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Abstract. Let M™ be a compact oriented smooth manifold admitting a smooth circle
action with isolated fixed points which are isolated as singularities as well. Then all the
Pontryagin numbers of M™ are zero and its Euler number is nonnegative and even. In
particular, M™ has signature zero. We apply this to obtain non-existence of harmonic mor-
phisms with one-dimensional fibres from various domains, and a classification of harmonic
morphisms from certain 4-manifolds.

Introduction

It is well known that, if a compact oriented smooth manifold M admits a smooth
free circle action, then its Euler number and all its Pontryagin numbers are zero.
This follows from the fact that the tangent bundle of M is the Whitney sum of a
trivial real line bundle and the pull back of the tangent bundle of the orbit space.

In this paper we generalize this by proving that if M is a compact oriented
smooth manifold which admits a smooth circle action with isolated fixed points
which are isolated as singularities as well then (i) all the Pontryagin numbers of
M are zero (in particular, the signature of M is zero), (ii) the Euler number of
M is even and is equal to the number of fixed points (Theorem 1.1). We obtain
this by using a well known formula of R. Bott [9] (see also [21]). Also, we apply
an idea of J.D.S. Jones to prove (Theorem 2.8) that the signature of a compact
oriented 4-manifold endowed with a non-trivial circle action for which each fixed
point has equal exponents is equal to the Euler number of the normal bundle of the
components of dimension 2 of the fixed point set.

Harmonic morphisms are smooth maps ¢ : (M,g) — (N, h) between
Riemannian manifolds which preserve Laplace’s equation. They are characterised
as harmonic maps which are horizontally weakly conformal [16], [19], i.e., for
each point x € M, either dp, = 0 or dy; is surjective and maps H, = (ker d(px)L
conformally onto Ty N. Classification results for harmonic morphisms with one-
dimensional fibres appear in [4], [5], [6], [10], [27], [28], [29], [30]. In [1] it is
proved that any non-constant harmonic morphism with one-dimensional fibres de-
fined on a Riemannian manifold of dimension at least five is submersive whilst,
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352 R. Pantilie, J.C. Wood

for domains of dimension four, only isolated critical points can occur. Moreover,
in [1] it is proved that any non-constant harmonic morphism (M*, g) — (N3, h)
induces a locally smooth circle action on M 4 We show in fact that, at least outside
the critical set, the action is smooth and free (a consequence of Proposition 3.1). It
follows that the result of Theorem 1.1 can be applied to obtain topological restric-
tions on the total space of a harmonic morphism with one-dimensional fibres. These
are obtained in Theorem 3.3 from which it immediately follows that S G > 3),
CP" (n > 1), HP" (n > 2), §*" x P, (n>2g#1lorn=1¢ > 2),the
complex surfaces of degree d # 2 in CP3 can never be the total space of a non-
constant harmonic morphism with one-dimensional fibres whatever metrics we put
on them. The result regarding C P2 answers a question formulated by P. Baird in a
conversation.

We apply Theorem 3.3 to prove that, up to homotheties and Riemannian cov-
erings, the canonical projection T* — T3 between flat tori is the only harmonic
morphism with one-dimensional fibres which is defined on a compact half-confor-
mally flat Riemannian 4-manifold which is scalar-flat (Proposition 3.7). Finally, in
Proposition 3.9 we show that, if ¢ : (M 4, g) — (N 3. h) is a non-constant harmonic
morphism between orientable Einstein manifolds, then (M*, g) is half-conformally
flat.

1. A topological restriction for circle actions

By a singularity of a group action we mean a point at which the isotropy group
is non-trivial. A fixed point is a singularity where the isotropy group is the entire
group.

Let M™ be a compact oriented smooth manifold of dimension m > 1 endowed
with a smooth circle action. Let F denote its fixed point set and V its infinitesimal
generator. Let g be a Riemannian metric on M with respect to which V is a Killing
vector field. Such a metric can be obtained by averaging an arbitrary Riemannian
metric over the action. Let V denote the Levi-Civita connection on (M™, g) with
curvature form R.

Obviously F is the zero set of V and thus, its connected components are
totally-geodesic submanifolds of (M, g) of even codimension (see [21]).

