On the local structure of generalized Kähler manifolds

by
Liviu Ornea and Radu Pantilie*

To Professor S. Ianuş on the occasion of his 70th Birthday

Abstract

Let (g, b, J_{+}, J_{-}) be the bihermitian structure corresponding to a generalized Kähler structure. We find natural integrability conditions, in terms of the eigendistributions of $J_{+} J_{-}+J_{-} J_{+}$, under which $\mathrm{d} b=0$.

Key Words: generalized Kähler manifold
2000 Mathematics Subject Classification: Primary 53C55, Secondary 53C26.

Introduction

A generalized almost complex structure on a smooth (connected) manifold is given by a vector subbundle $L \subset\left(T M \oplus T^{*} M\right)^{\mathbb{C}}$ such that $L \cap \bar{L}=\{0\}$ and which is maximally isotropic with respect to the canonical inner product

$$
<X+\alpha, Y+\beta>=\frac{1}{2}(\alpha(Y)+\beta(X)) .
$$

If $E=\pi_{T M}(L)$ is a bundle, where $\pi_{T M}: T M \oplus T^{*} M \rightarrow T M$ is the projection, then there exists a unique complex two-form $\varepsilon \in \Gamma\left(\Lambda^{2} E^{*}\right)$ such that $L=L(E, \varepsilon)$, where

$$
L(E, \varepsilon)=\left\{X+\alpha|X \in E, \alpha|_{E}=\varepsilon(X)\right\} .
$$

Furthermore, by [4], to which we refer for all of the facts on generalized complex structures recalled here, the condition $L \cap \bar{L}=\{0\}$ is equivalent to $E+\bar{E}=T^{\mathbb{C}} M$ and $\operatorname{Im}\left(\left.\varepsilon\right|_{E \cap \bar{E}}\right)$ is non-degenerate.

A generalized almost complex structure L is integrable if its space of sections is closed under the Courant bracket, defined by

$$
[X+\alpha, Y+\beta]=[X, Y]+\mathcal{L}_{X} \beta-\mathcal{L}_{Y} \alpha-\frac{1}{2} \mathrm{~d}\left(\iota_{X} \beta-\iota_{Y} \alpha\right)
$$

for any $X+\alpha, Y+\beta \in \Gamma(L)$.
A generalized complex structure is an integrable generalized almost complex structure. Obviously, any generalized complex structure corresponds to a linear complex structure on $T M \oplus T^{*} M$ whose eigenbundle, corresponding to i, is isotropic, with respect to the canonical inner product, and its space of sections is closed under the Courant bracket.

A generalized almost complex structure of the form $L=L(E, \varepsilon)$ is integrable if and only if the

[^0]space of sections of E is closed under the (Lie) bracket and $\mathrm{d} \varepsilon(X, Y, Z)=0$, for any $X, Y, Z \in E$.
A particular feature of Generalized Complex Geometry is that imposing Hermitian compatibility to a generalized almost complex structure and a Riemannian metric on $T M \oplus T^{*} M$, compatible with the canonical inner product, forces the manifold to admit a second generalized almost complex structure, commuting with the first one. One arrives to the notion of generalized Kähler structure, as a couple of commuting generalized complex structures \mathcal{J}_{1} and \mathcal{J}_{2} such that $\mathcal{J}_{1} \mathcal{J}_{2}$ is negative definite; furthermore, in [4] it is explained the correspondence between generalized Kähler structures and a special type of bihermitian structures which appeared in Theoretical Physics, over twenty years ago [3].

More precisely, any generalized almost Kähler structure on M corresponds to a quadruple $\left(g, b, J_{+}\right.$, J_{-}), where g is a Riemannian metric, b is a two-form and $J_{ \pm}$are almost Hermitian structures on (M, g). Furthermore, the corresponding generalized almost Kähler structure is integrable if and only if $J_{ \pm}$are integrable and parallel with respect to $\nabla^{ \pm}$, where $\nabla^{ \pm}=\nabla \pm \frac{1}{2} g^{-1} h$, with ∇ the Levi-Civita connection of g and $h=\mathrm{d} b$ (equivalently, $J_{ \pm}$are integrable and $\mathrm{d}_{ \pm}^{c} \omega_{ \pm}=\mp h$, where $\omega_{ \pm}$are the Kähler forms of $J_{ \pm}$).

