⊕ Ann(V ), where V is (the tangent bundle of) a foliation.

In Section 3, we introduce the notion of generalized complex linear map, along the abovementioned lines. It follows that
two generalized linear complex structures L1 and L2, on a vector space V , can be identified if and only if L2 is the linear B-field
transform of the push-forward of L1, through a linear isomorphism of V (Corollary 3.3). Also, we explain (Remark 3.4) why
another definition of the notion of generalized complex linear map is, in our opinion, inadequate.

In Section 4, we review some basic facts on generalized complex manifolds and we introduce the corresponding notion
of holomorphic map. It follows that if a real analytic map ϕ, between real analytic regular generalized complex manifolds,
is holomorphic then, locally, up to the complexification of a real analytic B-field transformation, the complexification of ϕ
descends to a complex analytic Poisson morphism between canonical Poisson quotients (Proposition 4.10). Also, we show
that the pseudo-horizontally conformal submersions with minimal two-dimensional fibers, from Riemannian manifolds,
provide natural constructions of generalized complex structures (Example 4.11).

In Section 5, we prove (Theorem 5.3) that if (g, b, J+, J−) is the bi-Hermitian structure corresponding to a generalized
Kähler structure and we denote H ±

= ker(J+ ∓ J−) then the following conditions are equivalent:

• H ± integrable;
• H ± geodesic;

It follows that, under natural conditions, the holomorphic maps between generalized Kähler manifolds descend to
holomorphic maps between Kähler manifolds (Remark 5.6). Also, we classify the generalized Kähler manifoldsM for which
TM = H +

⊕ H − (Corollary 5.7).
In Section 6, we describe, in terms of tamed symplectic manifolds (see Definition 6.1) the generalized Kähler manifolds for

which eitherH+ orH− is zero; the obtained result (Theorem6.2) also appears, in a different form, in [7]. Also, in Corollary 6.3,
we prove a factorization result for generalized Kähler manifolds with H + a holomorphic foliation, with respect to J+ and J−,
and H −

= 0 (or H +
= 0 and H − a holomorphic foliation, with respect to J+ and J−); see, also, Corollary 6.4 for a similar

result and Theorem 6.10 for a generalization.
Furthermore, we explain how the associated holomorphic Poisson structures of [8] fit into our approach (Theorem 6.5,

Remark 6.6), we deduce some consequences for holomorphic diffeomorphisms (Corollary 6.7), and we show that, under
natural conditions, the holomorphic maps between generalized Kähler manifolds are holomorphic Poisson morphisms
(Corollary 6.8).

1. Linear Dirac structures

In this section we recall ([4]; see [5,6,1]) some basic facts on linear Dirac structures.
Let V be a (real or complex, finite dimensional) vector space. The symmetric bilinear form ⟨·, ·⟩ on V ⊕ V ∗ defined by

⟨u + α, v + β⟩ =
1
2


α(v)+ β(u)


,

for any u+α, v+β ∈ V ⊕V ∗, corresponds, up to the factor 1
2 , to the canonical isomorphism V ⊕V ∗

∼
−→


V ⊕V ∗

∗
defined

by u + α −→ α + u, for any u + α ∈ V ⊕ V ∗. In particular, ⟨·, ·⟩ is nondegenerate and, if V is real, its index is dim V . Thus,
the dimension of the maximal isotropic subspaces of V ⊕ V ∗ (endowed with ⟨·, ·⟩) is equal to dim V .

Definition 1.1 ([4]). A linear Dirac structure on V is a maximal isotropic subspace of V ⊕ V ∗.

If b is a bilinear form on V then we shall denote by the same letter the corresponding linear map from V to V ∗; thus,
b(u)(v) = b(u, v), for any u, v ∈ V .
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Let E ⊆ V be a vector subspace and let ε ∈ Λ2E∗; denote

L(E, ε) =

u + α | u ∈ E, α|E = ε(u)


.

From the fact that ε is skew-symmetric it follows easily that L(E, ε) is isotropic. Also, L(E, 0) = E ⊕ Ann(E), where
Ann(E) =


α ∈ V ∗

| α|E = 0

.

We shall denote by π and ∗π the projections from V ⊕ V ∗ onto V and V ∗, respectively. Also, if L ⊆ V ⊕ V ∗ then L⊥

denotes the ‘orthogonal complement’ of Lwith respect to ⟨·, ·⟩.

Proposition 1.2 ([4]). Let L be an isotropic subspace of V ⊕ V ∗ and let E = π(L).
Then there exists a unique ε ∈ Λ2E∗ such that L ⊆ L(E, ε). In particular, if L is a linear Dirac structure then L = L(E, ε).

Furthermore, V ∩ L = ker ε and ∗π(L) = Ann(V ∩ L).

Let L be a linear Dirac structure on V . If ∗π(L) = V ∗ then L is called a linear Poisson structure (see [4]). By Proposition 1.2,
if L is a linear Poisson structure then L = L(V ∗, η) for some bivector η ∈ Λ2V (cf. [9]).

Let V and W be vector spaces endowed with linear Dirac structures LV and LW , respectively, and let f : V → W be a
linear map. Denote

f∗(LV ) =

f (X)+ η | X + f ∗(η) ∈ LV


,

f ∗(LW ) =

X + f ∗(η) | f (X)+ η ∈ LW


.

Proposition 1.3. Let f : V → W be a linear map. Let L(E, ε) and L(F , η) be linear Dirac structures on V and W, respectively.
Then

f∗

L(E, ε)


= L


f

(E ∩ ker f )⊥ε


, ε̌


,

f ∗

L(F , η)


= L


f −1(F), f ∗(η)


,

where ε̌ is characterized by f ∗(ε̌) = ε on (E ∩ ker f )⊥ε .

Proof. It is easy to prove that f∗(LV ) and f ∗(LW ) are isotropic subspaces ofW ⊕ W ∗ and V ⊕ V ∗, respectively.
Next, we show that there exists a unique two-form ε̌ on f


(E ∩ ker f )⊥ε


such that f ∗(ε̌) = ε on (E ∩ ker f )⊥ε . For

this, it is sufficient to prove that if X1, X2 ∈ (E ∩ ker f )⊥ε are such that f (X1) = f (X2) then ε(X1, Y ) = ε(X2, Y ), for any
Y ∈ (E ∩ ker f )⊥ε . Now, if X1, X2 ∈ (E ∩ ker f )⊥ε , then X1, X2 ∈ E and, as X1 − X2 ∈ ker f , we have ε(X1 − X2, Y ) = 0, for
any Y ∈ (E ∩ ker f )⊥ε .

Thus, to complete the proof it is sufficient to show that

f∗

L(E, ε)


⊇ L


f

(E ∩ ker f )⊥ε


, ε̌


,

f ∗

L(F , η)


⊇ L


f −1(F), f ∗(η)


.

(1.1)

Let Y + ξ ∈ L

f

(E ∩ ker f )⊥ε


, ε̌


; equivalently, there exists X ∈ (E ∩ ker f )⊥ε such that f (X) = Y and ξ(f (X ′)) =

ε(f (X), f (X ′)), for any X ′
∈ (E ∩ ker f )⊥ε .

