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Preface

The aim of this book is to give a self-contained

introduction to the study of the interplay between

harmonic morphisms and twistorial maps. It is pri-

marily intended for graduate students but, also, for

undergraduate students who are interested in Dif-

ferential Geometry, and for mathematicians will-

ing to be initiated in harmonic morphisms, Twistor

Theory or Weyl Geometry. To understand it, some

familiarity with principal connections and Riemann-

ian manifolds would be desirable.

The importance of harmonic maps and minimal

submanifolds is well known (see, for example, [12] ,

[11] , [5] ).

Harmonic morphisms are maps which pull back

(local) harmonic functions to harmonic functions.

In Differential Geometry, a natural setting for har-

monic morphisms was provided by Riemannian man-

ifolds (see [5] and, also, [26] for a fairly up to date
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account of the subject). However, in lower dimen-

sions, for example, the classification results are in-

volving, at least implicitly, twistorial methods. Con-

sequently, maps having natural twistorial interpre-

tations (like the horizontally conformal submersions

with geodesic fibres on three-dimensional Einstein–

Weyl spaces) suggested the necessity to broaden the

geometric setting for the study of harmonic mor-

phisms.

On the other hand, the Twistor Theory itself

was lacking a systematization which takes into ac-

count the similarities between its numerous inter-

esting constructions.

The resolution of these two general problems

was initiated in [28] and [21] , and then continued

and developed in [24] , [6] , [22] , [17] , [23] .

Given the above stated aim, the book is orga-

nized as follows.

In Chapter 1 , we collect a few definitions and re-

sults (most notably, Proposition 1.2.1 and Theorem

1.3.1 ), subsequently invoked several times through-

out the book.

The first properties of harmonic morphisms be-

tween Weyl spaces are given in Chapter 2 . Besides
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the necessary generalizations to Weyl spaces of ba-

sic facts on harmonic morphisms between Riemann-

ian manifolds (such as, Theorem 2.4.3 and Proposi-

tion 2.5.3 ), there we include two natural construc-

tions of harmonic morphisms between Weyl spaces

(Proposition 2.3.2 and Corollary 2.5.5 ).

Chapter 3 is an introduction to Twistor Theory.

There we discuss, in detail, the twistorial structures

of three-dimensional Einstein–Weyl spaces and of

anti-self-dual manifolds, and the corresponding twisto-

rial maps between them.

In Chapter 4 , we focus on the interplay be-

tween harmonic morphisms and twistorial maps.

From there, we mention here only the basic Ex-

amples 4.2.3 and 4.2.4 of twistorial harmonic mor-

phisms, based on the monopole and the Beltrami

fields equations, respectively.

Finally, the Appendix presents the decomposi-

tion of the curvature form of a Weyl space (and two

consequences of it: Propositions A.1.9 and A.1.11 ),

results of which are used in Chapters 3 and 4 .

This book grew out, in part, from two series of

talks given by the first author at the Dipartimento

di Matematica, Istituto “Guido Castelnuovo”, Uni-

versità degli Studi di Roma “La Sapienza”, in Sep-

tember/October 2007 and February/March 2009,
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CHAPTER 1

Preliminaries

In this chapter, we recall the definition and the

basic properties of (co-)CR structures and we prove

two results (Proposition 1.2.1 and Theorem 1.3.1 )

which will be useful later on.

1.1. CR and co-CR structures

Unless otherwise stated, all the manifolds are

assumed smooth and connected, and all the maps

are assumed smooth.

Let J be an almost complex structure on a man-

ifold M ; that is, J is a (1, 1)-tensor field on M

such that J2 = −IdTM . Then J is determined

by its eigenbundle C corresponding to −i ; also,

TCM = C⊕C. Moreover, J is integrable (that is, J

is given by local systems of complex coordinates on

M) if and only if the space of sections of C is closed

under the (Lie) bracket (the Newlander-Nirenberg

Theorem; see [20] and the references therein).

More generally, we have the following definitions

(see [3] , [23] ).
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Definition 1.1.1. Let C be a complex vector sub-

bundle of TCM .

We say that

(1) C is an almost CR structure if C∩C = {0} .

(2) C is an almost co-CR structure if C + C =

TCM .

Let C be an almost (co-)CR structure on M .

Then C is integrable if its space of sections is closed

under the bracket. A (co-)CR structure is an inte-

grable almost (co-)CR structure. A (co-)CR man-

ifold is a manifold endowed with a (co-)CR struc-

ture.

A map ϕ : (M, C) → (N,D) between almost

(co-)CR manifolds is holomorphic if dϕ(C) ⊆ D.

The ‘CR’ stands both for ‘Cauchy-Riemann’ and

‘complex-real’.

In this book, we are mainly interested in co-CR

structures.

Let N be a submanifold of an (almost) co-CR

manifold (M, C) . If C|N∩TCN is an (almost) co-CR

structure on N , we say that C induces an (almost)

co-CR structure on N .

Example 1.1.2. Let ϕ : M → (N, J) be a submer-

sion onto a complex manifold. Then

C = (dϕ)−1(T 0,1N)
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is a co-CR structure on M ; if, further, ϕ has con-

nected fibres then C is called a simple co-CR struc-

ture.

Note that, ϕ : (M, C)→ (N, J) is holomorphic.

Next, we prove that any co-CR structure is, lo-

cally, given as in Example 1.1.2 .

Proposition 1.1.3. Let (M, C) be a co-CR mani-

fold. Then any point of M has an open neighbour-

hood U for which there exists a submersion ϕ : U →
(N, J) onto a complex manifold such that C|U =

(dϕ)−1(T 0,1N) . Moreover, any such submersion is

unique, up to the composition with a holomorphic

diffeomorphism from its codomain onto some com-

plex manifold.

Before proving Proposition 1.1.3 , note that we

could have replaced the condition

C|U = (dϕ)−1(T 0,1N)

with the condition ϕ is holomorphic and (ker dϕ)C =

(C ∩ C)|U .

Further, recall that if ϕ : M → N is a submer-

sion then the vectors tangent to ker dϕ are called

vertical vectors . Also, a vector field X on M is pro-

jectable if there exists a vector field Y on N such

that dϕ(Xx) = Yϕ(x) , for any x ∈ M . Obviously,
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any vertical vector field is projectable.

We also need the following lemma.

Lemma 1.1.4. Let ϕ : M → N be a surjective

submersion (with connected fibres) and let X be a

vector field on M .

Then X is projectable if and only if [V,X] is

vertical, for any vertical vector field V .

Proof. If f is a function onN then dϕ(Xx)(f) =

Xx(f ◦ ϕ) , for any x ∈ M . Therefore X is pro-

jectable if and only if dϕ(X) is constant along the

fibres of ϕ .

As the fibres of ϕ are connected, the latter con-

dition is equivalent to the fact that, for any vertical

vector field V , we have that dϕ(dψt(X)) doesn’t de-

pend of t , where ψt is the local flow of V . By [20,

Corollary 1.10] , this holds if and only if

dϕ
(
dψs
(
[V,X]

))
= 0 ,

for any s ; equivalently, dϕ
(
[V,X]

)
= 0 .

The proof is complete. �

Proof of Proposition 1.1.3. If C is integra-

ble then C ∩ C is (the tangent bundle of) a folia-

tion on M . Hence, each point of M has an open

neighbourhood U for which there exists a surjec-

tive submersion ϕ : U → N such that (ker dϕ)C =
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(C ∩ C)|U .

Now, Lemma 1.1.4 implies that dϕ(C) defines

a complex structure on N , whilst the unicity of ϕ

(with given U) is obvious. �

Note that, for CR structures the result corre-

sponding to Proposition 1.1.3 does not hold. Nev-

ertheless, the following result is obvious.

Proposition 1.1.5. Let (M, C) be an almost CR

manifold and let H be the distribution on M such

that H C = C ⊕ C.

If H is integrable then the following assertions

are equivalent:

(i) C is integrable.

(ii) Each leaf N of H , endowed with C|N , is

a complex manifold.

1.2. Other useful facts

A complex vector bundle is a (real) vector bun-

dle E endowed with a section J of its endomor-

phism bundle such that J2 = −IdE . Therefore the

fibres and the space of sections Γ(E) of E are com-

plex vector spaces. Obviously, also, Hom(TM,E)

is a complex vector bundle, where M is the base

of E. Moreover, there exists a canonical isomor-

phism of complex vector bundles Hom(TM,E) =

HomC (TCM,E) .
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Let (P,M,GL(r,C )) be the (principal) bundle

of complex frames on E , where rankCE = r . We

shall denote by π : P → M the projection and

by gl(r,C ) the Lie algebra of GL(r,C ) (that is,

gl(r,C ) is the Lie algebra determined of r× r com-

plex matrices).

Recall that, there exists a canonical isomorphism

of (complex) vector bundles ker dπ = P × gl(r,C ) ,

under which the constant sections of P × gl(r,C )

correspond to the fundamental vector fields on P

(see [20] ).

A complex connection on a complex vector bun-

dle E is a connection ∇ on E such that ∇J = 0 ,

where J is the linear complex structure of E ; equiv-

alently, ∇ : Γ(E) → Γ(Hom(TM,E)) is complex

linear. Furthermore, this holds if and only if for

any complex local frame u = (uj)j=1,...,r on E , over

some open set U of M , there exists a gl(r,C )-valued

one-form A on U characterised by ∇uj = Ak
j ⊗ uk ,

for any j = 1, . . . , r , where we have used the Ein-

stein summation convention. The one-form A is the

local connection form of ∇, with respect to u .

It follows that ∇ corresponds to a principal con-

nection H on P . Recall that, H is a GL(r,C )-

invariant distribution on P which is complemen-

tary to ker dπ . Also, by composing the ‘vertical’
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projection from TP onto ker dπ with the projection

ker dπ → gl(r,C ) we obtain the connection form ω

of H . Then, under the isomorphism of principal

bundles P |U = U × GL(r,C ) , corresponding to a

complex local frame u , we have

ω = a−1 da+ a−1Aa

and u∗(ω) = A , where

a : U ×GL(r,C )→ GL(r,C )

is the projection and we have denoted by the same

letter the local connection form A and its pull back

to U ×GL(r,C ) (see [20] ).

Another characteristic condition for a connec-

tion ∇ on E to be complex is that, with respect

to the isomorphism EC = E ⊕ E , we have ∇C =

∇⊕∇.

Let H be the closed complex Lie subgroup of

GL(r,C ) formed by those a ∈ GL(r,C ) preserv-

ing the space spanned by the first k vectors of the

canonical basis of Cr. Then P/H is the Grassmann

bundle of complex vector subspaces of complex di-

mension k of E ; in particular, the typical fibre of

P/H is the complex Grassmannian Grk(r,C ) of k-

dimensional complex vector subspaces of Cr.

Let ∇ be a complex connection on E. We shall
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denote by K
(
⊆ T (P/H)

)
the connection induced

by ∇ on P/H . Note that, as P/H is a bundle

whose typical fibre is a complex manifold on which

the structural group acts by holomorphic diffeomor-

phisms, ker dρ is a complex vector bundle. There-

fore

(ker dρ)C = (ker dρ)1,0 ⊕ (ker dρ)0,1 ,

where ρ : P/H →M is the projection.

Proposition 1.2.1. Let F be a complex vector sub-

bundle of E , rankC F = k , and denote by q the

corresponding section of P/H . Let X ∈ TC
x0
M , for

some x0 ∈M , and denote q0 = q(x0) .

The following assertions are equivalent:

(i) (dq)C (X) ∈ K C
q0
⊕ (ker dρ)0,1

q0
.

(ii) ∇Xv ∈ Fx0 for any section v of F .

Proof. Let σ : P → P/H be the projection.

Then σ−1(q(M)) is the reduction of P to H formed

of the complex frames on E whose first k vectors

are complex frames on F .

Let u be a local section of σ−1(q(M)) defined on

some open neighbourhood U of x0 . We, obviously,

have q|U = σ ◦ u .

Therefore assertion (i) is equivalent to

ωC(du(X)) ∈ h⊕ gl(r,C ) ,
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where h is the Lie algebra of H, and we have used

the isomorphism of Lie algebras

gl(r,C )C = gl(r,C )⊕ gl(r,C ) .

As, with respect to this isomorphism, we have ωC =

ω ⊕ ω , assertion (i) is, further, equivalent to

ω(du(X)) ∈ h .

By using the fact that u∗(ω) is the local connec-

tion form of ∇, with respect to u , we obtain that

assertion (i) holds if and only if ∇Xuj ∈ Fx0 , for

any j = 1, . . . , k . �

1.3. An integrability result

Let G be a complex Lie subgroup of GL(m,C )

which acts transitively on a complex submanifold F

of the complex Grassmannian Grk(m,C ) , k ≤ m ;

in particular, F = G/H, where H is the isotropy

group of G at some q0 ∈ F .

LetM be a manifold, dimM = m , for which the

bundle of complex frames on TCM is endowed with

a reduction P to G. Suppose, further, that TCM

is endowed with a complex connection, compatible

with G ; that is, ∇ corresponds to a principal con-

nection on P .

Note that, the usual formula for the torsion of a
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connection on a manifold can be applied to obtain

the torsion T of ∇, which is a section of TCM ⊗
Λ2(T ∗M) . Alternatively, T is the exterior covari-

ant derivative of the TCM -valued one-form on M

given by the inclusion TM → TCM .

Now, note that, P/H is a subbundle of the Grass-

mannian bundle of k-dimensional complex vector

spaces on M , and ∇ induces a connection on it.

Let B be the complex subbundle of TC(P/H)

whose fibre at each q ∈ P/H is the horizontal lift

of q ⊆ TC
ρ(q)M , with respect to ∇, where ρ : P/H →

M is the projection. Define C = B ⊕ (ker dρ)0,1.

Theorem 1.3.1. The following assertions are equiv-

alent:

(i) C is integrable.

(ii) R(Λ2q)q ⊆ q and T (Λ2q) ⊆ q , for any

q ∈ P/H, where R and T are the curvature and

torsion of ∇, respectively.

Proof. Let C0 = (dσ)−1(C) , where σ : P →
P/H is the projection, defined by σ(u) = u(q0) , for

any u ∈ P . As, also, (dσ)(C0) = C, we have that C
is integrable if and only if C0 is integrable.

Denote by B0 the complex vector subbundle of

TCP whose fibre at each u is the horizontal lift,

with respect to ∇, of u(q0) ⊆ TC
π(u)M , where π :
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P → M is the projection. We, obviously, have

(dσ)(B0) = B.

Note that, ker dπ = P × g , where g is the Lie

algebra of G (see [20] ). Also, we have an isomor-

phism of Lie algebras gC = g ⊕ g , with respect to

which, as usual, the decomposition of any A ∈ g is

given by

A⊗ 1 = 1
2(A⊗ 1− iA⊗ i) + 1

2(A⊗ 1 + iA⊗ i) .

Then C0 = B0 ⊕ P × h⊕ P × g , where h is the

Lie algebra of H.

We shall denote by the same letters the elements

of gC and the corresponding fundamental (com-

plex) vector fields on P ,

For each ξ ∈ Cm let B(ξ) be the (complex) vec-

tor field on P which, at each u ∈ P , is the hor-

izontal lift, with respect to ∇, of u(ξ) (cf. [20] ).

Thus, B0 is generated by {B(ξ) | ξ ∈ q0} . Further-

more, similarly to [20, Proposition III.2.3] , we have

[A⊗ 1, B(ξ)] = B(Aξ) , for any A ∈ g and ξ ∈ Cm.

Consequently,

[iA⊗i, B(ξ)] = i [iA⊗1, B(ξ)] = iB(iAξ) = −B(Aξ) ,

and, hence, under gC = g⊕ g , we have [A,B(ξ)] =

B(Aξ) and [A,B(ξ)] = 0 , for any A ∈ g and

ξ ∈ Cm.
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Also, by using the fact that H is embedded in

G, we obtain

(1.3.1) h = {A ∈ g |A(q0) ⊆ q0 } .

Therefore C0 is integrable if and only if [B(ξ), B(η)]

is a section of C0 , for any ξ, η ∈ q0 .

