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HARMONIC MORPHISMS WITH ONE-DIMENSIONAL
FIBRES ON EINSTEIN MANIFOLDS

RADU PANTILIE AND JOHN C. WOOD

Abstract. We prove that, from an Einstein manifold of dimension greater
than or equal to five, there are just two types of harmonic morphism with one-
dimensional fibres. This generalizes a result of R.L. Bryant who obtained the
same conclusion under the assumption that the domain has constant curvature.

Introduction

Harmonic morphisms between Riemannian manifolds are smooth maps which
preserve Laplace’s equation. By a basic result of B. Fuglede [9] and T. Ishihara
[14] , they can be characterised as harmonic maps which are horizontally weakly
conformal. See [5] for a general account, and [12] for a frequently updated bibliog-
raphy and other useful information on harmonic morphisms.

The first classification results for harmonic morphisms with one-dimensional fi-
bres were obtained by P. Baird and J.C. Wood (see [5]). In [7], R.L. Bryant proved
that, from a constant curvature Riemannian manifold of dimension greater than or
equal to four, there exist only two types of harmonic morphisms with one-dimen-
sional fibres (see [5] and [20] for alternative proofs). The two types can be nicely
described in terms of the geometrical properties of the foliations formed by the com-
ponents of the regular fibres. For this, recall [27], [19], [20] that we say a foliation
produces harmonic morphisms if it can be locally defined by submersive harmonic
morphisms. Then the two types of foliations which produce harmonic morphisms
which appear in Bryant’s theorem are the following (note that in [7] the ordering
is different):

Type 1. Riemannian one-dimensional foliations locally generated by Killing
vector fields [7].

Type 2. Homothetic foliations by geodesics orthogonal to an umbilical foliation
by hypersurfaces [3].

Accordingly, a harmonic morphism with one-dimensional fibres is said to be of
type 1 (respectively, type 2) if the components of its regular fibres form a foliation
of type 1 (respectively, type 2). Note that the gradient of the dilation at regular
points is horizontal for type 1 and vertical for type 2. Also, recall [2] that a har-
monic morphism with one-dimensional fibres is always submersive if the domain
has dimension at least five, and if the domain is of dimension four, then the set
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of critical points is discrete (see [5] for the case when the domain has dimension
three).

We prove (Theorem 2.8) that any harmonic morphism with one-dimensional
fibres from an Einstein manifold of dimension greater than or equal to five is either
of type 1 or of type 2, thus generalizing the result of [7]. Note that, from an Einstein
four -manifold, there is just one more type of harmonic morphism with one-dim-
ensional fibres [20], [21]; we indicate how this follows from the calculations in the
present paper; see [24] for more details.

Section 1 contains some generalities on foliations which produce harmonic mor-
phisms. The main classification result is obtained in Section 2 (Theorem 2.8). If
(Mn+1, g) is an Einstein manifold and ϕ : (Mn+1, g) → (Nn, h) is a harmonic
morphism of type 2, then (Nn, h) is also an Einstein manifold. (This follows, for
example, from well-known results on warped products (see [6, Chapter 9]).) How-
ever, this is not true for a harmonic morphism of type 1. In Section 3 we refine
the classification of harmonic morphisms with one-dimensional fibres in the case
when both the domain and codomain are Einstein manifolds. The result (Theorem
3.1) shows that only two well-known constructions (see [6, Chapter 9]), illustrated
by the Hopf fibrations and suitable warped products over Einstein manifolds, can
occur. In the Appendix we prove a fact on horizontally holomorphic submersions
which is needed in the proof of Theorem 3.1 .

1. Foliations which produce harmonic morphisms

Let V be (the tangent bundle of) a smooth foliation on a smooth Riemannian
manifold (M, g) and set H = V⊥. Recall (see [19], [20] ) that we say that V pro-
duces harmonic morphisms if it can be locally defined by submersive harmonic
morphisms. A foliation of codimension two produces harmonic morphisms if and
only if it is a conformal foliation with minimal leaves [27]. For foliations of codimen-
sion not equal to two which produce harmonic morphisms, we have the following
characterisation of R.L. Bryant [7] (see also [5], [19] or [20] ).

Proposition 1.1. Let V be a foliation of codimV = n 6= 2 on the Riemannian
manifold (M, g). Then the following assertions are equivalent:

(i) V produces harmonic morphisms;
(ii) V is a conformal foliation and the one-form

β = (n− 2) trace(BH)[ − n trace(BV)[

is closed. (Here H = V⊥, and BH (respectively, BV) denotes the second funda-
mental form of H (respectively, V); note that we shall denote by the same letter H
(respectively, V) the horizontal (respectively, vertical) distribution and the orthogo-
nal projection onto it).

We shall also need the following definition ([19], [20]).

Definition 1.2. We say that a foliation is homothetic if it can be locally defined
by horizontally homothetic submersions (i.e., horizontally conformal submersions
whose dilations are constant along horizontally curves).

See [5], [19] and [20] for more information on homothetic foliations.
The following result answers a question of P. Baird. (See [5] for a proof.)

Proposition 1.3. Let (M, g) be a real-analytic Riemannian manifold, and let V be
a foliation which produces harmonic morphisms on (M, g).
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Then V is a real-analytic foliation. Moreover, if codimV 6= 2 , then any harmonic
morphism produced by V is a real-analytic map onto a real-analytic Riemannian
manifold. If codimV = 2 , then V is locally defined by real-analytic submersive
harmonic morphisms onto real-analytic Riemannian two-manifolds.