We claim that Y+ξ ∈ f∗

L(E, ε)


; equivalently, there existsX ∈ (E∩ker f )⊥ε such that f (X) = Y and ξ(f (X ′)) = ε(X, X ′),

for any X ′
∈ E.

It is easy to prove that, if X ∈ (E ∩ ker f )⊥ε is such that f (X) = Y , then ξ(f (X ′)) = ε(X, X ′), for any X ′
∈ (E ∩ ker f ) ∪

(E ∩ ker f )⊥ε .
It follows that, for any X ∈ (E∩ker f )⊥ε with f (X) = Y , there exists X1 ∈ ker(ε|E∩ker f ) such that ξ(f (X ′)) = ε(X+X1, X ′),

for any X ′
∈ E; as, then, we also have X1 ∈ (E ∩ ker f )⊥ε and f (X1) = 0, this shows that Y + ξ = f (X + X1)+ ξ ∈ f∗(LV ).

To prove the second relation of (1.1), let X + ξ ∈ L

f −1(F), f ∗(η)


; equivalently, f (X) ∈ F and ξ(X ′) = η(f (X), f (X ′))

for any X ′
∈ f −1(F). As f −1(F) ⊇ ker f , there exists ξ̌ in the dual of f (V ) such that ξ = f ∗(ξ̌ ). Obviously, we can extend ξ̌ to

a one-form on W , which we shall denote by the same symbol ξ̌ , such that ξ̌ (Y ) = η(f (X), Y ), for any Y ∈ F ; equivalently,
f (X)+ ξ̌ ∈ L(F , η). Therefore X + ξ = X + f ∗(ξ̌ ) ∈ f ∗


L(F , η)


.

The proof is complete. �

Definition 1.4 (See [5,6,1]). Let V andW be vector spaces endowedwith linear Dirac structures LV and LW , respectively, and
let f : V → W be a linear map.

Then f∗(LV ) and f ∗(LW ) are called the push-forward and pull-back, by f , of LV and LW , respectively.

Note that, if f : (V , LV ) → (W , LW ) is a linear map between vector spaces endowed with linear Poisson structures then
the following assertions are equivalent (see [5,6]):
(i) f is a linear Poisson morphism (that is, f (η V ) = ηW , where η V and ηW are the bivectors defining LV and LW , respectively;

see [10]).
(ii) f∗(LV ) = LW .

From Proposition 1.3, we easily obtain the following result.
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Corollary 1.5 (Cf. [5,6]). Let V be a vector space endowed with a linear Dirac structure L = L(E, ε). Let W = ker ε and denote
by ϕ : V → V/W the projection.

Then L = ϕ∗(ϕ∗(L)) and ϕ∗(L) is a linear Poisson structure on V/W.

2. Dirac structures

In this section, we shall work in the smooth and (real or complex) analytic categories. All the notations of Section 1 will
be applied to tangent bundles of manifolds and to (differentials of) maps between manifolds.

Definition 2.1 ([4]). An almost Dirac structure on a manifold M is a maximal isotropic subbundle of TM ⊕ T ∗M .
An almost Dirac structure is integrable if its space of sections is closed under the Courant bracket defined by

[X + α, Y + β] = [X, Y ] +
1
2
d

ιXβ − ιYα


+ ιXdβ − ιYdα,

for any sections X + α and Y + β of TM ⊕Λ(T ∗M), where ι denotes the interior product.
A Dirac structure is an integrable almost Dirac structure.

Let L be a Dirac structure onM . If π(L) = TM then L is a presymplectic structurewhilst if ∗π(L) = T ∗M then L is a Poisson
structure [4] (cf. [9]).

Recall [4, Section 4] that a point of a manifold endowed with an almost Dirac structure L is called regular if, in some open
neighborhood of it, π(L) and ∗π(L) are bundles.

The following result follows from the fact that it is sufficient to be proved for maps of constant rank between manifolds
endowed with regular almost Dirac structures.

Proposition 2.2. Let M and N be manifolds endowed with the almost Dirac structures LM and LN , respectively. Let ϕ : M → N
be a map which maps regular points of LM to regular points of LN .

(i) If LM is integrable and ϕ∗(LM) = LN then LN is integrable.
(ii) If LN is integrable and ϕ∗(LN) = LM then LM is integrable.

Next, we prove the following result.

Theorem 2.3 (Cf. [4–6]). Let L be a Dirac structure on M such that ∗π(L) is a subbundle of T ∗M. Then, locally, there exist
submersions ϕ on M such that ϕ∗(L) is a Poisson structure and L = ϕ∗(ϕ∗(L)); moreover, these submersions are (germ) unique,
up to Poisson diffeomorphisms of their codomains.

Proof. By hypothesis, TM ∩ L is a subbundle of TM . Furthermore, as L is integrable, TM ∩ L is (the tangent bundle to) a
foliation.

Let F =
∗ π(L) and let η be the section of Λ2F∗ such that L = L(F , η). Note that, F


=Ann(TM ∩ L)


is locally spanned by

the differentials of functions which are basic with respect to TM ∩ L.
Let f and g be functions, locally defined onM , such that df and dg are sections of F . Then there exist vector fields X and Y ,

locally defined onM , such that X + df and Y + dg are local sections of L; in particular, we have η(df , dg) = X(g) = −Y (f ).
Hence [X + df , Y + dg] = [X, Y ] + d


η(df , dg)


and we deduce that η(df , dg) is basic with respect to TM ∩ L.

The proof follows quickly from Corollary 1.5 and Proposition 2.2. �

Under the same hypotheses, as in Theorem 2.3, we call ϕ∗(L) the canonical (local) Poisson quotient of L.
Next, we prove the following (cf. [4, Proposition 4.1.2]).

Proposition 2.4. Let L = L(E, ε) be a Dirac structure on M and let x ∈ M be a regular point of L; denote by P the leaf of E
through x.

Then for any submanifold Q of M transversal to E, such that x ∈ Q and dimQ = dimM − dim P, there exists a submersion
ρ from some open neighborhood U of x in M onto some open neighborhood V of x in P such that ρ∗(L|U) = L(TV , ε|V ) and the
fiber of ρ through x is an open set of Q .

Proof. From Theorem 2.3 it follows that we may assume L a Poisson structure.
If we ignore the fact that the fiber of ρ through x is fixed then the proposition is a consequence of [9, Corollary 2.3] and

Proposition 1.3. To complete the proof just note that in the proof of [9, Theorem 2.1] (and, consequently, of [9, Corollary 2.3],
as well), at each step, the two functions involved may be assumed constant along Q . �

Recall (see [1,5]) that any closed two-form B onM corresponds to a B-field transformationwhich is the automorphism of
TM ⊕ T ∗M , preserving the Courant bracket, defined by

exp(B)(X + α) = X + B(X)+ α

for any X + α ∈ TM ⊕ T ∗M , where, as before, we have identified B with the corresponding section of Hom(TM, T ∗M). It is
easy to prove that if L = L(E, ε) is an almost Dirac structure onM then exp(B)(L) = L(E, ε + B|E).
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Corollary 2.5. Let L be a regular Dirac structure on M; denote E = π(L). Then, locally, there exist two-forms B on M such that
exp(B)(L) = E ⊕ AnnE.

