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Harmonic morphisms on heaven spaces

Paul Baird and Radu Pantilie

Abstract

We prove that any (real or complex) analytic horizontally conformal submersion from a three-
dimensional conformal manifold (M3, cM ) to a two-dimensional conformal manifold (N2, cN )
can be, locally, ‘extended’ to a unique harmonic morphism from the H(eaven)-space (H4, g) of
(M3, cN ) to (N2, cN ). Moreover, any positive harmonic morphism with two-dimensional fibres
from (H4, g) is obtained in this way.

Introduction

Harmonic morphisms are maps between Riemannian manifolds (or, more generally, Weyl
spaces) that pull back (local) harmonic functions to harmonic functions. By a basic result,
harmonic morphisms are characterised as harmonic maps that are horizontally weakly
conformal (see [2, 10]).

In the complex analytic category, a twistor on a manifold M (that is, a point of a twistor
space of M) is a submanifold of M (see [13]). Accordingly, a map ϕ between manifolds M
and N endowed with twistor spaces ZM and ZN , respectively, is twistorial if there exists a
map Zϕ from some submanifold ZM,ϕ ⊆ ZM to ZN such that if Pz ⊆M is the submanifold
corresponding to any z ∈ ZM,ϕ then Zϕ(z) ∈ ZN corresponds to ϕ(Pz); see [13] for the general
definition and [11] for the corresponding theory in the smooth category (see, also, [12] for more
information on twistorial maps).

In [15] (see [10]) it is proved that any (submersive) harmonic morphism ϕ with two-
dimensional fibres from an orientable four-dimensional Einstein manifold (M4, g) is twistorial.
In this context, this means that one of the two almost Hermitian structures on (M4, g), with
respect to which ϕ is holomorphic, is integrable; moreover, this Hermitian structure J is parallel
along the fibres of ϕ . Then we say that ϕ is positive, with respect to the orientation on M4

determined by J . Thus if, further, (M4, g) is anti-self-dual then J determines a complex surface
S in the twistor space of (M4, g) which, if J is nowhere Kähler, is foliated by the holomorphic
distribution determined by the Levi–Civita connection of g. It follows then, that, ϕ is completely
determined by S . This gives the twistorial construction of all positive harmonic morphisms with
two-dimensional fibres from a four-dimensional Einstein anti-self-dual manifold with non-zero
scalar curvature [15].

In [8], it is proved that any analytic three-dimensional conformal manifold (N3, c) is the
conformal infinity of a unique (up to homotheties) four-dimensional Einstein anti-self-dual
manifold (M4, g) with non-zero scalar curvature; the fact that (N3, c) is the conformal infinity
of (M4, g) means that N3 �M4 is a manifold with boundary (equal to N3) on which c
and g determine a conformal structure with respect to which g has a pole along N3. The
constructed Einstein anti-self-dual manifold (M4, g) (which can be assumed to be a punctured
collar neighbourhood of N3) is called the H(eaven)-space of (M3, c) (see [8]).
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The two constructions mentioned above raise the following questions. Given a positive
harmonic morphism with two-dimensional fibres on the H-space of a three-dimensional
analytic conformal manifold (N3, c), can it be extended over N3? If so, is the resulting
map horizontally conformal? Conversely, can any analytic horizontally conformal submersion,
with one-dimensional fibres on (N3, c) be, locally, ‘extended’ to a harmonic morphism on its
H-space? In this paper we answer all of these questions in the affirmative, thus generalising
the results of [1] in which the same conclusions are obtained for four-dimensional constant
curvature Riemannian manifolds.

In Section 1 we review a few facts on harmonic morphisms between Weyl spaces. In Section
2 we present the basic properties of the space of isotropic geodesics of a (three-dimensional)
complex-conformal manifold. Here, the emphasis is on the induced contact structure [8, 9].
We end Section 2 by illustrating how this theory can be used to construct (essentially all)
horizontally conformal submersions with one-dimensional fibres from the Euclidean space
(Example 2.6; cf. [1]). This also provides examples for the main result of the paper (Theorem
3.2), which is proved in Section 3. There, we also explain how other examples can be obtained
by using a construction of [3].

1. Harmonic morphisms between Weyl spaces

This paper mainly deals with (real or complex) analytic manifolds and maps. Nevertheless, the
results presented in this section also hold in the category of smooth manifolds.

