Bull. Math. Soc. Sci. Math. Roumanie Tome 52(100) No. 3, 2009, 347–353

On the local structure of generalized Kähler manifolds

by

LIVIU ORNEA AND RADU PANTILIE* To Professor S. Ianuş on the occasion of his 70th Birthday

Abstract

Let (g, b, J_+, J_-) be the bihermitian structure corresponding to a generalized Kähler structure. We find natural integrability conditions, in terms of the eigendistributions of $J_+J_- + J_-J_+$, under which db = 0.

Key Words: generalized Kähler manifold 2000 Mathematics Subject Classification: Primary 53C55, Secondary 53C26.

Introduction

A generalized almost complex structure on a smooth (connected) manifold is given by a vector subbundle $L \subset (TM \oplus T^*M)^{\mathbb{C}}$ such that $L \cap \overline{L} = \{0\}$ and which is maximally isotropic with respect to the canonical inner product

$$\langle X + \alpha, Y + \beta \rangle = \frac{1}{2} \left(\alpha(Y) + \beta(X) \right)$$

If $E = \pi_{TM}(L)$ is a bundle, where $\pi_{TM} : TM \oplus T^*M \to TM$ is the projection, then there exists a unique complex two-form $\varepsilon \in \Gamma(\Lambda^2 E^*)$ such that $L = L(E, \varepsilon)$, where

$$L(E,\varepsilon) = \{X + \alpha \mid X \in E, \alpha|_E = \varepsilon(X)\}.$$

Furthermore, by [4], to which we refer for all of the facts on generalized complex structures recalled here, the condition $L \cap \overline{L} = \{0\}$ is equivalent to $E + \overline{E} = T^{\mathbb{C}}M$ and $\operatorname{Im}(\varepsilon|_{E \cap \overline{E}})$ is non-degenerate.

A generalized almost complex structure L is *integrable* if its space of sections is closed under the *Courant bracket*, defined by

$$[X + \alpha, Y + \beta] = [X, Y] + \mathcal{L}_X \beta - \mathcal{L}_Y \alpha - \frac{1}{2} d(\iota_X \beta - \iota_Y \alpha) ,$$

for any $X + \alpha, Y + \beta \in \Gamma(L)$.

A generalized complex structure is an integrable generalized almost complex structure. Obviously, any generalized complex structure corresponds to a linear complex structure on $TM \oplus T^*M$ whose eigenbundle, corresponding to i, is isotropic, with respect to the canonical inner product, and its space of sections is closed under the Courant bracket.

A generalized almost complex structure of the form $L = L(E, \varepsilon)$ is integrable if and only if the

^{*}The authors are partially supported by a PN II IDEI Grant, code 1193.

Liviu Ornea and Radu Pantilie

space of sections of E is closed under the (Lie) bracket and $d\varepsilon(X, Y, Z) = 0$, for any $X, Y, Z \in E$.

A particular feature of Generalized Complex Geometry is that imposing Hermitian compatibility to a generalized almost complex structure and a Riemannian metric on $TM \oplus T^*M$, compatible with the canonical inner product, forces the manifold to admit a second generalized almost complex structure, commuting with the first one. One arrives to the notion of generalized Kähler structure, as a couple of commuting generalized complex structures \mathcal{J}_1 and \mathcal{J}_2 such that $\mathcal{J}_1\mathcal{J}_2$ is negative definite; furthermore, in [4] it is explained the correspondence between generalized Kähler structures and a special type of bihermitian structures which appeared in Theoretical Physics, over twenty years ago [3].

More precisely, any generalized almost Kähler structure on M corresponds to a quadruple (g, b, J_+, J_-) , where g is a Riemannian metric, b is a two-form and J_{\pm} are almost Hermitian structures on (M, g). Furthermore, the corresponding generalized almost Kähler structure is integrable if and only if J_{\pm} are integrable and parallel with respect to ∇^{\pm} , where $\nabla^{\pm} = \nabla \pm \frac{1}{2}g^{-1}h$, with ∇ the Levi-Civita connection of g and h = db (equivalently, J_{\pm} are integrable and $d_{\pm}^c \omega_{\pm} = \mp h$, where ω_{\pm} are the Kähler forms of J_{\pm}).