Proof. By Proposition 2.4, locally, there exist submersions ρ : M → P onto presymplectic manifolds

P, L(TP, ω)


such that

ρ∗(L) = L(TP, ω).
Then B = −ρ∗(ω) is as required. �

We end this section with the following result which will be used later on.

Proposition 2.6. Let ϕ : (M, LM) → (N, LN) be a Poisson morphism, of constant rank, between regular Poisson manifolds such
that dϕ(EM) ⊆ EN , where EM and EN are the (symplectic) foliations determined by LM and LN , respectively.

Then, locally, there exist submersions ρ : M → (P, ω) and σ : N → (Q , η) onto symplectic manifolds, and a Poisson
morphism ψ : (P, ω) → (Q , η) such that:

(i) TM = EM ⊕ ker dρ and ρ∗(LM) = L(TP, ω);
(ii) TN = EN ⊕ ker dσ and σ∗(LN) = L(TQ , η);
(iii) σ ◦ ϕ = ψ ◦ ρ .

Proof. From Proposition 1.3 we obtain that dϕ(EM) = EN . As, locally, ϕ is the composition of a submersion followed by an
immersion, it follows that we may assume that ϕ is a surjective submersion.

By Proposition 2.4, locally, there exists a submersion σ : M → (Q , η) onto a symplectic manifold such that assertion (ii)
is satisfied.

Let V be the distribution onM generated by all of the Hamiltonian vector fields determined by u◦σ ◦ϕ, with u a function
on Q ; obviously, V ⊆ EM . Then arguments similar to the inductive step of the proof of [9, Theorem 2.1] show that:

(a) V is a foliation mapped by σ ◦ ϕ onto TQ ;
(b) V and EM ∩ ker dϕ are nondegenerate and complementary orthogonal with respect to the symplectic structure ωM

of EM ;
(c) ωM restricted to V is projectable (onto η) with respect to σ ◦ ϕ;
(d) ωM restricted to EM ∩ ker dϕ is projectable with respect to V .

Consequently, (EM , ωM) induces on any fiber M ′ of σ ◦ ϕ a Poisson structure L′ such that, locally, (M, LM) is the product
of (M ′, L′) and


Q , L(TQ , η)


.

By Proposition 2.4, locally, there exists a submersion ρ ′
: M ′

→ (P ′, ω′) such that ker dρ ′
⊕ (EM ∩ TM ′) = TM ′ and

ρ ′
∗
(L′) = L(TP ′, ω′).
If we define (P, ω) = (P ′, ω′)× (Q , η), ρ = ρ ′

× σ andψ : P → Q the projection then it is easy to see that ρ, σ andψ
are as required. �

3. Generalized complex linear maps

A linear generalized complex structure on a vector space V is a maximal isotropic subspace L = L(E, ε) of VC
⊕


VC

∗
such

that L ∩ L = {0} [1,2]; equivalently, E + E = VC and Im

ε|E∩E


is nondegenerate [1].

The condition E + E = VC means that E is a linear co-CR structure on V [11]; equivalently, the annihilator E0 of E is a
linear CR structure on V (that is, E0

∩ E0 = {0}).
On the other hand, as Im


ε|E∩E


is nondegenerate, L


E ∩ E, Im


ε|E∩E


is a linear Poisson structure on V .

If L = L(E, ε) is a linear generalized complex structure then we call E and L

E ∩ E, Im


ε|E∩E


the associated linear co-CR

and Poisson structures, respectively.
A map f : (V , EV ) → (W , EW ) between vector spaces endowed with linear (co-)CR structures is a (co-)CR linear map if it

is linear and f (EV ) ⊆ EW .

Definition 3.1. A linear map between vector spaces endowed with linear generalized complex structures is generalized
complex linear if it is a co-CR linear Poisson morphism, with respect to the associated linear co-CR and Poisson structures.

Note that, Definition 3.1 is invariant under linear B-field transformations. Also, the composition of two generalized
complex linear maps is a generalized complex linear map.

Proposition 3.2. Let f : V → W be a linear map between vector spaces endowed with linear generalized complex structures LV
and LW , respectively.

Then the following assertions are equivalent:

(i) f is generalized complex linear.
(ii) Up to linear B-field transformations, f is the direct sum of a a complex linear map, between complex vector spaces, and a linear

Poisson morphism, between symplectic vector spaces.
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Proof. Suppose that (i) holds and let EV and EW be the linear co-CR structures associated to LV and LW , respectively.
As f : (V , EV ) → (W , EW ) is co-CR linear, we obtain f


EV ∩ EV


⊆ EW ∩ EW . But f is, also, a linear Poisson morphism,

with respect to the linear Poisson structures associated to LV and LW , respectively. From Proposition 1.3 we obtain that
f

EV ∩ EV


= EW ∩ EW . Moreover, f restricts to give a linear Poisson morphism between EV ∩ EV and EW ∩ EW , endowed

with the linear symplectic structures corresponding to the linear Poisson structures associated to LV and LW , respectively.
We, also, obtain f −1


EW ∩ EW


= ker f +


EV ∩ EV


and, consequently, there exist complementary vector spaces V ′ and

W ′ of EV ∩ EV and EW ∩ EW in V and W , respectively, such that f

V ′


⊆ W ′.

It is obvious that EV and EW induce linear complex structures on V ′ and W ′, respectively. Moreover, f restricts to give a
complex linear map between these two complex vector spaces.

Now, (i) H⇒ (ii) follows quickly from [1, Theorem 4.13], whilst (ii) H⇒ (i) is trivial. �

The next result is an immediate consequence of Proposition 3.2.

Corollary 3.3. Let f : V → W be a linear isomorphism between vector spaces endowed with linear generalized complex
structures LV and LW , respectively.

Then the following assertions are equivalent:
(i) f is generalized complex linear.
(ii) f∗


LV


= LW , up to linear B-field transformations.

We end this section with the following:

Remark 3.4. It has been proposed another definition for the notion of generalized complex linear map by imposing that the
product of the graphs of the map and of its transpose be invariant under the product of the (endomorphisms corresponding
to the) generalized linear complex structures, of the domain and codomain [12] (see [13]).

However this notion is not invariant under linear B-field transformations as we shall now explain.
Let (V , J) be a complex vector space and let b be a two-form on V ; denote by LJ the linear generalized complex structure

corresponding to J . Then the map IdV :

V , LJ


→


V , L(exp b)(LJ )


satisfies the above mentioned condition if and only if b is

of type (1, 1), with respect to J .
Certainly, this inconvenience would be removed if we take this definition up to linear B-field transformations. However,

a straightforward calculation shows that there are no such maps between symplectic vector spaces U and V with dimU −

dim V = 2, a rather unnatural restriction.

4. Holomorphic maps between generalized complex manifolds

Fromnowon, unless otherwise stated, all themanifolds are assumed connected and smooth and all themaps are assumed
smooth.

A generalized almost complex structure on M is a complex vector subbundle L of TCM ⊕

TCM

∗
such that Lx is a linear

generalized complex structure on TxM , for any x ∈ M . An integrable generalized complex structure is a generalized almost
complex structure whose space of sections is closed under the (complexification of the) Courant bracket; a generalized
(almost) complex manifold is a manifold endowed with a generalized (almost) complex structure [1,2].