Let x € F and suppose that the connected component N of x in F has codi-
mension 2r. Because (VV), is a skew-symmetric endomorphism of (7T M, g),

with respect to a suitably chosen orthonormal frame, (VV), is represented by the
direct sum of the zero square matrix of dimension m — 2r and 69;:1 (W? ; _g-’ )
where m; > 0. In fact, since V integrates to give an S I action on M™, it follows
from [22, Chapter I, Proposition 1.9] that, m; € Z. Indeed, since V is Killing,
its flow commutes with the exponential map; hence, via the exponential map at x,
the linear flow induced by (VV), on Ty M is locally equivalent to the flow of V.
Following [20] we shall call the (positive) integers m ; the exponents of the action
at the fixed point x. This is, of course, motivated by the fact that the exponential

map of (M™, g) at x induces a local equivalence between the given S' action and
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the following S' action on R = R"~% @ C":

mi my

Z'(-xlv-"7xm—2rvzls"'7Zr)=(-x17"'9-xl‘n—2raz FA P Zr)-

In particular, this shows that the exponents (m1, . .., m,) do not depend on the met-
ric g. This also follows from the fact that, at each x € F, we can write (VV), =
— Ly |71, m. Furthermore, if x € F is an isolated fixed point (equivalently m = 2r),
then the orientation induced by the corresponding orthonormal frame on T, M does
not depend of g. Let e(x) be 41 or —1 according to whether or not this orientation
agrees with the orientation of T, M (cf. [20]).

The main result of this section is the the following.

Theorem 1.1. Let M™ be a compact oriented smooth manifold which admits a
smooth circle action whose fixed points are isolated singularities.

Then (1) all the Pontryagin numbers of M™ are zero, (ii) the Euler number of
M™ is even and is equal to the number of fixed points. In particular, the signature
of M™ is zero.

Proof. Let x € F. Because x is an isolated singularity the exponents at x are
all equal to 1. Equivalently, there exists an orthonormal basis of (T, M, g,) with
respect to which the matrix of (VV); is the direct sum of n copies of (? _01 )

Thus, if F # @, then dim M = 2n is even. Let f be an Ad(SO(2n))-invariant
symmetric polynomial of degree p < n. Then, by a result of R. Bott [9, Theorem
2] (see also [21, Theorem I1.6.1]) we have

FVV),) /
1.1
;xn(zi,(vwx T (b

where y, is the Pfaffian (see [21, p. 68] or [26, p. 309]) and f(R) is the closed
2 p-form on M which represents the cohomology class induced by the Chern—Weil
morphism applied to f via the Levi-Civita connection V of (M?", g) (see [22,
Chapter XII] or [26, Appendix C]). Note that the right hand side of (1.1) is zero if
p <n.

It is easy to prove that

(=D"e(x)

€1 _
(3 (V)0 = o= (12)
By taking f = 1, from (1.1) and (1.2), we obtain
Y e =0. (1.3)

xeF

By taking f = ﬁ Xn», from (1.1) and the Gauss-Bonnet theorem we obtain

that the Euler number of M?" is equal to the cardinal of F (this also follows from the
Poincaré-Hopf theorem or from [21, Theorem I1.5.5]). But, by (1.3), the cardinal
of F must be even and hence the Euler number of M?" is even.

By definition, if dim M is not divisible by four then all the Pontryagin numbers
of M are zero.
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Suppose that n = 2p and let iy, ... , i, be a partition of p. Denote by p;, the
Ad(SO(2m))-invariant symmetric polynomial of degree 2ix such that p;, (5 R)
represents the i;’th Pontryagin class of M.

Let x € F and recall that (VV), is the direct sum of n copies of ( (1) _01 ) Then
it is obvious that for any Ad(SO(2n))-invariant symmetric polynomial f we have

FVV)) =c(f,n) (1.4)

where c(f, n) is a constant which depends just on f and n butnoton x € F.

By taking f = p;,--- p;, in (1.1) it follows from (1.2), (1.3), (1.4) that all the
Pontryagin numbers of M>" are zero. The fact that M>" has zero signature follows
from Hirzebruch’s Signature Theorem (see [26]). |

Remark 1.2. With the same hypotheses as in Theorem 1.1, it follows from [11]
that, if the set of fixed points is nonempty and the orbit space is a manifold, then
dim M = 4 and the number of fixed points is even and equal to the Euler number of
M. Then (1.3) corresponds to an equality in the proof of [11, Proposition 3.5(b)].

2. Blowing-up isolated fixed points of circle actions

For j =1,...,r letm; be positive integers. We consider the following action on
C":

2@y z) =@ 21,7, 2 ) 2.1

Obviously, the fixed point set of this action is {0}.