Classification results for compact bihermitian manifolds were given, mainly in dimension 4, in several papers (see, for example, [1], [2]).

In higher dimensions, a natural case to consider is when J_+ and J_- are admissible for an almost quaternionic structure. This condition was, essentially, considered by physicists who have shown that it holds if and only if the bihermitian structure is part of a hyperkähler one [7, Theorem 1] (see Theorem 1.1, below).

By combining this fact with results of [9] and [8], we study the 'eigendistributions' of the operator $J_+J_- + J_-J_+$. Thus, we obtain natural integrability conditions under which db = 0 (Theorem 2.3, Corollary 2.4).

1 The almost quaternionic generalized Kähler manifolds are hyperkähler

A bundle of associative algebras is a vector bundle whose typical fibre is an associative algebra \mathcal{A} and whose structural group is the group of automorphisms of \mathcal{A} .

An almost quaternionic structure on M is a morphism of bundles of associative algebras $\sigma : A \to \text{End}(TM)$, where the typical fibre of A is \mathbb{H} . Then, $\sigma(\text{Im}A)$ is an oriented Riemannian vector bundle of rank 3 and the (local) sections of its sphere bundle are the *admissible almost complex structures* of σ (see [6]).

The following result reformulates [7, Theorem 1]. For the reader's convenience, we supply a proof.

Theorem 1.1. Let (M, L_1, L_2) be a generalized almost Kähler manifold of dimension at least eight and let (g, b, J_+, J_-) be the corresponding almost bihermititan structure. Suppose that J_+ and J_- are admissible almost complex structures of an almost quaternionic structure on M.

Then the following assertions are equivalent:

(i) (M, L_1, L_2) is generalized Kähler.

(ii) (M, g, J_{\pm}) are Kähler manifolds.

Furthermore, if (i) or (ii) holds and $J_+ \neq \pm J_-$ then the almost quaternionic structure is hyperkähler, with respect to (M,g).

Proof: As (ii) \Longrightarrow (i) is trivial, it is sufficient to prove that (i) \Longrightarrow (ii).

By hypothesis, there exists $a: M \to [-1,1]$ such that $J_+J_- + J_-J_+ = -2a$ on M. If $J_+ = \pm J_-$ there is nothing to be proved. Hence, we may suppose that $a^{-1}((-1,1)) \neq \emptyset$.

Moreover, as we have to prove that (M, g, J_{\pm}) are Kähler and, consequently, *a* is constant, we may assume $a(M) \subseteq (-1, 1)$.

348

Generalized Kähler manifolds

Then $L_1 = L(T^{\mathbb{C}}M, \varepsilon_+)$ and $L_2 = L(T^{\mathbb{C}}M, \varepsilon_-)$, where ε_{\pm} are closed complex two-forms on M. From [4, (6.4) and (6.5)], it quickly follows that

$$(\operatorname{Im} \varepsilon_{\pm})(J_{+} \mp J_{-}) = 2g , (\operatorname{Re} \varepsilon_{\pm})(J_{+} \mp J_{-}) = b(J_{+} \mp J_{-}) + g(J_{+} \pm J_{-}) .$$
(1.1)

On multiplying, to the right, both relations of (1.1) by $J_+ \mp J_-$ we obtain

$$\begin{aligned} (-2 \pm 2a)(\operatorname{Im} \varepsilon_{\pm}) &= 2g(J_{+} \mp J_{-}) , \\ (-2 \pm 2a)(\operatorname{Re} \varepsilon_{\pm}) &= (-2 \pm 2a)b \mp g(J_{+}J_{-} - J_{-}J_{+}) \end{aligned}$$

and, consequently, $(a-1)\operatorname{Re}\varepsilon_+ - (a+1)\operatorname{Re}\varepsilon_- = -2b$.