Definition 4.1. A map between generalized almost complex manifolds is holomorphic if, at each point, its differential is
generalized complex linear.

A point x of a generalized almost complex manifold (M, L) is regular if it is regular for the associated almost Poisson
structure; equivalently, in some open neighborhood of x, π(L) is a complex vector subbundle of TCM .

An almost (co-)CR structure on a manifold M is a complex vector subbundle C of TCM such that Cx is a linear (co-)CR
structure on TxM , for any x ∈ M . An integrable almost (co-)CR structure is an almost (co-)CR structure whose space of
sections is closed under the (Lie) bracket; a (co-)CR structure is an integrable almost (co-)CR structure (see [11]).

Note that, the eigenbundles of a complex structure are both CR and co-CR structures. Also, a generalized almost complex
structure L onM is regular (at each point) if and only if π(L) is an almost co-CR structure onM .

Let ϕ : M → N be a submersion onto a complex manifold (N, J); denote by T 1,0N the eigenbundle of J corresponding to
i. Then dϕ−1


T 1,0N


is a co-CR structure onM . Conversely, any co-CR structure is, locally, obtained this way.

Amap betweenmanifolds endowedwith almost (co-)CR structures is (co-)CR holomorphic if, at each point, its differential
is a (co-)CR linear map.

An almost f -structure is a (1, 1)-tensor field F such that F 3
+ F = 0. Any almost f -structure on M corresponds to a

pair formed of an almost CR structure C and an almost co-CR structure D , which are compatible [11]; these are given by
C = T 1,0M and D = T 0M ⊕ T 1,0M , where T 0M and T 1,0M are the eigenbundles of F corresponding to 0 and i, respectively.

An almost f -structure is (co-)CR integrable if the associated almost (co-)CR structure is integrable. An (integrable almost)
f -structure is an almost f -structure which is both CR and co-CR integrable [11].

An almost f -structure F and a two-form ω on M are compatible if ω is nondegenerate on T 0M and ιXω = 0, for any
X ∈ T 1,0M ⊕ T 0,1M .

A generalized (almost) complex structure L onM is in normal form if L = L

T 0M⊕T 1,0M, iω


for some compatible almost

f -structure and two-form ω onM . Note that, a generalized almost complex structure in normal form is regular.
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Proposition 4.2. Let L = L

T 0M ⊕ T 1,0M, iω


be the generalized almost complex structure in normal form, corresponding to

the compatible almost f -structure F and two-form ω on M.
Then the following assertions are equivalent:

(i) L is integrable.
(ii) F is integrable, L(T 0M, ω) is a Poisson structure and ω is invariant under the parallel displacement of T 1,0M ⊕ T 0,1M.

Proof. From [1, Proposition 4.19] it follows quickly that assertion (i) is equivalent to the fact that F is co-CR integrable and
(dω)|T0M⊕T1,0M = 0. Assuming F co-CR integrable, the latter condition is equivalent to the fact that L(T 0M, ω) is a Poisson
structure, F is CR integrable and (LXω)|T0M = 0 for any vector field X tangent to T 1,0M ⊕ T 0,1M , where L denotes the Lie
derivative. �

All of the examples of generalized complex structures of [14] are in normal form. Similarly, we have the following
example, due to [15].

Example 4.3. Let G be a compact Lie group of even rank assumed, for simplicity, semisimple. Let g be the Lie algebra of G
and let k be the Lie algebra of a maximal torus in G.

Let c be a Borel subalgebra of gC containing kC. Any such Borel subalgebra is obtained by choosing a base for the root
system of gC corresponding to kC (see [16]): c = kC

⊕


α≻0 gα , where gα is the root space of gC corresponding to the root α.
As gα = g−α (see [17]), we have c+ c = gC and c∩ c = kC. Consequently, c corresponds to a left invariant co-CR structure

C on G (for any a ∈ G, we have that Ca is the left translation of c, at a).
Let ω be a linear symplectic form on k (dim k = rankG is even), extended to g such that ιXω = 0 for any X ∈


α≻0 gα .

We shall denote by the same letter ω the left invariant two-form on G, determined by ω.
Then L


C, iω


is a generalized complex structure on G in normal form.

The next result follows from the proof of [1, Theorem 4.35].

Theorem 4.4. Let L be a regular generalized almost complex structure on M and let L′ be the associated almost Poisson structure.
Then the following assertions are equivalent:

(i) L is integrable.
(ii) π(L) and L′ are integrable and, locally, for any submersion ρ : M → P, with dim P = rank


π(L′)


and ρ∗(L′) a symplectic

structure on P,we have that, up to a B-field transformation, L is in normal formwith respect to the f -structure onM determined
by π(L) and π(L) ∩ ker dρ .

We can, now, give the smooth version of Proposition 3.2.

Proposition 4.5. Let ϕ : (M, LM) → (N, LN) be a map between generalized complex manifolds.
Then the following assertions are equivalent:

(i) ϕ is holomorphic.
(ii) On an open neighborhood of each regular point of LM on which ϕ has constant rank, up to B-field transformations, ϕ is the

product of a Poisson morphism between symplectic manifolds and a holomorphic map between complex manifolds.

Proof. This follows quickly from Proposition 2.6, [1, Theorem 4.35] and Theorem 4.4. �

Next, we give examples of holomorphic maps between generalized complex manifolds.

Example 4.6. The classical holomorphic maps, the Poisson morphisms between symplectic manifolds, and their products
are, obviously, holomorphic maps between generalized complex manifolds.

Moreover, by Proposition 4.5, any holomorphic map ϕ : (M, LM) → (N, LN) between generalized complex manifolds is
of this form, up to B-field transformations, on an open neighborhood of each regular point of LM on which ϕ has constant
rank.

Example 4.7. Let G be a compact Lie group endowed with the generalized complex structures L = L

C, iω


of Example 4.3.

Let K be the maximal torus of Gwhose Lie algebra is used to define C. Obviously, dϕ(C) defines a left invariant complex
structure on G/K , where ϕ : G → G/K is the projection.

Then ϕ : (G, L) →

G/K , dϕ(C)


is a holomorphic map.

Example 4.8. Let G/H be a compact inner symmetric space (see [17, page 23] for the definition and [17, page 38] for a table
of examples) with rankG(= rankH) even; denote by g and h the Lie algebras of G and H , respectively.

Endow G with the generalized complex structures L

C, iω


of Example 4.3, determined by a Borel subalgebra c of gC

containing the Lie algebra of a maximal torus of H (also a maximal torus of G, as G/H is inner).
It follows that d = c ∩ hC is a Borel subalgebra of hC. Let D be the left invariant co-CR structure induced by d, on H , and

let η = ω|H .
Then the inclusion map from


H, L


D, iη


to


G, L


C, iω


is holomorphic.

Fairly similar examples can be obtained by working with nilpotent Lie groups endowed with the generalized complex
structures of [14].

The following facts are immediate consequences of the definitions.
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Remark 4.9. (1) A map between regular generalized almost complex manifolds is holomorphic if and only if it is a co-CR
Poisson morphism, with respect to the associated almost co-CR and Poisson structures.