Let ω be the connection form of (the princi-

pal connection corresponding to) ∇ and let θ be

the Cm-valued one-form on P given by θ(X) =

u−1
(
dπ(X)

)
, for any X ∈ TP . Alternatively, θ

is the tensorial form corresponding to the TCM -

valued one-form onM given by the inclusion TM →
TCM (cf. [20] ).

Let Ω and Θ be the tensorial forms on P corre-

sponding to R and T , respectively; that is,

Ω(X, Y ) = u−1 ◦R(dπ(X), dπ(Y )) ◦ u ,
Θ(X, Y ) = u−1

(
T (dπ(X), dπ(Y ))

)
,

(1.3.2)

for any u ∈ P and X, Y ∈ TuP .

By the (complex) Cartan’s structural equations,

we have

Ω = dω + ω ∧ ω ,
Θ = dθ + ω ∧ θ .

(1.3.3)

Let ξ, η ∈ q0 . The vertical and horizontal com-

ponents of [B(ξ), B(η)] are given by ωC([B(ξ), B(η)]
)
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and θ
(
[B(ξ), B(η)]

)
, respectively. Hence, by using

(1.3.2) , (1.3.3) and the fact that ωC = ω ⊕ ω , we

obtain that, at each u ∈ P , we have [B(ξ), B(η)]u ∈
C0 if and only if the following two relations hold:

u−1 ◦R(uξ, uη) ◦ u ∈ h and u−1(T (uξ, uη)) ∈ q0 .

Finally, from (1.3.1) it follows that C is inte-

grable if and only if, for any ξ, η ∈ q0 and u ∈ P ,

we have R(uξ, uη)(u(q0)) ⊆ u(q0) and T (uξ, uη) ∈
u(q0) . The proof is complete. �

From the proof of Theorem 1.3.1 we obtain the

following fact which will be used later on.

Remark 1.3.2. If∇ is torsion free then the bracket

of any two sections of C is a section of C⊕ (kerρ)1,0 .





CHAPTER 2

Harmonic morphisms between Weyl spaces

In this chapter, we present the basic properties

of Weyl spaces (see [10] , [8] ) and of the harmonic

morphisms between them [21] (cf. [5] ).

2.1. Conformal manifolds

LetMm be a (smooth connected) manifold, with

dimM = m . For simplicity we shall assume that

Mm is oriented. Then there exists an oriented line

bundle L such that Lm = ΛmTM , where Lm =

L⊗ · · · ⊗ L︸ ︷︷ ︸
m factors

. We call L the line bundle of Mm.

Two Riemannian metrics g and h on Mm are

conformally equivalent if there exists a positive func-

tion f on Mm such that h = f 2g. A conformal

structure on Mm is an equivalence class c of confor-

mally equivalent Riemannian metrics on Mm ; if g is

a representative of c we write c = [g] . A conformal

manifold is a manifold endowed with a conformal

structure.

There are other ways, equally useful, to describe
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a conformal structure. Two of these are based on

the following simple observation.

Proposition 2.1.1. Let (Mm, c) be a conformal

manifold. Then there exists a bijective correspon-

dence which to any positive section s of L associates

the representative gs of c such that s−m is the vol-

ume form of gs , where s−m = s∗ ⊗ · · · ⊗ s∗︸ ︷︷ ︸
m factors

, with

s∗ the section of L∗ dual to s. Moreover, the section

s2 ⊗ gs of L2 ⊗
(
�2T ∗M

)
depends only of c , where

�2 denotes the second symmetric power.

Proof. Let s be a positive section of L and let

ω be the volume form of some representative g of c .

Then there exists a positive function f on M such

that s−m = fmω . Consequently, the volume form

of f 2g is s−m; equivalently, gs = f 2g.

From (fs)−m = f−ms−m = f−m(fmω) = ω we

obtain g = gfs , which shows that the correspon-

dence is bijective.

Finally, as gfs = g = f−2gs , we have

(fs)2 ⊗ gfs = s2 ⊗ gs ,

which proves the last assertion. �

Proposition 2.1.1 shows that a conformal struc-

ture c on Mm may be identified with s2⊗gs , where
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s is any positive section of the line bundle L of Mm.

In other words, we think of c as an L2-valued Rie-

mannian metric on M .

Furthermore, c also corresponds to a Riemann-

ian metric on L∗⊗TM , which we equally denote by

c , induced by the canonical isomorphism of vector

bundles L2⊗
(
�2T ∗M

)
= �2(L∗⊗ TM)∗ (here, we

use that rankL = 1). Note that,

c(s∗ ⊗X, s∗ ⊗ Y ) = gs(X, Y ) ,

for any positive s ∈ L and any X, Y ∈ TM .

Also, as c is a Riemannian metric on L∗ ⊗ TM ,

it corresponds to a musical isomorphism

(·)] : L⊗ T ∗M → L∗ ⊗ TM .

Proposition 2.1.2. Let s be a positive section of

L. Then for any one-form α on Mm we have

(2.1.1) (s⊗ α)] = s∗ ⊗ α]s,

where (·)]s : T ∗M → TM is the musical isomor-

phism corresponding to gs .

Proof. Let X be a vector field on M . Then

(s ⊗ α)(s∗ ⊗ X) = α(X) . On the other hand, we

have c(s∗ ⊗ α]s, s∗ ⊗X) = gs(α
]s, X) . Hence,

(s⊗ α)(s∗ ⊗X) = c(s∗ ⊗ α]s, s∗ ⊗X)

and the proof is complete. �



28 Radu Pantilie and Stefano Marchiafava

By tensorising (·)] with, for example, IdL∗ we

obtain an isomorphism of vector bundles T ∗M →
(L∗)2 ⊗ TM which will, also, be denoted by (·)]. If

s is a positive section of L and α a one-form on Mm

then, from (2.1.1) , we obtain

(2.1.2) α] = s−2 ⊗ α]s.

Similarly, we have, the isomorphism (·)[ : TM →
L2⊗T ∗M , given by X 7→ c(X, ·) , for any X ∈ TM .

We shall, also, use one more equivalent descrip-

tion for conformal structures. For this, say that a

frame on a conformal manifold (Mm, c) is confor-

mal if it is orthonormal with respect to some repre-

sentative of c. Then the set of conformal frames on

(Mm, c) is (the total space of) a principal bundle on

Mm whose structural group is the (real) conformal

group CO(m,R) , formed of the m×m real matrices

a for which there exists a positive number λ such

that aTa = λ2Im , where Im is the identity matrix;

equivalently, CO(m,R) is formed of the conformal

linear isomorphisms of Rm, endowed with the con-

formal linear structure given by its canonical metric

(cf. the paragraph before Definition 2.4.2 , below).

Conversely, any reduction of the frame bundle of

Mm to CO(m,R) is the bundle of conformal frames

of a unique conformal structure on Mm.
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2.2. Weyl spaces

We start this section with the following simple

lemma.

Lemma 2.2.1. Let (Mm, c) be a conformal mani-

fold and let D be a connection on M ; we shall, also,

denote by D the connection induced by it on L . Let

s be a positive section of L and let α be a one-form

on M .

Then any two of the following assertions imply

the third:

(i) Dc = 0 .

(ii) Ds = α ⊗ s (equivalently, α is the local

connection form, with respect to s , of the connec-

tion induced by D on L).

(iii) Dgs = −2α⊗ gs .

Proof. This follows quickly by using the fact

that c = s2 ⊗ gs . �

A connectionD on a conformal manifold (Mm, c)

is conformal if Dc = 0 ; equivalently, for a represen-

tative g of c there exists a one-form α on Mm such

that Dg = −2α⊗ g.

Any conformal connection on (Mm, c) corres-

ponds to a principal connection on the bundle of

conformal frames of (Mm, c) .
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Definition 2.2.2. A Weyl connection on a confor-

mal manifold is a torsion free conformal connection.

A Weyl space is a conformal manifold endowed

with a Weyl connection.

It is a fundamental fact in Weyl Geometry that

if Mm is endowed with a conformal structure c then

the Weyl connections on (Mm, c) are determined by

the connections they induce on L .

Proposition 2.2.3. Let D be a Weyl connection

on a conformal manifold (Mm, c) ; we shall denote

by the same letter D the connection induced by D

on L and its powers.

For any vector fields X, Y , Z on M , we have

2 c(DXY, Z) = DX(c(Y, Z)) +DY (c(Z,X))

−DZ(c(X, Y ))− c(X, [Y, Z])

+ c(Y, [Z,X]) + c(Z, [X, Y ]) .

(2.2.1)

Proof. Let X, Y , Z on M be vector fields on

M .

As Dc = 0 , we have

(2.2.2) DX(c(Y, Z)) = c(DXY, Z) + c(Y,DXZ) .
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By permuting X, Y , Z, in (2.2.2) , we also have

DY (c(Z,X)) = c(DYZ,X) + c(Z,DYX) ,

−DZ(c(X, Y )) = −c(DZX, Y )− c(X,DZY ) .

(2.2.3)

If we take the sum of (2.2.2) and (2.2.3) , and

we use the fact that D is torsion free we obtain

DX(c(Y, Z)) +DY (c(Z,X))−DZ(c(X, Y ))

= c(DXY, Z) + c(Z,DYX)

+ c(Y, [X,Z]) + c(X, [Y, Z]) .

(2.2.4)

But DYX = DXY − [X, Y ] and, hence, (2.2.4)

gives

DX(c(Y, Z)) +DY (c(Z,X))−DZ(c(X, Y ))

= 2 c(DXY, Z)− c(Z, [X, Y ])

+ c(Y, [X,Z]) + c(X, [Y, Z]) ,

(2.2.5)

which, obviously, is equivalent to (2.2.1) . �

Let (Mm, [g]) be a conformal manifold. Recall

(see [20] ) that the Levi-Civita connection of g is

the unique torsion free connecton ∇ on Mm such

that ∇g = 0 . Obviously, ∇ is a Weyl connection

on (Mm, [g]) . In fact, Lemma 2.2.1 implies that ∇
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is the Weyl connection on (Mm, [g]) with respect to

which ∇s = 0 , where s is the positive section of

L such that g = gs (in particular, the connection

on L corresponding to ∇ is flat). Hence, as c =

s2 ⊗ g , we have ∇X(c(Y, Z)) = ∇X(g(Y, Z)s2) =

X(g(Y, Z))s2, for any vector fields X, Y , Z on M .

Therefore (2.2.1) applied to ∇ gives the classical

Koszul formula:

2 g(∇XY, Z) = X(g(Y, Z)) + Y (g(Z,X))

− Z(g(X, Y ))− g(X, [Y, Z])

+ g(Y, [Z,X]) + g(Z, [X, Y ]) ,

(2.2.6)

for any vector fields X, Y , Z on M .

Two connections on a line bundle differ by a one

form on the base manifold of the line bundle. It is

useful to know what is the relation between two

Weyl connections on a conformal manifold (Mm, c)

in terms of the difference of the corresponding con-

nections on L .

Corollary 2.2.4. Let D′ and D′′ be two Weyl con-

nections on (Mm, c) for which the corresponding

connections on L satisfy D′′ = D′ + α , for some

one-form α on M .

Then, for any vector fields X and Y on M , we
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have

D′′XY = D′XY + α(X)Y + α(Y )X − c(X, Y )α] .

Proof. As D′′(s2) = D′(s2) + 2α ⊗ s2 , for any

section s of L , the proof is an immediate conse-

quence of (2.2.1) . �

See [2] for the result of Quaternionic Geometry

corresponding to Corollary 2.2.4 .

Let (Mm, c,D) be a Weyl space and let g be

a representative of c . The one-form α such that

Dg = −2α ⊗ g is called the Lee form of D, with

respect to g.

Remark 2.2.5. Let (Mm, c,D) be a Weyl space.

1) Denote by αg the Lee form of D with re-

spect to a representative g of c . Then, from the

definition of the Lee form it follows quickly that

αλ
−2g = αg +λ−1 dλ , for any positive function λ on

M .

Alternatively, this can be proved as follows. Let

s be the positive section of L such that g = gs .

Then λ−2g = gλs whilst, by Lemma 2.2.1 , we have

that αg and αλ
−2g are the local connection forms,

with respect to s and λs , respectively, of the con-

nection on L corresponding to D.

2) Let g be a representative of c . Then D is
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determined by its Lee form α , with respect to g .

Indeed, let s be the positive section of L such that

g = gs . As α is the local connection form, with

respect to s , of the connection on L corresponding

to D, we have D = ∇ + α as connections on L ,

where ∇ is the Levi-Civita connection of g .

Furthermore, by Corollary 2.2.4 , we have

DXY = ∇XY + α(X)Y + α(Y )X − g(X, Y )α]g ,

for any vector fields X and Y on Mm .

Let b be a covariant tensor field of degree two on

a conformal manifold (Mm, c) . Then traceλ−2g b =

λ2 traceg b for any representative g of c and any

positive function λ on Mm. Therefore there ex-

ists a section tracec b of (L∗)2 given by tracec b =

(tracegsb)s
−2 , for any positive section s of L .

Similarly, if b is a section of E ⊗
(
⊗2T ∗M

)
, for

some vector bundle E over M , then tracec b is a

section of (L∗)2 ⊗ E .

Another consequence of Proposition 2.2.3 is that

on a conformal manifold there is no distinguished

Weyl connection. Nevertheless, the next result shows

that we can point out such a Weyl connection if the

conformal manifold is endowed with certain (1, 1)-

tensor fields.
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Proposition 2.2.6. Let (Mm, c) be a conformal

manifold endowed with a (1, 1)-tensor field P . De-

note by P = (m− 1)P + P ∗− traceP IdTM , where

P ∗ is the adjoint of P , with respect to c.

If P is invertible at each point then there exists

a unique Weyl connection D on (Mm, c) such that

tracec(DP ) = 0 .

Proof. LetD be any Weyl connection on (Mm, c)

and let α be a one-form on Mm.

Then for any local frame (Xj)j=1,...,m , orthonor-

mal with respect to some representative g of c , we

have

traceg
(
(D + α)P

)
=

m∑
j=1

(
(D + α)Xj

P
)
(Xj)

=
m∑
j=1

(
(D + α)Xj

(PXj)− P
(
(D + α)Xj

Xj

))
.

Now, Corollary 2.2.4 gives that traceg
(
(D+α)P

)
is equal to:

m∑
j=1

(
DXj

(PXj) + α(Xj)PXj + α(PXj)Xj

− g(Xj, PXj)α
]g
)

− P
( m∑
j=1

(
DXj

Xj + α(Xj)Xj + α(Xj)Xj

− g(Xj, Xj)α
]g
))
.
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As α]g =
∑m

j=1 α(Xj)Xj and

P ∗(α]g) =
m∑
j=1

α(PXj)Xj ,

we obtain

(2.2.7) traceg
(
(D+α)P

)
= traceg(DP )+P(α]g) ,

from which the proof quickly follows. �

Let (Mm, c) be a conformal manifold endowed

with a (1, 1)-tensor field P such that

P = (m− 1)P + P ∗ − traceP IdTM

is invertible at each point. The Weyl connection D

on (Mm, c) such that tracec(DP ) = 0 is called the

Weyl connection of (Mm, c, P ) .

Example 2.2.7. Let (Mm, c) be a conformal man-

ifold, m ≥ 4 , endowed with an almost Hermitian

structure J ; that is, J is an almost complex struc-

ture on Mm such that c(JX, JY ) = c(X, Y ) , for

any X, Y ∈ TM . Then (Mm, c, J) is an almost

Hermitian (conformal) manifold. If J is integrable

then it is called a Hermitian (conformal) structure,

whilst (Mm, c, J) is a Hermitian (conformal) man-

ifold .



Harmonic morphisms between Weyl spaces 37

As J∗ = −J , on taking P = J in Proposition

2.2.6 , we obtain that there exists a unique Weyl

connectionD on (Mm, c) such that tracec(DJ) = 0 .

To determine the Lee form α of D, with respect

to some representative g of c , we use (2.2.7) . Thus,

we obtain that α = − 1
m−2 traceg(∇J) , where ∇ is

the Levi-Civita connection of g.

This Weyl connection is due to [29] .

On a two-dimensional (oriented) conformal man-

ifold (M 2, c) there are just two (almost) Hermitian

structures ±J (see Example 3.1.5 , below). Then,

for any Weyl connection D on (M 2, c) , we have

DJ = 0 .

