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Abstract

We classify the harmonic morphisms with one-dimensional fibres (1) from real-analytic
conformally-flat Riemannian manifolds of dimension at least four (Theorem 3·1 ), and (2)
between conformally-flat Riemannian manifolds of dimensions at least three (Corollaries 3·4
and 3·6).

Also, we prove (Proposition 2·5) an integrability result for any real-analytic submer-
sion, from a constant curvature Riemannian manifold of dimension n + 2 to a Riemannian
manifold of dimension 2, which can be factorised as an n-harmonic morphism with two-
dimensional fibres, to a conformally-flat Riemannian manifold, followed by a horizontally
conformal submersion, (n � 4).

Introduction

Harmonic morphisms between Riemannian manifolds are maps which pull-back (local)
harmonic functions to harmonic functions. By a basic result, a map is a harmonic morphism
if and only if it is a harmonic map which is horizontally weakly conformal (see [1]).

There are, now, several classification results for harmonic morphisms with one-dimensio-
nal fibres. In [2], it was proved that there are just two types of such harmonic morphisms
from Riemannian manifolds, with constant curvature, of dimension at least four. This result
was generalized, in [12], to Einstein manifolds of dimension at least five; in dimension four,
the situation is different, there appears a third type of harmonic morphism [10] (see [13]).
Also, in [14], are classified the ‘twistorial’ harmonic morphisms with one-dimensional fibres
from self-dual four-manifolds.

In this paper, we classify the harmonic morphisms with one-dimensional fibres from
conformally-flat Riemannian manifolds of dimension at least four. We prove that, assum-
ing real-analyticity, there are just two types of such harmonic morphisms (Theorem 3·1),
one of which (the ‘Killing type’), also, appears in the above mentioned results, whilst the
second type is an extension of the ‘warped product type’, involved in [2, 10, 12, 14].

Furthermore, we classify the (smooth) harmonic morphisms with one-dimensional fibres
between conformally-flat Riemannian manifolds (Corollary 3·4). It follows that the Hopf
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polynomial map R4 → R3, (z1, z2) �→ (|z1|2 − |z2|2, 2z1z2), is, up to local conformal dif-
feomorphisms, the only harmonic morphism with one-dimensional fibres and nonintegrable
horizontal distribution between conformally-flat Riemannian manifolds, of dimensions at
least three (Corollary 3·6).

Let ϕ: (M4, g) → (P2, k) be a submersive harmonic morphism between (oriented)
Riemannian manifolds of dimensions four and two, respectively. In [15], it is proved that
if (M4, g) is Einstein then one of the two almost Hermitian structures on (M4, g), with
respect to which ϕ is holomorphic, is integrable and parallel along the fibres of ϕ. This
result was generalized in [6] to Einstein–Weyl spaces. Here (Proposition 2·5), we give a
higher dimensional version of this result which applies to pairs formed of a submersive n-
harmonic morphism ϕ: (Mn+2, g) → (N n, h), from a constant curvature Riemannian man-
ifold to a conformally-flat Riemannian manifold, and a horizontally-conformal submersion
ψ : (N n, h) → (P2, k) which is real-analytic in flat local coordinates, (n � 4).

1. Harmonic morphisms with one-dimensional fibres

In this section we recall a few facts on harmonic morphisms with one-dimensional fibres.
Unless otherwise stated, all the manifolds are assumed to be connected and smooth and

all the maps are assumed to be smooth.

Definition 1·1. A harmonic morphism (between Riemannian manifolds) is a map ϕ :
(Mm, g) → (N n, h) such that if U is an open set of N , with ϕ−1(U ) � �, and f is a
harmonic function on (U, h|U ) then f ◦ ϕ is a harmonic function on (ϕ−1(U ), g|ϕ−1(U )).