Classification results for compact bihermitian manifolds were given, mainly in dimension 4 , in several papers (see, for example, [1], [2]).

In higher dimensions, a natural case to consider is when J_{+}and J_{-}are admissible for an almost quaternionic structure. This condition was, essentially, considered by physicists who have shown that it holds if and only if the bihermitian structure is part of a hyperkähler one [7, Theorem 1] (see Theorem 1.1, below).

By combining this fact with results of [9] and [8], we study the 'eigendistributions' of the operator $J_{+} J_{-}+J_{-} J_{+}$. Thus, we obtain natural integrability conditions under which $\mathrm{d} b=0$ (Theorem 2.3, Corollary 2.4).

1 The almost quaternionic generalized Kähler manifolds are hyperkähler

A bundle of associative algebras is a vector bundle whose typical fibre is an associative algebra \mathcal{A} and whose structural group is the group of automorphisms of \mathcal{A}.

An almost quaternionic structure on M is a morphism of bundles of associative algebras $\sigma: A \rightarrow$ $\operatorname{End}(T M)$, where the typical fibre of A is \mathbb{H}. Then, $\sigma(\operatorname{Im} A)$ is an oriented Riemannian vector bundle of rank 3 and the (local) sections of its sphere bundle are the admissible almost complex structures of σ (see [6]).

The following result reformulates [7, Theorem 1]. For the reader's convenience, we supply a proof.

Theorem 1.1. Let $\left(M, L_{1}, L_{2}\right)$ be a generalized almost Kähler manifold of dimension at least eight and let $\left(g, b, J_{+}, J_{-}\right)$be the corresponding almost bihermititan structure. Suppose that J_{+}and J_{-}are admissible almost complex structures of an almost quaternionic structure on M.

Then the following assertions are equivalent:
(i) $\left(M, L_{1}, L_{2}\right)$ is generalized Kähler.
(ii) $\left(M, g, J_{ \pm}\right)$are Kähler manifolds.

Furthermore, if (i) or (ii) holds and $J_{+} \neq \pm J_{-}$then the almost quaternionic structure is hyperkähler, with respect to (M, g).

Proof: As $(\mathrm{ii}) \Longrightarrow(\mathrm{i})$ is trivial, it is sufficient to prove that $(\mathrm{i}) \Longrightarrow(\mathrm{ii})$.
By hypothesis, there exists $a: M \rightarrow[-1,1]$ such that $J_{+} J_{-}+J_{-} J_{+}=-2 a$ on M. If $J_{+}= \pm J_{-}$ there is nothing to be proved. Hence, we may suppose that $a^{-1}((-1,1)) \neq \emptyset$.

Moreover, as we have to prove that $\left(M, g, J_{ \pm}\right)$are Kähler and, consequently, a is constant, we may assume $a(M) \subseteq(-1,1)$.

Then $L_{1}=L\left(T^{\mathbb{C}} M, \varepsilon_{+}\right)$and $L_{2}=L\left(T^{\mathbb{C}} M, \varepsilon_{-}\right)$, where $\varepsilon_{ \pm}$are closed complex two-forms on M. From [4, (6.4) and (6.5)], it quickly follows that

$$
\begin{align*}
& \left(\operatorname{Im} \varepsilon_{ \pm}\right)\left(J_{+} \mp J_{-}\right)=2 g \tag{1.1}\\
& \left(\operatorname{Re} \varepsilon_{ \pm}\right)\left(J_{+} \mp J_{-}\right)=b\left(J_{+} \mp J_{-}\right)+g\left(J_{+} \pm J_{-}\right)
\end{align*}
$$