Corollary 1.4. Let ϕ : (M, g)→ (N, h) be a submersive harmonic morphism from
a real-analytic manifold onto a smooth manifold.

If dimN 6= 2, then there exists a real-analytic structure on N with respect to
which ϕ and h are real-analytic. If dimN = 2, then ϕ is real-analytic with respect
to the real-analytic structure on N induced by the conformal structure of h .

Remark 1.5. In Corollary 1.4 , if dimN = 2 , then we can remove the hypothesis
that ϕ is submersive; note, however, that the metric of N may always be chosen
such that it is not real-analytic (just apply a suitable conformal deformation).

If dimN ≥ 3 , we do not know if the hypothesis that ϕ is submersive can be
removed.

2. The proof of the main theorem

We shall need two straightforward lemmas. For the reader’s convenience we
include their proofs here.

Lemma 2.1. For n ≥ 1, let P : Cn × C→ C be defined by

P (a, λ) = λn + a1λ
n−1 + · · ·+ an , (a = (a1, . . . , an) ∈ C n , λ ∈ C ).

Let
(
a(k)

)
⊆ Cn be a convergent sequence.

Then the set S =
{
λ ∈ C | ∃ k : P (a(k), λ) = 0

}
is bounded.

Proof. Let P̃ : Cn × CP 1 → CP 1 be defined by

P̃ (a, [λ0, λ1]) = [λn0 , λ
n
1 + a1λ0λ

n−1
1 + · · ·+ anλ

n
0 ] , (a ∈ Cn , [λ0, λ1] ∈ CP 1 ).

Obviously, S =
⋃
k Sk where Sk =

{
λ ∈ C | P̃ (a(k), [1, λ] ) = [1, 0]

}
; suppose

that S is unbounded. For each k , let λ(k) ∈ Sk be such that |λ| ≤ |λ(k)| for every
λ ∈ Sk. Because S is unbounded we must have that

(
λ(k)

)
is unbounded. By

passing to a subsequence, if necessary, we can suppose that λ(k) →∞ .
Because λ(k) ∈ Sk we have P̃ (a(k), [1, λ(k)] ) = [1, 0]. But

lim
k→∞

P̃ (a(k), [1, λ(k)] ) = P̃ (b, [0, 1]) = [0, 1]

where b = limk→∞ a(k), a contradiction. Hence S must be bounded.

For the second lemma we need the following definition.

Definition 2.2. Let E → M be a vector bundle endowed with a Riemannian
metric h , and let T ∈ Γ(�2E∗). Say that T can be consistently diagonalized at
x0 ∈ M if there exists an open neighbourhood U of x0 and a local orthonormal
frame {ej} on U for E∗ such that

T =
∑
j,k

µj δjk e
j ⊗ ek

for some smooth functions µj : U → R .
A similar definition can be made for a field of selfadjoint endomorphisms T̃ ∈

Γ(EndE) .
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Lemma 2.3. Let E → M be a vector bundle endowed with a Riemannian metric
h, and let T ∈ Γ(�2E∗). Then T can be consistently diagonalized at each point of
a dense open subset of M .

Proof. The proof is by induction on the rank (fibre dimension) of E.
For rankE = 1 the lemma is trivial.
Suppose that the assertion of the lemma is true for rankE < n; we shall prove

that the assertion is true for rankE = n.
Let P (x, λ) = Px(λ) be the characteristic polynomial of Tx , with respect to hx

(x ∈M). For p = 1, . . . , n , set

Gp =
{
x ∈M | Px has a root of order at most p

}
,

and set G0 = ∅ . Because

M =
n⋃
p=1

Gp \Gp−1 ⊆
n⋃
p=1

Gp \Gp−1 =
n⋃
p=1

Gp \Gp−1 ⊆M ,

we have that

M =
n⋃
p=1

Gp \Gp−1

where A denotes the closure of the set A. To complete the proof, it suffices to prove

that each x ∈
n⋃
p=1

Gp\Gp−1 has an open neighbourhood U such that E|U = E1⊕E2

where E1 and E2 are complementary orthogonal vector subbundles of E of positive
rank such that T |E1⊗E2 = 0 .

Let p ∈ {1, . . . , n} be such that Gp\Gp−1 6= ∅ and let x0 ∈ Gp\Gp−1. Let λ0 be a
root of Px0 of order at most p . Because x0 is not in Gp−1 we have that λ0 has order
p . Then, by the Malgrange Preparation Theorem (see [10, Chapter IV] ), in an open
neighbourhood U ⊆M \Gp−1 of x0, we have P (x, λ) = Q(x, λ)R(x, λ) where Q is
a polynomial of degree p in λ such that Q(x0, λ) = (λ − λ0)p and R(x0, λ0) 6= 0.
From the fact that P and Q are both polynomials in λ (with coefficients smooth
functions of x ), it follows that R is also polynomial in λ .

