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Abstract

We classify the harmonic morphisms with one-dimensional fibres (1) from real-analytic
conformally-flat Riemannian manifolds of dimension at least four (Theorem 3-1), and (2)
between conformally-flat Riemannian manifolds of dimensions at least three (Corollaries 3-4
and 3-6).

Also, we prove (Proposition 2-5) an integrability result for any real-analytic submer-
sion, from a constant curvature Riemannian manifold of dimension n + 2 to a Riemannian
manifold of dimension 2, which can be factorised as an n-harmonic morphism with two-
dimensional fibres, to a conformally-flat Riemannian manifold, followed by a horizontally
conformal submersion, (n > 4).

Introduction

Harmonic morphisms between Riemannian manifolds are maps which pull-back (local)
harmonic functions to harmonic functions. By a basic result, a map is a harmonic morphism
if and only if it is a harmonic map which is horizontally weakly conformal (see [1]).

There are, now, several classification results for harmonic morphisms with one-dimensio-
nal fibres. In [2], it was proved that there are just two types of such harmonic morphisms
from Riemannian manifolds, with constant curvature, of dimension at least four. This result
was generalized, in [12], to Einstein manifolds of dimension at least five; in dimension four,
the situation is different, there appears a third type of harmonic morphism [10] (see [13]).
Also, in [14], are classified the ‘twistorial’ harmonic morphisms with one-dimensional fibres
from self-dual four-manifolds.

In this paper, we classify the harmonic morphisms with one-dimensional fibres from
conformally-flat Riemannian manifolds of dimension at least four. We prove that, assum-
ing real-analyticity, there are just two types of such harmonic morphisms (Theorem 3-1),
one of which (the ‘Killing type’), also, appears in the above mentioned results, whilst the
second type is an extension of the ‘warped product type’, involved in [2, 10, 12, 14].

Furthermore, we classify the (smooth) harmonic morphisms with one-dimensional fibres
between conformally-flat Riemannian manifolds (Corollary 3-4). It follows that the Hopf
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polynomial map R* — R?, (z1,z2) — (121> = |221%, 22122), is, up to local conformal dif-
feomorphisms, the only harmonic morphism with one-dimensional fibres and nonintegrable
horizontal distribution between conformally-flat Riemannian manifolds, of dimensions at
least three (Corollary 3-6).

Let ¢:(M*, g) — (P2, k) be a submersive harmonic morphism between (oriented)
Riemannian manifolds of dimensions four and two, respectively. In [15], it is proved that
if (M*, g) is Einstein then one of the two almost Hermitian structures on (M*, g), with
respect to which ¢ is holomorphic, is integrable and parallel along the fibres of ¢. This
result was generalized in [6] to Einstein—Weyl spaces. Here (Proposition 2-5), we give a
higher dimensional version of this result which applies to pairs formed of a submersive n-
harmonic morphism ¢: (M"*2, g) — (N", h), from a constant curvature Riemannian man-
ifold to a conformally-flat Riemannian manifold, and a horizontally-conformal submersion
Y: (N", h) — (P2, k) which is real-analytic in flat local coordinates, (n > 4).

1. Harmonic morphisms with one-dimensional fibres

In this section we recall a few facts on harmonic morphisms with one-dimensional fibres.
Unless otherwise stated, all the manifolds are assumed to be connected and smooth and
all the maps are assumed to be smooth.

Definition 1-1. A harmonic morphism (between Riemannian manifolds) is a map ¢ :
(M™, g) — (N", h) such that if U is an open set of N, with ¢~ (U) #+ ¢, and f is a
harmonic function on (U, h|y) then f o ¢ is a harmonic function on (¢~ '(U), gly-1v))-

Definition 1-2. A map between Riemannian manifolds ¢: (M™, g) — (N", h) is hori-
zontally weakly conformal if, for any x € M, either dp, = 0 or, dp, is surjective and, for any
X,Y e (kerdp,)*, we have h(dp(X),dp(Y)) = A(x)?>g(X,Y) for some positive number
A(x).

The function A, extended to be zero over the set of points x € M where dp, = 0, is called
the dilation of ¢. (Note that the dilation A is continuous on M™ whilst the square dilation 1
is smooth on M™.)