Therefore

$$d\left[\frac{1}{1 \pm a}g(J_{+} \pm J_{-})\right] = 0.$$
 (1.2)

Also, as, up to a *B*-field transformation, we may suppose $\operatorname{Re} \varepsilon_{-} = 0$, we deduce that the two-form $\frac{1}{a-1}b$ is closed; equivalently,

$$\mathrm{d}b = \frac{1}{a-1}\,\mathrm{d}a \wedge b\;.\tag{1.3}$$

Note that, the condition $\nabla^{\pm} J_{\pm} = 0$ is equivalent to

$$g((\nabla_X J_{\pm})(Y), Z) = \mp_2^1 [(\mathrm{d}b)(X, J_{\pm}Y, Z) + (\mathrm{d}b)(X, Y, J_{\pm}Z)], \qquad (1.4)$$

for any $X, Y, Z \in TM$.

From (1.3) and (1.4) we obtain

$$g((\nabla_X J_{\pm})(Y), Z) = \pm \frac{1}{2(1-a)} (\mathrm{d}a \wedge b) (X \wedge J_{\pm}Y \wedge Z + X \wedge Y \wedge J_{\pm}Z) , \qquad (1.5)$$

for any $X, Y, Z \in TM$.

Obviously,

$$K_{\pm} = \frac{1}{\sqrt{2(1\pm a)}} (J_{+} \pm J_{-})$$

are anti-commuting almost Hermitian structures on (M,g) . Furthermore, (1.5) gives

$$g((\nabla_X K_{\pm})(Y), Z) = \mp \frac{1}{2(1 \pm a)} X(a) g(K_{\pm}Y, Z)$$

$$+ \frac{1}{2(1-a)} \left(\frac{1-a}{1+a}\right)^{\pm \frac{1}{2}} (\mathrm{d}a \wedge b) \left(X \wedge K_{\mp}Y \wedge Z + X \wedge Y \wedge K_{\mp}Z\right),$$

$$(1.6)$$

for any $X, Y, Z \in TM$.

On the other hand, by (1.2), the almost Hermitian manifolds $(M, e^{2f_{\pm}}g, K_{\pm})$ are (1,2)-symplectic, where $f_{\pm} = -\frac{1}{4} \log 2(1 \pm a)$. A straightforward calculation shows that this is equivalent to

$$g((\nabla_{K_{\pm}X}K_{\pm})(Y), Z) - g((\nabla_{X}K_{\pm})(Y), K_{\pm}Z) = \\ \pm \frac{1}{2(1 \pm a)} [(K_{\pm}Y)(a) g(K_{\pm}X, Z) - (K_{\pm}Z)(a) g(K_{\pm}X, Y) + Y(a) g(X, Z) - Z(a) g(X, Y)],$$
(1.7)

Liviu Ornea and Radu Pantilie

for any $X, Y, Z \in TM$. Now, (1.6) and (1.7) imply

$$(K_{\pm}X)(a) g(K_{\pm}Y,Z) + (K_{\pm}Y)(a) g(K_{\pm}X,Z) - (K_{\pm}Z)(a) g(K_{\pm}X,Y) -X(a) g(Y,Z) + Y(a) g(X,Z) - Z(a) g(X,Y) = \pm \left(\frac{1-a}{1+a}\right)^{-\frac{1}{2}} (\operatorname{da} \wedge b) (K_{\pm}X \wedge K_{\mp}Y \wedge Z + K_{\pm}X \wedge Y \wedge K_{\mp}Z) -X \wedge K_{\mp}Y \wedge K_{\pm}Z - X \wedge Y \wedge K_{\mp}K_{\pm}Z),$$

$$(1.8)$$

for any $X, Y, Z \in TM$.

In (1.8), if from the first relation we subtract the second one, with the roles of X and Y interchanged, then we obtain

$$(K_{+}X)(a) g(K_{+}Y,Z) + (K_{+}Y)(a) g(K_{+}X,Z) - (K_{+}Z)(a) g(K_{+}X,Y) + (K_{-}X)(a) g(K_{-}Y,Z) + (K_{-}Y)(a) g(K_{-}X,Z) + (K_{-}Z)(a) g(K_{-}X,Y) - 2Z(a) g(X,Y) = 2 \left(\frac{1-a}{1+a}\right)^{-\frac{1}{2}} (da \wedge b) (K_{+}X \wedge K_{-}Y \wedge Z) ,$$

$$(1.9)$$

for any $X, Y, Z \in TM$.