(2) Let ϕ : (M, LM) → (N, LN) be a diffeomorphism between generalized complex manifolds. Then ϕ is holomorphic if and
only if, in an open neighborhood of each regular point ofM , we have ϕ∗


LM


= LN , up to B-field transformations.

(3) The composition of two holomorphic maps, between generalized (almost) complex manifolds is holomorphic.
(4) Let (M, L) be a generalized complex manifold. The ∂ operator on functions [1] (see [18], and, also, [19,20]) is defined

as follows. If f is a complex-valued function on M then ∂ f is the L-component of df with respect to the decomposition
TCM ⊕


TCM

∗
= L ⊕ L. Then f is holomorphic if and only if ∂ f = 0. Note that, if L = L(E, ε) is regular then the

holomorphic (local) functions on (M, L) are just the co-CR holomorphic functions on (M, E). Equivalently, if E is locally
defined by the submersion ϕ : M → (N, J) onto the complex manifold (N, J) (that is, E = dϕ−1


T 1,0N


) then, locally,

any holomorphic function on (M, L) is the composition of ϕ followed by a holomorphic function on (N, J).
(5) Let (M, JM , LM) and (N, JN , LN) be complex manifolds endowed with holomorphic Poisson structures (see [21] for the

notion of holomorphic Poisson structure, and [22] for a generalization); denote byLM andLN the generalized complex
structures associated to LM and LN , respectively (see [8]). For any map ϕ : M → N , any two of the following assertions
imply the third:
(i) ϕ : (M, JM , LM) → (N, JN , LN) is a holomorphic Poisson morphism;
(ii) ϕ : (M,LM) → (N,LN) is holomorphic;
(iii) ϕ : (M, JM) → (N, JN) is holomorphic and it maps the leaves of the holomorphic symplectic foliation associated to

LM into leaves of the holomorphic symplectic foliation associated to LN .

From Theorem 2.3 we obtain the following result.

Proposition 4.10. Let (M, LM) and (N, LN) be regular real analytic generalized complex manifolds and let ϕ : M → N be a real
analytic map.

If ϕ is holomorphic then, locally, up to the complexification of a real analytic B-field transformation, the complexification of ϕ
descends to a complex analytic Poisson morphism between canonical Poisson quotients.

Let L(E, iε) be a generalized complex structure in normal form on a Riemannian manifold (M, g).
Then E is coisotropic (that is, E⊥ is isotropic), with respect to g , if and only if E∩E is locally defined by pseudo-horizontally

conformal submersions onto complex manifolds (a map from a Riemannian manifold to an almost complex manifold is
pseudo-horizontally conformal if it pulls back (1, 0)-forms to isotropic forms).

Also, if εk has constant norm,with respect to g , where dim(E∩E) = 2k, then the leaves of E∩E areminimal submanifolds
of (M, g).

Conversely, we have the following:

Example 4.11. Let ϕ : (M, g) → (N, J) be a pseudo-horizontally conformal submersion from a Riemannian manifold onto
an almost complex manifold, with dimM = dimN + 2.

Denote V = ker dϕ,H = V ⊥ and let ω be the volume form of V . Also, let F be the unique skew-adjoint almost
f -structure onM such that ker F = V and,with respect towhich,ϕ is co-CR holomorphic. Obviously, F andω are compatible;
denote by L the corresponding generalized almost complex structure in normal form.

From Proposition 4.2 it follows that L is integrable if and only if J is integrable, the fibers of ϕ are minimal and the
integrability tensor of H is of type (1, 1); note that, if dimM = 4 then this is equivalent to the condition that ϕ is a
harmonic morphism (see [23]), where N is endowed with the conformal structure with respect to which J is a Hermitian
structure.

Moreover, any generalized complex structure, in normal form, on a Riemannian manifold such that the corresponding
f -structure is skew-adjoint, the associated Poisson structure has rank two and its symplectic form that has norm 1 is, locally,
obtained this way.

The pseudo-horizontally conformal submersions with totally geodesic fibers onto complex manifolds, for which the
integrability tensor of the horizontal distribution is of type (1, 1), admit a twistorial description from which it follows that
they abound on Riemannian manifolds of constant curvature [24] (cf. [23]).

Also, see [25] for a study of the harmonic pseudo-horizontally conformal submersions with minimal fibers and [23] for
twistorial constructions of harmonic morphisms with two-dimensional fibers on four-dimensional Riemannian manifolds.

5. Generalized Kähler manifolds

We start this section by recalling from [1] a few facts on generalized Kähler manifolds.
A generalized (almost) Kähler manifold is a manifold M endowed with two generalized (almost) complex structures such

that the corresponding sections J1 and J2 of End(TM ⊕ T ∗M) commute and J1J2 is negative definite.
Any generalized almost Kähler structure (L1, L2) on a manifold M corresponds to a quadruple (g, b, J+, J−) where g is

a Riemannian metric, b is a two-form and J± are almost Hermitian structures on (M, g). The (bijective) correspondence is
given by L1 = L+

⊕ L−, L2 = L+
⊕ L−, where

L±
=


X + (b ± g)(X) | X ∈ V±


with V± the eigenbundles of J± corresponding to i.
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According to [1, Theorem 6.28], the following assertions are equivalent:
(i) L1 and L2 are integrable.
(ii) L+ and L− are integrable.
(iii) J± are integrable and parallel with respect to∇

±
= ∇

g
±

1
2g

−1h, where∇
g is the Levi-Civita connection of g and h = db

(equivalently, J± are integrable and dc
±
ω± = ∓h, where ω± are the Kähler forms of J±).

Now, if we (pointwisely) denote Ej = π(Lj), (j = 1, 2), then E1 = V+
+ V− and E2 = V+

+ V−. Hence, E⊥

1 = V+
∩ V−,

E⊥

2 = V+
∩ V− and, therefore, E1 and E2 are coisotropic.

Remark 5.1. Let (M, L1, L2) be a generalized Kähler manifold.
(1) The (skew-adjoint) almost f -structures Fj determined by Ej and E⊥

j are integrable; we call Fj the f -structures of Lj,
(j = 1, 2).

(2) The holomorphic functions of (M, L1) and (M, L2) are the bi-holomorphic functions of (M, J+, J−) and (M, J+,−J−),
respectively.

Let H ±
= ker(J+ ∓ J−). Then H + and H − are orthogonal; this follows from H +

=

V+

∩ V−


⊕

V+ ∩ V−


and

H −
=


V+

∩ V−

⊕


V+ ∩ V−


. Denote V =


H +

⊕ H −
⊥

.
Note that, H +,H − and V are invariant under J+ and J−. Also, J+ − J− and J+ + J− are invertible on V .

Proposition 5.2. The following assertions are equivalent:
(i) L1 and L2 are regular.
(ii) H + and H − are distributions on M.
(iii) V is a distribution on M.