Let ¢: (M™, g) — (N", h) be a horizontally conformal submersion; denote by A its dila-
tion. Then A = 1 if and only if ¢ is a Riemannian submersion.

If m = n then a bijective map ¢: (M™, g) — (N, h) is a horizontally conformal sub-
mersion if and only if it is a conformal diffeomorphism. The dilation of a conformal diffeo-
morphism ¢ is called the conformality factor of ¢.

Next, we recall the following basic result (see [1]).

THEOREM 1-3. A map is a harmonic morphism if and only if it is a harmonic map which
is horizontally weakly conformal.

As usual, if ¢: (M™, g) — N" is a submersion we denote by ¥ = kerdp the vertical
distribution and by S = ¥+ the horizontal distribution.

For horizontally conformal submersions with one-dimensional fibres the condition of har-
monicity can be expressed as follows.

PROPOSITION 1-4 ([2], see [1, 8]). Let ¢: (M"*!, g) — (N", h) be a horizontally con-
formal submersion with one-dimensional fibres, (n > 1). Let A be the dilation of ¢ and let
V be the vertical vector field (well-defined up to sign) such that g(V, V) = A*"~4,
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The following assertions are equivalent:
(i) @ : (M"', g) — (N", h) is a harmonic morphism,
(i) [V, X] = O for any basic (horizontal) vector field X.
Furthermore, if (1) or (i1) holds then Q2 = db is basic, where 0 is the vertical dual of V,
characterised by 0(V) = 1 and 0| 5 = 0.

Let ¢: (M"Y — (N", h) be a harmonic morphism with one-dimensional fibres. With
the same notations as in Proposition 1-4, the vector field V is called the fundamental vector
field. Tt is easy to prove that Q = 0 if and only if 77 is integrable. Also, we have g =
A72p*(h) + A*"~*6? and, hence, V is a Killing vector field if and only if 7 is a Riemannian
foliation; equivalently, V(1) = 0 ([2], see [1, 8]). If V is Killing then ¢ is called of Killing
type.

LEMMA 1-5 ([9], cf. [1]). Let ¢ : (M"*!, g) — (N", h) be a harmonic morphism. Let A
be its dilation and let V be the fundamental vector field of ¢; we shall denote by o = log A.
Then we have the following relations for the curvature tensors R™ and RY of (M"*!, g)
and (N", h), respectively:
1
RM(X,V,Y,V) = —E(n —2)e® (L gratyorn) (X, Y)
—(n—2)e™ Y (nX (0)Y (o) — |5 (grad, o) |7 h(X,Y)}
+e{V(V(0) — (n — DV (0)}h(X,Y)
1
+Ze(4"_6)“ h(ixS2, iyS2), (1-1)

1
RM(X,Y, Z, V)= —Eeen—‘”” "VQ)(X, Y, Z)

+ %(n — De®VUX(0)QY, Z) + Y(0)QU(Z, X)

—2Z(0)QX, )} —e (X (V(0)) — (n —2)X(0)V(0)}h(Y, Z)
+e 7 {Y(V(0)) — (n —2)Y (0)V(0)}h(X, Z)

+ %e@"—“)"{sz(x, gradyo)h(Y, Z) — Q(Y, grady,o)h(X,Z)}, (1-2)

RM(X,Y,Z, H) =e ¥ ¢*(R")(X,Y, Z, H)
— % e YUQH, X)QY, Z) + QH, Y)QUZ, X) —2Q(H, Z)QUX, Y))

— % e V() {(—Q, H)h(X, Z) + Q(X, H)h(Y, Z)

—Q(X, 2)h(Y,H)+ Q, 2)h(X, H)} — e ¥ {X(c)H (0)h(Y, Z)

—X(0)Z(0)h(Y, H) — Y(0)H(0)h(X, Z) + Y (o) Z(0)h(X, H)}

+e 7 (h(X, Z)h("Vy (S (grad,o)), H) — h(Y, Z)h("Vx (H (grad,0)), H)

+h(Y, HYh("Vx(H (grad,0)), Z) — h(X, H)h("Vy (5 (grad,o)), Z)}

—e ™ (h(X, Z)h(Y, H) — h(X, H)h(Y, Z)}{">"° V(0)* + | (grad, o |}, (1-3)

where X, Y, Z, H are horizontal and "V denotes the Levi—Civita connection of (M, h).
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Remark 1-6. See [1] and the references therein for more information on harmonic morph-
isms between Riemannian manifolds and, in particular, for the notion of p-harmonic morph-
ism. Also, see [6, 7, 11] for harmonic morphisms in the more general setting of Weyl geo-
metry.