We shall show that there exists an open neighbourhood V ⊆ U of x0 such
that, for each x ∈ V , Qx has a root of order p . Suppose not. Let

(
x(k)

)
⊆ U

be such that limk→∞ x(k) = x0 and, for each k , there exists µ(k) ∈ R such that
Q
(
x(k), µ(k)

)
= 0 with µ(k) a root of Qx(k) of order less than p . Obviously, µ(k) is

also a root of Px(k) and, because x(k) ∈ U ⊆ M \ Gp−1 , µ(k) is a root of order at
least p of Px(k) . Hence R

(
x(k), µ(k)

)
= 0 . Now, by Lemma 2.1, the sequence

(
µ(k)

)
is bounded and hence, by passing to a subsequence if necessary, we can suppose
that limk→∞ µ(k) = µ0 with µ0 ∈ R . Then R(x0, µ0) = limk→∞R

(
x(k), µ(k)

)
= 0

and also Q(x0, µ0) = limk→∞Q
(
x(k), µ(k)

)
= 0 . Because R(x0, λ0) 6= 0 we have

that µ0 6= λ0 . But this implies that λ0 is not a root of order p of Qx0 . It follows
that, in an open neighbourhood V of x0, we have that Qx has only roots of order p
for any x ∈ V . Thus we can write Q(x, λ) =

(
λ− µ(x)

)p
, ((x, λ) ∈ V × R), where

µ(x) is the root of ∂p−1Q/∂λp−1(x, ·), so that µ is smooth. Hence

P (x, λ) =
(
λ− µ(x)

)p
R(x, λ) , ((x, λ) ∈ V × R ).
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Moreover, because ∂pP/∂λp(x0, λ0) 6= 0, we can suppose that ∂pP/∂λp
(
x, µ(x)

)
is

nonzero for any x ∈ V . It follows that µ(x) is an eigenvalue of order p for Tx for
any x ∈ V .

Let (E1)x be the eigenspace of µ(x) and let (E2)x be its orthogonal complement.
It is easy to see that Ej =

⋃
x∈V

(Ej)x , (j = 1, 2), are smooth subbundles of E which

have the required properties. The lemma follows.

Let ϕ : (Mn+1, g) → (Nn, h) be a submersive harmonic morphism between
Riemannian manifolds of dimension n+1 and n, respectively. Let V be the foliation
formed by the components of the fibres of ϕ, and let V ∈ Γ(V) be a local vertical
vector field such that g(V, V ) = λ2n−4 . Then let θ be the vertical dual of V (i.e.,
θ(V ) = 1 and ker θ = H with H = V⊥). Note that, at each point, both V and θ are
uniquely determined up to sign. Therefore, we can globally define a Riemannian
metric h on Mn+1 by

h = ϕ∗(h) + θ2 .

Note that ϕ : (M,h)→ (N, h) is a Riemannian submersion with geodesic fibres. It
follows that V is an infinitesimal automorphism of H; equivalently,

[V,X ] = 0 for any basic vector fieldX ∈ Γ(H) .(2.1)

Set Ω = dθ; from (2.1) it follows easily that Ω is basic, equivalently, iV Ω = 0 and
LV Ω = 0 . Also, H is integrable if and only if Ω = 0 .

To simplify the notation, from now on we shall denote by the same letter h the
induced metric h on M . Obviously, h|H is basic.

From [20, Lemma B.1.5] (see [19, Lemma 5.2, (4.4)] or [5] ) we recall the following:

Lemma 2.4. Let n ≥ 1 and let ϕ : (Mn+1, g)→ (Nn, h) be a submersive harmonic
morphism between Riemannian manifolds of dimension n + 1 and n, respectively.
Let λ = eσ be the dilation of ϕ .

Let MRicci denote the Ricci tensor of (M, g) and NRicci the Ricci tensor of
(N, h); then,

MRicci(X,Y ) = (NRicci)(ϕ∗X,ϕ∗Y )− 1
2 e

(2n−2)σ h(iXΩ, iY Ω)

− e−2σ (∆Mσ)h(X,Y )− (n− 1)(n− 2)X(σ)Y (σ) ,
(2.2)

MRicci(X,V ) = 1
2 e

(2n−2)σ (hd∗Ω)(X) + (n− 1)e(2n−2)σ Ω(X, gradh σ)

+ (n− 1)X(V (σ)) − (n− 1)(n− 2)X(σ)V (σ) ,
(2.3)

MRicci(V, V ) = (n− 2)e(2n−4)σ∆Mσ + 2(n− 1)V (V (σ))

− (3n− 4)(n− 1)V (σ)2 + 1
4e

(4n−4)σ|Ω|2h .
(2.4)

where hd∗ denotes the codifferential on (M,h).

We shall also need the following result of [19, Theorem 5.7, Corollary 5.9] (see
also [20]).

Proposition 2.5. Let (M, g) be an Einstein manifold of dimension at least 4, and
let V be a one-dimensional foliation which produces harmonic morphisms on (M, g).
Suppose that, either, the orthogonal complement H of V is integrable, or, V is a
homothetic foliation.

Then either,
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(i) V is a Riemannian foliation locally generated by Killing vector fields, or
(ii) V is a homothetic foliation by geodesics orthogonal to an umbilical foliation

by hypersurfaces.

Finally, we shall also need the following result from [21, Proposition 1.12] (see
also [20]).

Proposition 2.6. Let (M, g) be an Einstein manifold, and let V be a one-dimen-
sional foliation of codimension not equal to two which produces harmonic morphisms
on (M, g).

Then the following assertions are equivalent:
(i) V has basic mean curvature form;
(ii) V is a homothetic foliation.

Remark 2.7. Let ϕ : (M, g) → (N, h) be a submersive harmonic morphism. Let
V = kerϕ∗ and let λ be the dilation of ϕ . Then, from the fundamental formula of
P. Baird and J. Eells (see, for example, [5] or [19] ), it follows easily that trace(BV)[

is basic if and only ifX(logλ) is a basic function for any basic vector fieldX ∈ Γ(H) .

We now state the main theorem.