Proof. The obvious relations

E1 =

V+

∩ V−
⊥

=

V+

∩ V−

⊕ H −

⊕ V ,

E2 =

V+

∩ V−
⊥

=

V+

∩ V−

⊕ H +

⊕ V

imply

E1 ∩ E1 = H −
⊕ V =


H +

⊥
,

E2 ∩ E2 = H +
⊕ V =


H −

⊥

which show that (i) ⇐⇒ (ii).
Also, as the dimensions of H + and H − are upper semicontinuous functions on M , assertion (ii) holds if and only if

H +
⊕ H −(=V ⊥) is a distribution onM . �

Next, we prove the following result.

Theorem 5.3. Let (M, L1, L2) be a generalized Kähler manifold with L1 regular.
Then the following assertions are equivalent:

(i) H + is integrable.
(ii) H + is geodesic.

Furthermore, if (i) or (ii) holds then the leaves of H +, endowedwith (g, J±), are Kählermanifolds. Also, if H + is holomorphic,
with respect to J+ or J−, then both (i) and (ii) hold.

To prove Theorem 5.3 we need some preparations.
Let H be a distribution on a Riemannian manifold (M, g) endowed with a linear connection ∇; denote V = H ⊥.
The second fundamental form of H , with respect to ∇ , is the V -valued symmetric two-form BH on H defined by

BH (X, Y ) =
1
2V


∇XY + ∇YX


; then H is geodesic, with respect to ∇ , if and only if BH

= 0 (cf. [23]).
The next result follows from a straightforward calculation.

Lemma 5.4 (Cf. [26]). Let (M, g, J) be a Hermitian manifold endowed with a distribution H and a conformal connection ∇ such
that ∇J = 0.

If V is integrable and J-invariant then the following relation holds:

2g

BH (JX, Y ), V


+ g


IH (X, Y ), JV


= g


T (V , JX), Y


+ g


T (V , X), JY


,

for any X, Y ∈ H and V ∈ V , where T is the torsion of ∇ and IH is the integrability tensor of H , defined by IH (X, Y ) =

−V [X, Y ], for any sections X and Y of H .

To prove Theorem 5.3 we also need the following lemma.
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Lemma 5.5. Let (M, J) be a complex manifold and let H be a holomorphic distribution on (M, J). The following assertions are
equivalent:

(i) H is integrable.
(ii) H 1,0 is a CR structure.

Proof. This is obvious. �

Proof of Theorem 5.3. Wemay assume that, also, L2 is regular.
Obviously, the second fundamental form of H +, with respect to ∇

g , is equal to the second fundamental forms of H +,
with respect to ∇

±.
As L1 and L2 are integrable we have that E1 and E2 are integrable and, consequently, H +

⊕V and H −
⊕V are integrable;

in particular, the integrability tensor of H + takes values in V . Furthermore, H +
⊕ V and H −

⊕ V are holomorphic with
respect to both J+ and J−.

Now, by applying Lemma 5.4 to H = H + twice, with respect to ∇
+ and ∇

−, we quickly obtain

4g

BH +

(J±X, Y ), V


= −g

IH

+

(X, Y ), (J+ + J−)(V )

,

for any X, Y ∈ H + and V ∈ H− ⊕ V . As J+ + J− is invertible on V , we obtain that (i) ⇐⇒ (ii).
If H + is holomorphic with respect to J+ or J− then H + is integrable by Lemma 5.5 and the fact that the eigenbundles of

J±|H + corresponding to i are equal to V+
∩ V− which is integrable.

To complete the proof just note that if H + is integrable then (g, b, J+, J−) induces, by restriction, a generalized Kähler
structure on each leaf L of H + and J+ = J− on L. �

Remark 5.6. (1) Let (M, L1, L2) be a generalized Kähler manifold with L1 regular. If H + is integrable then, by Theorem 5.3,
the co-CR structure associated to L1 (that is, E1) is, locally, given by holomorphic Riemannian submersions from
(M, g, J±) onto Kählermanifolds (P, h, J); in particular, the leaves ofH +, endowedwith (g, J±) can be, locally, identified
with (P, h, J).

(2) If (M, LM1 , L
M
2 ) and (N, L

N
1 , L

N
2 ) are generalized Kähler manifolds with H +

M and H +

N integrable distributions then any
holomorphic map ϕ : (M, LM1 ) → (N, LN1 ) descends, locally (with respect to the Riemannian submersions of
Remark 5.6(1)), to a holomorphic map between Kähler manifolds.

Let (Mj, gj, Jj) be Kähler manifolds, (j = 1, 2). Then onM1 × M2 there are two nonequivalent natural generalized Kähler
structures: the first product is just the Kähler product structure whilst the second product is given by L1 = L


T 1,0M1 ×

TM2, iω2

and L2 = L


T 1,0M2×TM1, iω1


, whereωj are the Kähler forms of Jj, (j = 1, 2); see Section 6, for the corresponding

definitions in a more general setting. Note that, both L1 and L2 are in normal form; moreover, the corresponding almost
f -structures are skew-adjoint (and, thus, unique with this property).

We end this section with the following consequence of Theorem 5.3 (cf. [3, Theorem A]).

Corollary 5.7. Any generalized Kähler manifold with V = 0 is, up to a unique B-field transformation, locally given by the second
product of two Kähler manifolds.

Proof. Let (M, L1, L2) be a generalized Kähler manifold with V = 0. Then, Proposition 5.2 implies that H ± are complemen-
tary orthogonal distributions onM .

As L1 and L2 are integrable, we have H ± integrable. Furthermore, by (the proof of) Theorem 5.3, we have that H ± are
geodesic foliationswhich are holomorphicwith respect to both J±;moreover, (g, J±) induce, by restriction, Kähler structures
on their leaves.

If L2 = L(E2, ε2) then, from the definitions it follows that ε2 = (b − iη)|E2 , where η is the two-form on M characterized
by ιXη = 0 if X ∈ H− and η|H + is the Kähler form of J+|H + . As (LXη)(Y , Z) = 0 for any sections X of H − and Y , Z of
H +, and (dε2)(X, Y , Z) = 0 for any X, Y , Z ∈ E2, we obtain that (db)(X, Y , Z) = 0 for any X ∈ V+

∩ H −(=E2 ∩ H −) and
Y , Z ∈ V+

∩H +. Furthermore, from Lemma5.4, applied toH = H + with J = J+ and∇ = ∇
+, we obtain (db)(X, Y , Z) = 0

for any X ∈ H − and Y , Z ∈ V+
∩ H +.

It follows that db = 0 and the proof is complete. �

6. Tamed symplectic and generalized Kähler manifolds

The following definition is fairly standard.

Definition 6.1. A tamed almost symplectic manifold is a manifold M endowed with a nondegenerate two-form ε and an
almost complex structure J such that ε(JX, X) > 0 for any nonzero X ∈ TM .

A tamed symplectic manifold is a tamed almost symplectic manifold (M, ε, J) such that J and ε−1J∗ε are integrable and
dε = 0.
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Obviously, (M, ε, J) is a tamed symplectic manifold if and only if ε is a symplectic form, T 1,0M and

T 1,0M

⊥ε are
integrable, and ε(JX, X) > 0, for any nonzero X ∈ TM .

The next result also appears, in a different form, in [7].

Theorem 6.2. Let M be a manifold endowed with a nondegenerate two-form ε and an almost complex structure J; denote J+ = J
and J− = −ε−1J∗ε. Let g and b be the symmetric and skew-symmetric parts, respectively, of εJ .