2. Conformally-flat Riemannian manifolds

Firstly, we recall (see [4]) the definition of the Weyl tensor of a Riemannian manifold.

Let (M™, g) be a Riemannian manifold. For 4 and k sections of ®*(T*M) (that is, h and
k are symmetric covariant tensor fields of degree two on M™), we shall denote by i @® k the
section of ®2(A%(T*M)) defined by

(hDKT,X,Y,Z)=h(T,Y)k(X,Z)+ h(X, Z)k(T,Y)
—h(T,2)k(X,Y) —h(X,Y)k(T, Z),

forany 7, X, Y, Z e TM.
If S is a (1,3)-tensor field on (M, g) then we shall denote by the same symbol S the (0,4)-
tensor field defined by S(7', X, Y, Z) = —g(S(T, X, Y), Z),forany T, X, Y, Z € TM.
The Weyl (curvature) tensor of (M™, g) is the (1,3)-tensor field W characterised by the
following two conditions:

(1) trace(X — W(X,Y)Z) =0,forany Y, Z € TM,

(2) R = g®r+ W for some (necessarily unique) section r of ©*(T*M), where R is the
curvature tensor of (M, g).

The Weyl tensor is conformally invariant; that is, if we denote by W# the Weyl tensor of
(M™, g) then W8 = W, for any positive function A on M".

The Riemannian manifold (M™, g) is called (locally) conformally-flat if for each point of
M'™ there exists an open neighbourhood U and a conformal diffeomorphism ¢ from U onto
some open set of R” (endowed with its canonical Riemannian metric); the local coordinates
on U induced by ¢ are called flat.

From Liouville’s theorem on local conformal diffeomorphisms between Euclidean spaces
(see [1]), it follows easily that if (M"™, g) is conformally-flat then M™ is real-analytic in flat
local coordinates (m > 2).

The following theorem is due to H. Weyl (see [4]).

THEOREM 2-1. A Riemannian manifold, of dimension at least four, is conformally-flat if
and only if its Weyl tensor is zero.

(See [4] for the case when the dimension is less than four.)

We do not imagine that the following result is new.

PROPOSITION 2-2. Let (M™, g) be a Riemannian manifold, (im > 4). The following
assertions are equivalent:

1) (M™, g) is conformally-flat,

(1) R(X,Y,X,Y) = 0 forany X,Y € TM spanning an isotropic space on (M, g),
where R is the curvature tensor of (M, g), and T M now denotes the complexified tangent
bundle.
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Proof. Clearly, assertion (ii) is equivalent to W(X, Y, X,Y) = O forany X,Y €¢ TM
spanning an isotropic space on (M, g), where W is the Weyl tensor of (M, g). Therefore, by
Theorem 2-1, we have (i) = (ii).

Suppose that (ii) holds and let (X1, ..., X,,) be an orthonormal frame on (M™, g). Then
for any distinct i, j, k,[ € {1, ..., m} we have

W(X; +iX;, X +iX,, X; £iX;, X, +iX,) = 0.

This is equivalent to the following two relations

W(X;, Xi +iX;, Xi, Xi +1X) = WX, X +1iX;, X, Xi +1X)), 21
W(X;, X, +1X;, X;, Xi +1X;) =0. 2-2)
Also, by applying condition (2) of the definition of the Weyl tensor, we obtain
D WX, Xi +iXp, X, X +iX) = 0. 23)
r=1
From (2-1) and (2-3), it follows that W(X;, X, + iX;, X;, X, + iX;) = 0 and, hence,
Wikix = Wiy, for any distinct j, k,I € {1,...,m}. Therefore, for any distinct i, j €
{1, ..., m}, we have

m

(m — D)W = Z Wirir = 0.
r=1

From (2-2) we obtain that, for any distinct i, j, k,/ € {1, ..., m}, we have
Wi ik = VV: jls
kjk 1jl (24)
Wikt = — Wik
The first relation of (2-4) implies Wijx = 0, whilst from the second and the algebraic
Bianchi identity it follows quickly that W;j,; = 0, for any distinct 7, j, k, [ € {1, ..., m}.