A conformal structure on a manifold M is a line subbundle c of ⊗2T ∗M which, on open sets
of M , is generated by Riemannian metrics [9]; then any such metric is a local representative
of c.

If c is a conformal structure on M then (M, c) is a conformal manifold. A conformal
connection on (M, c) is a linear connection that preserves the sheaf of sections of c. A Weyl
connection is a torsion-free conformal connection. If D is a Weyl connection on (M, c) then
(M, c,D) is a Weyl space. For more information on Weyl spaces see [3], where although the
discussion is placed in the setting of smooth manifolds it can be easily extended to complex
manifolds (see [10]). Whilst in the category of complex manifolds, we shall assume that all
maps between conformal manifolds have nowhere degenerate fibres (see [10] for a few facts on
harmonic morphisms with degenerate fibres).

Definition 1.1 (cf. [2]). Let ϕ : (M, cM ) → (N, cN ) be a map between conformal mani-
folds. Then ϕ is horizontally weakly conformal if, outside the set where its differential is zero,
ϕ is a Riemannian submersion with respect to suitable local representatives of cM and cN .

Next, we recall the definitions of harmonic maps and morphisms (see [2, 10]).

Definition 1.2. A map ϕ : (M, cM ,DM ) → (N, cN ,DN ) between Weyl spaces is harmonic
if the trace, with respect to cM , of the covariant derivative of dϕ is zero.

A harmonic morphism between Weyl spaces is a map that pulls back (local) harmonic
functions to harmonic functions.

The following result is basic for harmonic morphisms (see [10] and its references, and
also cf. [2]).

Theorem 1.3. A map between Weyl spaces is a harmonic morphism if and only if it is a
harmonic map which is horizontally weakly conformal.
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See [11, 10] for more information on harmonic morphisms between Weyl spaces and [2] for
harmonic morphisms in the setting of Riemannian manifolds; also see [4] for an up-to-date list
of papers on harmonic morphisms.

2. Spaces of isotropic geodesics

In this section, with the exception of Example 2.6, all the manifolds and maps are assumed to
be complex analytic.

Let (M3, cM ) be a three-dimensional (complex-)conformal manifold, and let π : P →M be
the bundle of isotropic directions tangent to (M3, cM ). Then P is a locally trivial bundle with
typical fibre the conic Q1

∼= CP 1 in CP 2.
Let D be a Weyl connection, locally defined, on (M3, cM ). For any p ∈ P let Fp ⊆ TpP be

the horizontal lift, with respect to D, of p ⊆ Tπ(p)M . Then F is (the tangent bundle of) a
foliation on P ; moreover, F does not depend on D.

The quadruple τ = (P,M, π,F ) is a twistorial structure on M (see [13]), its twistor space
Z (that is, the leaf space of F ) is the space of isotropic geodesics (see [8, 9]) of (M3, cM ).
Furthermore, locally, τ is simple (that is, by passing, if necessary, to an open set of M there
exists a necessarily unique, complex structure on Z with respect to which the projection πZ :
P → Z is a submersion with connected fibres and each of its fibres intersects the fibres of π at
most once); then the fibres of π are mapped by πZ diffeomorphically onto the skies (see [8, 9])
of (M3, cM ).

From now on, in this section, we shall assume that τ is simple.
Let DP be the distribution on P such that DP

p is the sum of ker dπp and the horizontal lift,
with respect to D, of p⊥ ⊆ Tπ(p)M , for each p ∈ P . Then DP does not depend on D. Moreover,
DP is projectable with respect to F . To prove this, consider the bundle E of conformal frames
on (M3, cM ). Let p0 be a fixed isotropic direction on C

3, endowed with its canonical conformal
structure, and let G be the subgroup of CO(3,C ) that preserves p0. Then P = E/G, and
let FE and DE be the preimages of F and DP , respectively, through the differential of the
projection E → P .