In what follows we need the notion of ‘equivariant connected sum’ of two man-
ifolds endowed with circle actions. The idea of the following construction comes
from [11] (we use —C" to denote C” considered with the orientation opposite to
its usual one).

Definition 2.1. Let M and N be manifolds, dim M = dim N = 2r, both endowed
with non-trivial circle actions.

Let x € M and y € N be isolated fixed points of these actions having the
same set of exponents {m1, ... ,m;},my < ... < m,. Further, assume that €(x) =
—€(y).

Then suitably chosen neighbourhoods Uy and Uy about x and y in M and N,
respectively, are equivariantly diffeomorphic to open balls of radius three about
0 € e(x)C" and 0 € e(y)C’, respectively, where C” is endowed with the circle
action of (2.1).

The equivariant connected sum of M and N (about x € M and y € N) is
the quotient (M \ Vy U N \ Vy)/~ where Vy and V) correspond, via the above
equivariant diffeomorphisms, to the open balls €(x) B(1) and €(y)B(1), of radius
1, whilst ~ is induced by the identification (2 + t)u ~ (2 — t)u withu € dB(1)
andt € [—1,1].

Thus the actions glue together to give a non-trivial circle action on the con-
nected sum M#N.
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Example 2.2. Let C" and —C” be endowed with the action given by (2.1). It is
easy to see that the connected sum C"# — C", suitably constructed about 0 € C”
in each term, inherits in a canonical way a circle action. Moreover this action is
without fixed points.

The following definition is based on an idea of J.D.S. Jones which arose in a
private conversation. We formulate it only for isolated fixed points although it can
be given for any connected component of the fixed point set.

Definition 2.3. Let x € F be an isolated fixed point with exponents (my, ... ,m;).
The blow-up of M (considered with the given action) at x is the equivariant con-
nected sum of M and —e(x)CP”, about x € M and [1,0, ... ,0] € CP", where
CP’ is considered with the S action

my my

z-[z0, 21, .- s zr) =[z0, 2" 21, ..., 2" 2]

In what follows, the following obvious lemma will play an important role.

Lemma 2.4. Let M be a manifold endowed with a circle action and let F be its
fixed point set.
Let x be an isolated fixed point whose exponents are equal: m; = ... = m,.
Let F be the fixed point set of the induced action on the blow-up of M at x.
Then

F=(F\{xpucp !

where CP™ ' ={[z0,...,2,1 € CP" |20 =0}.

Remark 2.5. From the above lemma it follows that if, besides isolated fixed points,
a circle action has only components of codimension two, then after blowing up all
the isolated fixed points we obtain a manifold endowed with a circle action whose
fixed point set is of codimension two.

In particular, if the starting manifold is of dimension four then after blowing-up
the isolated fixed points we obtain a manifold endowed with a circle action whose
fixed point set is of dimension two.

For the next lemma recall the Ad(SO(4))-invariant polynomial p; on so(4)
given by p1(A) = Zi<j (a;)2 where A = (aj,)i,jzl,,_ 4. As is usual, we shall also
denote by p; the corresponding Ad(SO(4))-1nvariant symmetric bilinear form on
so(4).

If (M*, g) is a Riemannian 4-manifold then, if R denotes the curvature form
of the Levi-Civita connection of (M*, g), by the Chern—Weil theorem, p; (%R)
represents the first Pontryagin class of M 4 (see [22], [26]).

Also we need the following definition (see [21, p. 69]).

Definition 2.6. Let (M?", g) be a Riemannian manifold and let V be a Killing
vector field on it. Let N be a component of codimension 2r of the zero set of V.
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For an Ad(SO(2n))-invariant polynomial f of degree n on so(2n) the residue
of V over N*"~2" is given by

[ (R +VV))
Xr (35 GRE 4+ (VV)1))

Res(N) 1"~ = / 2.2)
N

where V is the Levi-Civita connection of (M*", g), R its curvature form, = denotes
the components in End(T N') and ¥, is the Pfaffian. (Here we expand the right
hand side of (2.2) as a power series in t.)