Let (Mm, c) be a conformal manifold endowed

with a distribution V . We denote H = V ⊥ and

call V and H the vertical and horizontal distribu-

tions , respectively. Accordingly, a vertical vector is

a vector tangent to V whilst a horizontal vector is

a vector tangent to H .

We shall, also, denote by V and H the corre-

sponding orthogonal projections onto V and H ,

respectively.

Suppose that (Mm, c) is endowed with a Weyl

connection D. The second fundamental form of V ,

with respect to D, is the H -valued covariant tensor
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of degree two on V given by

BV ,D(U, V ) = 1
2H (DUV +DVU) ,

for any vertical vector fields U and V .

The second fundamental form of V is symmet-

ric. Furthermore, the second fundamental of V is

zero if and only if any geodesic of D which is ver-

tical at some point is vertical everywhere; we then

say that V is geodesic, with respect to D.

Then tracec(B
V ,D)[ is a (horizontal) one-form

on Mm (indeed, we have

tracec(B
V ,D)[ = traceg(B

V ,D)[g ,

for any representative g of c ). This is ( (m − n)

times) the mean curvature form of V , with respect

to D (where n = dim H ). The distribution V is

minimal , with respect to D, if its mean curvature

form is zero.

If ∇ is the Levi-Civita connection of some rep-

resentative g of c we denote by BV ,g the second

fundamental form of V , with respect to ∇.

Example 2.2.8. Let (Mm, c) be a conformal man-

ifold endowed with a distribution V . Denote n =

dim H , where H = V ⊥, and suppose that 0 <

n < m .

If in Proposition 2.2.6 we take P = V then,
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by using that V ∗ = V , trace V = m − n and

V + H = IdTM , we obtain P = nV − (m − n)H

which, obviously, is invertible at each point. There-

fore there exists a unique Weyl connection D on

(M, c) such that tracec(DV ) = 0 .

Also, as V + H = IdTM , the Weyl connections

of (Mm, c,V ) and (Mm, c,H ) are equal.

Let g be a representative of c and let

(U1, . . . , Um−n, X1, . . . , Xn)

be an orthonormal local frame on (Mm, g) , adapted

to the decomposition TM = V ⊕H , (dim H = n) .

Then

traceg(DV ) =
m−n∑
r=1

(DUrV )(Ur) +
n∑
a=1

(DXa
V )(Xa)

=
m−n∑
r=1

(
DUrUr − V (DUrUr)

)
−

n∑
a=1

V (DXa
Xa)

=
m−n∑
r=1

H (DUrUr)−
n∑
a=1

V (DXa
Xa)

= traceg(B
V ,D)− traceg(B

H ,D) .

Thus, D is, also, characterised by the condition

that, with respect to it, both V and H are mini-

mal.

Let α be the Lee form of D with respect to g .
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Then

traceg(B
V ,D) =

m−n∑
r=1

H (DUrUr)

=
m−n∑
r=1

H (∇UrUr)− (m− n)H (α]g),

(2.2.8)

where ∇ is the Levi-Civita connection of g (note

that, (2.2.8) still holds if we replace D with any

Weyl connection on (Mm, c) ).

Hence, α|H = 1
m−n traceg(B

V ,g)[g . Similarly,

α|V = 1
n traceg(B

H ,g)[g and therefore

α = 1
m−n traceg(B

V ,g)[g + 1
n traceg(B

H ,g)[g .

This Weyl connection was introduced in [8] .

2.3. Harmonic maps

Recall (see [5] ) that the Laplace-Beltrami equa-

tion for a function f on a Riemannian manifold

(M, g) is given by traceg(∇df) = 0 , where ∇ is the

Levi-Civita connection of (M, g) .

Also, a map ϕ : (M, g) → (N, h) between Rie-

mannian manifolds is harmonic if and only if

traceg(∇dϕ) = 0 ,

where ∇ is the connection on Hom(TM,ϕ∗(TN))

induced by the Levi-Civita connections of (M, g)
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and (N, h) , and we have, also, denoted by dϕ the

section of Hom(TM,ϕ∗(TN)) corresponding to the

differential of ϕ .

The following definition is a natural generaliza-

tion of these classical facts.

Definition 2.3.1. 1) A (real or complex) function

f on a Weyl space (M, c,D) is harmonic if

tracec(Ddf) = 0 .

2) A map ϕ : (M, cM , D
M) → (N, cN , D

N) be-

tween Weyl spaces is harmonic if

tracecM (Ddϕ) = 0 ,

where D is the connection induced by DM and DN

on Hom(TM,ϕ∗(TN)) .

Let ϕ : (M, cM , D
M) → (N, cN , D

N) be a map

between Weyl spaces. Let (xi) and (yα) be local sys-

tem of coordinates on M and N , respectively, and

let MΓijk and NΓαβγ be the corresponding Christof-

fel symbols of DM and DN , respectively; that is,

D ∂

∂xj

∂
∂xk

= MΓikj
∂
∂xi and, similarly, for NΓαβγ (note

that,
(M

Γijkdx
k
)
i,j

is the local connection form of

DM with respect to
(
∂
∂xj

)
j
).

Then a straightfoward calculation shows that,
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for any j , k , and α , we have

(2.3.1)(
Ddϕ

)α
jk

=
∂2ϕα

∂xj∂xk
− MΓijk

∂ϕα

∂xi
+ NΓαβγ

∂ϕβ

∂xj
∂ϕγ

∂xk
;

in particular, Ddϕ is symmetric (cf. [5] ).

Let (M, g) and (N, h) be Riemannian manifolds

and let∇g and∇h be the Levi-Civita connections of

g and h , respectively. Then a map ϕ : (M, [g],∇g)→
(N, [h],∇h) is harmonic if and only if ϕ : (M, g)→
(N, h) is harmonic.

However, there are natural constructions of har-

monic maps on Weyl spaces which do not come from

Riemannian manifolds.

Proposition 2.3.2. Let (M, c, J) be a Hermitian

manifold and let D be a Weyl connection on (M, c) .

Then the following assertions are equivalent:

(i) D is the Weyl connection of (M, c, J) .

(ii) The holomorphic functions of (M,J) are

harmonic functions of (M, c,D) .

Proof. Any holomorphic function (locally de-

fined) on (M,J) whose differential is nowhere zero

is, locally, a coordinate function of some local sys-

tem of complex coordinates on (M,J) . Therefore

it is sufficient to consider in (ii) only coordinate

functions of local system of complex coordinates on

(M,J) .
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Let (z1, . . . , zn) be a local system of complex co-

ordinates on (M,J) , where m = 2n , and let g be

a representative of c . The fact that J is (almost)

Hermitian is equivalent to the fact that T 0,1M is

isotropic with respect to the (complexification of)

g (that is, g|T 0,1M = 0).

Thus, gjk = g j k = 0 , where gjk = g
(
∂
∂zj ,

∂
∂zk

)
and g j k = g

(
∂
∂zj
, ∂
∂zk

)
, for any j, k = 1, . . . , n .

Let gjk = g
(
∂
∂zj ,

∂
∂zk

)
, for j, k = 1, . . . , n , and

denote by
(
gAB

)
the inverse matrix of (gAB) , where

A,B ∈ {1, . . . , n, 1, . . . , n} .

By applying (2.3.1) , we obtain

traceg(Ddzj) = gkl
(
Ddzj

)
kl

+ glk
(
Ddzj

)
lk

= 2 gkl
(
Ddzj

)
kl

= −2 gkl Γj
kl
,

(2.3.2)

for any j = 1, . . . , n .

On the other hand, traceg(DJ) is equal to:

gkl
(
D ∂

∂zk
J
)( ∂

∂zl

)
+ glk

(
D ∂

∂zl
J
)( ∂

∂zk

)
= gkl

(
−iD ∂

∂zk

∂

∂zl
− JD ∂

∂zk

∂

∂zl

)
+ glk

(
iD ∂

∂zl

∂

∂zk
− JD ∂

∂zl

∂

∂zk

)
.
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Therefore

traceg(DJ)

= gkl
(
−i Γj

lk

∂

∂zj
− i Γj

lk

∂

∂zj
− i Γj

lk

∂

∂zj
+ i Γj

lk

∂

∂zj

)
+ glk

(
i Γj

kl

∂

∂zj
+ i Γj

kl

∂

∂zj
− i Γj

kl

∂

∂zj
+ i Γj

kl

∂

∂zj

)
= −2 i gkl Γj

lk

∂

∂zj
+ 2 i glk Γj

kl

∂

∂zj
.

(2.3.3)

As Γj
lk

= Γj
kl

and Γj
kl

= Γj
kl

, (j, k, l = 1, . . . , n) ,

the proof is an immediate consequence of (2.3.2)

and (2.3.3) . �

See Remark 4.2.5(3) , below, for explicit exam-

ples of (hyper-)Hermitian manifolds whose Weyl

connections are not, even locally, Levi-Civita con-

nections of representatives of conformal structures.

Remark 2.3.3. Let (M 2, c,D) be a two-dimensional

Weyl space and let J be the positive Hermitian

structure on (M 2, c) .

As DJ = 0 , the proof of Proposition 2.3.2 shows

that any holomorphic function of (M 2, J) is a har-

monic function of (M 2, c,D) .

2.4. Harmonic morphisms

We start this section by recalling ([21] , cf. [5] )

the following definition.
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Definition 2.4.1. Let (M, cM , D
M) and (N, cN , D

N)

be Weyl manifolds.

A map ϕ : (M, cM , D
M)→ (N, cN , D

N) is called

a harmonic morphism if for any harmonic func-

tion f defined on some open set U of N , such that

ϕ−1(U) 6= ∅ , the function f ◦ ϕ|ϕ−1(U) is harmonic.

For harmonic morphisms between Riemannian

manifolds the interested reader should consult [5] ,

[26] and the references therein.

Let D be the Weyl connection of a Hermitian

manifold (M, c, J) . Then the holomorphic func-

tions of (M,J) are harmonic morphisms (locally

defined) on (M, c,D) . Indeed, this is an immediate

consequence of Proposition 2.3.2 and the fact that

a function, defined on some open set of C , is har-

monic if and only if, locally, it is the real part of a

holomorphic function.

A linear isomorphism A : (V, cV )→ (W, cW ) be-

tween conformal vector spaces is conformal if there

exists g and h representatives of cV and cW , respec-

tively, such that A∗h = g .

Definition 2.4.2. A map ϕ : (M, cM) → (N, cN)

between conformal manifolds is horizontally weakly

conformal if, for any x ∈ M , either dϕx = 0 or
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dϕx|(ker dϕx)⊥ is a conformal linear isomorphism from(
(ker dϕx)

⊥, cM |(ker dϕx)⊥
)

onto
(
Tϕ(x)N, (cN)ϕ(x)

)
.

The following result is basic for harmonic mor-

phisms.

Theorem 2.4.3. A map between Weyl spaces is a

harmonic morphism if and only if it is a harmonic

map which is horizontally weakly conformal.

The proof of Theorem 2.4.3 is based on the fol-

lowing two lemmas.

Lemma 2.4.4. Let (M, c,D) be a Weyl space and

let x ∈M .

Then for any α ∈ T ∗xM and any trace free sym-

metric bilinear form b on (TxM, cx) there exists a

harmonic function f defined on some open neigh-

bourhood of x such that dfx = α and (Ddf)x = b .

Proof. This is essentially the same as for har-

monic functions on Riemannian manifolds (see [5]

and the references therein).

We shall give a straightforward proof assuming

(M, c,D) real analytic. Let U be the domain of

a normal coordinate system x1, . . . , xm for D, cen-

tred at x , where m = dimM . Obviously, the hy-

persurface S = {xm = 0} is noncharacteristic for

the second order linear differential operator f 7→
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traceg(Ddf) .

Let p = bijx
ixj+αix

i . Then, by further restrict-

ing U , if necessary, and by applying the Cauchy–

Kovalevskaya theorem, we can find a harmonic func-

tion f defined on U such that f and p are equal

up to the first derivatives along S ; in particular,

dfx = α . Hence, possibly excepting ∂2f
(∂xm)2 (x) , all

the second order partial derivatives of f , at x , are

equal to the corresponding derivatives of p , at x .

As f is harmonic, b is trace free, with respect to g ,

and x is the centre of the normal system of coor-

dinates x1, . . . , xm , for D , the derivatives ∂2f
(∂xm)2 (x)

and ∂2p
(∂xm)2 (x) are determined by the other second

order partial derivatives, at x , of f and p , respec-

tively, and hence must be equal. Thus, (Ddf)x = b .

�

Lemma 2.4.5. Let ϕ : (M, [g], DM)→ (N, [h], DN)

be a map between Weyl spaces. Then, for any func-

tion f on N , we have

traceg
(
Dd(f ◦ ϕ)

)
= df

(
traceg(Ddϕ)

)
+ h
(
DNdf,

(
(dϕ)T

)∗
(g)
)
,

where, at each point,
(
(dϕ)T

)∗
(g) is the pull back of

g through the adjoint (dϕ)T of dϕ , with respect to

g and h .
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Proof. Let x0 ∈ M and let (xj) and (yα) be

normal coordinate systems of DM and DN , about

x0 and ϕ(x0) , respectively.

Then

(2.4.1)
∂2(f ◦ ϕ)

∂xj∂xk
=

∂2f

∂yα∂yβ
∂ϕα

∂xj
∂ϕβ

∂xk
+
∂f

∂yα
∂2ϕα

∂xj∂xk
,

for any j and k .

Also, as h
(

dϕ
(
∂
∂xj

)
, ∂
∂yα

)
= g
(

∂
∂xj , (dϕ)T

(
∂
∂yα

))
,

for any j and α , we have
(
(dϕ)T

)j
α

= gjk ∂ϕ
α

∂xk
hαβ ,

for any j and α . Hence, for any α and β , we have

(
(dϕ)T

)∗
(g)

(
∂

∂yα
,
∂

∂yβ

)
= g

(
(dϕ)T

(
∂

∂yα

)
, (dϕ)T

(
∂

∂yβ

))
=
(
(dϕ)T

)j
α

(
(dϕ)T

)k
β
gjk

= gjk
∂ϕγ

∂xj
∂ϕη

∂xk
hγα hηβ .

(2.4.2)

By using (2.4.2) , we obtain

h
(
DNdf,

(
(dϕ)T

)∗
(g)
)

=
(
DNdf

)( ∂

∂yα
,
∂

∂yβ

)(
(dϕ)T

)∗
(g)

(
∂

∂yγ
,
∂

∂yη

)
hαγhβη

= gjk
∂f

∂yα
∂2ϕα

∂xj∂xk
.

(2.4.3)
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By taking into account that MΓijk(x0) = 0 and
NΓαβγ(ϕ(x0)) = 0 , the proof follows quickly from

(2.3.1) , (2.4.1) and (2.4.3) . �

Proof of Theorem 2.4.3 . Using Lemma 2.4.4

with b = 0 and for all α ∈ T ∗xN , (x ∈ N), from

Lemma 2.4.5 we obtain that ϕ is a harmonic map.

Then, by applying again Lemmas 2.4.4 and 2.4.5 ,

we obtain that for any trace free b ∈ �2T ∗N we

have h
(
b, ((dϕ)T )∗(g)

)
= 0 .

Therefore, at each x ∈ M , there exists a non-

negative number λ(x) such that
(
(dϕ)T

)∗
(gx) =

λ(x)2 hϕ(x) ; equivalently, ϕ is horizontally weakly

conformal. �

2.5. The fundamental equation

We are mainly interested in submersive harmo-

nic morphisms. According to Theorem 2.4.3 these

are just harmonic maps which are horizontally con-

formal (submersions). Therefore the next step to

do is to characterise the horizontally conformal sub-

mersions which are harmonic. This will be done in

this section.

Firstly, we take a closer look to horizontally con-

formal submersions.

If ϕ : (M, c) → N is a submersion, from a con-

formal (or Riemannian) manifold, we denote V =
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ker dϕ and H = V ⊥. Note that, there exists a vec-

tor bundle isomorphism H = ϕ∗(TN) under which

the pull back, through ϕ , of a vector field X on N

is just the horizontal lift of X. Also, under this iso-

morphism, the section of Hom(TM,ϕ∗(TN)) cor-

responding to dϕ is the orthogonal projection onto

H .