On multiplying, to the right, both relations of (1.1) by $J_{+} \mp J_{-}$we obtain

$$
\begin{aligned}
& (-2 \pm 2 a)\left(\operatorname{Im} \varepsilon_{ \pm}\right)=2 g\left(J_{+} \mp J_{-}\right), \\
& (-2 \pm 2 a)\left(\operatorname{Re} \varepsilon_{ \pm}\right)=(-2 \pm 2 a) b \mp g\left(J_{+} J_{-}-J_{-} J_{+}\right)
\end{aligned}
$$

and, consequently, $(a-1) \operatorname{Re} \varepsilon_{+}-(a+1) \operatorname{Re} \varepsilon_{-}=-2 b$.
Therefore

$$
\begin{equation*}
\mathrm{d}\left[\frac{1}{1 \pm a} g\left(J_{+} \pm J_{-}\right)\right]=0 . \tag{1.2}
\end{equation*}
$$

Also, as, up to a B-field transformation, we may suppose $\operatorname{Re} \varepsilon_{-}=0$, we deduce that the two-form $\frac{1}{a-1} b$ is closed; equivalently,

$$
\begin{equation*}
\mathrm{d} b=\frac{1}{a-1} \mathrm{~d} a \wedge b \tag{1.3}
\end{equation*}
$$

Note that, the condition $\nabla^{ \pm} J_{ \pm}=0$ is equivalent to

$$
\begin{equation*}
g\left(\left(\nabla_{X} J_{ \pm}\right)(Y), Z\right)=\mp \frac{1}{2}\left[(\mathrm{~d} b)\left(X, J_{ \pm} Y, Z\right)+(\mathrm{d} b)\left(X, Y, J_{ \pm} Z\right)\right] \tag{1.4}
\end{equation*}
$$

for any $X, Y, Z \in T M$.
From (1.3) and (1.4) we obtain

$$
\begin{equation*}
g\left(\left(\nabla_{X} J_{ \pm}\right)(Y), Z\right)= \pm \frac{1}{2(1-a)}(\mathrm{d} a \wedge b)\left(X \wedge J_{ \pm} Y \wedge Z+X \wedge Y \wedge J_{ \pm} Z\right) \tag{1.5}
\end{equation*}
$$

for any $X, Y, Z \in T M$.
Obviously,

$$
K_{ \pm}=\frac{1}{\sqrt{2(1 \pm a)}}\left(J_{+} \pm J_{-}\right)
$$

are anti-commuting almost Hermitian structures on (M, g). Furthermore, (1.5) gives

$$
\begin{align*}
& g\left(\left(\nabla_{X} K_{ \pm}\right)(Y), Z\right)=\mp \frac{1}{2(1 \pm a)} X(a) g\left(K_{ \pm} Y, Z\right) \\
& \quad+\frac{1}{2(1-a)}\left(\frac{1-a}{1+a}\right)^{ \pm \frac{1}{2}}(\mathrm{~d} a \wedge b)\left(X \wedge K_{\mp} Y \wedge Z+X \wedge Y \wedge K_{\mp} Z\right) \tag{1.6}
\end{align*}
$$

for any $X, Y, Z \in T M$.
On the other hand, by (1.2) , the almost Hermitian manifolds ($M, e^{2 f_{ \pm}} g, K_{ \pm}$) are (1,2)-symplectic, where $f_{ \pm}=-\frac{1}{4} \log 2(1 \pm a)$. A straightforward calculation shows that this is equivalent to

$$
\begin{align*}
& g\left(\left(\nabla_{K_{ \pm} X} K_{ \pm}\right)(Y), Z\right)-g\left(\left(\nabla_{X} K_{ \pm}\right)(Y), K_{ \pm} Z\right)= \\
& \pm \frac{1}{2(1 \pm a)}\left[\left(K_{ \pm} Y\right)(a) g\left(K_{ \pm} X, Z\right)-\left(K_{ \pm} Z\right)(a) g\left(K_{ \pm} X, Y\right)\right. \tag{1.7}\\
& \quad+Y(a) g(X, Z)-Z(a) g(X, Y)]
\end{align*}
$$