Definition 1·2. A map between Riemannian manifolds ϕ: (Mm, g) → (N n, h) is hori-
zontally weakly conformal if, for any x ∈ M , either dϕx = 0 or, dϕx is surjective and, for any
X, Y ∈ (kerdϕx)

⊥, we have h(dϕ(X), dϕ(Y )) = λ(x)2g(X, Y ) for some positive number
λ(x).

The function λ, extended to be zero over the set of points x ∈ M where dϕx = 0, is called
the dilation of ϕ. (Note that the dilation λ is continuous on Mm whilst the square dilation λ2

is smooth on Mm .)

Let ϕ: (Mm, g) → (N n, h) be a horizontally conformal submersion; denote by λ its dila-
tion. Then λ = 1 if and only if ϕ is a Riemannian submersion.

If m = n then a bijective map ϕ: (Mm, g) → (N m, h) is a horizontally conformal sub-
mersion if and only if it is a conformal diffeomorphism. The dilation of a conformal diffeo-
morphism ϕ is called the conformality factor of ϕ.

Next, we recall the following basic result (see [1]).

THEOREM 1·3. A map is a harmonic morphism if and only if it is a harmonic map which
is horizontally weakly conformal.

As usual, if ϕ: (Mm, g) → N n is a submersion we denote by V = kerdϕ the vertical
distribution and by H = V ⊥ the horizontal distribution.

For horizontally conformal submersions with one-dimensional fibres the condition of har-
monicity can be expressed as follows.

PROPOSITION 1·4 ([2], see [1, 8]). Let ϕ: (Mn+1, g) → (N n, h) be a horizontally con-
formal submersion with one-dimensional fibres, (n � 1). Let λ be the dilation of ϕ and let
V be the vertical vector field (well-defined up to sign) such that g(V, V ) = λ2n−4.
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The following assertions are equivalent:

(i) ϕ : (Mn+1, g) → (N n, h) is a harmonic morphism,
(ii) [V, X ] = 0 for any basic (horizontal) vector field X.

Furthermore, if (i) or (ii) holds then � = dθ is basic, where θ is the vertical dual of V ,
characterised by θ(V ) = 1 and θ |H = 0.

Let ϕ: (Mn+1) → (N n, h) be a harmonic morphism with one-dimensional fibres. With
the same notations as in Proposition 1·4, the vector field V is called the fundamental vector
field. It is easy to prove that � = 0 if and only if H is integrable. Also, we have g =
λ−2ϕ∗(h) + λ2n−4θ2 and, hence, V is a Killing vector field if and only if V is a Riemannian
foliation; equivalently, V (λ) = 0 ([2], see [1, 8]). If V is Killing then ϕ is called of Killing
type.

LEMMA 1·5 ([9], cf. [1]). Let ϕ : (Mn+1, g) → (N n, h) be a harmonic morphism. Let λ

be its dilation and let V be the fundamental vector field of ϕ; we shall denote by σ = log λ.
Then we have the following relations for the curvature tensors RM and RN of (Mn+1, g)

and (N n, h), respectively:

RM(X, V, Y, V ) = −1

2
(n − 2)e(2n−4)σ (LH (gradhσ)h)(X, Y )

− (n − 2)e(2n−4)σ {nX (σ )Y (σ ) − |H (gradhσ)|2h h(X, Y )}
+ e−2σ {V (V (σ )) − (n − 1)V (σ )2}h(X, Y )

+ 1

4
e(4n−6)σ h(iX�, iY �), (1·1)

RM(X, Y, Z , V ) = −1

2
e(2n−4)σ (h∇�)(X, Y, Z)

+ 1

2
(n − 1)e(2n−4)σ {X (σ )�(Y, Z) + Y (σ )�(Z , X)

− 2Z(σ )�(X, Y )} − e−2σ {X (V (σ )) − (n − 2)X (σ )V (σ )}h(Y, Z)

+ e−2σ {Y (V (σ )) − (n − 2)Y (σ )V (σ )}h(X, Z)