A Riemannian submersion ϕ : (M, g) → (N, h)

between Riemannian manifolds is a map such that

dϕx|Hx
:
(
Hx, g|Hx

)
→
(
Tϕ(x)N, hϕ(x)

)
is a linear

isometry, for any x ∈M .

Proposition 2.5.1. Let (M, cM) and (N, cN) be

conformal manifolds and let ϕ : M → N be a sub-

mersion.

The following assertions are equivalent:

(i) ϕ : (M, cM)→ (N, cN) is horizontally con-

formal.

(ii) There exists representatives g and h of cM

and cN , respectively, such that ϕ : (M, g)→ (N, h)

is a Riemannian submersion.

(iii) For any representative h of cN there ex-

ists a representative g of cM such that ϕ : (M, g)→
(N, h) is a Riemannian submersion.

Proof. It is obvious that (iii)=⇒(ii)=⇒(i) .

Suppose that ϕ : (M, cM)→ (N, cN) is horizon-

tally conformal and let g and h be representatives
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of cM and cN , respectively. Then there exists a pos-

itive (smooth) function λ on M such that ϕ∗(h) =

λ2 g|H ; equivalently, ϕ : (M,λ2g) → (N, h) is a

Riemannian submersion. �

Let LM and LN be the line bundles of the con-

formal manifolds (M, cM) and (N, cN) , respectively.

Assertion (iii) of Proposition 2.5.1 is equivalent to

the following:

(iii′) There exists a (unique) isomorphism of

oriented line bundles LM = ϕ∗(LN) under which,

for any positive section s of LN , we have that the

map ϕ from (M, gs) to (N, hs) is a Riemannian sub-

mersion, where gs and hs are the representatives of

cM and cN , respectively, corresponding to s .

The next result will be used later on.

Lemma 2.5.2. Let ϕ : (M, g) → (N, h) be a Rie-

mannian submersion and let ∇g and ∇h be the Levi-

Civita connections of g and h , respectively.

Then, under the isomorphism of vector bundles

ϕ∗(TN) = H , we have ϕ∗(∇h)XY = H (∇g
XY ) for

any horizontal vector fields X and Y on M .

Proof. Let X, Y , Z be horizontal vector fields

on M which are projectable, with respect to ϕ .

As ϕ is a Riemannian submersion and dϕ([Y, Z]) =
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[dϕ(Y ), dϕ(Z)] we have

g
(
X, [Y, Z]

)
= h

(
dϕ(X), [dϕ(Y ), dϕ(Z)]

)
◦ ϕ .

Therefore (2.2.6) gives

g(∇g
XY, Z) = h

(
∇h

dϕ(X) dϕ(Y ), dϕ(Z)
)
◦ ϕ .

But ϕ∗(∇h)XY is the horizontal lift of∇h
dϕ(X) dϕ(Y ) .

Thus, we obtain ϕ∗(∇h)XY = H (∇g
XY ) and the

proof is complete. �

From (2.2.6) it also follows that if ϕ : (M, g)→
(N, h) is a Riemannian submersion then H is geo-

desic (with respect to g).

Furthermore, from (2.2.1) it follows that if ϕ :

(M, cM)→ (N, cN) is a horizontally conformal sub-

mersion then the trace free part of BH ,D is zero, for

any Weyl connection D on (M, cM) (equivalently,

H is umbilical).

Next, we prove the fundamental equation for

horizontally conformal submersions between Weyl

spaces.

Proposition 2.5.3. Let ϕ be a horizontally confor-

mal submersion from (M, cM , D
M) to (N, cN , D

N) .

Denote by LM and LN the line bundles of M and

N , respectively, and let α be the one-form on M
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such that ϕ∗(DN) = DM + α as connections on

ϕ∗(LN) = LM . Then

(2.5.1)

tracecM
(
Ddϕ

)[
+tracecM

(
BV ,DM

)[
+(n−2)α|H = 0 ,

where n = dimN .

Proof. Let g and h be representatives of cM

and cN , respectively, such that ϕ : (M, g)→ (N, h)

is a Riemannian submersion. Denote by αM and

αN the Lee forms of DM and DN with respect to g

and h , respectively. From Lemma 2.5.2 it follows

that α = ϕ∗(αN)− αM .

Let (U1, . . . , Um−n, X1, . . . , Xn) be an orthonor-

mal local frame on (M, g) , adapted to the decom-

position TM = V ⊕H , where m = dimM . By us-

ing the fact that the section of Hom(TM,ϕ∗(TN))

corresponding to dϕ is H , we obtain

traceg(Ddϕ) =
m−n∑
r=1

(DUrdϕ)(Ur) +
n∑
j=1

(
DXj

dϕ)(Xj)

=
m−n∑
r=1

(
ϕ∗(DN)Ur(H Ur)−H (DM

Ur
Ur)
)

+
n∑
j=1

(
ϕ∗(DN)Xj

(H Xj)−H (DM
Xj
Xj)
)
.

(2.5.2)
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Now, we have

(2.5.3)
n∑
j=1

H (DM
Xj
Xj) =

n∑
j=1

(
∇Xj

Xj − (n− 2)H (α
]g
M)
)
,

where ∇ is the Levi-Civita connection of g .

On the other hand, by applying Lemma 2.5.2 ,

we obtain

(2.5.4)
n∑
j=1

ϕ∗(DN)Xj
(H Xj) =

n∑
j=1

(
∇Xj

Xj−(n−2)ϕ∗(αN)]g
)
.

Then (2.5.1) is an immediate consequence of

(2.5.2) , (2.5.3) and (2.5.4) . �

From Theorem 2.4.3 , Proposition 2.5.3 and (2.2.1)

we immediately obtain the following result.

Corollary 2.5.4. Let ϕ : (M, cM , D
M)→ (N, cN , D

N)

be a horizontally conformal submersion between Weyl

spaces; denote by LM and LN the line bundles of M

and N , respectively.

(a) If dimN = 2 then ϕ is a harmonic mor-

phism if and only if its fibres are minimal.

(b) If dimN 6= 2 then any two of the following

assertions imply the third:

(i) ϕ is a harmonic morphism.

(ii) ϕ has minimal fibres.
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(iii) ϕ∗(DN)XY = H (DM
X Y ) for any hori-

zontal vector fields X and Y on M .

Let D be the Weyl connection of the Hermit-

ian manifold (M, c, J) . Then, by Corollary 2.5.4 ,

the regular fibres of any holomorphic function ϕ :

(M,J)→ C are minimal submanifolds of (M, c,D) .

Corollary 2.5.5. Let ϕ : (M, cM) → (N, cN) be a

horizontally conformal submersion, dimN > 2 .

Then for any Weyl connection DN on (N, cN)

there exists a Weyl connection DM on (M, cM) such

that ϕ : (M, cM , D
M)→ (N, cN , D

N) is a harmonic

morphism.

Proof. Let g and h be representatives of cM

and cN , respectively, such that ϕ : (M, g)→ (N, h)

is a Riemannian submersion.

Let DM be any Weyl connection on (M, cM) .

By using (2.2.8) , we obtain that the fundamental

equation (2.5.1) is equivalent to the following rela-

tion:

tracecM (Ddϕ)[

= (m− 2)αM |H − (n− 2)ϕ∗(αN)− traceg
(
BV ,g

)[g ,
(2.5.5)

where αM and αN are the Lee forms of DM and

DN with respect to g and h , respectively, and m =
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dimM , n = dimN .

The proof follows. �

Note that, in Corollary 2.5.5 , unless dimM =

dimN , the resulting Weyl connection on (M, cM) is

not unique.

Example 2.5.6. 1) There exists unique Riemann-

ian metrics on CP n and HP n with respect to which

the projections of the Hopf bundles (S2n+1,CP n, S1)

and (S4n+3,HP n, S3) , respectively, are Riemannian

submersions (here, we have identified S3 with the

Lie group of unit quaternions). Indeed, this follows

from the fact that S1 and S3 act by isometries on

S2n+1 and S4n+3, respectively.

2) The Hopf polynomial map R4 → R3, (z1, z2) 7→
(|z1|2−|z2|2, 2z1z2) is horizontally weakly conformal

(note that, it has a critical point at 0).

3) The radial projection Rn+1 \ {0} → Sn, x 7→
1
|x| x is horizontally conformal (to see this, write the

Euclidean metric in polar coordinates).

4) The projections Cn+1\{0} → CP n and Hn+1\
{0} → HP n are horizontally conformal (these are

the compositions of radial projections followed by

projections of Hopf bundles).

5) The projections of the Hopf bundles induce
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a map CP 2n+1 → HP n which is a Riemannian sub-

mersion.

All of the maps of Example 2.5.6 are harmonic

morphisms between Riemannian manifolds (for (1) ,

(3) and (5) this follows from Corollary 2.5.4 , for (2)

this can be proved directly, whilst (4) are composi-

tions of harmonic morphisms).

Also, by endowing the codomains of these hori-

zontally conformal submersions with Weyl connec-

tions and by using Corollary 2.5.5 , we obtain har-

monic morphisms between Weyl spaces (not neces-

sarily coming from Riemannian manifolds).





CHAPTER 3

Twistorial structures and maps

3.1. Twistorial structures

As before, unless otherwise stated, all the mani-

folds are assumed connected, smooth and oriented,

and all the maps are smooth.

We start this chapter by presenting the defini-

tion of almost twistorial structures, at a level of

generality suitable for the purposes of this book (see

[22] for a more general definition).

Definition 3.1.1. An almost twistorial structure

on a manifold M is a quadruple τ = (Q,M, π, C) ,

where π : Q→M is a locally trivial fibre space and

C is an almost co-CR structure on Q which induces

almost complex structures on the fibres of π.

The almost twistorial structure τ = (Q,M, π, C)
is integrable if C is integrable. A twistorial structure

is an integrable almost twistorial structure.

A twistorial structure τ = (Q,M, π, C) is simple

if C is simple; if τ is simple, with πZ : (Q, C) →
Z the corresponding holomorphic submersion, the
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complex manifold Z is the twistor space of τ .

Q
πZ

����
��

��
�

π

  @
@@

@@
@@

@

Z M

Proposition 3.1.2. Let τ = (Q,M, π, C) be a sim-

ple twistorial structure and let πZ : (Q, C) → Z be

the corresponding holomorphic submersion onto the

twistor space of τ .

Then, for any z ∈ Z, the map

π|π−1Z (z) : π−1
Z (z)→M

is an immersion whose normal bundle is endowed

with a linear complex structure, induced by C.

Proof. If q ∈ π−1
Z (z) and X ∈ Tq

(
π−1
Z (z)

)
then

dπ(X) = 0 if and only if X is tangent to the fibre

of π through q . As C induces complex structures

on the fibres of π and T
(
π−1
Z (z)

)
= (C ∩ C)|π−1Z (z) ,

we obtain that X = 0 .

By using the isomorphism of vector bundles

π∗(TM) = TQ/(ker dπ)

we obtain that the normal bundle of π−1
Z (z) in M

is isomorphic to the restriction to π−1
Z (z) of

TQ/
(
(C ∩ C)⊕ ker dπ

)
.
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Now, the last assertion follows from the fact that

C + C = TQ. �

A particular kind of almost twistorial structure

τ = (Q,M, π, C) is given by the condition that C
be an almost complex structure. Then, if inte-

grable, τ is simple and the immersed submanifolds

of Proposition 3.1.2 are just points of M ; in partic-

ular, Z = Q and πZ = IdZ .

Note that, essentially the same proof as for Pro-

position 3.1.2 shows that if (Q,M, π, C) is a twisto-

rial structure then the restriction of π to any leaf

of C ∩ C is an immersion whose normal bundle in

endowed with a linear complex structure.

Proposition 3.1.2 shows that to any twistor z ∈
Z it corresponds a pair (Pz, Jz) where Pz is an im-

mersed submanifold of M and Jz is a linear complex

structure on the normal bundle of Pz in M .

In particular, the linear twistors are just linear

co-CR structures. Therefore to find examples of

twistorial structures, we have, firstly, to look for

spaces of linear co-CR structures. Furthermore, we,

also, need an adequate compatibility condition be-

tween conformal and co-CR structures. This is pro-

vided by the following simple fact.
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Proposition 3.1.3. Let (V, g) be an Euclidean space.

Then any coisotropic vector space C ⊆ V C (that

is, C⊥ is isotropic; equivalently, g|C⊥ = 0) is a lin-

ear co-CR structure on V ; that is,

C + C = V .

Proof. As C⊥ is isotropic, we have
(
C+C

)⊥
=

C⊥ ∩ C⊥ = {0} . �

Dually to Proposition 3.1.3 , if (V, g) is an Eu-

clidean space and C ⊆ V C is isotropic then C is a

linear CR structure (that is, C ∩ C = {0} ).

The following result is an immediate consequence

of Proposition 3.1.3 .

Corollary 3.1.4. Let (V, g) be an Euclidean space

and let C ⊆ V C .

Then the following assertions are equivalent:

(i) C is the eigenspace, corresponding to −i ,

of an orthogonal complex structure on (V, g) .

(ii) C is both isotropic and coisotropic.

Here, we shall be interested in coisotropic spaces

in dimensions two, three and four.

Example 3.1.5. On a two-dimensional oriented vec-

tor space (V, g) there are two nontrivial (co)isotropic

spaces. These are spanned by u ± iv , where (u, v)
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is any positive orthonormal basis of (V, g) .

Accordingly, there are two orthogonal complex

structures ±J on (V, g) , given by the rotations of

angles ±π/2 , respectively.

Example 3.1.6. Let (V, g) be a three-dimensional

oriented Euclidean space. Then the space S of

two-dimensional coisotropic spaces on (V, g) can be

identified with S2 (= CP 1), as follows: to any u ∈
S2 we associate the span qu of {u, v + iw} , where

(u, v, w) is a positive orthonormal basis of (V, g) .

Conversely, if q ⊆ V C is a two-dimensional coi-

sotropic space then q⊥ is isotropic (and one-dimen-

sional). Hence, q⊥⊕ q⊥ is (the complexification) of

a two-dimensional vector subspace p of (V, g) which

we orient so that q⊥ be the eigenspace correspond-

ing to −i of the rotation through π/2 . Next, we

orient p⊥ (= q ∩ q) such that the decomposition

V = p⊥⊕p be orientation preserving. Then q = qu ,

where u is the positive orthonormal basis of p⊥.

This correspondence may be described, more

conceptually, by observing that SO(3,R) acts tran-

sitively on S with isotropy group S1, where the em-

bedding S1 ⊆ SO(3,R) is given by

eit 7−→

 1 0 0

0 cos t − sin t

0 sin t cos t

 .
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Therefore

S =
SO(3,R)

S1
=

Sp(1)/{±1}
S1/{±1}

=
Sp(1)

S1
= S2 ,

where:

• Sp(1) is the group of unit quaternions and

the isomorphism Sp(1)/{±1} = SO(3,R) is induced

by the action of Sp(1) on V = ImH given by q ·v =

qvq−1, for any unit quaternion q and any v ∈ V ;

• the isomorphism S1/{±1} = S1 is induced

by the morphism of Lie groups S1 → S1, z 7→ z2.

Example 3.1.7. Let (V, g) be a four-dimensional

oriented Euclidean space. A complex vector sub-

space of V C is called (anti-)self-dual if it is the

eigenspace, corresponding to −i , of a positive (neg-

ative) orthogonal complex structure on (V, g) (a lin-

ear complex structure J on V is positive if some

(and, hence, any) basis of the form (u, Ju, v, Jv) is

positive).

Any (anti-)self-dual space on (V, g) has complex

dimension two. Conversely, any two-dimensional

(co)isotropic space on (V, g) is either self-dual or

anti-self-dual.

Let S be the space of self-dual spaces on (V, g) .

We claim that S = S2. Indeed, think of S as the

space of positive orthogonal complex structures on
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(V, g) and let U ⊆ V be a three-dimensional vec-

tor subspace. Choose some orientation on U and

orient U⊥ so that the decomposition V = U⊥ ⊕ U
be orientation preserving. Denote by v the positive

orthonormal basis of U⊥ and identify S2 with the

unit sphere in U .

Then the map S → S2, J 7→ Jv , (J ∈ S) ,

gives the claimed correspondence. The inverse map

associates to any u ∈ S2 the positive orthogonal

complex structure J on (V, g) such that Jv = u

and J is the rotation through π/2 on u⊥ ∩ U .