Then the following assertions are equivalent:
(i) (M, ε, J) is a tamed symplectic manifold.
(ii) (g, b, J+, J−) defines a generalized Kähler structure such that J+ + J− is invertible.

Moreover, up to a unique B-field transformation, any generalized Kähler structure, on M, with J+ + J− invertible is obtained
this way from a tamed symplectic structure.

Proof. Firstly, note that ε(J+X, Y ) = −ε(X, J−Y ), for any X, Y ∈ TM . This implies that

g(X, Y ) =
1
2
ε

(J+ + J−)(X), Y


,

b(X, Y ) =
1
2
ε

(J+ − J−)(X), Y


,

(6.1)

for any X, Y ∈ TM .
Therefore (M, ε, J) is a tamed almost symplectic manifold if and only if the quadruple (g, b, J+, J−) defines a generalized

almost Kähler manifold with J+ + J− invertible.
Now, with respect to J±, we haveω± = −ε1,1, b1,1 = 0 and b2,0 = ±iε2,0. It quickly follows that if J± are integrable then

dε = 0 if and only if dc
±
ω± = ∓db.

We have thus proved that (i) ⇐⇒ (ii).
Suppose that (g, b, J+, J−) corresponds to the generalized Kähler structure (L1, L2) onM . Then J+ + J− is invertible if and

only if π(L2) = TM . Hence, if J+ + J− is invertible then, up to a unique B-field transformation, we have L2 = L(TM, iε) for
some symplectic form ε onM and, consequently,

iε(X − iJ+X, Y ) = (b + g)(X − iJ+X, Y ),
iε(X + iJ−X, Y ) = (b − g)(X + iJ−X, Y ),

(6.2)

for any X, Y ∈ TM . By using the fact that J+ + J− is invertible, from (6.2) we quickly obtain that g and b satisfy (6.1). Together
with the fact that g and b are symmetric and skew-symmetric, respectively, this shows that J− = −ε−1J∗

+
ε and the proof

follows. �

It is easy to rephrase Theorem6.2 so that to obtain the description of generalized Kählermanifoldswith J+−J− invertible.
Let (M, LM1 , L

M
2 ) and (N, LN1 , L

N
2 ) be generalized Kähler manifolds corresponding to the tamed symplectic manifolds

(M, εM , JM) and (N, εN , JN), respectively. Then (M × N, LM1 × LN1 , L
M
2 × LN2 ) and (M × N, LM1 × LN2 , L

M
2 × LN1 ) are called the

first and second product of (M, LM1 , L
M
2 ) and (N, L

N
1 , L

N
2 ), respectively; note that, the first product is the generalized Kähler

manifold corresponding to (M × N, εM + εN , JM × JN).

Corollary 6.3. Any generalized Kähler manifold with H + a holomorphic foliation, with respect to J+ and J−, and H −
= 0 is, up

to a unique B-field transformation, locally given by the first product of a Kähler manifold and a generalized Kähler manifold for
which both J+ + J− and J+ − J− are invertible.

Proof. Let (M, L1, L2) be a generalized Kähler manifold with H + a distribution and H− = 0. Then, by Theorem 6.2, up to a
unique B-field transformation, we have that (M, L1, L2) corresponds to the tamed symplectic manifold (M, ε, J).

Thus, by (6.1), we have ιXb = 0 for any X ∈ H + and ε = η + ε′ where η and ε′ are the two-forms on M characterized
by ιXη = 0, (X ∈ V ), ιXε′

= 0, (X ∈ H +), η = ω+ on H +, and ε′
= ε on V .

If, further,H + is holomorphic, with respect to J+ and J−, then, by Theorem5.3, it is also integrable, geodesic and its leaves
endowed with (g, J) are Kähler manifolds; in particular, dη = 0 on H +. As, also, V is a holomorphic foliation, it quickly
follows that (LXη)(Y , Z) = 0 for any sections X of V and Y , Z of H +; consequently, dη = 0.

We have thus obtained dε′
= 0 which implies (LXε

′)(Y , Z) = 0 for any sections X of H + and Y , Z of V . Together with
(6.1), this gives (LXb)(Y , Z) = 0 and (LXg)(Y , Z) = 0 for any sections X of H + and Y , Z of V ; in particular, this shows that
V is geodesic. The proof follows. �

Obviously, a result similar to Corollary 6.3 holds for any generalized KählermanifoldwithH +
= 0 andH − an integrable

distribution.

Corollary 6.4. Let (M, L1, L2) be a generalized Kähler manifold such that L2 is in normal form with respect to its f -structure and
the two-form ε on M.

Then, in a neighborhood of each regular point of L1, we have that (M, L1, L2) is the second product of a Kähler manifold and
a generalized Kähler manifold determined by a tamed symplectic manifold.
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Proof. Assume that L1 regular. Define ε± to be the (complex linear) two-forms on T 1,0
+ M+T 1,0

− M such that ε± = ε on T 1,0
± M

and ιXε± = 0 if X ∈ T 1,0
∓ M .

Obviously, dε± = 0 on T 1,0
± M . Also, from the fact that ιXε± = 0 if X ∈ T 1,0

∓ M it quickly follows that if X±, Y±, Z± ∈ T 1,0
± M

then dε±(X∓, Y∓, Z±) = 0; togetherwith the fact that ε = ε++ε− on T 1,0
+ M+T 1,0

− M , this implies that dε±(X±, Y±, Z∓) = 0.
Thus, we have proved that dε± = 0 on T 1,0

+ M + T 1,0
− M .

Therefore ker ε± = T 1,0
∓ ⊕


T 0,1
∓ ∩ H −


is integrable which implies that H − is an antiholomorphic distribution on

(M, J∓). Hence, by Lemma 5.5, we have that H − is integrable and the proof follows from Theorem 5.3 and the fact that
ker ε = H −. �

Let (M, ε, J) be a tamed almost symplectic manifold. With the same notations as in Corollary 6.4, if (M, L1, L2) is the
generalized Kähler manifold determined by (M, ε, J) then, from (6.1), it follows that L1 = L


T 1,0
+ M + T 1,0

− M, iε+ − iε−

.

Theorem 6.5 (Cf. [8]). Let (M, ε, J) be a tamed almost symplectic manifold and let (M, L1, L2) be the corresponding generalized
almost Kähler manifold; denote by ρ±

: TCM → T 1,0
± M the projections.

If (M, L1, L2) is generalized Kähler then J± are integrable and ρ±
∗
(L2) are holomorphic Poisson structures on (M, J±),

respectively. Furthermore, the converse holds if also J+ − J− is invertible; moreover, in this case, if (M, L1, L2) is generalized
Kähler then ρ±

∗
(L2) are holomorphic symplectic structures on (M, J±), respectively.

Proof. Assume, for simplicity, that (M, ε, J) is real analytic. Also, we may assume L1 regular. If (M, L1, L2) is generalized
Kähler then, by passing to the complexification of (M, ε, J), from Proposition 1.3 and the proof of Corollary 6.4 we obtain
that ρ±

∗
(L2) are the canonical Poisson quotients of L


T 0,1
+ M + T 0,1

− M, iε∓

.