Thus, if (ii) holds then W = 0 which, by Theorem 2-1, is equivalent to (i).

If 27 is a distribution on a Riemannian manifold (M™, g) we shall denote by I”* the
integrability tensor of .77, which is the ¥ -valued horizontal two-form on M™ defined by
I7(X,Y) = —¥[X, Y], for any horizontal vector fields X and Y, where ¥ = J#*.

Next, we prove the following:

PROPOSITION 2-3. Let ¢: (M™, g) — (N", h) be a horizontally conformal submersion
between conformally-flat Riemannian manifolds, (m > n > 4).

Then g(l (X, Y), 177X, Y )) = 0, for any horizontal vectors X and Y spanning an
isotropic space on (M™, g).

Proof. As both the hypothesis and the conclusion are conformally-invariant, we may sup-
pose that ¢ : (M™, g) — (N",h) is a Riemannian submersion. Then the proof follows
easily from Proposition 2-2 and the following well-known relation of B. O’Neill (see [1]):

RY(X,Y, X, Y) =¢"(R")(X,Y, X, Y) — %g(“/[x, Y1, VX, Y]),

for any horizontal vector fields X and Y.

COROLLARY 2-4. Any horizontally conformal submersion, with fibres of dimension at
most two, between conformally-flat Riemannian manifolds has integrable horizontal distri-
bution, if the codomain has dimension at least four.
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Proof. Let ¢: (M™,g) — (N",h) be a horizontally conformal submersion between
conformally-flat Riemannian manifolds, m > n > 4.

Let x € M and let E € T, M be an oriented four-dimensional subspace. From Propo-
sition 2-3, it follows that ij : AiE — ¥, is conformal, where AiE is the space of self-
dual bivectors on (E, g|z) (by definition, a bivector v € A’E is self-dual if v = v where
xg 1s the Hodge *-operator of (E, g|g) ). As AiE is three-dimensional, we obtain that either
17 = 0ordim(¥%) > 3.

We end this section with an application of Corollary 2-4.

An almost CR-structure, on a manifold M™, is a section J of End(77) such that
J? = —1d,», where 7 is some distribution on M™. Obviously, J is determined by its
eigenbundle corresponding to —i (or i). Furthermore, a subbundle .# of the complexified
tangent bundle of M"™ is the eigenbundle corresponding to —i of an almost CR-structure on
M™ if and only if # N.Z = {0}.

Let J be an almost CR-structure on M™ and let .# be its eigenbundle corresponding to
—1i; J is called integrable if for any X, Y € I'(.%) we have [X, Y] € T'(%#). A CR-structure
is an integrable almost CR-structure (see [7]). If M is endowed with a Riemannian metric
g then . is isotropic, with respect to g, if and only if J is orthogonal, with respect to (the
Riemannian metric induced on J# by) g.

For example, any oriented two-dimensional distribution ¥, on a Riemannian manifold
(M™, g), determines two orthogonal CR-structures on (M™, g) ; at each point x € M, these
are given by the rotations of angles /2 on ¥, (cf. [15]).

Let ¢: (M"™2,g) — (N",h) and ¥ : (N",h) — (P2, k) be horizontally conformal
submersions, n > 2. Let ¥ = kerdp, 7 = ¥+ and let # C . be the horizontal lift
of (kerdyr)*. Assume ¥ and P? oriented and orient %  such that the isomorphism %~ =
(¥ o @)*(T P) to be orientation preserving.

Then the positive/negative orthogonal CR-structures determined by ¥ and the positive
orthogonal CR-structure determined by J#~ sum up to give orthogonal almost CR-structures
J2Y on (M™F2, g). Obviously, if we endow (P2, k) with its positive Hermitian structure J*
then ¥ o ¢ : (M"*2, J£'V) — (P2, JP) is holomorphic; that is, the differential of ¥ o ¢
intertwines J¢¥ and J*.