+ 1

2
e(2n−4)σ {�(X, gradhσ)h(Y, Z) − �(Y, gradhσ)h(X, Z)} , (1·2)

RM(X, Y, Z , H) = e−2σϕ∗(RN )(X, Y, Z , H)

− 1

4
e(2n−4)σ {�(H, X)�(Y, Z) + �(H, Y )�(Z , X) − 2�(H, Z)�(X, Y )}

− 1

2
e−2σ V (σ ) {−�(Y, H)h(X, Z) + �(X, H)h(Y, Z)

− �(X, Z)h(Y, H) + �(Y, Z)h(X, H)} − e−2σ {X (σ )H(σ )h(Y, Z)

− X (σ )Z(σ )h(Y, H) − Y (σ )H(σ )h(X, Z) + Y (σ )Z(σ )h(X, H)}
+ e−2σ {h(X, Z)h(h∇Y (H (gradhσ)), H) − h(Y, Z)h(h∇X (H (gradhσ)), H)

+ h(Y, H)h(h∇X (H (gradhσ)), Z) − h(X, H)h(h∇Y (H (gradhσ)), Z)}
− e−2σ {h(X, Z)h(Y, H) − h(X, H)h(Y, Z)}{e(−2n+2)σ V (σ )2 + |H (gradhσ |2h}, (1·3)

where X, Y, Z , H are horizontal and h∇ denotes the Levi–Civita connection of (M, h).
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Remark 1·6. See [1] and the references therein for more information on harmonic morph-
isms between Riemannian manifolds and, in particular, for the notion of p-harmonic morph-
ism. Also, see [6, 7, 11] for harmonic morphisms in the more general setting of Weyl geo-
metry.

2. Conformally-flat Riemannian manifolds

Firstly, we recall (see [4]) the definition of the Weyl tensor of a Riemannian manifold.
Let (Mm, g) be a Riemannian manifold. For h and k sections of 
2(T ∗M) (that is, h and

k are symmetric covariant tensor fields of degree two on Mm), we shall denote by h � k the
section of 
2(�2(T ∗M)) defined by

(h � k)(T, X, Y, Z) =h(T, Y )k(X, Z) + h(X, Z)k(T, Y )

− h(T, Z)k(X, Y ) − h(X, Y )k(T, Z),

for any T, X, Y, Z ∈ T M .
If S is a (1,3)-tensor field on (M, g) then we shall denote by the same symbol S the (0,4)-

tensor field defined by S(T, X, Y, Z) = −g(S(T, X, Y ), Z), for any T, X, Y, Z ∈ T M .
The Weyl (curvature) tensor of (Mm, g) is the (1,3)-tensor field W characterised by the

following two conditions:

(1) trace(X �→ W(X, Y)Z) = 0, for any Y, Z ∈ T M ,

(2) R = g � r + W for some (necessarily unique) section r of 
2(T ∗M), where R is the
curvature tensor of (Mm, g).

The Weyl tensor is conformally invariant; that is, if we denote by W g the Weyl tensor of
(Mm, g) then W λ2g = W g, for any positive function λ on Mm .

The Riemannian manifold (Mm, g) is called (locally) conformally-flat if for each point of
Mm there exists an open neighbourhood U and a conformal diffeomorphism ϕ from U onto
some open set of Rm (endowed with its canonical Riemannian metric); the local coordinates
on U induced by ϕ are called flat.

From Liouville’s theorem on local conformal diffeomorphisms between Euclidean spaces
(see [1]), it follows easily that if (Mm, g) is conformally-flat then Mm is real-analytic in flat
local coordinates (m � 2).

The following theorem is due to H. Weyl (see [4]).

THEOREM 2·1. A Riemannian manifold, of dimension at least four, is conformally-flat if
and only if its Weyl tensor is zero.

(See [4] for the case when the dimension is less than four.)

We do not imagine that the following result is new.