Theorem 2.8. Let (M, g) be an Einstein manifold of dimension at least 5, and let
V be a one-dimensional foliation which produces harmonic morphisms on (M, g).
Then either,

(i) V is a Riemannian foliation locally generated by Killing vector fields, or
(ii) V is a homothetic foliation by geodesics orthogonal to an umbilical foliation

by hypersurfaces.

Since by [2] any harmonic morphism with one-dimensional fibres from a Rie-
mannian manifold of dimension at least 5 is submersive, from Theorem 2.8 we
obtain the following.

Corollary 2.9. Let (Mn+1, g) be an Einstein manifold of dimension n+1 ≥ 5, and
let ϕ : (Mn+1, g)→ (Nn, h) be a nonconstant harmonic morphism to a Riemannian
manifold of dimension n.

Then either,
(i) the components of the fibres of ϕ form a Riemannian foliation locally tangent

to nowhere zero Killing vector fields, or
(ii) ϕ is a horizontally homothetic submersion with geodesic fibres orthogonal to

an umbilical foliation by hypersurfaces.

Remark 2.10. 1) Note that, in case (i), ϕ is not, in general, a Riemannian submer-
sion. In fact, its dilation is proportional to |V |1/(n−2) where V is a Killing vector
field tangent to the fibres [7] (see also [5], [19], [20]).

2) Since, in case (ii), the hypersurfaces are the level hypersurfaces of λ which
is an isoparametric function, the fibres of ϕ are orthogonal to an isoparametric
function [1] (see [5] ).

Proof of Theorem 2.8. By Proposition 1.3, if the horizontal distribution H is inte-
grable on an open subset of M , then H is integrable on M . Thus, by Proposition
2.5, it is sufficient to prove the case when H is nowhere integrable. Also, writing
n + 1 = dim M , we can suppose that the leaves of V are the fibres of a har-
monic morphism ϕ : (Mn+1, g) → (Nn, h) , where dim N = n with n ≥ 4 , and
from now on we shall use the notations of Lemma 2.4 . Let Ω2 ∈ Γ(End(H)) be
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the field of selfadjoint negative semi-definite endomorphisms of (H, h|H) defined by
h(Ω2(X), Y ) = −h(iXΩ, iY Ω) for horizontal X and Y .

By Lemma 2.3 , Ω2 can be consistently diagonalized on a dense open subset
of M ; let x0 ∈ M be a point of this subset. There is an open neighbourhood
U of x0 and an orthonormal frame {X1, . . . , Xn} for (H, h|H) over U such that
Ω2(Xi) = −µ2

i Xi for some continuous functions µi : U → [0,∞) with µ2
i smooth.

Because Ω and h|H are basic, we also have that Ω2 is basic; hence the µi are basic
as well. We can thus suppose that the Xi are basic.

From (2.2) we have
NRicci(ϕ∗Xi, ϕ∗Xj) = (n− 1)(n− 2)Xi(σ)Xj(σ) (i, j = 1, . . . , n , i 6= j).(2.5)

We have the following alternative. Either
(1) there exists x ∈ U and distinct j1 , j2 , j3 such that Xjk(σ)x 6= 0 (k = 1, 2, 3) ,

or
(2) for any x ∈ U there are at most two distinct values of j , say j1 , j2 such that

Xjk(σ)x 6= 0 (k = 1, 2) .
Suppose that (1) holds. By (2.5) we have that Xi(σ)Xj(σ) is basic for any

i 6= j . Hence Xj1(σ)2 Xj2(σ)2 Xj3(σ)2 is basic, and, because Xjk(σ) 6= 0 on some
open subset of U , we have that Xjk(σ) is basic (k = 1, 2, 3) . Thus, if (1) holds,
Xi(σ) is basic for all i = 1, . . . , n , on some open subset of U . Then, by Proposition
1.3 and Proposition 2.6 (see also Remark 2.7 ), V is homothetic on M and the proof
follows from Proposition 2.5 .

Suppose that (2) holds. If Xj(σ) = 0 for all j = 1, . . . , n, then V is a homothetic
foliation and the proof of the theorem follows from Proposition 2.5 . Therefore we
can suppose that, after renumbering if necessary, we have X1(σ)x 6= 0 at some point
x ∈ U . Then this holds on some open subset of U . Then, either Xj(σ) = 0 for
j = 2, . . . , n on some open subset of U , or there exists a point x ∈ U such that, after
renumbering if necessary, X1(σ)x 6= 0 and X2(σ)x 6= 0 . In the latter case, because
(2) holds, we must have that Xj(σ) = 0 (j = 3, . . . , n) on some open subset of U .
It follows that there exists an open subset U1 of U such that Xj(σ) = 0 (j ≥ 3).
From now on we shall work on U1.

By (2.2) we have

cM e−2σ = NRicci(ϕ∗Xi, ϕ∗Xi) − 1
2 e

(2n−2)σ µ2
i

− e−2σ ∆Mσ − (n− 1)(n− 2)Xi(σ)2 (i = 1, . . . , n) .
(2.6)

From (2.6) we get
NRicci(ϕ∗Xi,ϕ∗Xi) − NRicci(ϕ∗Xj , ϕ∗Xj)− 1

2 e
(2n−2)σ

(
µ2
i − µ2

j

)
− (n− 1)(n− 2)

(
Xi(σ)2 −Xj(σ)2

)
= 0 (i, j = 1, . . . , n) .