for any $X, Y, Z \in T M$.
Now, (1.6) and (1.7) imply

$$
\begin{gather*}
\left(K_{ \pm} X\right)(a) g\left(K_{ \pm} Y, Z\right)+\left(K_{ \pm} Y\right)(a) g\left(K_{ \pm} X, Z\right)-\left(K_{ \pm} Z\right)(a) g\left(K_{ \pm} X, Y\right) \\
-X(a) g(Y, Z)+Y(a) g(X, Z)-Z(a) g(X, Y)= \\
\pm\left(\frac{1-a}{1+a}\right)^{-\frac{1}{2}}(\mathrm{~d} a \wedge b)\left(K_{ \pm} X \wedge K_{\mp} Y \wedge Z+K_{ \pm} X \wedge Y \wedge K_{\mp} Z\right. \tag{1.8}\\
\left.-X \wedge K_{\mp} Y \wedge K_{ \pm} Z-X \wedge Y \wedge K_{\mp} K_{ \pm} Z\right)
\end{gather*}
$$

for any $X, Y, Z \in T M$.
In (1.8), if from the first relation we subtract the second one, with the roles of X and Y interchanged, then we obtain

$$
\begin{align*}
& \left(K_{+} X\right)(a) g\left(K_{+} Y, Z\right)+\left(K_{+} Y\right)(a) g\left(K_{+} X, Z\right)-\left(K_{+} Z\right)(a) g\left(K_{+} X, Y\right) \\
& +\left(K_{-} X\right)(a) g\left(K_{-} Y, Z\right)+\left(K_{-} Y\right)(a) g\left(K_{-} X, Z\right)+\left(K_{-} Z\right)(a) g\left(K_{-} X, Y\right) \\
& -2 Z(a) g(X, Y)=2\left(\frac{1-a}{1+a}\right)^{-\frac{1}{2}}(\mathrm{~d} a \wedge b)\left(K_{+} X \wedge K_{-} Y \wedge Z\right) \tag{1.9}
\end{align*}
$$

for any $X, Y, Z \in T M$.
From (1.9), with $Z=K_{+} X$, it quickly follows that $\operatorname{grad}_{g} a$ is zero on the orthogonal complement of each quaternionic line. As $\operatorname{dim} M \geq 8$, we obtain that a is constant. Together with (1.6), this gives that $K_{ \pm}$generate a hyperkähler structure on (M, g), whilst, together with (1.3), this implies $\mathrm{d} b=0$. The proof is complete.

Remark 1.2. In dimension four, the hypothesis of Theorem 1.1 is equivalent to the condition that J_{+}and J_{-}induce the same orientation on M, whilst if J_{+}and J_{-}induce different orientations on M then, up to a unique B-field transformation, M is locally given by a product of two Kähler manifolds (consequence of [8, Corollary 5.7]). Furthermore, there exist four-dimensional generalized Kähler manifolds with J_{+}and J_{-}inducing the same orientation and which are not given by a hyperkähler structure (see [5]).

The next result follows quickly from (1.3) and (1.9).
Corollary 1.3. Let $\left(M, L_{1}, L_{2}\right)$ be a four-dimensional generalized Kähler manifold with J_{+}, J_{-}inducing the same orientation on M and linearly independent, at each point.

Then, up to a unique B-field transformation, the following relations hold:

$$
\begin{align*}
\mathrm{d} b & =-\frac{1}{1-a} \mathrm{~d} a \wedge b \\
*(\mathrm{~d} a \wedge b) & =\frac{1}{2(1+a)}\left[J_{+}, J_{-}\right](\mathrm{d} a), \tag{1.10}
\end{align*}
$$

where * is the Hodge star operator of (M, g) and the function $a: M \rightarrow(-1,1)$ is characterised by $J_{+} J_{-}+J_{-} J_{+}=-2 a$.