PROPOSITION 2·2. Let (Mm, g) be a Riemannian manifold, (m � 4). The following
assertions are equivalent:

(i) (Mm, g) is conformally-flat,
(ii) R(X, Y, X, Y ) = 0 for any X, Y ∈ T M spanning an isotropic space on (M, g),

where R is the curvature tensor of (M, g), and T M now denotes the complexified tangent
bundle.
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Proof. Clearly, assertion (ii) is equivalent to W (X, Y, X, Y ) = 0 for any X, Y ∈ T M
spanning an isotropic space on (M, g), where W is the Weyl tensor of (M, g). Therefore, by
Theorem 2·1, we have (i) ⇒ (ii).

Suppose that (ii) holds and let (X1, . . . , Xm) be an orthonormal frame on (Mm, g). Then
for any distinct i, j, k, l ∈ {1, . . . , m} we have

W (Xi ± iX j , Xk + iXl, Xi ± iX j , Xk + iXl) = 0 .

This is equivalent to the following two relations

W (Xi , Xk + iXl, Xi , Xk + iXl) = W (X j , Xk + iXl, X j , Xk + iXl), (2·1)

W (Xi , Xk + iXl, X j , Xk + iXl) = 0 . (2·2)

Also, by applying condition (2) of the definition of the Weyl tensor, we obtain
m∑

r=1

W (Xr , Xk + iXl, Xr , Xk + iXl) = 0 . (2·3)

From (2·1) and (2·3), it follows that W (X j , Xk + iXl, X j , Xk + iXl) = 0 and, hence,
W jk jk = W jl jl , for any distinct j, k, l ∈ {1, . . . , m}. Therefore, for any distinct i, j ∈
{1, . . . , m}, we have

(m − 1)Wi ji j =
m∑

r=1

Wirir = 0 .

From (2·2) we obtain that, for any distinct i, j, k, l ∈ {1, . . . , m}, we have

Wik jk = Wil jl,

Wik jl = −Wil jk .
(2·4)

The first relation of (2·4) implies Wik jk = 0, whilst from the second and the algebraic
Bianchi identity it follows quickly that Wi jkl = 0, for any distinct i, j, k, l ∈ {1, . . . , m}.

Thus, if (ii) holds then W = 0 which, by Theorem 2·1, is equivalent to (i).

If H is a distribution on a Riemannian manifold (Mm, g) we shall denote by I H the
integrability tensor of H , which is the V -valued horizontal two-form on Mm defined by
I H(X, Y ) = −V [X, Y ], for any horizontal vector fields X and Y , where V = H ⊥.

Next, we prove the following:

PROPOSITION 2·3. Let ϕ: (Mm, g) → (N n, h) be a horizontally conformal submersion
between conformally-flat Riemannian manifolds, (m � n � 4).

Then g
(
I H(X, Y ), I H(X, Y )

) = 0, for any horizontal vectors X and Y spanning an
isotropic space on (Mm, g).

Proof. As both the hypothesis and the conclusion are conformally-invariant, we may sup-
pose that ϕ : (Mm, g) → (N n, h) is a Riemannian submersion. Then the proof follows
easily from Proposition 2·2 and the following well-known relation of B. O’Neill (see [1]):

RM(X, Y, X, Y ) = ϕ∗(RN )(X, Y, X, Y ) − 3

4
g(V [X, Y ],V [X, Y ]),

for any horizontal vector fields X and Y .

COROLLARY 2·4. Any horizontally conformal submersion, with fibres of dimension at
most two, between conformally-flat Riemannian manifolds has integrable horizontal distri-
bution, if the codomain has dimension at least four.
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Proof. Let ϕ: (Mm, g) → (N n, h) be a horizontally conformal submersion between
conformally-flat Riemannian manifolds, m � n � 4.