(2.7)

From (2.7) it follows that 1
2 e

(2n−2)σ
(
µ2
i−µ2

j

)
is basic for i, j ≥ 3 . Thus, if µi 6= µj

at some point for some i, j ≥ 3 , i 6= j, then eσ is basic and so V is Riemannian on
some open subset of M ; hence, by Proposition 1.3 , V is Riemannian on (M, g). It
remains to consider the case when µ3 = . . . = µn = µ for some function µ .

Now, either, µ1 = µ2 on some open subset, or, µ1 6= µ2 on a dense open subset.
In the former case, by (2.7), we have that X1(σ)2 −X2(σ)2 is basic on some open
subset. But, by (2.5), X1(σ)X2(σ) is also basic, and hence X1(σ) , X2(σ) are basic
on some open subset. Since Xj(σ) = 0 for j ≥ 3 , V has basic mean curvature
form. Then, by Proposition 2.6 , V is homothetic on some open subset and hence,
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by Proposition 1.3 , V is homothetic on (M, g); the proof of the theorem follows
from Proposition 2.5 .

It remains to consider the case when µ1 6= µ2 . Because Ω is skew-symmetric,
at each point x, for any i ∈ {1, . . . , n} with µi(x) 6= 0 there exists j ∈ {1, . . . , n},
j 6= i , such that µi(x) = µj(x). Hence, at each point x, we have that either
µ1(x) = µ(x) and µ2(x) 6= µ(x) or µ1(x) 6= µ(x) and µ2(x) = µ(x). Suppose that
µ1(x) 6= µ(x); then this holds at all points of an open subset, and on that subset
we must have µ2 = µ . Moreoever, because Ω is skew-symmetric, we must have
µ1 = 0 and so µ is not identically zero; in particular, n− 1 is even, i.e., n = 2k+ 1
for some integer k ≥ 1 .

From (2.7) we get
NRicci(ϕ∗X2, ϕ∗X2)− NRicci(ϕ∗X3, ϕ∗X3) = (n− 1)(n− 2)X2(σ)2 ;

hence, X2(σ) is basic. Thus, if X2(σ) 6= 0 , since X1(σ)X2(σ) is basic, we deduce
that X1(σ) is also basic and the proof follows as before. There remains the case
when X2(σ) = 0 which we now consider. Summing up the previous discussion, we
have that n = 2k + 1 , k ≥ 1, and we are now on an open subset on which we have
the following:

µ1 = 0 , µ2 = . . . = µn = µ ,

X2(σ) = . . . = Xn(σ) = 0 ,
µ andX1(σ) are not identically zero.

Moreover, we can assume that µ and X1(σ) are nowhere zero. Furthermore,
because Ω2(X1) = −µ2

1, we have that |iX1Ω| 2h = µ2
1 = 0 . Hence iX1Ω = 0 , equiva-

lently igradhσΩ = 0 .
From this and (2.3) it follows that we have for i = 1, . . . , n ,

0 = 1
2 e

(2n−2)σ (hd∗Ω)(Xi) + (n− 1)Xi(V (σ)) − (n− 1)(n− 2)Xi(σ)V (σ) .(2.8)

Next, we compute (hd∗Ω)(X1):

(hd∗Ω)(X1) = −
2k+1∑
j=1

(∇XjΩ)(Xj , X1)

= −
2k+1∑
j=1

{
Xj(Ω(Xj , X1))− Ω(∇XjXj , X1)− Ω(Xj ,∇XjX1)

}
=

2k+1∑
j=1

Ω(Xj ,∇XjX1) =
2k+1∑
j=2

Ω(Xj ,∇XjX1)

=
k∑
j=1

{
Ω(X2j ,∇X2jX1) + Ω(X2j+1,∇X2j+1 , X1)

}
.

We can choose a basic orthonormal local frame {X1, X2, . . . , X2k+1} such that

(Ωij) =


0 0 0 . . . 0 0
0 0 −µ . . . 0 0
0 µ 0 . . . 0 0
. . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . 0 −µ
0 0 0 . . . µ 0

 .(2.9)
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Then, from the above calculation we have

(hd∗Ω)(X1) =
k∑
j=1

{
h(∇X2jX1, X2j+1) Ω2j,2j+1 + h(∇X2j+1X1, X2j) Ω2j+1,2j

}
=

k∑
j=1

{
−µh(∇X2jX1, X2j+1) + µh(∇X2j+1X1, X2j)

}
= µ

k∑
j=1

{
h(X1,∇X2jX2j+1)− h(X1,∇X2j+1X2j)

}
= µ

k∑
j=1

h(X1, [X2j , X2j+1]) .

Recall that Xj(σ) = 0 for all j ≥ 2; hence,

[X2j , X2j+1](σ) = 0 ⇐⇒ −V [X2j , X2j+1](σ) = H[X2j , X2j+1](σ)

⇐⇒ Ω(X2j , X2j+1)V (σ) = h
(
[X2j , X2j+1],H(gradh σ)

)
⇐⇒ −µV (σ) = h

(
[X2j , X2j+1], X1

)
X1(σ)

⇐⇒ h
(
[X2j , X2j+1], X1

)
= −µ V (σ)

X1(σ)
.