We end this section by showing how equations (1.10) can be slightly simplified.
Remark 1.4. Let (M, L_{1}, L_{2}) be a four-dimensional generalized Kähler manifold with J_{+}, J_{-}inducing the same orientation on M and linearly independent, at each point.

With the same notations as in Theorem 1.1, let $K=K_{+} K_{-}, k=\left(\frac{1+a}{1-a}\right)^{\frac{1}{2}} g$ and $u=\log (1-a)$.
Then (1.10) is equivalent to

$$
\begin{equation*}
\mathrm{d} b=\mathrm{d} u \wedge b=-*_{k} K \mathrm{~d} u \tag{1.11}
\end{equation*}
$$

If $\mathrm{d} u$ is nowhere zero, then the second equality of (1.11) is equivalent to

$$
b=c v_{\mathscr{E}}+v_{\mathscr{F}}+\mathrm{d} u \wedge \alpha,
$$

where c is a function, \mathscr{E} is generated by $\{\operatorname{grad} u, K(\operatorname{grad} u)\}, \mathscr{F}=\mathscr{E}^{\perp}, \alpha$ is a section of \mathscr{F}^{*}, and $v_{\mathscr{E}}$, $v_{\mathscr{F}}$ are the volume forms of \mathscr{E}, \mathscr{F}, respectively.

2 Factorisation results for generalized Kähler manifolds

Let (M, L_{1}, L_{2}) be a generalized Kähler manifold and let (g, b, J_{+}, J_{-}) be the corresponding bihermitian structure. For any $a \in[-1,1]$, we (pointwisely) denote by \mathscr{H}^{a} the eigenspace of $J_{+} J_{-}+J_{-} J_{+}$ corresponding to $-2 a$; also, we denote $\mathscr{H}^{ \pm}=\mathscr{H}^{ \pm 1}$ and $\mathscr{V}=\left(\mathscr{H}^{+} \oplus \mathscr{H}^{-}\right)^{\perp}$. Then, at each point of M, we have that \mathscr{H}^{a} are preserved by $J_{ \pm}$and there exist (finite) orthogonal decompositions $T M=\bigoplus_{a} \mathscr{H}^{a}$ and $\mathscr{V}=\bigoplus_{|a|<1} \mathscr{H}^{a}$.

Corollary 2.1. Let N be a complex submanifold of $\left(M, J_{ \pm}\right)$, of complex dimension at least four, endowed with a function $a: N \rightarrow(-1,1)$ such that $T_{x} N \subseteq \mathscr{H}_{x}^{a(x)},(x \in N)$.

Then a is constant and N is endowed with a natural hyperkähler structure whose underlying Riemannian metric is $\left.g\right|_{N}$ and for which $\left.J_{+}\right|_{N}$ and $\left.J_{-}\right|_{N}$ are admissible complex structures.

Proof: As, obviously, (g, b, J_{+}, J_{-}) induces a generalized Kähler structure on N, this follows quickly from Theorem 1.1.

From [9, Lemma 2.3] it follows that in an open neighbourhood U of each point of a dense open subset of M there exist (smooth) functions $a_{j}: M \rightarrow[-1,1],(j=1, \ldots, r)$, such that $\mathscr{H}^{a_{j}}$ are distributions on U and $T M=\bigoplus_{j} \mathscr{H}^{a_{j}}$; we call the $\mathscr{H}^{a_{j}}$ the (local) eigendistributions of $J_{+} J_{-}+J_{-} J_{+}$. Furthermore, if a is a function on U such that, at each point, $-2 a$ is an eigenvalue of $J_{+} J_{-}+J_{-} J_{+}$then there exists an open subset of U on which $a=a_{j}$, for some j; thus, if we assume real-analyticity then $a=a_{j}$ on U.