Let x ∈ M and let E ⊆ Tx M be an oriented four-dimensional subspace. From Propo-
sition 2·3, it follows that I H

x :�2
+E → Vx is conformal, where �2

+E is the space of self-
dual bivectors on (E, g|E) (by definition, a bivector v ∈ �2 E is self-dual if ∗Ev = v where
∗E is the Hodge ∗-operator of (E, g|E) ). As �2

+E is three-dimensional, we obtain that either
I H

x = 0 or dim(Vx) � 3.

We end this section with an application of Corollary 2·4.
An almost CR-structure, on a manifold Mm , is a section J of End(H ) such that

J 2 = − IdH , where H is some distribution on Mm . Obviously, J is determined by its
eigenbundle corresponding to −i (or i). Furthermore, a subbundle F of the complexified
tangent bundle of Mm is the eigenbundle corresponding to −i of an almost CR-structure on
Mm if and only if F � F = {0}.

Let J be an almost CR-structure on Mm and let F be its eigenbundle corresponding to
−i ; J is called integrable if for any X, Y ∈ 	(F ) we have [X, Y ] ∈ 	(F ). A CR-structure
is an integrable almost CR-structure (see [7]). If Mm is endowed with a Riemannian metric
g then F is isotropic, with respect to g, if and only if J is orthogonal, with respect to (the
Riemannian metric induced on H by) g.

For example, any oriented two-dimensional distribution V , on a Riemannian manifold
(Mm, g), determines two orthogonal CR-structures on (Mm, g) ; at each point x ∈ M , these
are given by the rotations of angles ± π/2 on Vx (cf. [15]).

Let ϕ: (Mn+2, g) → (N n, h) and ψ : (N n, h) → (P2, k) be horizontally conformal
submersions, n � 2. Let V = kerdϕ, H = V ⊥ and let K ⊆ H be the horizontal lift
of (kerdψ)⊥. Assume V and P2 oriented and orient K such that the isomorphism K =
(ψ ◦ ϕ)∗(T P) to be orientation preserving.

Then the positive/negative orthogonal CR-structures determined by V and the positive
orthogonal CR-structure determined by K sum up to give orthogonal almost CR-structures
J ϕ,ψ
± on (Mn+2, g). Obviously, if we endow (P2, k) with its positive Hermitian structure J P

then ψ ◦ ϕ : (Mn+2, J ϕ,ψ
± ) → (P2, J P) is holomorphic; that is, the differential of ψ ◦ ϕ

intertwines J ϕ,ψ
± and J P .

We call J ϕ,ψ
± the positive/negative almost CR-structures associated to ϕ and ψ .

PROPOSITION 2·5. Let ϕ: (Mn+2, g) → (N n, h) be a submersive n-harmonic morph-
ism from a Riemannian manifold of constant curvature to a conformally-flat Riemannian
manifold, and let ψ : (N n, h) → (P2, k) be a horizontally conformal submersion which is
real-analytic in flat local coordinates, (n � 4) ; assume V (= kerdϕ) and P2 oriented.
Denote by J ϕ,ψ

± the almost CR-structures associated to ϕ and ψ .
Then either J ϕ,ψ

+ or J ϕ,ψ
− is integrable and parallel along the fibres of ϕ.

Proof. As the n-Laplacian on n-dimensional Riemannian manifolds is conformally in-
variant, we may suppose (N n, h) real-analytic, in flat local coordinates. Therefore, also, ϕ

is real-analytic.
Note that ϕ has minimal fibres [5]. Also, by Corollary 2·4, the distribution H is integ-

rable.
Let F± be the eigenbundles of J ϕ,ψ

± corresponding to −i. Let Y be a basic vector field
which locally generates F+ � F−. Then Y is isotropic. Moreover, from the fact that ϕ
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and ψ are horizontally conformal, it follows that ∇Y Y is proportional to Y , where ∇ is the
Levi-Civita connection of (Mn+2, g).

There exists an isotropic vertical vector field U such that F+ and F− are, locally, gen-
erated by {U, Y } and {U , Y }, respectively; we may suppose that g(U, U ) = 1. As Y
is basic, [U, Y ] and [U , Y ] are vertical. Thus, F+ and F− are integrable if and only if
g([U, Y ], U ) = 0 and g([U , Y ], U ) = 0, respectively.