We call Ji’w the positive/negative almost CR-structures associated to ¢ and .

PROPOSITION 2.5. Let ¢: (M"*?, g) — (N", h) be a submersive n-harmonic morph-
ism from a Riemannian manifold of constant curvature to a conformally-flat Riemannian
manifold, and let yr: (N", h) — (P?, k) be a horizontally conformal submersion which is
real-analytic in flat local coordinates, (n > 4); assume V (= kerdp) and P? oriented.
Denote by Jﬁ’w the almost CR-structures associated to ¢ and .

Then either Jf"/j or IV is integrable and parallel along the fibres of ¢.

Proof. As the n-Laplacian on n-dimensional Riemannian manifolds is conformally in-
variant, we may suppose (N", h) real-analytic, in flat local coordinates. Therefore, also, ¢
is real-analytic.

Note that ¢ has minimal fibres [5]. Also, by Corollary 2-4, the distribution ¢ is integ-
rable.

Let .%. be the eigenbundles of o corresponding to —i. Let ¥ be a basic vector field
which locally generates .%, (1 .%_. Then Y is isotropic. Moreover, from the fact that ¢
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and i are horizontally conformal, it follows that VyY is proportional to ¥, where V is the
Levi-Civita connection of (M"*2, g).

There exists an isotropic vertical vector field U such that .%, and .#_ are, locally, gen-
erated by {U, Y} and {U, Y}, respectively; we may suppose that g(U,U) = 1. As ¥
is basic, [U, Y] and [U, Y] are vertical. Thus, .%, and .%_ are integrable if and only if
g(lU,Y],U) =0and g([U, Y], U) = 0, respectively.

As (M"*2, g) has constant curvature, RY (U, Y, Y, U) = 0. On the other hand, a straight-
forward calculation shows that (cf. [6])

RY(U,Y,Y,U) = g(lU. Y], U)g(IU. Y], U) . 25
The proof follows.

Remark 2-6. (1) If n = 2 then the conclusion of Proposition 2-5 holds under the assump-
tion that (M*, g) is Einstein [15] (see [6] for a generalization of this result to Einstein—-Weyl
spaces).

If n = 3 then the proof of Proposition 2-5 works under the further assumption that the
horizontal distribution of ¢ is integrable.

(2) Proposition 2.5, also, holds under the assumption that ¢ is a real-analytic horizontally
conformal submersions such that the mean curvature of ¥ takes values in (¥ @ .#)*. Also,
note that, in the proof, we have not use the fact that dp (% )* (= kerdlp) is integrable.

3. The main results

This section is devoted to the following result and its consequences.

THEOREM 3-1. Let ¢: (M"', g) — (N", h) be a harmonic morphism between Rieman-
nian manifolds, (n > 3) ; denote by A the dilation of ¢.
If (M", g) is real-analytic and conformally-flat then either:
(1) ¢ is of Killing type; or
(1) the horizontal distribution of ¢ is integrable and its leaves endowed with the metrics
induced by A\=*"**g have constant curvature.

Proof. By a result of [12], at least away of the critical points (which may occur only if
n = 3, see [1]), we have ¢ : (M"*!, g) — (N", h) real-analytic.

As the dimension of the intersection of (the complexification of) 7# with any isotropic
two-dimensional space, on (M"*!, g), is at least 1, Proposition 2-2 implies that (M"*!, g)
is conformally-flat if and only if, for any U € T'(¥) and X, Y € I'(J¢) with g(U,U) =
g(X,X),g(X,Y)=0,g(Y,Y) =0, wehave RM(U +iX, Y, U+iX, Y) = 0; equivalently,

RMU,Y,U,Y)=R"(X,Y,X,Y)

RM(U,Y,X,Y)=0. GD
From (1-2), it follows quickly that the second relation of (3-1) is equivalent to
"VyQ)(X,Y) +3(n — DY (@)QUX,Y)=0. (3-2)
Thus, by assuming X and Y basic and using Proposition 1-4, we obtain
Y(V(o)Q(X,Y) =0, (3-3)

where V is the fundamental vector field of ¢.
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Next, we shall use the first relation of (3-1). For this, we assume X and Y basic with
g(X, X) = e (equivalently, /(X,X) = 1), and U = e~ "DV (so that, g(U,U) =
g(X, X) ). Thus, the first relation of (3-1) becomes

eV RMy Y, V,Y) = RM(X,Y,X,Y)
which, by applying (1-1) and (1-3), is equivalent to