From (1.9), with $Z = K_+X$, it quickly follows that $\operatorname{grad}_g a$ is zero on the orthogonal complement of each quaternionic line. As dim $M \ge 8$, we obtain that a is constant. Together with (1.6), this gives that K_{\pm} generate a hyperkähler structure on (M,g), whilst, together with (1.3), this implies db = 0. The proof is complete.

Remark 1.2. In dimension four, the hypothesis of Theorem 1.1 is equivalent to the condition that J_+ and J_- induce the same orientation on M, whilst if J_+ and J_- induce different orientations on M then, up to a unique *B*-field transformation, M is locally given by a product of two Kähler manifolds (consequence of [8, Corollary 5.7]). Furthermore, there exist four-dimensional generalized Kähler manifolds with J_+ and J_- inducing the same orientation and which are not given by a hyperkähler structure (see [5]).

The next result follows quickly from (1.3) and (1.9).

Corollary 1.3. Let (M, L_1, L_2) be a four-dimensional generalized Kähler manifold with J_+ , J_- inducing the same orientation on M and linearly independent, at each point.

Then, up to a unique B-field transformation, the following relations hold:

$$db = -\frac{1}{1-a} da \wedge b .$$

*(da \wedge b) = $\frac{1}{2(1+a)} [J_+, J_-](da) ,$ (1.10)

where * is the Hodge star operator of (M,g) and the function $a: M \to (-1,1)$ is characterised by $J_+J_- + J_-J_+ = -2a$.

We end this section by showing how equations (1.10) can be slightly simplified.

Remark 1.4. Let (M, L_1, L_2) be a four-dimensional generalized Kähler manifold with J_+ , J_- inducing the same orientation on M and linearly independent, at each point.

With the same notations as in Theorem 1.1, let $K = K_+K_-$, $k = \left(\frac{1+a}{1-a}\right)^{\frac{1}{2}}g$ and $u = \log(1-a)$. Then (1.10) is equivalent to

$$\mathrm{d}b = \mathrm{d}u \wedge b = -*_k K \mathrm{d}u \;. \tag{1.11}$$

350

Generalized Kähler manifolds

If du is nowhere zero, then the second equality of (1.11) is equivalent to

$$b = cv_{\mathscr{E}} + v_{\mathscr{F}} + \mathrm{d}u \wedge \alpha \; ,$$

where c is a function, \mathscr{E} is generated by $\{\operatorname{grad} u, K(\operatorname{grad} u)\}, \mathscr{F} = \mathscr{E}^{\perp}, \alpha$ is a section of \mathscr{F}^* , and $v_{\mathscr{E}}, v_{\mathscr{F}}$ are the volume forms of \mathscr{E}, \mathscr{F} , respectively.

2 Factorisation results for generalized Kähler manifolds

Let (M, L_1, L_2) be a generalized Kähler manifold and let (g, b, J_+, J_-) be the corresponding bihermitian structure. For any $a \in [-1, 1]$, we (pointwisely) denote by \mathscr{H}^a the eigenspace of $J_+J_- + J_-J_+$ corresponding to -2a; also, we denote $\mathscr{H}^{\pm} = \mathscr{H}^{\pm 1}$ and $\mathscr{V} = (\mathscr{H}^+ \oplus \mathscr{H}^-)^{\perp}$. Then, at each point of M, we have that \mathscr{H}^a are preserved by J_{\pm} and there exist (finite) orthogonal decompositions $TM = \bigoplus_a \mathscr{H}^a$ and $\mathscr{V} = \bigoplus_{|a| < 1} \mathscr{H}^a$.

Corollary 2.1. Let N be a complex submanifold of (M, J_{\pm}) , of complex dimension at least four, endowed with a function $a: N \to (-1, 1)$ such that $T_x N \subseteq \mathscr{H}_x^{a(x)}$, $(x \in N)$.

Then a is constant and N is endowed with a natural hyperkähler structure whose underlying Riemannian metric is $g|_N$ and for which $J_+|_N$ and $J_-|_N$ are admissible complex structures.

Proof: As, obviously, (g, b, J_+, J_-) induces a generalized Kähler structure on N, this follows quickly from Theorem 1.1.