Note that, the orthogonal projection V → U

maps (anti-)self-dual spaces on (V, g) onto two-di-

mensional coisotropic spaces on (U, g|U) .

Also, on identifying V = H such that U = ImH ,

any q ∈ S2 corresponds to the orthogonal com-

plex structure Jq on (V, g) given by Jq(u) = qu ,

for any u ∈ V . Therefore, under the isomorphism

of Lie groups,
(
Sp(1) × Sp(1)

)
/{±1} = SO(4,R)

induced by the action of Sp(1)× Sp(1) on V , given

by (p+, p−) · v = p+vp
−1
− , we have

S =
SO(4,R)

U(2)
=

Sp(1)× Sp(1)

S1 × Sp(1)
= S2 ,

where U(2)
(
= (S1 × Sp(1))/{±1}

)
is the group of

orthogonal linear isomorphisms of (V, g) which are

linear complex, with respect to Ji .
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Note that, this way, any ±(p+, p−) ∈ SO(4,R)

maps the self-dual space corresponding to q ∈ S2

(where S2 ⊆ ImH ) onto the self-dual space corre-

sponding to p+qp
−1
+ .

We end this section with the simplest example

of a twistorial structure.

Example 3.1.8. Let (M 2, c) be a two-dimensional

(oriented) conformal manifold and let J be the pos-

itive Hermitian structure on (M 2, c) .

Then (M 2,M2, IdM , J) is the twistorial struc-

ture of (M 2, c) ; its twistor space is (M 2, J) .

3.2. Einstein–Weyl spaces of dimension

three and anti-self-dual manifolds

In this section we present the almost twistorial

structures associated to the Weyl spaces of dimen-

sions three and four and we discuss their integra-

bility.

Example 3.2.1. Let (M, c,D) be a three-dimen-

sional Weyl space. Let π : Q → M be the space

of two-dimensional coisotropic spaces on (M 3, c) .

Obviously, Q is also the bundle of two-dimensional

coisotropic spaces on (L∗ ⊗ TM, c) , where L is the

line bundle of M 3.

From Example 3.1.6 it follows that we may iden-

tify Q with the sphere bundle of (L∗ ⊗ TM, c) .
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Hence, D induces a connection H (⊆ TQ) on Q.

Define the complex vector subbundle B of H C

such that dπ(Bq) = q , for any q ∈ Q.

Then C = B ⊕ (ker dp)0,1 is an almost co-CR

structure on Q and (Q,M, π, C) is the almost twisto-

rial structure of (M 3, c,D).

The following result shows that the almost twis-

torial structure of a three-dimensional Weyl space

determines the underlying Weyl connection.

Proposition 3.2.2. Let (M 3, c) be a three-dimen-

sional conformal manifold endowed with two Weyl

connections D′ and D′′. Let τ ′ and τ ′′ be the almost

twistorial structures of (M 3, c,D′) and (M 3, c,D′′) ,

respectively.

Then D′ = D′′ if and only if τ ′ = τ ′′.

Proof. If τ ′ = (Q,M, π, C ′) , τ ′′ = (Q,M, π, C ′′)
then τ ′ = τ ′′ if and only if C ′ = C ′′.

Let x0 ∈M and let q be a section of Q defined in

some open neighbourhood U of x0 ; denote q0 = qx0 .

If X ∈ q0 then, by Proposition 1.2.1 , we have

dq(X) ∈ C ′q0 if and only if D′XY ∈ q0 , for any sec-

tion Y of q (here, we think of q as a complex vector

subbundle of TCM |U). Similarly, dq(X) ∈ C ′′q0 if

and only if D′′XY ∈ q0 , for any section Y of q .

Thus, if α is the one-form on M 3 such that D′′ =
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D′ + α , as connections on the line bundle of M 3,

then C ′ = C ′′ if and only if, for any q ∈ Q and any

X, Y ∈ q , we have α(X)Y+α(Y )X−c(X, Y )α]π(q) ∈
q ; equivalently, α]π(q) ∈ q , for any q ∈ Q, which, ob-

viously, holds if and only if α = 0 . �

Next, we present the four dimensional version

of Example 3.2.1 .

Example 3.2.3. Let (M 4, c) be a four-dimensional

(oriented) conformal manifold endowed with a Weyl

connection D. Let π : Q→M be the bundle of self-

dual spaces on (M 4, c) . Obviously, Q is also the

bundle of self-dual spaces on (L∗ ⊗ TM, c) , where

L is the line bundle of M 4.

Let ρ : SO(4,R) → SO(3,R) be the morphism

of Lie groups which to any ±(p+, p−) ∈ SO(4,R)
(
=

(Sp(1)×Sp(1))/{±1}
)

it associates±p+ ∈ SO(3)
(
=

Sp(1)/{±1}
)

.

Denote by E the oriented Riemannian vector

bundle of rank three associated, through ρ , to the

bundle of positive orthonormal frames on (L∗ ⊗
TM, c) .

From Example 3.1.7 it follows that Q can be

identified with the sphere bundle of E. Hence, D

induces a connection H (⊆ TQ) on Q.

Define the complex vector subbundle B of H C
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such that dπ(Bq) = q , for any q ∈ Q.

Then C = B ⊕ (ker dp)0,1 is an almost complex

structure on Q and (Q,M, π, C) is an almost twisto-

rial structure on M 4.

In contrast to Proposition 3.2.2 we have the fol-

lowing result.

Proposition 3.2.4. Let (M 4, c) be a four-dimen-

sional conformal manifold endowed with two Weyl

connections D′ and D′′. Let τ ′ and τ ′′ be the almost

twistorial structures of Example 3.2.3 , associated

to (M 4, c,D′) and (M 4, c,D′′) , respectively.

Then τ ′ = τ ′′.

Proof. Let α be the one-form on M 3 such that

D′′ = D′ + α , as connections on the line bundle of

M 4.

Then, similarly to the proof of Proposition 3.2.2 ,

we obtain that τ ′ = τ ′′ if and only if, for any q ∈ Q
and any X, Y ∈ q , we have α(X)Y + α(Y )X −
c(X, Y )α]π(q) ∈ q . But, this is always satisfied, as

any q ∈ Q is isotropic. �

Let (M 4, c) be a four-dimensional conformal man-

ifold and let τ be the almost twistorial structure of

Example 3.2.3 , associated to (M 4, c,D) , where D

is any Weyl connection on (M 4, c) . We call τ the
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almost twistorial structure of (M 4, c) .

Next, we characterise the integrability of the al-

most twistorial structures of Examples 3.2.1 and

3.2.3 .

The following result is due to [16] .

Theorem 3.2.5. Let (M 3, c,D) be a three-dimen-

sional Weyl space and let τ be its almost twistorial

structure.

Then the following assertions are equivalent:

(i) τ is integrable.

(ii) (M 3, c,D) is Einstein–Weyl.

Proof. This is an immediate consequence of

Theorem 1.3.1 and Proposition A.1.9 . �

Next, we prove the following result of [4] .

Theorem 3.2.6. Let (M 4, c) be a four-dimensional

(oriented) conformal manifold and τ be its almost

twistorial structure.

Then the following assertions are equivalent:

(i) τ is integrable.

(ii) (M 4, c) is anti-self-dual.

Proof. This is an immediate consequence of

Theorem 1.3.1 and Proposition A.1.11 . �

To give examples of twistor spaces we, firstly,

observe that:
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(i) Let (M 3, c,D) be a three-dimensional Ein-

stein–Weyl space. Then the twistors on τ are pairs

(γ, J) , where γ is a (maximal unparametrized) geo-

desic of D and J is an orthogonal complex structure

on the normal bundle of γ (this follows from Propo-

sition 1.2.1 ). Obviously, on the normal bundle of

any geodesic there are just two orthogonal complex

structures. Thus, as M 3 is assumed oriented, we

may identify any twistor on (M 3, c,D) with an ori-

ented geodesic.

(ii) The twistors of an anti-self-dual mani-

fold (M 4, c) are pairs (x, J) , where x ∈ M 4 and

J is a positive orthogonal complex structure on

(TxM, cx) . Thus the twistors of an anti-self-dual

manifold are just positive orthogonal complex struc-

tures.

Secondly, note that, by Corollary A.1.7 , for a

constant curvature Riemannian manifold (Mm, g)

we have that (Mm, [g]) is flat (that is, W = 0 ) and

(Mm, [g],∇) is Einstein–Weyl, where ∇ is the Levi-

Civita connection of g ; in particular, if m = 4 , then

(M 4, [g]) is anti-self-dual.

We can now describe, at least the smooth struc-

tures, of some twistors spaces (see [5] ).

Example 3.2.7. Let (Q,M, π, C) be the twistorial

structure of the Einstein–Weyl space determined by
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the three-dimensional Euclidean space R3, endowed

with its canonical Riemannian metric.

Then Q = S2 × R3 and the foliation C ∩ C on

it is characterised by the fact that its restriction to

{u}×R3 is the foliation formed by the lines parallel

to u , (u ∈ S2) .

Therefore, as a smooth manifold, the twistor

space Z of R3 is the quotient of the trivial vector

bundle S2 × R3 through the tautological line bun-

dle L ⊆ S2 × R3 whose fibre, over any u ∈ S2, is

{u} × Ru . Hence, Z = TS2, embedded in S2 × R3

as L⊥.

This way, to any (u, v) ∈ Z (that is, (u, v) ∈
S2 × R3 with u orthogonal on v ) we associate the

oriented line which passes through v and is parallel

to u .

It can be proved that, as a complex manifold,

Z = O(2) (= ⊗2O(1) ) , where O(1) is the dual of

the tautological holomorphic line bundle over CP 1

(that is, O(−1) = {(l, u) | l ∈ CP 1, u ∈ l } ⊆
CP 1 × C2 ).

Example 3.2.8. Let (Q,M, π, C) be the twistorial

structure of the Einstein–Weyl space determined by

the three-dimensional sphere S3, endowed with its

canonical Riemannian metric.

It is convenient to identify R4 = H and, in
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particular, S3 with the group of unit quaternions

Sp(1) . Then TS3 = S3 × ImH such that the con-

stant sections of S3 × ImH correspond to left in-

variant vector fields on S3.

Also, the geodesics of S3 are just left transla-

tions of the subgroups with one parameter of S3 ;

equivalently, the geodesics of S3 are the integral

curves of the left invariant vector fields.

Therefore, Q = S3 × S2 and the foliation C ∩ C
on it is characterised by the fact that its restriction

to S3 × {u} is the foliation formed by the integral

curves of the left invariant vector field determined

by u , (u ∈ S2) .

Now, the flow of the left invariant vector field

determined by any u ∈ S2 (⊆ ImH ) is given by

S3 × R → S3, (q, t) 7→ q(cos t + u sin t) . Hence,

the leaf space of the foliation formed by its integral

curves is S2 and the projection S3 → S2 is the pro-

jection of a Hopf bundle.

Therefore, as a smooth manifold, the twistor

space Z of S3 is S2 × S2. It can be proved that,

also as a complex manifold, Z = S2 × S2 (where,

for example, S2 = CP 1 via the stereographic pro-

jection from the South pole).

Example 3.2.9. Let (Q,M, π,J ) be the twistorial

structure of R4. From Example 3.1.7 it follows that
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Q = S2 × R4. Hence, as a smooth manifold, the

twistor space Z, of R4, is S2 × R4.

Note that, at each (u, v) ∈ Z , the linear com-

plex structure J(u,v) on T(u,v)Z = TuS
2 × TvR4 is

given as follows: on TuS
2 is rotation though π/2

whilst on TvR4 = H it acts by left multiplication

with u .

It can be proved that, as a complex manifold,

Z = O(1)⊕O(1) .

Furthermore, by using that S4 \ {point} = R4,

as conformal manifolds, it can be shown that the

twistor space of S4 is CP 3.

We strongly recommend, to the interested reader,

that before searching for proofs of the statements,

from Examples 3.2.7 , 3.2.8 and 3.2.9 , regarding

the complex structures of the corresponding twistor

spaces, to try to understand the Twistor Theory

specific to the complex analytic category (see [28] ).

Then the twistor space of a three-dimensional

Einstein–Weyl space M is an open set of the twistor

space of its complexification MC which, in turn, is

the space of coisotropic geodesic (complex) surfaces

in MC . In fact, any oriented geodesic on M is the

intersection of M with a coisotropic geodesic sur-

face in MC .

For example, the complexification of S3 is the
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group SL(2,C ) of 2× 2 complex matrices of deter-

minant 1 , endowed with the complex-Riemannian

biinvariant metric which, on its Lie algebra, is given

by the determinant. Then the space of (connected)

coisotropic geodesic complex surfaces of SL(2,C ) is

CP 1 × CP 1.

Indeed, as the complex-Riemannian metric of

SL(2,C ) is biinvariant, any coisotropic geodesic sur-

face on it is the left translation of a coisotropic

(connected) Lie subgroup of SL(2,C ) . In partic-

ular, the orthogonal complement of any isotropic

element of sl(2,C ) (the Lie algebra of SL(2,C ) ) is

a Lie subalgebra of sl(2,C ) .

Now, y ∈ sl(2,C ) \ {0} is isotropic if and only

if ker y is one-dimensional (this gives another proof

of the fact that the space of isotropic directions on

a three-dimensional Euclidean space is a complex

projective line). Furthermore, y⊥ is made of those

elements x ∈ sl(2,C ) such that x(ker y) ⊆ ker y .

Consequently, a ∈ exp(y⊥) (⊆ SL(2,C ) ) if and

only if a(ker y) = ker y .

Therefore, similarly to Example 3.2.8 , any coi-

sotropic geodesic surface in SL(2,C ) is the projec-

tion of a unique fibre of the surjective holomorphic

submersion ϕ : SL(2,C )×CP 1 → CP 1×CP 1, char-

acterised by ϕ(a, ker y
)

=
(
a(ker y), ker y

)
, for any
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a ∈ SL(2,C ) and any isotropic y ∈ sl(2,C ) \ {0} .

Finally, note that for any isotropic y ∈ sl(2,C )\
{0} , the restriction to S3 of the map SL(2,C ) →
CP 1, a 7→ a(ker y) , is the projection of the Hopf

bundle. Thus, the twistor space of S3 is CP 1×CP 1.

3.3. Twistorial maps (basic facts and first

examples)

We start this section with the definition of twisto-

rial maps, suitably formulated for the purposes of

this book (cf. [22] ).

Definition 3.3.1. Let τM = (QM ,M, πM , CM) and

τN = (QN , N, πN , CN) be almost twistorial struc-

tures and let ϕ : M → N be a map. Suppose that

there exists a locally trivial fibre subspace πM,ϕ :

QM,ϕ → M of πM : QM → M and a map Φ :

QM,ϕ → QN with the properties:

1) CM induces an almost co-CR structure CM,ϕ

on QM,ϕ and almost complex structures on each fi-

bre of πM,ϕ .

2) dπM(CMq ) = dπM,ϕ(CM,ϕ
q ) , for any q ∈

QM,ϕ .

3) ϕ ◦ πM,ϕ = πN ◦ Φ .

QM

πM $$H
HHHHHHHH
QM,ϕ

πM,ϕ

��

? _oo Φ //QN

πN
��

M ϕ
//N
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Then ϕ : (M, τM)→ (N, τN) is a twistorial map

(with respect to Φ) if the map Φ : (QM,ϕ, CM,ϕ) →
(QN , CN) is holomorphic. If, further, CM,ϕ and CN

are simple co-CR structures, with (QM,ϕ, CM,ϕ) →
ZM,ϕ and (QN , CN) → ZN , respectively, the cor-

responding holomorphic submersions onto complex

manifolds, then Φ induces a holomorphic map Zϕ :

ZM,ϕ → ZN which is called the twistorial represen-

tation of ϕ .

Remark 3.3.2. With the same notations as in Def-

inition 3.3.1 , let τM,ϕ = (QM,ϕ,M, πM,ϕ, CM,ϕ) .

Then τM,ϕ is an almost twistorial structure on

M which is integrable if τM is integrable.