Lemma 2.7. Let (M*, g) be an oriented 4-manifold and let V be a Killing vector
field on it. Suppose that the zero set of V has a component N of dimension two.
Then the residue Resp, (N) is given by

Resp, (N) = x(TNH)[N]
where x (T NLY)[N1] is the Euler number of the normal bundle T N+ of N.
Proof. From Definition 2.6 it follows that we can write

1
5=(tR+VV
ReSpl(N)tZ/ p11(27r( )
N LR+ VYV

(2.3)
where (aoL “; ) denotes the ‘normal’ component of a section a of End(TN) &

End(T N1) and recall that (VV)|y is a section of End(TN) & End(T N+) (see
[21, Chapter II, Theorem 5.3]). In fact (VV)HN : N — R is the nowhere zero
function on N characterised by

WV)Iv = (§9) @ (_ (VOV)L),

then (2.3) becomes
1
Res,, (N)t = E/ (p1(R, R) +2tp1(R, VV) + p1(VV, VV))
N

1 RJ_ 5 (RJ_)Z
<( wvt oo T e =)

_ é/N(zpl(R, U) - RY) 2.4)

1
(vt

normal frame we have U = ({3) @ (% }). Also note that J = U|y is an almost
complex structure on the normal bundle 7N L (see [21] for the general case).

Because N is atotally geodesic submanifold of (M, g) wehave that p1 (R, U) =
R hence, from (2.4) it follows that

Res,, (N) = % /N Rt . (2.5)

where U = V V| - note that with respect to a suitably chosen adapted ortho-

0 Rt

By the same reason we also have that J ® R+ = (—Ri 0

) is the curvature form

of the connection induced by V on TN+,
The proof now follows from the Chern—Weil theorem. O
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‘We now state the main result of this section.

Theorem 2.8. Let M* be a compact oriented 4-manifold endowed with a non-trivial
circle action.

Let F = Fy U F, be the fixed point set, where Fy is the set of isolated fixed
points and F; is the union of the components of dimension 2 of the fixed point set.
Suppose that the exponents of each isolated fixed point x € Fy are equal.

Then the signature o [M] of M is given by

o[Ml= ) e(x) = x(TFIF] . (2.6)

xekFy

In particular, the signature of M is given by the Euler number of the normal bundle
of the components of dimension 2 of the zero set of V.

Proof. Let M be the manifold (endowed with a circle action) obtained by blowing-
up the isolated fixed points, i.e. the points of Fj.
Then, since signatures add when taking connected sums, the signature o [M] of
Mis given by
o[M] =o[M]— Z e(x) . (2.7)
xeFy
Because the exponents of each isolated fixed point are equal, by hypothesis, the
induced circle action on M has no isolated fixed points. This follows from Lemma
2.4 (see also Remark 2.5).
Thus we can apply [20, Theorem 4.2] to obtain that M has signature zero.
Combining this with (2.7) gives

o[M]= ) k), (2.8)
xeFy

i.e. the first equality of (2.6).

Now, take a metric on M with respect to which S! acts by isometries. Then by
applying the Bott formula (see [21, Chapter II, Theorem 6.1]) to the infinitesimal
generator of this action we obtain

p1[M] = Resy, (Fo) + Resy, (F2) . 2.9)

Since p1(A) = £2x2(A) for A € so(4)+ (because A = (aj.) € so(4)+ if and only
if ay = +aj3, aj = Faj and a; = +a3), we have Res, (Fo) =2, €(x). By
using this fact and Lemma 2.7 the equation (2.9) becomes
pilMI=2)" e(x)+ x(TF)IF] . (2.10)
xekFy
But by Hirzebruch’s theorem, p;[M] = 30 [M], which together with (2.8) and
(2.10) gives
3) e(x)=2) )+ x(TFHIFl: (2.11)
xeFy xeFy

this immediately yields the second equality of (2.6). O
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Remark 2.9. 1) Obviously, Theorem 2.8 generalizes the result of [20, Theorem 4.2].
However, note that our proof of Theorem 2.8 uses that result.

Also, Theorem 2.8 generalizes the result of Theorem 1.1 for dimension four.

2) By applying a calculation similar to the one in the proof Lemma 2.7 we can
prove the following result: If the fixed point set of a circle action on a compact
oriented manifold M has codimension two and trivial normal bundle then all the
Pontryagin numbers of M are zero.

3) See [23], [20] for some related results on circle actions.

3. Applications to harmonic morphisms

Let ¢ : (M”“,g) — (N",h), n > 1, be a non-constant harmonic morphism
between compact oriented Riemannian manifolds. Then, by a result of P. Baird [1],
the set X of critical points of ¢ is empty if dim M > 5 and is discrete if dim M = 4.
For x € M\ X set V, = ker dg, and let H, = Vj-. The resulting distributions V
and H on M \ X shall be called, as usual, the vertical distribution and horizontal
distribution, respectively.