We point out the following facts:

- The functions a_{j} are constant along the integrable manifolds, of dimensions at least eight, of $\mathscr{H}^{a_{j}},(j=1, \ldots, r)$; this is a consequence of Corollary 2.1.
- If $J_{+} \pm J_{-}$are invertible then the holomorphic diffeomorphisms of (M, L_{1}, L_{2}) preserve each $\mathscr{H}^{a_{j}},(j=1, \ldots, r)$; this is a consequence of [8, Corollary 6.7].

Remark 2.2. Let $\left(M, L_{1}, L_{2}\right)$ be a generalized Kähler manifold with $\mathrm{d} b=0$. Then $\left(M, g, J_{ \pm}\right)$are Kähler and there exists a nonempty finite subset A of $[-1,1]$ such that, for any $a \in A$, we have that \mathscr{H}^{a} is a parallel foliation which is holomorphic with respect to both J_{+}and J_{-}. Therefore ($g, J_{ \pm}$) induce Kähler structures on the leaves of \mathscr{H}^{a} and, if $a \neq \pm 1$, these are admissible with respect to natural hyperkähler structures. Furthermore, there exist orthogonal decompositions $T M=\bigoplus_{a \in A} \mathscr{H}^{a}$ and $\mathscr{V}=\bigoplus_{a \in A \backslash\{ \pm 1\}} \mathscr{H}^{a}$.

If the cardinal of $A \backslash\{ \pm 1\}$ is at least two then the leaves of $\bigoplus_{a \in A \backslash\{ \pm 1\}} \mathscr{H}^{a}$ are naturally endowed with two distinct hyperkähler structures with respect to which J_{+}and J_{-}define admissible complex structures, respectively.

Furthermore, if $J_{+}+J_{-}$(or $J_{+}-J_{-}$) is invertible then as, locally, M is the product of a Kähler manifold and hyperkähler manifolds, its holomorphic Poisson structure is the pull-back of the product of the holomorphic symplectic structures of the hyperkähler factors.

Next, we prove the following.

Theorem 2.3. Let $\left(M, L_{1}, L_{2}\right)$ be a generalized Kähler manifold with $J_{+}+J_{-}$(or $J_{+}-J_{-}$) invertible and for which the eigendistributions of $\left.\left(J_{+} J_{-}+J_{-} J_{+}\right)\right|_{(\mathscr{H}+\oplus \mathscr{H}-)^{\perp}}$ have dimensions at least eight.

Then the following assertions are equivalent:
(i) $\mathrm{d} b=0$.
(ii) The eigendistributions of $J_{+} J_{-}+J_{-} J_{+}$and their orthogonal complements are integrable.

Proof: The implication $(\mathrm{i}) \Longrightarrow$ (ii) is an immediate consequence of Remark 2.2 .
Assume that (ii) holds. From [8, Corollary 6.3] it follows that we may suppose that, also, $J_{+}-J_{-}$ is invertible.

Then, locally, outside a set with empty interior there exists a finite set A of functions $a: M \rightarrow$ $(-1,1)$ such that \mathscr{H}^{a} are distributions and $T M=\bigoplus_{a \in A} \mathscr{H}^{a}$.

Also, $L_{1}=L\left(T^{\mathbb{C}} M, \varepsilon_{+}\right)$and $L_{2}=L\left(T^{\mathbb{C}} M, \varepsilon_{-}\right)$, where $\varepsilon_{ \pm}$are closed complex two-forms on M.
By Theorem 1.1, we have that (i) holds if and only if $\mathrm{d} b(X, Y, Z)=0$, for any $X \in \mathscr{H}^{a}$ and $Y, Z \in \bigoplus_{a^{\prime} \in A \backslash\{a\}} \mathscr{H}^{a^{\prime}},(a \in A)$.

As $\mathscr{H}^{a},(a \in A)$, are invariant under B-field transformations, we may assume $\operatorname{Re} \varepsilon_{-}=0$; equivalently, $b=-g\left(J_{+}-J_{-}\right)\left(J_{+}+J_{-}\right)^{-1}$. Together with the fact that $\mathscr{H}^{a},(a \in A)$, and their orthogonal complements are holomorphic foliations, with respect to J_{+}and J_{-}, this gives that (i) holds if and only if \mathscr{H}^{a} are Riemannian foliations, $(a \in A)$.