Furthermore, if τM is simple then, also, τM,ϕ

is simple and the twistor space ZM,ϕ of τM,ϕ is a

complex submanifold of the twistor space ZM of

τM . Moreover, for any z ∈ ZM,ϕ , the correspond-

ing immersed submanifolds of M endowed with lin-

ear complex structures on their normal bundles of

Proposition 3.1.2 , determined by τM and τM,ϕ , are

equal (for this is required condition (2) of Definition

3.3.1 ).

Next, we start giving examples of twistorial maps

between manifolds endowed with the almost twisto-

rial structures of Examples 3.1.8 , 3.2.1 or 3.2.3 .
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Example 3.3.3. Let (M 2, cM) and (N 2, cN) be two-

dimensional conformal manifolds.

Denote by τM = (M,M, IdM , J
M) and τN =

(N,N, IdN , J
N) the twistorial structures of Exam-

ple 3.1.8 associated to (M 2, cM) and (N 2, cN) , re-

spectively.

Let ϕ : M 2 → N 2 be a map. Obviously, ϕ :

(M 2, τM) → (N 2, τN) is twistorial (with respect to

ϕ) if and only if ϕ : (M 2, JM) → (N 2, JN) is holo-

morphic.

Example 3.3.4. Let (M 3, c,D) be a three-dimen-

sional Weyl space and let N 2 be an (oriented) sur-

face in M 3. Let τM = (Q,M, π, C) be the almost

twistorial structure of Example 3.2.1 , associated

to (M 3, c,D) , and let τN = (N,N, IdN , J) be the

twistorial structure of Example 3.1.8 , associated to

(N 2, c|N) .

Let q be the section of Q5 over N 2 such that,

qx =
(
T 0,1
x N

)⊥
, for any x ∈ N . Then the following

assertions are equivalent:

(i) The inclusion (N 2, τN)→ (M 3, τM) is twi-

storial (with respect to q).

(ii) q : (N 2, J)→ (P 5, C) is holomorphic.

(iii)N 2 is an umbilical submanifold of (M 3, c) .

Indeed, (i)⇐⇒(ii) by definition, whilst (ii) holds

if and only if, for any X ∈ T 0,1N , we have dq(X) ∈
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C . Hence, from Proposition 1.2.1 it follows that (ii)

is equivalent to c(DXY,X) = 0 , for any nowhere

zero local section X of T 0,1N and any section Y of

the orthogonal complement of X in TCM |N ; equiv-

alently, c(U,DXX) = −c(DXU,X) = 0 for any

nowhere zero local section X of T 0,1N and any U

orthogonal to N 2.

Thus, we have shown that (ii) holds if and only if

the second fundamental form of N 2 in (M 3, c,D) is

zero along isotropic directions; that is, (ii)⇐⇒(iii) .

Example 3.3.5. Let (M 4, c) be a four-dimensional

conformal manifold and let N 2 be an oriented sur-

face in M 4. Let τM = (Q,M, π,J ) be the al-

most twistorial structure of Example 3.2.3 , asso-

ciated to (M 4, c) , and let τN = (N,N, IdN , J) be

the twistorial structure of Example 3.1.8 , associ-

ated to (N 2, c|N) .

Let q be the section of Q6 over N 2 such that

qx|TxN = Jx , for any x ∈ N . Then the following

assertions are equivalent:

(i) The inclusion (N 2, τN)→ (M 4, τM) is twi-

storial (with respect to q).

(ii) q : (N 2, J)→ (Q6,J ) is holomorphic.

If we endow M 4 with the opposite orientation

then Example 3.2.3 gives another almost twistorial

structure τ̃M = (Q̃,M, π̃, J̃ ) .
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Then an argument as in Example 3.3.4 shows

that the following assertions are equivalent:

(a) (N 2, τN)→ (M 4, τM) and (N 2, τN)→ (M 4, τ̃M)

are twistorial.

(b) N 2 is an umbilical submanifold of (M 4, c) .

3.4. Twistorial maps to two-dimensional

conformal manifolds

In this section we discuss the twistorial maps

from three-dimensional Weyl spaces, or four-dimen-

sional conformal manifolds to two-dimensional con-

formal manifolds.

Also, we prove that the Weyl connection D of

a four-dimensional Hermitian manifold (M 4, c, J) is

characterised by DJ = 0 .

Example 3.4.1. Let (M 3, cM , D) be a three-di-

mensional Weyl space and let (N 2, cN) be a two-

dimensional conformal manifold. Denote by τM =

(Q,M, π, C) the almost twistorial structure of Ex-

ample 3.2.1 , associated to (M 3, cM , D) , and by τN =

(N,N, IdN , J) the twistorial structure of Example

3.1.8 , associated to (N 2, cN) .

Let ϕ : M 3 → N 2 be a submersion. Orient

V = ker dϕ and H = V ⊥ such that the isomor-

phisms H = ϕ∗(TN) and TM = V ⊕H be orien-

tation preserving. Let H+ ⊆H C be the eigenbun-

dle, corresponding to −i , of the positive orthogonal
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complex structure on (H , (cM)|H ) .

Then Cϕ = V ⊕H+ is a coisotropic almost co-

CR structure on M 3. Denote by qϕ the correspond-

ing section of Q and define Φ = ϕ◦ qϕ−1 : qϕ(M)→
N .

Q

π
##G

GGGGGGGGG qϕ(M)? _oo Φ //N

IdN
��

M

qϕ

OO

ϕ
//N

The following assertions are equivalent:

(i) ϕ : (M 3, τM)→ (N 2, τN) is twistorial (with

respect to Φ).

(ii) ϕ : (M 3, cM) → (N 2, cN) is horizontally

conformal and qϕ : (M 3, Cϕ) → (Q5, C) is holomor-

phic.

(iii) ϕ : (M 3, cM) → (N 2, cN) is horizontally

conformal and the fibres of Φ are tangent to the

connection induced by D on Q5.

(iv) ϕ : (M 3, cM , D)→ (N 2, cN) is a horizon-

tally conformal submersion with geodesic fibres.

Indeed, firstly, note that (i) is equivalent to the

following:

(i′) C induces an almost co-CR structure on

qϕ(M) which is mapped by π|qϕ(M) onto Cϕ, and

with respect to which Φ is a holomorphic map onto

(N 2, J) .

Obviously, the first condition of (i′) holds if and
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only if the map qϕ : (M 3, Cϕ)→ (Q5, C) is holomor-

phic. Then, assuming that this holds, the second

condition of (i′) is equivalent to ϕ : (M 3, Cϕ) →
(N 2, J) is holomorphic; that is, T 0,1N = dϕ(Cϕ) =

dϕ(H+) .

To complete the proof of (i)⇐⇒(ii) , just note

that a nonconstant submersion, between conformal

manifolds, is horizontally conformal if and only if it

maps horizontal isotropic directions onto isotropic

directions.

For the proof of (ii)⇐⇒(iii)⇐⇒(iv) we may as-

sume ϕ horizontally conformal.

Now, as we have seen before proving Proposi-

tion 2.5.3 , if ϕ is horizontally conformal then H is

umbilical; equivalently, DXX is horizontal for any

section X of H+ .

Let U be a nowhere zero section of V . Then,

by applying Proposition 1.2.1 , we obtain that qϕ :

(M 3, Cϕ) → (Q5, C) is holomorphic if and only if

cM(DXU,X) = cM(DUU,X) = 0 , for any section

X of H+ . As ϕ is horizontally conformal, this holds

if and only if cM(DUU,X) = 0 , for any section X

of H+ ; that is, the fibres of ϕ are geodesics. Hence,

(ii)⇐⇒(iv) .

Finally, the fibres of Φ are tangent to the con-

nection induced by D on Q5 if and only if qϕ(V )
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is horizontal on Q5 ; that is, cM(DUU,X) = 0 , for

any section X of H+ . Hence, (ii)⇐⇒(iii) .

From Example 3.4.1 we immediately obtain the

following:

Corollary 3.4.2. Let (M 3, c,D) be a three-dimen-

sional Weyl space and let (Q,M, π, C) be its almost

twistorial structure.

Let q be a section of Q5 and let Cq be the cor-

responding coisotropic almost co-CR structure on

(M 3, c) .

Then the following assertions are equivalent:

(i) q : (M 3, Cq)→ (Q5, C) is holomorphic.

(ii) Cq is integrable and Cq ∩ Cq is a foliation

by geodesics on (M 3, D) .

Also, note that, a coisotropic almost co-CR struc-

ture C on a three-dimensional conformal manifold

(M 3, c) is integrable if and only if the foliation C∩C
is locally defined by horizontally conformal submer-

sions (that is, C ∩ C is a conformal foliation).

Example 3.4.3. Let (M 4, cM) and (N 2, cN) be con-

formal manifolds of dimensions four and two, re-

spectively. Let τM = (Q,M, π,J ) be the almost

twistorial structure of Example 3.2.3 , associated

to (M 4, cM) , and let τN = (N,N, IdN , J) be the

twistorial structure of Example 3.1.8 , associated to
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(N 2, cN) .

Let ϕ : M 4 → N 2 be a submersion. Orient

V = ker dϕ and H = V ⊥ such that the isomor-

phisms H = ϕ∗(TN) and TM = V ⊕H be orien-

tation preserving.

Let Jϕ be the positive almost Hermitian struc-

ture on (M 4, cM) such that Jϕ|V and Jϕ|H are the

rotations of angle π/2.

Denote by qϕ the section of Q6 corresponding to

Jϕ and define Φ = ϕ ◦ pϕ−1 : pϕ(M) → N . Note

that, qϕ restricted to any fibre ϕ−1(y) is equal to

qϕ−1(y) of Example 3.3.5 , (y ∈ ϕ(M) ) .

The following assertions are equivalent:

(i) ϕ : (M 4, τM)→ (N 2, τN) is twistorial (with

respect to Φ).

(ii) ϕ : (M 4, cM) → (N 2, cN) is horizontally

conformal and qϕ : (M 4, Jϕ)→ (Q6,J ) is holomor-

phic.

(iii) ϕ : (M 4, cM) → (N 2, cN) is horizontally

conformal and its fibres are twistorial, in the sense

of Example 3.3.5 .

(iv) ϕ : (M 4, cM) → (N 2, cN) is horizontally

conformal and Jϕ is integrable.

Indeed, firstly, note that (i) is equivalent to the

following:

(i′) J induces an almost co-CR structure on
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qϕ(M) with respect to which Φ is a holomorphic

map onto (N 2, J) .

From the definition of J it follows quickly that

qϕ is holomorphic if and only if J induces an almost

co-CR structure on qϕ(M) .

Also, from the definition of Jϕ it follows quickly

that Φ is holomorphic if and only if dϕ(H+) is

isotropic on (N 2, cN) , where H+ is the eigenbun-

dle, corresponding to −i , of the positive orthogonal

complex structure on (H , (cM)|H ) .

We have, thus, proved that (i)⇐⇒(ii) .

For the proof of (ii)⇐⇒(iii)⇐⇒(iv) we may as-

sume ϕ horizontally conformal. Hence, H is um-

bilical; equivalently, DXX is horizontal for any sec-

tion X of H+ , where D is any Weyl connection on

(M 4, cM) .

As H+ is isotropic and D is conformal, for any

section X of H+ , we have cM(DXX,X) = 0 . Thus,

for any section X of H+ , we have that, also, DXX

is a section of H+. Together with Proposition 1.2.1 ,

this shows that the differential of qϕ , restricted to

H , intertwines Jϕ|H and J .

On the other hand, the fibres of ϕ are twistorial

if and only if the differential of qϕ , restricted to V ,

intertwines Jϕ|V and J . Therefore (ii)⇐⇒(iii) .

For (ii)⇐⇒(iv) , it is sufficient to prove that qϕ
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is holomorphic if and only if Jϕ is integrable.

For this, firstly, note that, by Proposition 1.2.1 ,

we have that qϕ is holomorphic if and only if DXY

is a section of T 0,1M for any sections X and Y of

T 0,1M , where T 0,1M is the eigenbundle of Jϕ, cor-

responding to −i .

Thus, if qϕ is holomorphic then [X, Y ] = DXY −
DYX is a section of T 0,1M , for any sections X and

Y of T 0,1M . Hence, Jϕ is integrable.

Finally, as T 0,1M is isotropic, by applying (2.2.1) ,

we obtain

2 cM(DXY, Z)

= −cM(X, [Y, Z]) + cM(Y, [Z,X]) + cM(Z, [X, Y ]) ,

for any sections X, Y and Z of T 0,1M .

Therefore if Jϕ is integrable then qϕ is holomor-

phic.

Next, we prove the following result.

Corollary 3.4.4. Let (M 4, c) be a four-dimensional

conformal manifold and let (Q,M, π,J ) be its al-

most twistorial structure.

Let J be a positive almost Hermitian structure

on (M 4, c) and let q be the corresponding section of

Q.

Then the following assertions are equivalent:

(i) q : (M 4, J)→ (Q6,J ) is holomorphic.
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(ii) DJXJ = JDXJ , for any X ∈ TM , where

D is any Weyl connection on (M 4, c) .

(iii) J is integrable.

Proof. In Example 3.4.3 we have seen that as-

sertions (i) and (iii) are equivalent. Also, assertion

(i) holds if and only if DXY is a section of T 0,1M ,

for any sections X and Y of T 0,1M .

As T 0,1M is generated by all X+iJX, with X a

vector field on M 4, assertion (i) is equivalent to the

fact that, for any vector fields X and Y on M 4, we

have JDX+iJX(Y + iJY ) = −iDX+iJX(Y + iJY ) ;

equivalently,

J
(
DXY −DJX(JY )

)
= DX(JY ) +DJXY .

The proof of (i)⇐⇒(ii) follows quickly. �

Remark 3.4.5. Corollary 3.4.4 implies that on an

anti-self-dual manifold (M 4, c) , locally, there exist

many positive Hermitian structures. Indeed, if J

is a positive Hermitian structure on (M 4, c) then

q(M) is a complex surface in (Q,J ) , where q is

the section of Q corresponding to J . Moreover, any

complex surface in (Q,J ) which intersects each fi-

bre of π at most once and transversely is the image

of the section of Q corresponding to a local positive

Hermitian structure on (M 4, c) .
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Similarly, it can be shown, by using Corollary

3.4.2 , that on a three-dimensional Einstein–Weyl

space, locally, there exist many horizontally confor-

mal submersions with geodesic fibres.

Furthermore, these properties characterise the

anti-self-dual manifolds and the three-dimensional

Einstein–Weyl spaces among the four-dimensional

conformal manifolds and the three-dimensional Weyl

spaces, respectively.

Corollary 3.4.4 , with assertion (i) suitably a-

dapted, holds for any even-dimensional conformal

manifold. However, the next result is specific to

dimension four.

Proposition 3.4.6. Let (M 4, c, J) be a four-dimen-

sional almost Hermitian manifold and let D be a

Weyl connection on (M 4, c).

Then the following assertions are equivalent:

(i) D is the Weyl connection of (M 4, c, J) .

(ii) DJXJ = −JDXJ , for any X ∈ TM .

Proof. By Example 3.2.3 , the bundle of pos-

itive orthogonal complex structures on (M 4, c) is

the sphere bundle of an oriented Riemannian vec-

tor bundle E, of rank three, on which D induces a

Riemannian connection.

Furthermore, any positive orthonormal frame
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on E satisfies the quaternionic identities. Hence,

locally, there exist almost Hermitian structures I

and K on (M 4, c) such that IJK = −IdTM .

Also, there exist one-forms a and c such that

(3.4.1) DJ = c⊗ I − a⊗K ;

in particular, we have

DJXJ = c(JX)I − a(JX)K ,

−J(DXJ) = c(X)K + a(X)I ,
(3.4.2)

for any X ∈ TM .

Relations (3.4.2) show that (ii) holds if and only

if a = c ◦ J .

On the other hand, if g is a representative of c

and X is a (local) vector field such that g(X,X) =

1 then (X, IX, JX,KX) is a positive orthonormal

frame on (M 4, g) . Therefore

traceg(DJ) =(DXJ)(X) + (DIXJ)(IX)

+ (DJXJ)(JX) + (DKXJ)(KX) .

Then, by using (3.4.1) , after a straightforward cal-

culation, we obtain

traceg(DJ) =
(
a(KX)− c(IX)

)
X

+
(
a(JX) + c(X)

)
IX

−
(
a(IX) + c(KX)

)
JX

−
(
a(X)− c(JX)

)
KX .