RN(X,Y,X,Y)=— (n— Dh("Vy (S (gradyo)), Y) — (n — 1)°Y(0)?
(3-4)

1
+2 e h(iyQ, iy Q) 4+ 3Q2(X, Y)?},

where we have denoted by the same symbol R and its pull-back by ¢ to M"*!.
We may assume that Y is the horizontal lift of an isotropic geodesic (local) vector field on
(the complexification of) (N, h) ; equivalently, "VyY = 0. Then (3-4) becomes

RVX, Y, X, Y)=—m—DYX(0)) — (n — 1)*Y(0)?

| . 2 C)
+ ¢ {hGyQ,iyQ) +3Q(X, ¥)*} .

As RY(X,Y, X, Y) is basic, from (3-3) and (3-5) it easily follows that either Q = 0 or
y
V(o) {h(iyQ,iyQ) +3Q(X, Y)*} =0. (3:6)

Now, from 2 = 0 it follows that there exist Y € .5 isotropic and X € Y L 57 such that
the second factor of the left-hand side of (3-6) is not zero. Thus, we have proved that either
Q = 0 (equivalently, 72 is integrable) or V (o) = 0 (equivalently, ¢ is of Killing type).

Next, we study the case €2 = 0. Then (3-2) (and hence, also, the second relation of (3-1))
is automatically satisfied, whilst (3-4) is equivalent to

RVN(X,Y,X,Y)="VWA?u)Y,Y) — d”u)(Y)?, (3-7)

where u = —(n — 1)o and, recall that, X and Y are basic with h(X, X) =1, h(X,Y) =0
and h(Y,Y) = 0.

Let h) = e®h|p = 7297 g 4.

We have proved that, if 7 is integrable, (3-1) is equivalent to the fact that the
curvature tensor R? of any leaf P of .7Z, endowed with the metric induced by A, satis-
fies RP(X,Y, X,Y)=0.

It follows that if .77 is integrable then &, induces a conformally-flat Einstein metric on
each leaf of 77 ; equivalently, 7, induces a metric of constant curvature on each leaf of 7.
The proof is complete.

Example 3-2. Let (N", h) be R", endowed with the canonical metric, and let
M ={(t,x) e R x R"||tx| < 1},

where | - | denotes the Euclidean norm on R”.

Define A : M"! — (0,00) by A(t,x) = (1 — |tx|})7, (£, x) € M"*!, and let g =
A—Zh + )\2n_4dl‘2.

Then ¢: (M™*!, g) — (N", h), (¢, x) — x, is a harmonic morphism which satisfies asser-
tion (ii) of Theorem 3-1; in particular, (M"*!, g) is conformally-flat, (n > 3). Furthermore,
¢ is neither of Killing type nor are its fibres geodesics.
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Remark 3-3. If n = 3 then Theorem 3-1 holds, also, in the complex-analytic category.
Indeed, the only point in the proof of Theorem 3-1 where it is essential for ¢ to be ‘real’ is
when we deduce from € # 0 that there exist ¥ € . isotropic and X € Y+ N . such that
the second factor of the left-hand side of (3-6) is not zero. But, if n = 3 and A(X, X) = 1
then

h(iyQ,iyQ) +3Q(X, Y)? = 4Q(X, Y)?,

which, also, in the complex-analytic category, is not zero, for suitable choices of X and Y,
if 2+ 0.

Next, we discuss the case when both the domain and codomain, of a harmonic morphism
with one-dimensional fibres, are conformally-flat; the notations are as in Section 1.

COROLLARY 3-4. Let ¢: (M"*' g) — (N", h) be a submersive harmonic morphism
with connected one-dimensional fibres, (n > 3).
The following assertions are equivalent:
(i) (M"*', g) and (N", h) are conformally-flat.
(ii) one of the following assertions holds:
(iia) ¢ is of Killing type, n = 3, and, up to homotheties, Q2 is the volume form
of a Riemannian foliation by geodesic surfaces, of sectional curvature 1, on
(N3, A7%h),
(iib) the horizontal distribution of ¢ is integrable and its leaves endowed with the
metrics induced by \.~*"**g have constant curvature.