It follows from the last equation that

(hd∗Ω)(X1) = − k µ2 V (σ)
X1(σ)

.(2.10)

From (2.8) and (2.10) we get

0 = − 1
2 k µ

2 e4kσ V (σ)
X1(σ)

+ 2kX1(V (σ)) − 2k(2k − 1)X1(σ)V (σ),

which is equivalent to

µ2 e4kσ V (σ) = 4X1(σ)X1(V (σ))− 4(2k − 1)X1(σ)2 V (σ) .(2.11)

From (2.7) with i = 1 , j = 2 , we get that
1
2 e

4kσ µ2 − 2k(2k − 1)X1(σ)2 is basic,

and hence on differentiating this with respect to V and using (2.1), we obtain

2k e4kσ V (σ)µ2 − 4k(2k − 1)X1(σ)X1(V (σ)) = 0,

which is equivalent to

µ2 e4kσ V (σ) = 2(2k − 1)X1(σ)X1(V (σ)) .(2.12)

From (2.11) and (2.12) we get that

4X1(σ)X1(V (σ)) − 4(2k − 1)X1(σ)2 V (σ) = 2(2k − 1)X1(σ)X1(V (σ)),

which, because X1(σ) is nowhere zero, is equivalent to

X1(V (σ)) = −2(2k − 1)
2k − 3

X1(σ)V (σ) .(2.13)
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From (2.12) and (2.13) it follows that

µ2 e4kσ V (σ) = −4(2k − 1)2

2k − 3
X1(σ)2 V (σ),

which, if V is not Riemannian (equivalently, V (σ) 6= 0), implies that

µ2 e4kσ = −4(2k − 1)2

2k − 3
X1(σ)2 .(2.14)

This is impossible if k ≥ 2 , since X1(σ) 6= 0 , µ 6= 0. The proof of the theorem is
complete.

Remark 2.11. The same proof as above applies for the case dimM = 4 up to (2.14).
However, from (2.14) and iX1Ω = 0, we now have

dH
(
λ−2

)
= ∗HΩ(2.15)

where dH is the differential composed with the horizontal projection and ∗H is the
Hodge star-operator on (H, h|H) with respect to some orientation of H .

From the proof of Theorem 2.8 it follows that if (M4, g) is a 4-dimensional
Einstein manifold and ϕ : (M4, g) → (N3, h) is a submersive harmonic morphism
to a Riemannian 3-manifold which is not of type 1 or of type 2 (i.e. V = kerϕ∗
is neither Riemannian, nor geodesic with integrable horizontal distribution), then
the “monopole equation” (2.15) must hold and we obtain a third type of harmonic
morphism [21] (see [20, Theorem 3.4.4] ); note that the proof in [21] is different.

3. Harmonic morphisms with one-dimensional fibres

between Einstein manifolds

In this section, we refine Theorem 2.8 in the case where the codomain is also
Einstein.

Theorem 3.1. Let ϕ : (Mn+1, g) → (Nn, h) be a surjective harmonic morphism
with connected fibres between Einstein manifolds of dimension n+ 1 and n (n ≥ 4).
Then, up to homotheties, one of the following assertions holds:

(i) ϕ is a Riemannian submersion with geodesic fibres onto an almost Kähler
manifold and Ω is the pull-back of its Kähler form (in particular, dimM is odd);

(ii) ϕ is a horizontally homothetic submersion with geodesic fibres orthogonal to
an umbilical foliation by hypersurfaces.

Remark 3.2. Note that any x ∈ M has an open neighbourhood U such that ϕ|U
has connected fibres. Furthermore, if M is compact (more generally, if H is an
Ehresmann connection) any harmonic morphism ϕ : (Mn+1, g)→ (Nn, h) (n ≥ 4)
can be factorised into a harmonic morphism with connected fibres followed by a
Riemannian covering [23] .

Proof of Theorem 3.1. Let n = dimN . If Ω = 0, then from (2.2) it follows that
X(σ)Y (σ) = 0 for any pair of orthogonal vectors X and Y where λ = eσ is the
dilation of ϕ . Hence X(σ) = 0 for any horizontal vector X , which implies that (ii)
holds.

From now on we shall assume that Ω is nowhere zero. In particular, (ii) does
not hold and hence, by Theorem 2.8 , the fibres of ϕ form a Riemannian foliation
locally generated by Killing vector fields. Therefore λ = eσ is basic and thus both
λ and σ are pull-backs by ϕ of functions on N ; we shall denote these two functions
by the same letters λ and σ .
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We have MRicci = cMg , NRicci = cNh and we shall denote by the same letter h
both the metric on N and the metric on M with respect to which ϕ is a Riemannian
submersion with geodesic fibres.

To complete the proof we must show that (i) holds on an open subset of M .
From (2.2) we get

1
2 e

(2n−2)σ h(iXΩ, iY Ω) = −(n− 1)(n− 2)X(σ)Y (σ)(3.1)

for any pair X, Y of orthogonal horizontal vectors.
As in the proof of Theorem 2.8 , there is an open subset U of M on which we can

consistently diagonalise Ω2 with respect to a basic orthonormal frame {X1, . . . , Xn}
of (H, h). Then, from (3.1) it follows that Xi(σ)Xj(σ) = 0 for any i 6= j. It follows
that either Xi(σ) = 0 for all i = 1, . . . , n or, after renumbering if necessary, on
some open subset we have X2(σ) = . . . = Xn(σ) = 0 and X1(σ) is not identically
zero.

From (2.7) we obtain µi = µj for any i, j = 2, . . . , n. Hence µi = µ (i = 2, . . . , n)
for some nonnegative function µ with µ2 smooth. From (2.7) we also get

− 1
2 e

(2n−2)σ(µ2
1 − µ2

2) = (n− 1)(n− 2)X1(σ)2 .(3.2)

Suppose that X1(σ) = 0 (equivalently, ϕ has geodesic fibres), then σ is constant
and µi = µ for i = 1, . . . , n . Moreover, from (2.2) it follows that µ = constant.
Hence n must be even and Ω is µ times the Kähler form of an almost Hermitian
structure on (N, h). Since dΩ = 0 , this structure is almost Kähler giving assertion
(i).