From [9, Lemma 2.3] it follows that in an open neighbourhood U of each point of a dense open subset of M there exist (smooth) functions $a_j : M \to [-1, 1]$, (j = 1, ..., r), such that \mathscr{H}^{a_j} are distributions on U and $TM = \bigoplus_j \mathscr{H}^{a_j}$; we call the \mathscr{H}^{a_j} the (local) eigendistributions of $J_+J_-+J_-J_+$. Furthermore, if a is a function on U such that, at each point, -2a is an eigenvalue of $J_+J_-+J_-J_+$ then there exists an open subset of U on which $a = a_j$, for some j; thus, if we assume real-analyticity then $a = a_j$ on U.

We point out the following facts:

• The functions a_j are constant along the integrable manifolds, of dimensions at least eight, of \mathscr{H}^{a_j} , (j = 1, ..., r); this is a consequence of Corollary 2.1.

• If $J_{+} \pm J_{-}$ are invertible then the holomorphic diffeomorphisms of (M, L_1, L_2) preserve each \mathscr{H}^{a_j} , (j = 1, ..., r); this is a consequence of [8, Corollary 6.7].

Remark 2.2. Let (M, L_1, L_2) be a generalized Kähler manifold with db = 0. Then (M, g, J_{\pm}) are Kähler and there exists a nonempty finite subset A of [-1, 1] such that, for any $a \in A$, we have that \mathscr{H}^a is a parallel foliation which is holomorphic with respect to both J_+ and J_- . Therefore (g, J_{\pm}) induce Kähler structures on the leaves of \mathscr{H}^a and, if $a \neq \pm 1$, these are admissible with respect to natural hyperkähler structures. Furthermore, there exist orthogonal decompositions $TM = \bigoplus_{a \in A} \mathscr{H}^a$ and $\mathscr{V} = \bigoplus_{a \in A \setminus \{\pm 1\}} \mathscr{H}^a$.

If the cardinal of $A \setminus \{\pm 1\}$ is at least two then the leaves of $\bigoplus_{a \in A \setminus \{\pm 1\}} \mathscr{H}^a$ are naturally endowed with two distinct hyperkähler structures with respect to which J_+ and J_- define admissible complex structures, respectively.

Furthermore, if $J_+ + J_-$ (or $J_+ - J_-$) is invertible then as, locally, M is the product of a Kähler manifold and hyperkähler manifolds, its holomorphic Poisson structure is the pull-back of the product of the holomorphic symplectic structures of the hyperkähler factors.

Next, we prove the following.

Liviu Ornea and Radu Pantilie

Theorem 2.3. Let (M, L_1, L_2) be a generalized Kähler manifold with $J_+ + J_-$ (or $J_+ - J_-$) invertible and for which the eigendistributions of $(J_+J_- + J_-J_+)|_{(\mathscr{H}^+ \oplus \mathscr{H}^-)^{\perp}}$ have dimensions at least eight. Then the following assertions are equivalent:

(i) db = 0.

(ii) The eigendistributions of $J_+J_- + J_-J_+$ and their orthogonal complements are integrable.

Proof: The implication (i) \Longrightarrow (ii) is an immediate consequence of Remark 2.2.

Assume that (ii) holds. From [8, Corollary 6.3] it follows that we may suppose that, also, $J_+ - J_-$ is invertible.

Then, locally, outside a set with empty interior there exists a finite set A of functions $a: M \to (-1,1)$ such that \mathscr{H}^a are distributions and $TM = \bigoplus_{a \in A} \mathscr{H}^a$.