Proof. If n > 4 this follows from Corollary 2-4 and the proof of Theorem 3-1.

Assume n = 3. Then by the proof of Theorem 3-1, if (M*, g) is conformally-flat, on each
connected component of a dense open subset of M*, either ¢ is of Killing type or (iib) holds.

If ¢ is of Killing type then there exist Weyl connections D. on (N3, [h]) such that
@ 1 (M* [g]) — (N3, [h], D) is £twistorial, in the sense of [7, example 4-8] (cf. [14]).
Furthermore, (M*, g) is conformally-flat if and only if both D are Einstein—-Weyl (see [14]
and the references therein). Also, if (N3, k) is conformally-flat then D_. are Einstein—-Weyl if
and only if, locally, D are the Levi—Civita connections of constant curvature representatives
hy of [h] (see [3]).

We claim that if n = 3 and ¢ is of Killing type then, with the same notations as above,
the following assertions are equivalent:

(a) up to homotheties, 2 is the volume form of a Riemannian foliation by geodesic
surfaces, of sectional curvature 1, on (N3, A7*h);

(') D4 are, locally, the Levi-Civita connections of constant curvature representatives
hy of [h],and D, & D_.

Indeed, if ¢ is of Killing type then, by replacing g and i with A =2g and A~*h, respectively,
we may suppose that ¢ is a Riemannian submersion with geodesic fibres. Then the Lee forms
a4 of D, with respect to &, are given by o = =& %, Q (see [7, 14]), where *;, is the Hodge
x-operator of &, with respect to some local orientation, and we have denoted by the same
symbol € and the two-form on N* whose pull-back by ¢ is 2. Hence, if (a’) holds then
hy = e*®h where u is characterised by du = x,$2; in particular, u is a harmonic (local)
function on (N3, h).

It follows that (a) is equivalent to the following assertion:

(a”) locally, there exists a nonconstant function u on N* such that

du = %, 2, (Vidu)(Y,Y) =0, Ric"(Y,Y) = —du(Y)?,
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for any isotropic vector Y on (N3, h), where V" is the Levi-Civita connection of (N3, h)
and Ric" is the Ricci tensor of (N3, h).
Now, by applying, for example, Lemma 1-5, we obtain that assertion (a”) is equivalent to
the following:
(@) locally, there exists a nonconstant function # on N* such that

du = %,2, Vidu =0

and the level surfaces of u have sectional curvature equal to du|>.

The proof of (a) < (a’) follows.

We have thus proved that (ii) = (i), and if (i) holds then, also, (ii) holds on each connected
component of a dense open subset of M*.

To complete the prof of (i) = (ii), define a connection V on ¢ by

VeX = AV, X + HVE, X]

for any vector field £ and horizontal vector field X, where V*7¢ is the Levi—Civita connec-
tion of (M*, A 7%g).

If we assume (i) then, from the fact that (ii) holds on each connected component of a
dense open subset of M*, it follows quickly that VQ = 0. Therefore either 2 is nowhere
zero or 2 = 0 on M*. The proof is complete.

Example 3-5. Let m:R* — R? be the Hopf polynomial map defined by m(z;,2,) =
(Iz1]* = |221%, 22172), for any (21, 22) € R* (= C?).
Then 7 |rs\ (o) satisfies assertion (iia) of Corollary 3-4.

We end with the following consequence of Corollary 3-4.

COROLLARY 3-6. The Hopf polynomial map mw:R* — R> is, up to local conformal
diffeomorphisms with basic conformality factors, the only harmonic morphism with one-
dimensional fibres and nonintegrable horizontal distribution between conformally-flat
Riemannian manifolds, of dimensions at least three.

Proof. This follows from the fact that any harmonic morphism which satisfies assertion
(iia) of Corollary 3-4 is, locally, uniquely determined, up to conformal diffeomorphisms with
basic conformality factors.

Acknowledgements. 1 am grateful to John C. Wood for useful comments.
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