It is clear that DP is projectable with respect to F if and only if DE is projectable with
respect to FE . Furthermore, we can define FE and DE , alternatively, as follows. Let ξ0 be
a non-zero element of p0 and let B(ξ0) be the standard horizontal vector field corresponding
to ξ0; that is, B(ξ0) is the vector field on E which, at each u ∈ E, is the horizontal lift of
u(ξ0) ∈ TM , with respect to D. Then, by using the same notation for elements of co(3,C ) and
the corresponding fundamental vector fields on E, the distribution FE is generated by B(ξ0)
and all A ∈ g, where g is the Lie algebra of G. Similarly, DE is generated by all B(ξ) with
ξ ∈ p0

⊥ and all A ∈ co(3,C ).
From Cartan’s structural equations and [6, Chapter III, Proposition 2.3] it follows quickly

that DE is projectable with respect to FE and, therefore, DP is projectable with respect to
F . Moreover, Proposition 2.3 in [6, Chapter III] also implies that DE is non-integrable; that is,
nowhere integrable. Hence, also, the induced distribution D = dπZ

(
DP
)

on Z is non-integrable.
As dimZ = 3, this is equivalent to the fact that D is a contact distribution on Z.

Remark 2.1. (1) The skies are tangent to the contact distribution D . Moreover, at each
point, D is generated by the tangent spaces to the skies.

(2) Any surface embedded in Z corresponds to a foliation by isotropic geodesics on some
open set of M3.

All of the above can be quickly generalised to conformal manifolds of any dimension, thus
obtaining the results of [9]. Next, we concentrate on features specific to dimension three.
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Proposition 2.2 ([8, 9], also cf. [5]). Let V be a foliation by isotropic geodesics on
(M3, cM ). Then V ⊥ is integrable. Furthermore, if we denote by SV the embedded surface in
Z corresponding to V then the foliations induced by V , on the leaves of V ⊥, correspond to
the curves determined by D on SV .

Proof. The fact that V ⊥ is integrable follows quickly from the fact that D is torsion-free.
Let p be the section of P corresponding to V . Then F induces a foliation on p(M) (whose

leaves are mapped by π on the leaves of V ). As p(M) is an embedded submanifold of P foliated
by the fibres of πZ , we have that SV = πZ(p(M)) is an embedded surface in Z.

The last assertion follows from the fact that dp(V ⊥) = T (p(M)) ∩ DP .

Remark 2.3. In Proposition 2.2, the fact that V ⊥ is integrable also follows from the fact
that d(πZ ◦ p)(V ⊥) = TSV ∩ D is one-dimensional and hence integrable.

Recall that, under the identification of any sky with CP 1, its normal bundle in Z is O(1) ⊕
O(1) (see [8]). Thus, by applying [7] we obtain that, locally, the skies are contained by a
locally complete, family of projective lines, parametrised by a four-dimensional manifold N4

that contains M3 as a hypersurface. Let H4 = N4 \M3. Furthermore, if we denote by cN the
anti-self-dual conformal structure on N4 with respect to which Z is the twistor space (see [13])
of (N4, cN ), then:

(i) (M3, cM ) is a totally umbilical hypersurface of (N4, cN ); furthermore, under the
identification of the twistor space of (N4, cN ) with the space of isotropic geodesics of
(M3, cM ) any self-dual surface S on (N4, cN ) corresponds to the isotropic geodesic S ∩M
of (M3, cM ) (see [8]),

(ii) D |H determines an Einstein representative g of cN |H , unique up to homotheties, with
non-zero scalar curvature [14].

Definition 2.4 ([8]). The Einstein anti-self-dual manifold (H4, g) is called the H-space of
(M3, cM ).

In [8] it is also proved that g has a pole of order two along M3.

Example 2.5 (cf. [8]). By identifying, as usual, C
3 with a subspace of C

4 we obtain that
the space of isotropic lines (equivalently, geodesics) on C

3 is isomorphic to the space of self-dual
planes on C

4 (any self-dual plane of C
4 intersects C

3 along an isotropic line and any isotropic
line of C

3 is obtained in this way). Therefore the space Z of isotropic lines of C
3 is CP 3 \ CP 1

(this can also be proved directly).
From Remark 2.1(1), it follows that the contact structure on Z is induced by the one-form

θ = z1 dz3 − z3 dz1 − z2 dz4 + z4 dz2, where (z1, . . . , z4) are homogeneous coordinates on CP 3.
On the other hand, on C

4 \ C
3, the contact form θ induces, up to homotheties, the well-known

metric of constant curvature g = (1/x4
2)(dx1

2 + . . .+ dx4
2).

Thus (C4 \ C
3, g) is the H-space of C

3.

We conclude this section by illustrating how Remark 2.1(2) and Example 2.5 can be used to
construct (essentially all) horizontally conformal submersions with one-dimensional fibres on
the real Euclidean space.