(3.4.3)
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Relation (3.4.3) shows that (i) holds if and only

if a = c ◦ J .

The proof is complete. �

We end this section with the following immedi-

ate consequence of Corollary 3.4.4 and Proposition

3.4.6 .

Corollary 3.4.7. Let (M 4, c, J) be a four-dimen-

sional Hermitian manifold and let D be a Weyl con-

nection on (M 4, c).

Then the following assertions are equivalent:

(i) D is the Weyl connection of (M 4, c, J) .

(ii) DJ = 0.

3.5. Twistorial maps from 4-dim conformal

manifolds to 3-dim Weyl spaces

Let (M 4, cM) be a four-dimensional oriented con-

formal manifold and let (N 3, cN , D
N) be a three-

dimensional Weyl space.

Denote by τM = (QM ,M, πM ,J ) the almost

twistorial structure of Example 3.2.3 , associated to

(M 4, cM) , and by τN = (QN , N, πN ,F) the almost

twistorial structure of Example 3.2.1 , associated to

(N 3, cN , D
N) .

Let ϕ : M 4 → N 3 be a submersion. Denote,

as usual, V = ker dϕ and H = V ⊥. Orient V =

ker dϕ and H = V ⊥ such that the isomorphisms
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H = ϕ∗(TN) and TM = V ⊕H be orientation

preserving. Let U be a positive (nowhere zero) sec-

tion of V .

We define a map Φ : QM → QN as follows: if

J ∈ QM then Φ(J) is the two-dimensional coisotropic

space on
(
Tϕ(π(J))N, h

)
determined by dϕ(JU) , via

Example 3.1.6 , where h is the representative of

(cN)ϕ(π(J)) with respect to which dϕ(JU) has length

1 .

It is easy to check that Φ doesn’t depend of U .

Also, if ϕ : (M 4, cM) → (N 3, cN) is horizon-

tally conformal then, for any J ∈ QM , we have

Φ(J) = dϕ(T JM) , where T JM is the eigenspace of

J corresponding to −i .

Next, we prove the main result of this section.

Theorem 3.5.1. The following assertions are equiv-

alent:

(i) ϕ : (M 4, τM) → (N 3, τN) is twistorial (with

respect to Φ).

(ii) ϕ is horizontally conformal and

(Ddϕ)(T JM,T JM) ⊆ Φ(J) ,

for any J ∈ QM , where D is the connection on

Hom(TM,ϕ∗(TN)) induced by DN and some Weyl

connection on (M 4, cM) .
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To prove Theorem 3.5.1 we need some prelimi-

nary results.

Lemma 3.5.2. For A ∈ GL(3,R) let ψA : S2 → S2

be defined by ψA(x) = 1
||Ax||Ax , for any x ∈ S2.

Then the following assertions are equivalent:

(i) ψA is holomorphic.

(ii) A ∈ CO(3,R) and detA > 0 .

Proof. Assertion (i) is equivalent to the follow-

ing:

(i′) ψA is conformal and preserves the orien-

tations.

By the polar decomposition, there exists a lin-

ear isometry U of R3 and positive numbers λ1 , λ2 ,

λ3 such that A = UP , where Pij = λiδij , for any

i, j ∈ {1, 2, 3} .

We claim that ψP is conformal if and only if

λ1 = λ2 = λ3 . Indeed, firstly note that, ψP pre-

serves the vectors of the canonical basis of R3. Fur-

thermore, a straightforward calculation shows that,

under the identification T(1,0,0)S
2 = R2, where R2 ⊆

R3 is given by x1 = 0 , we have

(dψP )(1,0,0) =

(
λ −1

1 λ2 0

0 λ −1
1 λ3

)
.

Thus, (dψP )(1,0,0) is conformal if and only if λ2 =

λ3 . Similarly, (dψP )(0,1,0) is conformal if and only if



Twistorial structures and maps 93

λ1 = λ3 . Therefore ψA = U ◦ψP is conformal if and

only if λ1 = λ2 = λ3 = λ (> 0) . Then ψA = U |S2

and, as detA = λ3 detU , the proof is complete. �

Proof of Theorem 3.5.1. Denote by τM =

(QM ,M, πM ,J ) and τN = (QN , N, πN ,F) the al-

most twistorial structures associated to (M 4, cM)

and (N 3, cN , D
N) , respectively, where (M 4, cM) is

endowed with a Weyl connection DM .

If we apply Lemma 3.5.2 , with A equal to the

differential of ϕ , at each point of M 4, we obtain

that Φ restricted to each fibre of πM is holomorphic

if and only if ϕ is horizontally conformal.

Thus, we may assume ϕ horizontally conformal.

Then Φ : QM → QN is given by Φ(J) = dϕ(T JM) ,

for any J ∈ QM .

Therefore (i) holds if and only if dΦ(B) ⊆ F ,

where B is the complex vector subbundle of TCQM

such that BJ is the horizontal lift, with respect to

DM , of T JM (⊆ TC
πM (J)M) , for any J ∈ QM .

Let J0 ∈ QM , Y0 ∈ T J0M and denote x0 =

πM(J0) . Let P 2 be a surface in M 4 which is tangent

to Y0 ; equivalently, x0 ∈ P and TC
x0
P is spanned by

Y0 and Y0 . As dϕ(Tx0P ) is a two-dimensional vector

space tangent to N 3, by passing, if necessary, to an

open neighbourhood of x0 in P 2, we may suppose

that ϕ(P ) is a surface in N 3. Furthermore, we may



94 Radu Pantilie and Stefano Marchiafava

suppose that there exists a section q of QM over P 2

such that qx0 = J0 and q(P ) is horizontal at J0 ,

with respect to DM ; equivalently, dq(Y0) ∈ BJ0.

Then there exists a section q̌ of QN over ϕ(P )

such that Φ ◦ q = q̌ ◦ ϕ . Furthermore, if Y is a

section of q (over P 2), such that Yx0 = Y0 , then

(3.5.1)

(Ddϕ)(Y, Y ) = DN
dϕ(Y )

(
dϕ(Y )

)
− dϕ(DM

Y Y ) .

As q(P ) is horizontal at x0 , we have DM
Y0
Y ∈

T J0M , which implies that dϕ(DM
Y0
Y ) ∈ Φ(J0) . Thus,

by (3.5.1) , we have (Ddϕ)(Y0, Y0) ∈ Φ(J0) if and

only if DN
dϕ(Y0)

(
dϕ(Y )

)
∈ Φ(J0) . Now, if Y0 is not

horizontal then this is equivalent to dq̌
(
dϕ(Y0)

)
∈

CNq̌(ϕ(x0)) . But Φ ◦ q = q̌ ◦ ϕ and, hence, if Y0 is not

horizontal then (Ddϕ)(Y0, Y0) ∈ Φ(J0) if and only if

dΦ
(
dq(Y0)

)
∈ CNΦ(q0) . (Note that, if Y0 is horizontal

then (Ddϕ)(Y0, Y0) ∈ Φ(J0) , due to the horizontal

conformality of ϕ .)

The proof is complete. �

The next result shows that the twistorial maps

from anti-self-dual manifolds to three-dimensional

Einstein–Weyl spaces behave like morphisms.

Proposition 3.5.3. Let (M 4, cM) be an anti-self-

dual manifold and let (N 3, cN , D
N) be a three-di-

mensional Einstein–Weyl space. Also, let ϕ be a
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horizontally conformal submersion from (M 4, cM)

to (N 3, cN) .

Then the following assertions are equivalent:

(i) ϕ : (M 4, τM) → (N 3, τN) is twistorial,

where τM and τN are the almost twistorial struc-

tures of (M 4, cM) and (N 3, cN , D
N) , respectively.

(ii) For any horizontally conformal submer-

sion ψ with geodesic fibres, defined on (N 3, cN , D
N) ,

locally, we have that ψ◦ϕ is twistorial (in the sense

of Example 3.4.3 ).

Proof. Let τM = (QM ,M, πM ,J ) and τN =

(QN , N, πN ,F) , and let ψ : (N 3, cN , D
N)→ (P 2, cP )

be a horizontally conformal submersion with geo-

desic fibres (recall that, by Example 3.4.1 , we have

that ψ is twistorial).

Denote by qψ and qψ◦ϕ the sections of QN and

QM determined by ψ and ψ◦ϕ , as in Examples 3.4.1

and 3.4.3 , respectively. Note that, qψ ◦ϕ = Φ◦ qψ◦ϕ
and qψ◦ϕ(M) = Φ−1(qψ(N)) .

If (i) holds then qψ◦ϕ(M) = Φ−1(qψ(N)) is a

complex surface in (QM ,J ) . Hence, by Example

3.4.3 , we have that ψ ◦ ϕ is twistorial.

Conversely, if ψ◦ϕ is twistorial then qψ◦ϕ(M) is a

complex surface in (QM ,J ) and, from the fact that
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qψ ◦ ϕ = Φ ◦ qψ◦ϕ , it follows that Φ|qψ◦ϕ(M) is holo-

morphic. As ϕ is horizontally conformal, together

with Lemma 3.5.2 , this shows that (ii)=⇒(i) . �

Let V be a one-dimensional oriented foliation

on a conformal manifold (Mm, c) . Then, for any

positive section U of V , there exists a unique rep-

resentative g of c such that g(U,U) = 1 . Conse-

quently, c induces an isomorphism of oriented line

bundles between V and the line bundle ofMm. Fur-

thermore, as any representative of c corresponds to

a representative of c|H , where H = V ⊥, we also

have an isomorphism of oriented line bundles be-

tween V and the line bundle of H .

Therefore the Hodge ∗-operator ∗H of (H , c|H )

defines, for example, an isomorphism of vector bun-

dles between Λ2H ∗ and V m−4 ⊗ Λm−3H ∗. We

shall apply ∗H to the integrability tensor IH of

H which, by definition, is the V -valued two-form

on Mm such that IH (X, Y ) = −V [X, Y ] , for any

horizontal vector fields X and Y . In particular, if

m = 4 then ∗H IH is a (horizontal) one-form on

M 4.

The following result is due to [8] .
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Corollary 3.5.4. Let ϕ : (M 4, cM)→ (N 3, cN , D
N)

be a horizontally conformal submersion. Then the

following assertions are equivalent:

(i) ϕ : (M 4, τM)→ (N 3, τN) is twistorial, where

τM and τN are the almost twistorial structures of

(M 4, cM) and (N 3, cN , D
N) , respectively.

(ii) For any X ∈ H , we have ϕ∗(DN)X =

DX + (∗H IH )(X) , as connections on V , where D

is the Weyl connection of (M 4, cM ,V ) .

Proof. Let g and h be representatives of cM

and cN , respectively, with respect to which ϕ :

(M 4, g) → (N 3, h) is a Riemannian submersion.

Let ∇ be the Levi-Civita connection of (M 4, g) and

let (U,X1, X2, X3) be a positive local orthonormal

frame on (M 4, g) such that U is vertical. We may

suppose that Xj , (j = 1, 2, 3) , are projectable with

respect to ϕ ; in particular, [U,X1] is vertical.

Let J be the positive almost Hermitian struc-

ture, locally defined on (M 4, g) , whose eigenbun-

dle corresponding to −i is spanned by U + iX1 and

X2 + iX3 .

Then (Ddϕ)(T JM,T JM) ⊆ Φ(J) if and only if

the following relation holds g
(
(Ddϕ)(U + iX1, U +

iX1), X2 + iX3

)
= 0 ; equivalently,

(3.5.2)

g
(
ϕ∗(DN)X1

X1 +∇U+iX1
(U + iX1), X2 + iX3

)
= 0 .
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If α is the Lee form of DN with respect to h

then

(3.5.3)

g
(
ϕ∗(DN)X1

X1−∇X1
X1, X2+iX3

)
= −ϕ∗(α)(X2+iX3).

Also, we have

(3.5.4)

g(∇UU,X2 + iX3) = g(traceg(B
V ,g), X2 + iX3) .

By using the fact that ϕ is a Riemannian sub-

mersion we, also, obtain

g(∇UX1 +∇X1
U,X2 + iX3)

= g(2∇X1
U + [X1, U ], X2 + iX3)

= 2g(∇X1
U,X2 + iX3)

= −2g(U,∇X1
(X2 + iX3))

= −g(U, [X1, X2 + iX3]) .

(3.5.5)

Now, relations (3.5.3) , (3.5.4) and (3.5.5) show

that (3.5.2) holds if and only if

ϕ∗(α)(Xj) = g(traceg(B
V ,g), Xj) + (∗H IH )(Xj) ,

for j = 2, 3 .

The proof follows from Theorem 3.5.1 . �

Next, we prove another result of [8] .
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Corollary 3.5.5. Let ϕ : (M 4, cM)→ (N 3, cN , D
N)

be a surjective twistorial map. Then the following

assertions are equivalent:

(i) (M 4, cM) is anti-self-dual.

(ii) (N 3, cN , D
N) is Einstein–Weyl.

Proof. Let τM = (QM ,M, πM ,J ) and τN =

(QN , N, πN ,F) be the almost twistorial structures

of (M 4, cM) and (N 3, cN , D
N) , respectively; denote

by C the eigenbundle of J corresponding to −i .

From the fact that the fibres of Φ are mapped

by πM diffeomorphically onto the fibres of ϕ it fol-

lows that the sum C+(ker dπM)1,0+ker dΦ is direct.

Now, as dΦ(C) = F we, obviously, have (i)=⇒(ii) .

Conversely, if (ii) holds then (dΦ)−1(F) = C ⊕
ker dΦ is integrable. Together with Remark 1.3.2 ,

this gives that the bracket of any two sections of C
is a section of

(
C⊕ker dΦ

)
∩
(
C⊕(ker dπM)1,0

)
= C.

The proof is complete. �

Next, we give a construction, due to [18] (cf.

[14] ; see Example 4.2.3 , below), of a twistorial map

from a four-dimensional conformal manifold to a

three-dimensional Weyl space.

Example 3.5.6. Let V be a nowhere zero confor-

mal vector field on a four-dimensional conformal

manifold (M 4, cM) ; that is, the local flow of V is
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formed of conformal diffeomorphisms (equivalently,

for any representative g of cM there exists a func-

tion f on M such that LV g = fg , where L denotes

the Lie derivation).

Suppose that the orbits of V are the fibres of a

surjective submersion ϕ : M → N (locally, this al-

ways holds). Then, as V is conformal, there exists

a unique conformal structure cN on N with respect

to which ϕ is horizontally conformal.

Let g and h be representatives of cM and cN ,

respectively, with respect to which ϕ is a Riemann-

ian submersion.

We claim that V is a Killing vector field on

(M 4, g) ; that is, the local flow of V is formed of (lo-

cal) isometries of g (equivalently, LV g = 0 ). More-

over, this holds in any dimension.

Indeed, a straightforward calculation (see [5] )

shows that

(3.5.6) (LV g)(X, Y ) = −2g
(
BH ,g(X, Y ), V

)
,

for any X, Y ∈ H . Together with the fact that

V is conformal and ϕ is a Riemannian submersion,

this shows that LV g = 0 .

Now, let ρ = g(V, V ) . Then, as V (g(V, V )) =

(LV g)(V, V ) = 0 , we have that ρ is constant along

the fibres of ϕ . Hence, ρ = σ ◦ ϕ for some positive
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function σ on N . Thus, by replacing, if necessary,

g and h with ρ−1g and σ−1h , respectively, we may

assume g(V, V ) = 1 .

If X is horizontal then

g(V, [V,X]) = −(LV g)(V,X) = 0 .

Hence, if, further, X is projectable, with respect to

ϕ , then [V,X] = 0 ; thus,

g(traceg(B
V ,g), X) = g(∇V V,X) = −g(V,∇VX)

= −g(V,∇XV ) = −1
2X(g(V, V ))

= 0 .

Let θ = V [g . Then (dθ)(X, Y ) = −g(V, [X, Y ]) ,

for any horizontal X and Y . Also, by using the

fact that V commutes with the projectable hori-

zontal vector fields, we obtain (dθ)(V,X) = 0 , for

any horizontal X. Hence, IH = V ⊗ dθ .