Proposition 3.1. Let ¢ : (M"t', g) — (N",h) (n > 1) be a non-constant har-
monic morphism between compact oriented Riemannian manifolds. Let ¥ be the
set of critical points of ¢.

Then ¢ |y ,—1(o(x)) can be factorised as § oy where r M\o (X)) > P
is the projection of an S' principal bundle (for which Hlpg-1(p(x)) i a principal
connection) and &€ : P — N \ ¢(X) is a smooth covering projection. Moreover,
for n = 3, the smooth free S' action on M \ ¢~ (¢(X)) extends to a continuous
SV action on M which is smooth over M \ S and whose fixed point set is .

Furthermore, if k is the unique metric on P with respect to which the mapping
& (P k) > (N\ (X)), hlyg()) is a Riemannian covering then the mapping
v (M\ <p_1((p(2)), glM\w_l((p(E))) — (P, k) is a submersive harmonic mor-
phism with connected fibres.

Proof. Because M and N are oriented, ) is orientable. Thus we can choose V €
I'(VIam\x) such that g(V, V) = A4, Clearly, V is smooth on M \ X. Further-
more, when n = 3, since |V| — 0 as we approach a critical point, V extends to a
continuous vector field on M whose zero set is X and the flow of V extends to a
continuous flow on M whose fixed point set is 2.

For any n > 1, since ¢ is proper, it quickly follows that @[\ ,-1(p(x)) —
N \ ¢(X) is a proper map. By a simple extension of a result of C. Ehresmann
[15], ¢ restricted to M \ ¢~ (¢(%)) is the projection of a locally trivial fibre bun-
dle. In particular, the orbit space P of V| M\~ (0(2)) is a smooth manifold. Thus,
@lang-1¢(x)) can be factorised as § o Y where ¢ : M \ ¢ ' (¢(X)) — P has
connected fibresand £ : P — N \ ¢(X) is a covering projection.

Let k = £*(h) be the unique metric on P with respect to which & : (P, k) —
(N \ ¢(2), h|ny\p(x)) becomes a Riemannian covering. It is obvious that ¥ :
M\ ¢~ N (D)), 8lang-1(pcx)y) = (P, k) is a submersive harmonic morphism
with compact connected fibres. From [27, Theorem 2.9] it follows that v is the
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projection of a circle bundle where the action on the total space M \ ¢! (¢(X)) is
induced by the flow of V| ,—1((x))- O

Remark 3.2. 1) In [32, Proposition 4.2] are given similar decompositions of maps
between (topological) compact manifolds. Also, from [32, Lemma 2.6, Proposition
4.2] it follows that if ¢ : M* — N3 is a map with isolated critical points between
compact oriented manifolds then the number of critical points of ¢ is equal to the
Euler number of M* (cf. Remark 1.2).

2) Recall ([16], [19], [7]) that, for n = 1, a harmonic morphism from (M 2 g)
to (N1 , h) is, essentially, a harmonic function.

When n = 2, given a non-constant harmonic morphism ¢ : (M 3, g)— (N 2 h)
with M3 compact the S! action extends smoothly over the set of critical points and
induces on M3 a structure of a smooth Seifert fibre space [6] and the factorisation
in Proposition 3.1 extends smoothly to M?3.

When n = 3, the S! action extends smoothly if (M4, g) is Einstein [28] and, in
this case, the factorisation again extends smoothly to M*.

When n > 4, then any non-constant harmonic morphism ¢ : (M"*!, g) —
(N™, h) is submersive [1]. Thus, if M"*! is compact (more generally, if H is an
Ehresmann connection for ¢) then ¢ can be factorised as a harmonic morphism
with connected fibres followed by a Riemannian covering (over ¢ (M) ).

From Theorem 1.1 and Proposition 3.1 we obtain the following.

Theorem 3.3. Let ¢ : (M"*!, g) — (N", h) (n > 3) be a non-constant harmonic
morphism between compact oriented Riemannian manifolds.

Then all the Pontryagin numbers of M+ are zero. In particular, the signature
of M1 is zero.

Further, if n > 4 then the Euler number of M"*! is zero. If n = 3, then the
Euler number of M* is even and is equal to the number of critical points of ¢.