Example 2.6 (cf. [1]). With the same notation as in Example 2.5, let S be a complex
surface in Z given, in homogeneous coordinates, by zj = zj(u, v), j = 1, . . . , 4. Suppose that
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the foliation on S given by u = constant is tangent to the contact distribution; equivalently,
suppose that the following relation holds:

z1
∂z3
∂v

− z3
∂z1
∂v

= z2
∂z4
∂v

− z4
∂z2
∂v

.

Then the map x = x(u, v), into R
4, given by x = (z1 + z2j)−1(z3 + z4j) is (locally) a

real analytic diffeomorphism. Thus, under this diffeomorphism, the projection (u, v) �→ u
corresponds to a submersion ϕ̃ (locally defined) on R

4. We claim that ϕ = ϕ̃|{x4=0} is a
horizontally conformal submersion on R

3; moreover, any horizontally conformal submersion
with one-dimensional fibres on R

3 is, locally, of this form.
Indeed, any real analytic horizontally conformal submersion with one-dimensional fibres on

R
3 determines, by complexification, a (germ-unique) complex analytic horizontally conformal

submersion with one-dimensional fibres on C
3. Now, any such submersion on C

3 (more
generally, on any three-dimensional complex-conformal manifold) is determined by the two
foliations by isotropic geodesics that are orthogonal to its fibres (see the proof of Theorem
3.2 below). In our case, under the correspondence of Remark 2.1(2), these two foliations are
determined by S and its conjugate S, given by wj = wj(u, v), j = 1, . . . , 4, where w1 = −z2,
w2 = z1, w3 = −z4, w4 = z3.

Note that, from Theorem 3.2 below, it will follow that ϕ̃|{x4>0} is a harmonic morphism
from the four-dimensional real hyperbolic space.

3. Harmonic morphisms on H-spaces

In this section all the manifolds and maps are assumed to be complex analytic; by a real
manifold/map we mean a manifold/map which is the (germ-unique) complexification of a
real analytic manifold/map. We shall further assume that all the even-dimensional conformal
manifolds are oriented; that is, they are endowed with a reduction of the bundle of conformal
frames to the identity component of the group of conformal transformations.

Next, we recall two examples of twistorial maps (see [10, 13]).

Example 3.1. (1) Let ϕ : (M4, cM ) → (N2, cN ) be a horizontally conformal submersion
between conformal manifolds of dimensions four and two. Let JN be the positive Hermitian
structure on (N2, cN ), and let JM be the (unique) almost Hermitian structure on (M4, cM )
with respect to which ϕ : (M4, JM ) → (N2, JN ) is holomorphic. Then ϕ is twistorial if JM is
integrable.

(2) Let ϕ : (M4, cM ) → (N3, cN ,D
N ) be a horizontally conformal submersion from a four-

dimensional conformal manifold to a three-dimensional Weyl space. Let V = ker dϕ and let
H = V ⊥. Also, let D be the Weyl connection of (M4, cM ,V ) (see [10]; D is characterised by
the property tracecM

(DV ) = 0).
LetD+ = D + ∗H IH , where IH is the integrability tensor of H (by definition, IH (X,Y ) =

−V [X,Y ], for any horizontal vector fields X and Y ) and ∗H is the Hodge star-operator of
(H , cM |H ). Then ϕ is twistorial if the partial connections on H , over H , induced by ϕ∗(DN )
and D+ are equal.

Any real harmonic morphism with two-dimensional fibres from an oriented four-dimensional
Einstein manifold (more generally, Einstein–Weyl space) is twistorial, possibly with respect to
the opposite orientation on its domain [15] (see [10]); we say that the harmonic morphism
is positive if it is twistorial with respect to the given orientation on its domain and negative
otherwise.
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Let (M3, cM ) be a three-dimensional conformal manifold and let (H4, g) be its H-space. We
shall use the same notation as in the previous section.

Theorem 3.2. Any horizontally conformal submersion ϕ : (M3, cM ) → (Q2, cQ) can be,
locally, extended to a unique twistorial map ϕ̃ : (N4, cN ) → (Q2, cQ).

Moreover, ϕ̃|H : (H4, g) → (Q2, cQ) is a harmonic morphism, and any positive harmonic
morphism with two-dimensional fibres on (H4, g) is obtained in this way.