If J+ ± J− are invertible and J± are integrable then ρ±
∗
(L2) are holomorphic Poisson structures on (M, J±) if and only if

dε± = 0. �

We call the ρ±
∗
(L2) of Theorem 6.5 the holomorphic Poisson structures associated to (M, L1, L2).

Remark 6.6 (Cf. [8,7]).
(1) Let (M, L1, L2) be a generalized Kähler manifold with J+ + J− invertible. Denote by η± the (real) bivectors on M which

determine the holomorphic Poisson structures on (M, J±), respectively, associated to (M, L1, L2); that is, with respect to
J±, we have η1,1± = 0 and the holomorphic bivectors corresponding to ρ±

∗
(L2) are η

2,0
± , respectively.

It quickly follows that

η− = −η+ =
1
2


Jε−1

+ ε−1J∗


=
1
2


J+ − J−


ε−1

=
1
4
[J+, J−]g−1,

where (M, ε, J) is the tamed symplectic manifold associated to (M, L1, L2).
Hence, the symplectic foliation associated to η+ is given by V (=im(J+ − J−)).

(2) If the generalized almost Kähler structure (L1, L2) on M corresponds to the quadruple (g, b, J+, J−) then (L2, L1)
corresponds to (g, b, J+,−J−). Assume that (M, L1, L2) is a generalized Kählermanifoldwith J++J− and J+−J− invertible
and let η+ and η′

+
be the bivectors which determine, as in (1), the holomorphic symplectic structures associated to

(M, L1, L2) and (M, L2, L1), respectively. Then (6.3) implies that η′
+

= −η+.

Next, we prove some results on holomorphic maps between generalized Kähler manifolds.

Corollary 6.7. Let (M, L1, L2) be a generalized almost Kähler manifold with J+ + J− and J+ − J− invertible.
If ϕ : M → M is a diffeomorphism then any two of the following assertions imply the third:

(i) ϕ : (M, L1) → (M, L1) is holomorphic.
(ii) ϕ : (M, L2) → (M, L2) is holomorphic.
(iii)


dϕ, J+J−


= 0.

Proof. Let L = L

T 1,0
+ M + T 1,0

− M, ε1

. By using the first relation of (6.1), we obtain

(Im ε1)(J+ − J−) = ε(J+ + J−), (6.3)

which, firstly, shows that if (iii) holds then (i) ⇐⇒ (ii).
Furthermore, (6.3) implies that ε−1(Im ε1) is skew-adjoint, with respect to g , and, consequently, ε − Im ε1 is invertible.

This fact together with (6.3) proves that (i), (ii) H⇒ (iii). �

Corollary 6.8. Let (M, LM1 , L
M
2 ) and (N, L

N
1 , L

N
2 ) be generalized Kähler manifolds, with JM

+
+ JM

−
and JN

+
+ JN

−
invertible, and let

ϕ : M → N be a map.
(i) If ϕ : (M, LM1 ) → (N, LN1 ) and ϕ : (M, JM

±
) → (N, JN

±
) are holomorphic then ϕ is a holomorphic Poisson morphism between

the corresponding associated holomorphic Poisson manifolds; moreover, the converse holds if ϕ is an immersion.
(ii) If ϕ : (M, LM2 ) → (N, LN2 ) and, either, ϕ : (M, JM

+
) → (N, JN

+
) or ϕ : (M, JM

−
) → (N, JN

−
) are holomorphic maps then ϕ is a

holomorphic Poisson morphism between the associated holomorphic Poisson structures.
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Proof. Assertion (i) follows from Proposition 1.3 and the proof of Theorem 6.5.
To prove (ii), note that if ϕ : (M, LM2 ) → (N, LN2 ) is holomorphic then ϕ : (M, JM

+
) → (N, JN

+
) is holomorphic if and only

if ϕ : (M, JM
−
) → (N, JN

−
) is holomorphic. The proof quickly follows from Remark 6.6(1). �

If (g, J±) are Kähler structures on M then (g, 0, J+, J−) corresponds to a generalized Kähler structure (L1, L2) on M;
furthermore, if b is a closed two-form onM then (g, b, J+, J−) corresponds to


(exp b)(L1), (exp b)(L2)


.

Example 6.9 (Cf. [8]). Let (M, g, I, J, K) be a hyper-Kähler manifold. Denote by ωI , ωJ , ωK the Kähler forms of I, J , K ,
respectively, and let ε = −(ωJ + ωK ).

Then (M, ε, J) is a tamed symplectic manifold. The corresponding generalized Kähler structure (L1, L2) is given by
(g, b, J+, J−), where b = ωI , J+ = J and J− = K . Also, L1 = L


TCM, 2ωI − i(ωJ − ωK )


, L2 = L


TCM,−i(ωJ + ωK )


and ε+ = −i(ωI − iωJ), ε− = −(ωK − iωI).

We end with a generalization of Corollaries 5.7 and 6.3.

Theorem 6.10. Let (M, L1, L2) be a generalized Kähler manifold. Then the following assertions are equivalent:

(i) H +
⊕ H − is a holomorphic foliation with respect to J+ and J−.

(ii) Locally, up to a B-field transformation, (M, L1, L2) is the first product of a generalized Kähler manifold for which J+ ± J− are
invertible and the second product of two Kähler manifolds.

Proof. By applying Lemma 5.4 to H = H +
⊕ H − twice, with respect to ∇

+ and ∇
−, we obtain

2g

BH +

⊕H −

(J+X+, X−), V

+ g


IH

+
⊕H −

(X+, X−), J+V


= (db)(V , J+X+, X−)+ (db)(V , X+, J+X−),

2g

BH +

⊕H −

(J+X+, X−), V

+ g


IH

+
⊕H −

(X+, X−), J−V


= −(db)(V , J+X+, X−)+ (db)(V , X+, J+X−),
(6.4)

for any X± ∈ H ± and V ∈ V . Consequently, we, also, have

g

IH

+
⊕H −

(X+, X−), (J+ − J−)(V )

= 2db(V , J+X+, X−), (6.5)

for any X± ∈ H ± and V ∈ V .
Suppose that (i) holds. Then, by (6.5), we have db(V , X+, X−) = 0, for any X± ∈ H ± and V ∈ V . Moreover, from

Corollaries 5.7 and 6.3 it follows that db(X, Y , Z) = 0 if X, Y , Z ∈ H +
⊕ H − or X ∈ H ± and Y , Z ∈ V ⊕ H ±.

As d(db) = 0, this shows that db is basic with respect to H +
⊕H −. Hence, locally, there exists a two-form b′, basic with

respect to H +
⊕ H −, such that db = db′.

Furthermore, from (6.4) and (6.5) we obtain BH +
⊕H −

(X+, X−) = 0, for any X± ∈ H ±. Together with Theorem 5.3 and
Corollary 6.3, this shows that V and H +

⊕ H − are geodesic foliations on (M, g).
Thus, we have proved that (M, L1, L2) is the first product of a generalized Kähler manifold with H +

= 0 = H − and a
generalized Kähler manifold with V = 0. Hence, by Corollary 5.7, assertion (ii) holds.

The implication (ii) H⇒ (i) is trivial. �
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