Proof. If n > 4 then, by Proposition 3.1, there exists a free S' action on M"*!
whose orbits are connected components of the fibres of ¢. Hence, by the Hopf
theorem, the Euler number of M"*1 is zero. Also, as is well-known (immediate
consequence of (1.1)), all the Pontryagin numbers of M”*! are zero.

Suppose that n = 3. If the set of critical points ¥ is empty, then the same
argument as above implies that the Euler number and the Pontryagin number of
M* are zero.

Suppose that ¥ # {J and let x € ¥ and y = ¢(x). By Proposition 3.1 we
can assume that @[\ ,-1(,(x)) has connected fibres. Let B3 C N3 be a neighbour-
hood of y € N3 such that B> N ¢(X) = {y} and which is diffeomorphic to the
closed ball of radius two centred at zero in R3. Then ¢~ ! (B?) is a four-dimensional
submanifold-with-boundary of M* such that ¢~ ' (B%) N £ = {x}. Furthermore,
by Proposition 3.1, ¢|,-1(p3)\(y} 18 the projection of an S'-bundle over B> \ {y}.
Because B is the cone over S2, ¢~ (B?) is the cone over its boundary. It easily
follows (cf. [1]) that the boundary of ¢! (B?) must be simply-connected.

Consider the embedding $?2 = 93B3 c N3 \ . Let k € Z be the Chern
number of the S! bundle (¢~'(5?), S2, S'). Then, if k # 0, o1 (5%) = §3/Zy
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and, in particular, the fundamental group of ¢~!(S?) is Zyk). (If k = 0 the bundle
(9~ 1(5?), §2, SY) is trivial.) But, ¢~ ($?) is diffeomorphic to the boundary of
¢~ 1(B3) which we have seen is simply-connected. It follows that k = =1 and,
thus, we can suppose that ¢|,-1 g3\, is smoothly equivalent to the projection of
the cylinder of the Hopf bundle (S3, 2.8 1).

Thus, by taking, if necessary, the equivariant connected sum of M and —kC?2,
about x € M and 0 € C 2, where C? is considered with its canonical circle action,
we can suppose that on ¢! (B?) we have a smooth circle action having x as a fixed
point outside of which the action is free. By repeating this procedure about each
point of ¥ we obtain on M* a smooth circle action whose fixed point set is X,
outside which the action is free.

By Theorem 1.1, the Pontryagin number of M* is zero and its Euler number is
even and equal to the cardinal of X. O

Remark 3.4. With the same notations as in the proofs of Theorem 1.1 and Theorem
3.3 we have that €(x) = k foreach x € X.

Also, (1.3), applied in the context of the proof of Theorem 3.3 with ¢ having
connected fibres, can be proved by applying the Stokes’ theorem and the Chern—
Weil theorem; that is, by assuming, if necessary, that V| s has periodicity 27
then

| ) dF:);(—%/aBXF):Ze(x)

27T N\ Uxex By xey

where F € T(A2(T*(N \ ¢(X))) is the curvature form of any principal connection
on the principal bundle ¢ |\ z and By € N is aclosed ball abouteach ¢ (x), x € Z,
such that By, N By, = ¥ for x| # x2.

Let P, be the closed oriented surface of genus g > 0. Ford > 1, let
Si={lz1eCP?| 21+ + 2 =0}

be a complex surface of degree d. Since the Euler number of CP" is n + 1, of
§2n % P, is 4(1 — g) and the first Pontryagin number of Sy (see [13, page 12]) is
d(4 — d*), we have the following immediate consequence of Theorem 3.3.

Corollary 3.5. %" (n > 3), CP" (n > 1), HP" (n > 2), S*" x Py (n > 2, g # 1
orn=1, g > 2),8;(d # 2) can never be the domain of a non-constant harmonic
morphism with one-dimensional fibres whatever metrics we put on them.

Remark 3.6. 1) There exists a harmonic morphism from $* with suitable metric to
3 [3] (see also [7]).

2) The projections S>'*+1 x P, — CP" x P; induced by the Hopf fibra-
tions §>"*!1 — CP” are Riemannian submersions with totally-geodesic fibres,
with respect to suitable multiples of their standard metrics, and are thus harmonic
morphisms with one-dimensional fibres.

3) Other constructions of even-dimensional compact manifolds which cannot
be the total space of a harmonic morphism with one-dimensional fibres whatever
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metrics we put on them can be easily obtained by using products and/or connected
sums of manifolds.