Proof. Recall that a submersion ϕ : (M3, cM ) → (Q2, cQ) is horizontally conformal if and
only if (ker dϕ)⊥ is umbilical (see [2]); equivalently, DY Y is horizontal for any isotropic
horizontal vector field Y , where D is any Weyl connection (locally defined) on (M3, cM ). As
the distribution

(
ker dϕ

)⊥ has dimension two, there are just two isotropic horizontal foliations
(Vj)j=1,2, each having dimension one. Therefore ϕ is horizontally conformal if and only if
(Vj)j=1,2 are geodesic. Moreover, as ker dϕ =

(
V1 ⊕ V2

)⊥, we have that ϕ is determined by
these two foliations, up to a conformal diffeomorphism of its codomain.

Let Z be the space of isotropic geodesics of (M3, cM ), and let H ⊆ TZ be the corresponding
contact distribution.

Suppose that ϕ : (M3, cM ) → (Q2, cQ) is a horizontally conformal submersion. From Propo-
sition 2.2, it follows that ϕ corresponds to a pair of disjoint surfaces S1 � S2 ⊆ Z endowed with
the one-dimensional foliations TSj ∩ H (j = 1, 2).

However, Z is also the twistor space of (N4, cN ). Then S1 � S2 and the endowed foliations
determine a twistorial map ϕ̃ : (N4, cN ) → (Q2, cQ) (see [13]). Obviously, ϕ̃|M = ϕ and so its
uniqueness is a consequence of analyticity.

Conversely, from [15] (see [13]), it follows that any positive harmonic morphism η : (H4, g) →
(Q2, cQ) determines a pair of foliations by self-dual surfaces on (N4, cN ). Then the leaves
of these two foliations intersect M3 to determine a pair of foliations (Vj)j=1,2 by isotropic
geodesics on (M3, cM ). Let ϕ : (M3, cM ) → (Q2, cQ) be such that ker dϕ =

(
V1 ⊕ V2

)⊥. Then
ϕ is horizontally conformal and η = ϕ̃|H .

Remark 3.3. (1) If we apply Theorem 3.2 to the particular case when (H4, g) has constant
curvature, then we obtain the results of [1].

(2) With the same notation as above, if DM is an Einstein–Weyl connection on (M3, cM )
with respect to which ϕ : (M3,DM ) → (Q2, cQ) is a harmonic morphism, then ϕ̃|H = ϕ ◦ ψ,
where ψ : N4 →M3 is the retract of M3 ↪→ N4 corresponding to DM (see [5]). It follows that
ψ|H : (H4, g) → (M3, cM ,DM ) is a harmonic morphism (see [10]).

Note that, ϕ and ϕ̃ of Example 2.6 satisfy the assertions of Theorem 3.2. Other examples
can be built based on the following construction.

Example 3.4 ([3]). Let (M3, cM ,DM ) be a three-dimensional Einstein–Weyl space. Let
h be a (local) representative of cM and let α be the Lee form of DM with respect to h. By
passing to an open set of M3, if necessary, let I be an open set of C containing 0 such that
t2S − 6 = 0, on I ×M , where S is the scalar curvature of DM with respect to h.

Let N = I ×M and H4 = N4 \M3, where M3 is embedded in N4 through M3 ↪→ N4,
x �→ (0, x), with x ∈M3. Define the Riemannian metric g on H4 by

g =
1
t2

((
1 − 1

6
t2S

)
h+

(
1 − 1

6
t2S

)−1(
dt+ tα+

1
2
t2 ∗M dα

)2
)
.
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Then t2g defines an anti-self-dual conformal structure on N4. Moreover, (H4, g) is the
H-space of (M3, cM ) and the projection ψ : N4 →M3, (t, x) �→ x, where (t, x) ∈ N4, is the
retract of M3 ↪→ N4 corresponding to DM .

Note that, if (M3, cM ,DM ) is the Euclidean space and h is its canonical metric, then we
obtain the H-space of Example 2.5. Furthermore, the resulting retract is (the complexification
of) a well-known (see, for example, [2]) harmonic morphism of warped-product type.

By Remark 3.3(2) and with the same notation as in Example 3.4, for any harmonic morphism
ϕ : (M3, cM ,DM ) → (Q2, cQ) we have that ϕ̃ = ϕ ◦ ψ is as in Theorem 3.2. Such morphisms
ϕ can be obtained, for example, by using for (M3, cM ,DM ) the R. S. Ward and C. R. LeBrun
construction (see [3] and the references therein).
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