As (Mn+2, g) has constant curvature, RM(U, Y, Y, U ) = 0. On the other hand, a straight-
forward calculation shows that (cf. [6])

RM(U, Y, Y, U ) = g([U, Y ], U )g([U , Y ], U ) . (2·5)

The proof follows.

Remark 2·6. (1) If n = 2 then the conclusion of Proposition 2·5 holds under the assump-
tion that (M4, g) is Einstein [15] (see [6] for a generalization of this result to Einstein–Weyl
spaces).

If n = 3 then the proof of Proposition 2·5 works under the further assumption that the
horizontal distribution of ϕ is integrable.

(2) Proposition 2·5, also, holds under the assumption that ϕ is a real-analytic horizontally
conformal submersions such that the mean curvature of V takes values in (V ⊕K )⊥. Also,
note that, in the proof, we have not use the fact that dϕ(K )⊥ (= kerdψ

)
is integrable.

3. The main results

This section is devoted to the following result and its consequences.

THEOREM 3·1. Let ϕ: (Mn+1, g) → (N n, h) be a harmonic morphism between Rieman-
nian manifolds, (n � 3) ; denote by λ the dilation of ϕ.

If (Mn+1, g) is real-analytic and conformally-flat then either:
(i) ϕ is of Killing type; or

(ii) the horizontal distribution of ϕ is integrable and its leaves endowed with the metrics
induced by λ−2n+4g have constant curvature.

Proof. By a result of [12], at least away of the critical points (which may occur only if
n = 3, see [1]), we have ϕ : (Mn+1, g) → (N n, h) real-analytic.

As the dimension of the intersection of (the complexification of) H with any isotropic
two-dimensional space, on (Mn+1, g), is at least 1, Proposition 2·2 implies that (Mn+1, g)

is conformally-flat if and only if, for any U ∈ 	(V ) and X, Y ∈ 	(H ) with g(U, U ) =
g(X, X), g(X, Y ) = 0, g(Y, Y ) = 0, we have RM(U ± iX, Y, U ± iX, Y ) = 0 ; equivalently,

RM(U, Y, U, Y ) = RM(X, Y, X, Y )

RM(U, Y, X, Y ) = 0 .
(3·1)

From (1·2), it follows quickly that the second relation of (3·1) is equivalent to

(h∇Y �)(X, Y ) + 3(n − 1)Y (σ )�(X, Y ) = 0 . (3·2)

Thus, by assuming X and Y basic and using Proposition 1·4, we obtain

Y (V (σ ))�(X, Y ) = 0, (3·3)

where V is the fundamental vector field of ϕ.
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Next, we shall use the first relation of (3·1). For this, we assume X and Y basic with
g(X, X) = e−2σ (equivalently, h(X, X) = 1 ), and U = e−(n−1)σ V (so that, g(U, U ) =
g(X, X) ). Thus, the first relation of (3·1) becomes

e−(2n−2)σ RM(V, Y, V, Y ) = RM(X, Y, X, Y )

which, by applying (1·1) and (1·3), is equivalent to

RN (X, Y, X, Y ) = − (n − 1)h(h∇Y (H (gradhσ)), Y) − (n − 1)2Y(σ )2

+ 1

4
e(2n−2)σ

{
h(iY �, iY �) + 3�(X, Y )2

}
,

(3·4)

where we have denoted by the same symbol RN and its pull-back by ϕ to Mn+1.
We may assume that Y is the horizontal lift of an isotropic geodesic (local) vector field on

(the complexification of) (N n, h) ; equivalently, h∇Y Y = 0. Then (3·4) becomes

RN (X, Y, X, Y ) = − (n − 1)Y (Y (σ )) − (n − 1)2Y (σ )2

+ 1

4
e(2n−2)σ

{
h(iY �, iY �) + 3�(X, Y )2

}
.