Suppose instead that X1(σ) 6= 0 . We shall obtain a contradiction. We have
µ1 6= µ2 and hence, because Ω 6= 0 is skew-symmetric, µ1 = 0 and µ 6= 0. Thus,
h(iX1Ω, iX1Ω) = µ2

1 = 0 which implies iX1Ω = 0 . Together with Xi(σ) = 0
(i = 2, . . . , n), this gives igradσΩ = 0 . Also, (3.2) becomes

1
2 e

(2n−2)σ µ2 = (n− 1)(n− 2)X1(σ)2,(3.3)

which can be written as

(n− 1)µ2 = 2(n− 2)X1(λ1−n)2 .(3.4)

Since ϕ is a harmonic morphism, by the chain rule (see, for example, [5, Section
3.2] ), we have that

∆M (f ◦ ϕ) = λ2 ∆Nf ◦ ϕ
for any smooth function f on N .

From (2.6) we get that

cM e−2σ = cN −∆Nσ − (n− 1)(n− 2)X1(σ)2 .(3.5)

From (2.4) we get that

cM e−2σ = (n− 2) ∆Nσ + 1
4 e

(2n−2)σ |Ω|2h .(3.6)

Because µ 6= 0 , as before, we have that n must be odd. Then we can choose the
frame {X1, . . . , Xn} such that, with respect to this frame, Ω is given by (2.9). In
particular, |Ω|2h = (n− 1)µ2 and (3.6) becomes

cM e−2σ = (n− 2) ∆Nσ + 1
4 (n− 1)e(2n−2)σµ2 .(3.7)

The relations (3.3), (3.5), (3.7) give
1
2 (n− 1)(n− 2)(n− 3)X1(σ)2 = −(n− 1)e−2σ cM + (n− 2)cN .(3.8)
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Because n ≥ 4 , relations (3.3), (3.8) and the fact that Xi(σ) = 0 (i = 2, . . . , n)
imply Xi(µ) = 0 (i = 2, . . . , n).

Note that (3.8) can be written as follows:

n− 3
2

X1(λ)2 = − cM

n− 2
+

cN

n− 1
λ2 .(3.9)

From now on Ω , µ and Xj , j = 1, . . . , n , will be viewed as objects on N . From
(2.3) and igradσΩ = 0 we get that hd∗Ω = 0 .

Let F be the foliation formed on N by the level hypersurfaces of σ. Note that
X2 , . . . , Xn are tangent to F and X1 is normal to F . Also, µ is constant along
the leaves of F and, from (2.9), it follows that Ω restricted to any leaf L of F is µ
times the Kähler form of an almost Hermitian structure J on (L, h|L). But dΩ = 0
and the constancy of µ along L imply that J is actually an almost Kähler structure
on (L, h|L). In particular, divF (µ−1Ω|L) = 0 which is equivalent to divF (Ω|L) = 0
where divF Ω =

∑n
j=2((F∇)XjΩ)(Xj , ·) (as before, we denote by the same letters

the distributions F and F⊥ and the orthogonal projections onto them). After
a short calculation (similar to the one used in the proof of Theorem 2.8 to find
(hd∗Ω)(X1)), by using the fact that F is integrable, we get that (divF Ω)(X1) = 0 .
Hence divF Ω = 0 .

We claim that divF Ω = 0 and div Ω = − hd∗Ω = 0 imply that F⊥ has geodesic
fibres. Indeed, we shall see that

div Ω = divF Ω− µ trace(B⊥)[ ◦ J(3.10)

where B⊥ is the second fundamental form of F⊥. Hence trace(B⊥) = 0, i.e., F⊥ is
geodesic.

Next, we prove (3.10). We have

div Ω =
n∑
j=1

(∇XjΩ)(Xj , ·)

= (∇X1Ω)(X1, ·) +
n∑
j=2

(∇XjΩ)(Xj , ·)

= (∇X1Ω)(X1, ·) +
n∑
j=2

((F∇)XjΩ)(Xj , ·) +
n∑
j=2

((F⊥∇)XjΩ)(Xj , ·)

= (∇X1Ω)(X1, ·) + divF Ω +
n∑
j=2

((F⊥∇)XjΩ)(Xj , ·) .

(3.11)

Obviously, (∇X1Ω)(X1, X1) = 0, and iX1Ω = 0 implies that ((F⊥∇)XjΩ)(Xj , X1) =
0 for any j = 2, . . . , n (recall that {X1} is a local frame for F⊥). Also iX1Ω = 0
and Xj(µ) = 0 (j = 2, . . . , n) imply that ((F⊥∇)XjΩ)(Xj , Xk) = 0 for any
j, k = 2, . . . , n .

For j = 1, . . . , (n− 1)/2 , we have

(∇X1Ω)(X1, X2j) = −Ω(∇X1X1, X2j)

= −h(∇X1X1, X2j+1)Ω(X2j+1, X2j)

= −µh(trace(B⊥), JX2j) .