Now, note that we, also, have

$$
\operatorname{Re} \varepsilon_{+}=b+g\left(J_{+}+J_{-}\right)\left(J_{+}-J_{-}\right)^{-1}=g\left[\left(J_{+}+J_{-}\right)\left(J_{+}-J_{-}\right)^{-1}-\left(J_{+}-J_{-}\right)\left(J_{+}+J_{-}\right)^{-1}\right]
$$

As L_{1} is integrable, $\operatorname{Re} \varepsilon_{+}$is closed and, consequently, \mathscr{H}^{a} are Riemannian foliations, $(a \in A)$.
The proof is complete.
We end with the following result.
Corollary 2.4. Let $\left(M, L_{1}, L_{2}\right)$ be a generalized Kähler manifold for which the eigendistributions of $\left.\left(J_{+} J_{-}+J_{-} J_{+}\right)\right|_{(\mathscr{H}+\oplus \mathscr{H}-) \perp}$ have dimensions at least eight.

Then the following assertions are equivalent:
(i) $\mathrm{d} b=0$.
(ii) $\mathscr{H}^{ \pm}$and the sum of any two eigendistributions of $J_{+} J_{-}+J_{-} J_{+}$are integrable.

Proof: The implication $(\mathrm{i}) \Longrightarrow$ (ii) is trivial.
If (ii) holds then $\mathscr{H}^{+} \oplus \mathscr{H}^{-}$is integrable. Hence, by [8, Theorem 6.10], we may assume $\mathscr{H}^{+}=$ $0=\mathscr{H}^{-}$. The proof follows from Theorem 2.3.

References

[1] V. Apostolov, P. Gauduchon, G. Grantcharov, Bihermitian surfaces on complex surfaces, Proc. London Math. Soc., 79 (1999), 414-428; Corrigendum, 92 (2006), 200-202.
[2] V. Apostolov, M. Gualtieri, Generalized Kähler manifolds, commuting complex structures, and split tangent bundle, Commun. Math. Phys., 271 (2007), 561-575.
[3] S. J. Gates, C. M. Hull, M. Roček, Twisted multiplets and new supersymmetric nonlinear sigma models, Nuc. Phys. B, 248 (1984), 157-186.
[4] M. Gualtieri, Generalized complex geometry, D. Phil. Thesis, University of Oxford, 2003.
[5] N. J. Hitchin, Instantons, Poisson structures and Generalized Kähler Geometry, Comm. Math. Phys., 265 (2006) 131-164.
[6] S. Ianus, S. Marchiafava, L. Ornea, R. Pantilie, Twistorial maps between quaternionic manifolds, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), (to appear).
[7] U. Lindström, M. Roček, R. von Unge, M. Zabzine, Generalized Kähler manifolds and off-shell supersymmetry, Commun. Math. Phys., 269 (2007) 833-849.
[8] L. Ornea, R Pantilie, Holomorphic maps between generalized complex manifolds, Preprint I.M.A.R., Bucharest, 2008, (arXiv:0810.1865).
[9] R. Pantilie, J. C. Wood, Harmonic morphisms with one-dimensional fibres on Einstein manifolds, Trans. Amer. Math. Soc., 354 (2002) 4229-4243.

Received: 20.04.2009.

> Universitatea din Bucureşti,
> Facultatea de Matematică, Str. Academiei nr. 14, 70109, Bucureşti, România, and
> Institutul de Matematică
> "Simion Stoilow" al Academiei Române, C.P. 1-764, 014700,
> Bucureşti, România
> E-mail: lornea@gta.math.unibuc.ro

Institutul de Matematică
"Simion Stoilow" al Academiei Române, C.P. 1-764, 014700, Bucureşti, România
E-mail: Radu.Pantilie@imar.ro

[^0]: *The authors are partially supported by a PN II IDEI Grant, code 1193.