(3·5)

As RN (X, Y, X, Y ) is basic, from (3·3) and (3·5) it easily follows that either � = 0 or

V (σ )
{
h(iY �, iY �) + 3�(X, Y )2

} = 0 . (3·6)

Now, from �� 0 it follows that there exist Y ∈ H isotropic and X ∈ Y ⊥ �H such that
the second factor of the left-hand side of (3·6) is not zero. Thus, we have proved that either
� = 0 (equivalently, H is integrable) or V (σ ) = 0 (equivalently, ϕ is of Killing type).

Next, we study the case � = 0. Then (3·2) (and hence, also, the second relation of (3·1))
is automatically satisfied, whilst (3·4) is equivalent to

RN (X, Y, X, Y ) = h∇(dHu)(Y, Y ) − (dHu)(Y )2, (3·7)

where u = −(n − 1)σ and, recall that, X and Y are basic with h(X, X) = 1, h(X, Y ) = 0
and h(Y, Y ) = 0.

Let h1 = e2uh|H = e(−2n+4)σ g|H .
We have proved that, if H is integrable, (3·1) is equivalent to the fact that the

curvature tensor R P of any leaf P of H , endowed with the metric induced by h1, satis-
fies R P(X, Y, X, Y ) = 0.

It follows that if H is integrable then h1 induces a conformally-flat Einstein metric on
each leaf of H ; equivalently, h1 induces a metric of constant curvature on each leaf of H .
The proof is complete.

Example 3·2. Let (N n, h) be Rn , endowed with the canonical metric, and let

Mn+1 = {
(t, x) ∈ R × Rn

∣∣|t x | < 1
}
,

where | · | denotes the Euclidean norm on Rn .
Define λ : Mn+1 → (0, ∞) by λ(t, x) = (1 − |t x |2) 1

n−1 , (t, x) ∈ Mn+1, and let g =
λ−2h + λ2n−4dt2.

Then ϕ: (Mn+1, g) → (N n, h), (t, x) �→ x , is a harmonic morphism which satisfies asser-
tion (ii) of Theorem 3·1; in particular, (Mn+1, g) is conformally-flat, (n � 3). Furthermore,
ϕ is neither of Killing type nor are its fibres geodesics.
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Remark 3·3. If n = 3 then Theorem 3·1 holds, also, in the complex-analytic category.
Indeed, the only point in the proof of Theorem 3·1 where it is essential for ϕ to be ‘real’ is
when we deduce from �� 0 that there exist Y ∈ H isotropic and X ∈ Y ⊥ � H such that
the second factor of the left-hand side of (3·6) is not zero. But, if n = 3 and h(X, X) = 1
then

h(iY �, iY �) + 3�(X, Y )2 = 4�(X, Y )2,

which, also, in the complex-analytic category, is not zero, for suitable choices of X and Y ,
if �� 0.

Next, we discuss the case when both the domain and codomain, of a harmonic morphism
with one-dimensional fibres, are conformally-flat; the notations are as in Section 1.

COROLLARY 3·4. Let ϕ: (Mn+1, g) → (N n, h) be a submersive harmonic morphism
with connected one-dimensional fibres, (n � 3).

The following assertions are equivalent:
(i) (Mn+1, g) and (N n, h) are conformally-flat.

(ii) one of the following assertions holds:
(iia) ϕ is of Killing type, n = 3, and, up to homotheties, � is the volume form

of a Riemannian foliation by geodesic surfaces, of sectional curvature 1, on
(N 3, λ−4h),

(iib) the horizontal distribution of ϕ is integrable and its leaves endowed with the
metrics induced by λ−2n+4g have constant curvature.