Also, $L_1 = L(T^{\mathbb{C}}M, \varepsilon_+)$ and $L_2 = L(T^{\mathbb{C}}M, \varepsilon_-)$, where ε_{\pm} are closed complex two-forms on M. By Theorem 1.1, we have that (i) holds if and only if db(X, Y, Z) = 0, for any $X \in \mathscr{H}^a$ and $Y Z \in \bigoplus$ $\mathscr{H}^{a'}$ $(a \in A)$

 $Y, Z \in \bigoplus_{a' \in A \setminus \{a\}} \mathscr{H}^{a'}, (a \in A).$ As $\mathscr{H}^{a}, (a \in A)$, are invariant under *B*-field transformations, we may assume $\operatorname{Re} \varepsilon_{-} = 0$; equivalently, $b = -g(J_{+} - J_{-})(J_{+} + J_{-})^{-1}$. Together with the fact that $\mathscr{H}^{a}, (a \in A)$, and their orthogonal complements are holomorphic foliations, with respect to J_{+} and J_{-} , this gives that (i) holds if and only if \mathscr{H}^{a} are Riemannian foliations, $(a \in A)$.

Now, note that we, also, have

$$\operatorname{Re}\varepsilon_{+} = b + g(J_{+} + J_{-})(J_{+} - J_{-})^{-1} = g[(J_{+} + J_{-})(J_{+} - J_{-})^{-1} - (J_{+} - J_{-})(J_{+} + J_{-})^{-1}].$$

As L_1 is integrable, $\operatorname{Re} \varepsilon_+$ is closed and, consequently, \mathscr{H}^a are Riemannian foliations, $(a \in A)$. The proof is complete.

We end with the following result.

Corollary 2.4. Let (M, L_1, L_2) be a generalized Kähler manifold for which the eigendistributions of $(J_+J_- + J_-J_+)|_{(\mathscr{H}^+ \oplus \mathscr{H}^-)^{\perp}}$ have dimensions at least eight.

Then the following assertions are equivalent:

(i) db = 0.

(ii) \mathscr{H}^{\pm} and the sum of any two eigendistributions of $J_+J_- + J_-J_+$ are integrable.

Proof: The implication (i) \Longrightarrow (ii) is trivial.

If (ii) holds then $\mathscr{H}^+ \oplus \mathscr{H}^-$ is integrable. Hence, by [8, Theorem 6.10], we may assume $\mathscr{H}^+ = 0 = \mathscr{H}^-$. The proof follows from Theorem 2.3.

References

- V. APOSTOLOV, P. GAUDUCHON, G. GRANTCHAROV, Bihermitian surfaces on complex surfaces, Proc. London Math. Soc., 79 (1999), 414–428; Corrigendum, 92 (2006), 200–202.
- [2] V. APOSTOLOV, M. GUALTIERI, Generalized Kähler manifolds, commuting complex structures, and split tangent bundle, *Commun. Math. Phys.*, 271 (2007), 561–575.
- [3] S. J. GATES, C. M. HULL, M. ROČEK, Twisted multiplets and new supersymmetric nonlinear sigma models, Nuc. Phys. B, 248 (1984), 157–186.
- [4] M. GUALTIERI, Generalized complex geometry, D. Phil. Thesis, University of Oxford, 2003.
- [5] N. J. HITCHIN, Instantons, Poisson structures and Generalized Kähler Geometry, Comm. Math. Phys., 265 (2006) 131-164.

352

Generalized Kähler manifolds

- [6] S. IANUS, S. MARCHIAFAVA, L. ORNEA, R. PANTILIE, Twistorial maps between quaternionic manifolds, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), (to appear).
- [7] U. LINDSTRÖM, M. Roček, R. von Unge, M. Zabzine, Generalized Kähler manifolds and off-shell supersymmetry, *Commun. Math. Phys.*, 269 (2007) 833–849.
- [8] L. ORNEA, R PANTILIE, Holomorphic maps between generalized complex manifolds, Preprint I.M.A.R., Bucharest, 2008, (arXiv:0810.1865).
- [9] R. PANTILIE, J. C. WOOD, Harmonic morphisms with one-dimensional fibres on Einstein manifolds, *Trans. Amer. Math. Soc.*, 354 (2002) 4229–4243.

Received: 20.04.2009.

Universitatea din București, Facultatea de Matematică, Str. Academiei nr. 14, 70109, București, România, *and* Institutul de Matematică "Simion Stoilow" al Academiei Române, C.P. 1-764, 014700, București, România E-mail: lornea@gta.math.unibuc.ro

Institutul de Matematică "Simion Stoilow" al Academiei Române, C.P. 1-764, 014700, București, România E-mail: Radu.Pantilie@imar.ro