(3.12)
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Similarly,

(∇X1Ω)(X1, X2j+1) = −µh(trace(B⊥), JX2j+1) .(3.13)

Relation (3.10) now follows from (3.11), (3.12) and (3.13).
From iX1Ω = 0 and dΩ = 0 it follows that LX1Ω = d iX1Ω + iX1dΩ = 0 . Hence

Ω is basic for F⊥. It follows also that J is basic for F⊥, equivalently, F⊥ is defined
by horizontally holomorphic submersions (see the Appendix for the definition of
horizontally holomorphic submersion). Moreover, by taking on the codomain of
such a submersion the metric induced by any leaf of F , from Proposition A.1 of
the Appendix we get that F⊥ is defined by horizontally holomorphic harmonic
submersions.

It is easy to see that Ω(JX, Y ) = µh(X,Y ) for any X, Y ∈ F . Because both
Ω and J are basic for F⊥, we get that F⊥ is a conformal foliation with dilation
µ1/2 . Moreover, because µ is constant along the leaves of F , we get that F⊥ is a
homothetic foliation. Thus, F⊥ is locally defined by horizontally homothetic sub-
mersions ψ : (N, h) → (P, k) with geodesic fibres (equivalently, F⊥ corresponds,
locally, to a warped product decomposition of (N, h)). Moreover, (P, k) is an Ein-
stein (n−2) -manifold (apply, for example, [6, (9.109)]). From [6, (9.109)] it follows
that µ satisfies the following equation:

X1(µ−1/2) =
cP

n− 2
− cN

n− 1
µ−1(3.14)

where the Ricci tensor of (P, k) is given by PRicci = cPk .
After a straightforward elementary calculation we get that the equations (3.4),

(3.9) and (3.14) are incompatible and the proof follows.

Remark 3.3. 1) Note that, if dimN = 3 , then from the above proof we get that
igradλΩ = 0 and (3.4); equivalently, λ−2 and Ω are related by the S1-monopole
equation (see [20], [21] for this case).

2) Both case (i) and case (ii) of Theorem 3.1 are related to well-known construc-
tions of Einstein metrics (see [6, Chapter 9]).

Appendix A. A remark on horizontally holomorphic submersions

Let V be a foliation on the Riemannian manifold (M, g). Assume that on the
horizontal distribution H = V⊥ there exists an almost Hermitian structure J which
is a basic tensor field for V . Then, V could be locally defined by submersions
ϕ : (U, g|U) → (N, J̌) onto almost complex manifolds such that, at each point
x ∈ U , the differential ϕ∗,x|Hx : (Hx, Jx) → (Tϕ(x)N, J̌ϕ(x)) is complex linear.
We shall call such submersions horizontally holomorphic (see [17] for alternative
terminology). Obviously, any holomorphic submersion from an almost Hermitian
manifold to an almost complex manifold is horizontally holomorphic, but there
exist simple examples of horizontally holomorphic submersions (e.g., orthogonal
projections, the Hopf fibrations) which are not holomorphic maps.

Let (Mm, g) be a Riemannian manifold endowed with a pair of complementary
orthogonal distributions H and V of dimension n and m − n , respectively. For a
(p, q) -tensor field T on M the horizontal divergence divH T is the (p, q− 1) -tensor
field given by

divH T =
n∑
a=1

iXa((H∇)XaT )
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where {Xa}a=1,... ,n is a local orthonormal frame for H .

Proposition A.1. Let ϕ : (M, g) → (N, h, J) be a horizontally holomorphic sub-
mersion to an almost Hermitian manifold. Then

J(trace(BV)) + J(τ(ϕ)) + traceg ϕ∗(
N

∇J)− divHJ = 0

where V = kerϕ∗ , BV is the second fundamental form of V,
N

∇ is the Levi-Civita
connection of (N, h) and τ(ϕ) is the tension field of ϕ .

Proof. Clearly by identifying ϕ∗(TN) withH the ϕ∗(TN) -valued one-form induced
by ϕ∗ becomes the “horizontal” projection H .

Let X, Y be horizontal vector fields. With ∇ the connection on ϕ∗(TN)⊗T ∗M
we can write

(∇ϕ∗)(X, JY ) = ϕ∗(
N

∇)X(HJY )−H(
M

∇X(JY ))

= ϕ∗(
N

∇)X(JY )− (H
M

∇)X(JY )

= (ϕ∗(
N

∇)XJ)(Y ) + J(ϕ∗(
N

∇)XY )− ((H
M

∇)XJ)(Y )− J((H
M

∇)XY ).

Hence

(∇ϕ∗)(X, JY ) = J((∇ϕ∗)(X,Y )) + ϕ∗(
N

∇J)XY − ((H
M

∇)J)XY .(A.1)

Let {Xa} be a local orthonormal frame for (H, gH). From (A.1) we get

J
(∑

a

(∇ϕ∗)(Xa, Xa)
)

+ traceg ϕ∗(
N

∇J)− divHJ = 0 .(A.2)

As is well-known (and easy to prove) (∇ϕ∗)(V,W ) = −BV(V,W ) for any vertical
vectors V, W . The proof follows from this fact and (A.2).

Remark A.2. 1) From Proposition A.1 we could obtain a result similar to the one
of [3] which relates the condition for a horizontally conformal submersion to be
harmonic (and hence, a harmonic morphism) and the property that its fibres be
minimal ([17]).

2) A proof similar to the one above could be obtained for the following formula
of A. Lichnerowicz [16] for a holomorphic map ϕ : (M, g, J) → (N, h, J) between
almost Hermitian manifolds:

J(τ(ϕ)) + traceg ϕ∗(
N

∇J)− divJ = 0 .(A.3)

It follows easily from (A.3) that any holomorphic map from a cosymplectic man-
ifold to a (1,2) -symplectic manifold is harmonic [16] (cf. [13]).
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