Proof. If n � 4 this follows from Corollary 2·4 and the proof of Theorem 3·1.
Assume n = 3. Then by the proof of Theorem 3·1, if (M4, g) is conformally-flat, on each

connected component of a dense open subset of M4, either ϕ is of Killing type or (iib) holds.
If ϕ is of Killing type then there exist Weyl connections D± on (N 3, [h]) such that

ϕ : (M4, [g]) → (N 3, [h], D±) is ±twistorial, in the sense of [7, example 4·8] (cf. [14]).
Furthermore, (M4, g) is conformally-flat if and only if both D± are Einstein–Weyl (see [14]
and the references therein). Also, if (N 3, h) is conformally-flat then D± are Einstein–Weyl if
and only if, locally, D± are the Levi–Civita connections of constant curvature representatives
h± of [h] (see [3]).

We claim that if n = 3 and ϕ is of Killing type then, with the same notations as above,
the following assertions are equivalent:

(a) up to homotheties, � is the volume form of a Riemannian foliation by geodesic
surfaces, of sectional curvature 1, on (N 3, λ−4h);

(a′) D± are, locally, the Levi-Civita connections of constant curvature representatives
h± of [h], and D+ � D−.

Indeed, if ϕ is of Killing type then, by replacing g and h with λ−2g and λ−4h, respectively,
we may suppose that ϕ is a Riemannian submersion with geodesic fibres. Then the Lee forms
α± of D±, with respect to h, are given by α± = ± ∗h � (see [7, 14]), where ∗h is the Hodge
∗-operator of h, with respect to some local orientation, and we have denoted by the same
symbol � and the two-form on N 3 whose pull-back by ϕ is �. Hence, if (a′) holds then
h± = e±2uh where u is characterised by du = ∗h� ; in particular, u is a harmonic (local)
function on (N 3, h).

It follows that (a′) is equivalent to the following assertion:
(a′′) locally, there exists a nonconstant function u on N 3 such that

du = ∗h�, (∇hdu)(Y, Y ) = 0, Rich(Y, Y ) = −du(Y )2,
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for any isotropic vector Y on (N 3, h), where ∇h is the Levi-Civita connection of (N 3, h)

and Rich is the Ricci tensor of (N 3, h).
Now, by applying, for example, Lemma 1·5, we obtain that assertion (a′′) is equivalent to

the following:
(a′′′) locally, there exists a nonconstant function u on N 3 such that

du = ∗h�, ∇hdu = 0

and the level surfaces of u have sectional curvature equal to |du|2.
The proof of (a) ⇔ (a′) follows.
We have thus proved that (ii) ⇒ (i), and if (i) holds then, also, (ii) holds on each connected

component of a dense open subset of M4.
To complete the prof of (i) ⇒ (ii), define a connection ∇ on H by

∇E X = H ∇λ−2g
H E X + H [V E, X ]

for any vector field E and horizontal vector field X , where ∇λ−2g is the Levi–Civita connec-
tion of (M4, λ−2g).

If we assume (i) then, from the fact that (ii) holds on each connected component of a
dense open subset of M4, it follows quickly that ∇� = 0. Therefore either � is nowhere
zero or � = 0 on M4. The proof is complete.

Example 3·5. Let π : R4 → R3 be the Hopf polynomial map defined by π(z1, z2) =
(|z1|2 − |z2|2, 2z1z2), for any (z1, z2) ∈ R4 (= C2).

Then π |R4\{0} satisfies assertion (iia) of Corollary 3·4.

We end with the following consequence of Corollary 3·4.

COROLLARY 3·6. The Hopf polynomial map π : R4 → R3 is, up to local conformal
diffeomorphisms with basic conformality factors, the only harmonic morphism with one-
dimensional fibres and nonintegrable horizontal distribution between conformally-flat
Riemannian manifolds, of dimensions at least three.

Proof. This follows from the fact that any harmonic morphism which satisfies assertion
(iia) of Corollary 3·4 is, locally, uniquely determined, up to conformal diffeomorphisms with
basic conformality factors.

Acknowledgements. I am grateful to John C. Wood for useful comments.
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