4) We do not know if §p = $2 x §2 with suitable metric, can be the domain
of a non-constant harmonic morphism to some Riemannian 3-manifold. By [29,
Theorem 3.6], there exists no non-constant harmonic morphism from S? x §2,
endowed with the canonical metric, to some Riemannian 3-manifold.

Next, by applying Theorem 3.3, we prove the following result.

Proposition 3.7. Let (M*,g) be a compact orientable half-conformally flat
Riemannian four-manifold with zero scalar curvature andlet ¢ : (M4, g) — (N3, h)
be a non-constant harmonic morphism.

Then, up to homotheties and Riemannian coverings, ¢ is the canonical projec-
tion T* — T3 between flat tori.

Proof. Choose one of the orientations of M* and let wg be the corresponding vol-
ume form with respect to g.

Let pi[M] be the Pontryagin number of M*. By the Chern—Weil theorem we
have

pilM] = (W2 =W 1) w, 3.1)

47'[2 M
where W is the Weyl tensor of (M 4 g) and W, W are its self-dual and anti-self-
dual components, respectively (see [8, 13.8]).

By Theorem 3.3, p;[M] = 0 and hence W* = 0 <= WT = 0. Thus, if
(M*, g) is half-conformally flat then it is conformally flat.

Now, recall that, by the Gauss-Bonnet theorem, the Euler number of M 4 s
given by (see [8], [25]):

1= [ (5 —'MRiCCi°|2+|W+|2+IW*'2) G-
= — _— wg , *
X 8722 J,, \ 24 2 8
where s is the scalar curvature of (M?, g) and MRicci o is the trace-free part of the
Ricci tensor of (M*, g).

If (M*, g) is half-conformal flat and its scalar curvature is zero then (3.2) be-
comes

1 o
62 /M | MRICCI() |2a)g .

But, by Theorem 3.3, x[M] > 0 and hence (M 4 g) must be Einstein.

If (M*, g) is Einstein and conformally flat then (M*, g) has constant sectional
curvature kM (see [8]). By [27, Proposition 3.3(ii)] and [28, Proposition 3.6] we
cannot have kM < 0. If kM > 0 then, up to homotheties, the universal cover of
(M4, g)is S4, a situation which cannot occur (see [10, Section 3] or [7]). Hence
(M*, g) must be flat.

The proof now follows from [27, Theorem 3.4] and an argument as in the proof
of [28, Theorem 3.8]. |

x[M] = —
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From the proof of Proposition 3.7 we obtain the following.

Proposition 3.8. Let ¢ : (M*, g) — (N3, h) be a non-constant harmonic mor-
phism defined on an orientable compact Riemannian four-manifold.
Then (M*, g) is half-conformally flat if and only if it is conformally flat.

We end with a sufficient condition for the domain of a harmonic morphism
@:(M* g) — (N3 h)tobe half-conformally flat. Note that this does not require
any compactness or completeness assumption.

Proposition 3.9. Ler (M*, g) be an orientable Einstein four-manifold.

Suppose that there exists a non-constant harmonic morphism ¢ = (M*, g) —
(N3, h) to an orientable Einstein three-manifold (N3, h).

Then (M*, g) is half-conformally flat.

Proof. Letx € M be a regular point of ¢ and y = ¢(x). Let Yy € Ty N be a unit
vector. Because (N 3 h) is of constant curvature, by [5], there exists an open neigh-
bourhood U of y and a submersive harmonic morphism ¥y, : (U, hl|y) — P2? with
values in some Riemann surface P such that its fibre through y is tangent to Y.
Then for any other unit vector Y € Ty N we can compose ¥y, with an isometry to
obtain a submersive harmonic morphism 1y whose fibre through y is tangentto Y.

Then, Yy o : (9~ (U), 8lo-1ny) — P? is a submersive harmonic morphism
from an orientable Einstein four-manifold to a Riemann surface. By [34, Theorem
1.1], there exists an (integrable) Hermitian structure Jy on (¢ ' (U), 8ly-1(1y) with
respect to which ¥y o ¢ : (¢~ (U), Jy) — P? is holomorphic. We can suppose
that all the Jy induce the same orientation & on ¢ ~! (/). Thus any orthogonal com-
plex structure on (T M, g.), that is positive with respect to o, can be extended to
a Hermitian structure defined on some neighbourhood of x. It follows that (M 49
is half-conformally flat. O
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