Also, it follows quickly that there exists a two-

form F on N such that dθ = ϕ∗(F ) . Moreover,

∗H IH = ϕ∗(∗hF ) , where ∗h is the Hodge ∗-operator

of (N, h) .

Let DN be the Weyl connection on (N 3, cN)

whose Lee form with respect to h is ∗hF . Then,

by Corollary 3.5.4 , ϕ : (M 4, cM)→ (N 3, cN , D
N) is

twistorial.
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With the same notations as in Example 3.5.6 ,

note that, as dF = 0 , the Lee form α of DN with

respect to h satisfies d∗hα = 0 ; equivalently, α

is a co-closed one-form on (N 3, h) . This fact can

be used to show that (M 4, cM) can be, locally, re-

trieved from (N 3, cN , D
N) , as we shall now explain.

Remark 3.5.7. Let (N 3, [h], D) be a three-dimen-

sional Weyl space such that the Lee form α of D,

with respect to h , is a co-closed one-form on (N 3, h) .

Then, locally, there exists a one-form A on N 3 such

that ∗hα = dA (equivalently, α = ∗h dA).

Let M 4 = R × N 3 and let g = h + (dt + A)2,

where t : M 4 → R is the projection. Then ∂/∂t is a

conformal vector field on (M 4, [g]) and the projec-

tion (M 4, [g]) → (N 3, [h], D) is the corresponding

twistorial map.



CHAPTER 4

Harmonic morphisms and twistorial maps

In this chapter we discuss the conditions under

which the examples of twistorial maps presented in

Chapter 3 are harmonic morphisms.

Also, we prove that any harmonic morphism

from a four-dimensional Einstein–Weyl space to a

two-dimensional conformal manifold is twistorial,

with respect to a suitable orientation on its domain.

It follows that, also, any harmonic morphism be-

tween Einstein–Weyl spaces of dimensions four and

three is twistorial, with respect to a suitable orien-

tation on its domain.

4.1. Twistorial harmonic morphisms to

two-dimensional conformal manifolds

In this section we study the conditions under

which the twistorial maps of Examples 3.3.3 , 3.4.1

and 3.4.3 are harmonic morphisms.

Corollary 4.1.1. Let ϕ : (M 2, cM) → (N 2, cN) be

a map between two-dimensional Weyl spaces.

Then the following assertions are equivalent:
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(i) ϕ is a harmonic morphism, with respect

to some (and, hence, any) Weyl connections on its

domain and codomain.

(ii) ϕ is twistorial, with respect to suitable ori-

entations of its domain and codomain.

Proof. Let JM and JN be the positive Hermit-

ian structures on (M 2, cM) and (N 2, cN) , respec-

tively. Assertion (ii) is equivalent to the fact that

ϕ : (M 2, JM) → (N 2, JN) is either holomorphic or

anti-holomorphic.

The proof is an immediate consequence of Re-

mark 2.3.3 . �

Next, we prove the following result.

Corollary 4.1.2. Let ϕ : (M 3, cM , D) → (N 2, cN)

be a submersion from a three-dimensional Weyl space

to a two-dimensional conformal manifold.

Then the following assertions are equivalent:

(i) ϕ is a harmonic morphism.

(ii) ϕ is twistorial.

Proof. By Example 3.4.1 , assertion (ii) is equiv-

alent to the fact that ϕ is a horizontally conformal

submersion with geodesic fibres.

The proof is an immediate consequence of Corol-

lary 2.5.4(a) . �
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To state the next result we use the same nota-

tions as in Example 3.4.3 .

Corollary 4.1.3. Let ϕ : (M 4, cM , D) → (N 2, cN)

be a submersion from a four-dimensional Weyl space

to a two-dimensional conformal manifold.

Then any two of the following assertions imply

the third:

(i) ϕ is a harmonic morphism.

(ii) ϕ is twistorial.

(iii) The fibres of Φ are tangent to the connec-

tion induced by D on Q.

To prove Corollary 4.1.3 we involve the following

almost twistorial structure, due to [13] .

Example 4.1.4. Let (M 4, c,D) be a four-dimen-

sional Weyl space. With the same notations as in

Example 3.2.3 , let J ′ be the almost complex struc-

ture on Q whose eigenbundle corresponding to −i

is B ⊕ (ker dp)1,0. From [20, Proposition III.2.3] it

follows quickly that J ′ is nonintegrable (that is, al-

ways not integrable).

Then (Q,M, π,J ′) is the nonintegrable almost

twistorial structure of (M 4, c,D) .

The almost twistorial structure of Example 4.1.4

provides the setting for the twistorial interpretation
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of minimal surfaces in four-dimensional Weyl spaces

(cf. [13] ):

Example 4.1.5. Let (M 4, c,D) be a four-dimensio-

nal Weyl space and let N 2 be an oriented surface in

M 4. Let τ ′M = (Q,M, π,J ′) be the nonintegrable

almost twistorial structure of (M 4, c,D) , and let

τN = (N,N, IdN , J) be the twistorial structure of

Example 3.1.8 , associated to (N 2, c|N) .

As in Example 3.3.5 , let q be the section of Q6

over N 2 such that qx|TxN = Jx , for any x ∈ N .

Then the following assertions are equivalent:

(i) The inclusion (N 2, τN)→ (M 4, τ ′M) is twi-

storial (with respect to q).

(ii) q : (N 2, J)→ (P 6,J ′) is holomorphic.

(iii) N 2 is minimal in (M 4, c,D) .

Indeed, Proposition 1.2.1 implies that (ii) holds

if and only if, for any sections X and Y of q with

X tangent to N 2 and Y normal to N 2, we have

that DXX and DXY are sections of q ; equivalently,

c(DXX, Y ) = 0 . Furthermore, as [X,X] is tangent

to N 2, we have that c(DXX, Y ) = 0 if and only if

c(DXX, Y ) = 0 .

Thus, we have proved that (ii) holds if and only

if, for any section X of q tangent to N 2, we have

that DXX is tangent to N 2.

The equivalence (ii)⇐⇒(iii) follows quickly.
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Let J be an almost Hermitian structure on a

four-dimensional Weyl space (M 4, c,D) . With the

same notations as above, let q be the section of Q

corresponding to J . From Proposition 3.4.6 it fol-

lows that the following assertions are equivalent:

(i) D is the Weyl connection of (M 4, c, J) .

(ii) q : (M 4, J)→ (Q6,J ′) is holomorphic.

We end this section with the following:

Proof of Corollary 4.1.3. By using Coro-

llary 2.5.4(a) and Example 4.1.5 , we obtain that

assertion (i) is equivalent to the following:

(i′) ϕ is horizontally conformal and its fibres

are twistorial, in the sense of Example 4.1.5 .

By Example 3.3.5 , assertion (ii) is equivalent to

the following:

(ii′) ϕ is horizontally conformal and its fibres

are twistorial, in the sense of Example 3.3.5 .

Let P 2 be a fibre of ϕ and let J be the positive

Hermitian structure on (P 2, c|P ) . Also, let qP be

the section of Q over P 2 such that (qP )x|TxP = Jx ,

for any x ∈ P .

Then, the inclusion P 2 → M 4 is twistorial, in

the sense of Example 3.3.5 , if and only if qP :

(P 2, J)→ (Q6,J ) is holomorphic.
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Similarly, the inclusion P 2 → M 4 is twisto-

rial, in the sense of Example 4.1.5 , if and only if

qP : (P 2, J)→ (Q6,J ′) is holomorphic.

Therefore the inclusion P 2 → M 4 is twistorial,

both in the sense of Example 3.3.5 and Example

4.1.5 , if and only if qP (P ) is tangent to the connec-

tion induced by D on Q6.

To complete the proof just note that any fibre

of Φ is of the form qP (P ) for some fibre P of ϕ . �

4.2. Twistorial harmonic morphisms

between Weyl spaces of dimensions

four and three

Throughout this section, for simplicity, the map

ϕ : (M 4, cM) → (N 3, cN) will be assumed to be a

horizontally conformal submersion between confor-

mal manifolds of dimensions four and three.

We shall use the same notations as in Section

3.5 . In particular, V = ker dϕ , H = V ⊥, and IH

denotes the integrability tensor of H . Also, πM :

QM →M is the bundle of positive orthogonal com-

plex structures on (M 4, cM) , whilst πN : QN → N

is the bundle of coisotropic spaces on (N 3, cN) .

As ϕ is horizontally conformal, the natural lift

Φ : QM → QN is given by Φ(J) = dϕ(T JM) , where

T JM is the eigenspace of J corresponding to −i .
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Proposition 4.2.1. Let ϕ be a horizontally con-

formal submersion from a four-dimensional Weyl

space (M 4, cM , D
M) to a three-dimensional confor-

mal manifold (N 3, cN) .

Then the following assertions are equivalent:

(i) The fibres of Φ are tangent to the connec-

tion induced by DM on QM .

(ii) For any X ∈H , we have

DM
X = DX + 1

2(∗H IH )(X) ,

as connections on V , where D is the connection of

(M 4, cM ,V ) .

Proof. Let g and h be representatives of cM

and cN , respectively, with respect to which ϕ :

(M 4, g) → (N 3, h) is a Riemannian submersion.

Let (U,X1, X2, X3) be a positive local orthonormal

frame on (M 4, g) such that U is vertical. We may

suppose that Xj , (j = 1, 2, 3) , are projectable with

respect to ϕ ; in particular, [U,X1] is vertical.

Let J be the positive almost Hermitian struc-

ture, locally defined on (M 4, g) , whose eigenbun-

dle corresponding to −i is spanned by U + iX1 and

X2 +iX3 ; denote by qJ the local section of QM cor-

responding to J .

Obviously, dϕ(T JM) is constant along the fibres
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of ϕ ; equivalently, qJ maps the fibres of ϕ onto fi-

bres of Φ .

From Proposition 1.2.1 it follows that assertion

(i) holds, on the domain of (U,X1, X2, X3) , if and

only if g
(
DM

U (U + iX1), X2 + iX3

)
= 0 .

Let ∇ be the Levi-Civita connection of (M 4, g)

and let αM be the Lee form of DM , with respect to

g . We have

g
(
DM

U (U + iX1), X2 + iX3

)
= g(DM

U U,X2 + iX3) + ig(DM
UX1, X2 + iX3)

= g(∇UU,X2 + iX3)− αM(X2 + iX3)

− ig
(
U,DM

X1
(X2 + iX3)

)
=
(
traceg(B

V ,g)[g−αM
)
(X2 + iX3)

+ i
2g
(
U, IH (X1, X2 + iX3)

)
.

As g
(
U, IH (X1, X2 + iX3)

)
= (∗H IH )(X3 −

iX2) , it follows quickly that (i) holds if and only

if

(4.2.1) αM |H = traceg(B
V ,g)[g + 1

2H IH .

The proof is complete. �

Now, we can prove the main result of this sec-

tion.

Theorem 4.2.2. Let (M 4, cM , D
M) and (N 3, cN , D

N)

be Weyl spaces of dimensions four and three. Let
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ϕ : M 4 → N 3 be a submersion.

Then any two of the following assertions imply

the third:

(i) ϕ : (M 4, cM , D
M) → (N 3, cN , D

N) is a

harmonic morphism.

(ii) ϕ : (M 4, cM) → (N 3, cN , D
N) is twisto-

rial.

(iii) The fibres of Φ are tangent to the connec-

tion induced by DM on QM .

Proof. We may assume ϕ horizontally confor-

mal, as this is a necessary condition for both (i) and

(ii) .

Let g and h be representatives of cM and cN ,

respectively, with respect to which ϕ : (M 4, g) →
(N 3, h) is a Riemannian submersion. Denote by αM

and αN the Lee forms of DM and DN with respect

to g and h , respectively.

By (2.5.5) and Theorem 2.4.3 , assertion (i) is

equivalent to the following relation

(4.2.2) 2αM |H = ϕ∗(αN) + traceg(B
V ,g)[g .

By Corollary 3.5.4 , assertion (ii) is equivalent

to the following relation

(4.2.3) ϕ∗(αN) = traceg(B
V ,g)[g + ∗H IH .
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Now, the proof quickly follows from relations

(4.2.2) , (4.2.3) and the fact that, by Proposition

4.2.1 , assertion (iii) is equivalent to (4.2.1) . �

In the remaining of this section we present two

basic examples of maps which satisfy the conditions

(i) , (ii) , (iii) of Theorem 4.2.2 .

Let (N 3, h) be a (connected) open set of R3

or the three-dimensional sphere of radius 2/c , for

some c > 0. By using suitable left invariant vector

fields, we fix three Riemannian submersions with

geodesic fibres ψj : (N 3, h) → (P 2, k) such that, at

each point, the fibres of ψj are orthogonal onto each

other, j = 1, 2, 3 (if N 3 ⊆ R3 then ψj are restric-

tions of orthogonal projections whilst if N 3 ⊆ S3

then ψj are restrictions of projections of Hopf bun-

dles, j = 1, 2, 3 ).

By Corollary 4.1.2 , we have that

ψj : (N 3, [h],∇h)→ (P 2, [k])

are both harmonic morphisms and twistorial maps,

(j = 1, 2, 3) , where ∇h is the Levi-Civita connec-

tion of (N 3, h) .

The next example is based on a construction of

[14] .

Example 4.2.3. Let u be a positive function on

N 3 and let A be a one-form on N 3 which satisfy
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the monopole equation (see [22] ) du = − ∗h dA .

Let M 4 = R × N 3 and define the Riemannian

metric g on M 4 by

g = uh+ u−1(dt+ A)2 ,

where t : M 4 → R is the projection.

Then the projection ϕ : (M 4, [g])→ (N 3, [h],∇h)

is twistorial. Indeed, V = ∂/∂t is a Killing vector

field on (M 4, g) . Moreover, V is a Killing vector

field with geodesic orbits on (M 4, ug) .

Let α be the Lee form of ∇h with respect to

u2h . By using Remark 2.2.5 we obtain that α =

−u−1 du = u−1 ∗h dA = ∗u2h dA.

Thus, by Remark 3.5.7 , we have that

ϕ : (M 4, [g])→ (N 3, [h],∇h)

is twistorial. Consequently, by Proposition 3.5.3 ,

also, ψj ◦ ϕ are twistorial, (j = 1, 2, 3) .

Now, denote by Jj the Hermitian structures on

(M 4, [g]) determined by ψj ◦ ϕ , (j = 1, 2, 3) .

Then, possibly up to a renumbering, Jj , (j =

1, 2, 3) , satisfy the quaternionic identities; equiva-

lently, (M 4, J1, J2, J3) is a (four-dimensional) hyper-

complex manifold .

From Corollary 3.4.7 and the fact that JjJk =

−JkJj , if j 6= k , we obtain that (M 4, [g], Jj) , (j =
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1, 2, 3) , have the same Weyl connection D.

ThenD is the Obata connection of (M 4, J1, J2, J3) .

Note that, we have proved that D is the unique

torsion free connection such that DJj = 0 , (j =

1, 2, 3) . Moreover, as Jj , (J = 1, 2, 3) , determine

[g] (use, for example, the fact that if X 6= 0 then

(X, J1X, J2X, J3X) is a conformal frame on (M 4, [g])),

the above argument applies to prove the existence

and uniqueness of the Obata connection for any

four-dimensional hyper-complex manifold (see [1]

for the Obata connection of a higher dimensional

hyper-complex manifold).

Finally, as DJj = 0 , (j = 1, 2, 3) , we have

that ϕ satisfies (iii) of Theorem 4.2.2 . Therefore

ϕ : (M 4, [g], D)→ (N 3, [h],∇h) is a harmonic mor-

phism.

The next example is based on a construction of

[27] .

Example 4.2.4. Let A be a one-form on N 3 which

satisfies the Beltrami fields equation (see [19] )

dA = 2 ∗h A .

Let M 4 = (0,∞)×N 3 and define the Riemann-

ian metric g on M 4 by

g = ρ2h+ ρ−2(ρ dρ+ A)2 ,
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where ρ : M 4 → (0,∞) is the projection.

Then the projection ϕ : (M 4, [g])→ (N 3, [h],∇h)

is twistorial. Indeed, let V = ρ−1 ∂/∂ρ and let θ =

ρ dρ+A. Then, similarly to Example 3.5.6 , we have

IH = V ⊗ dθ . Thus, by using that g(V, V ) = ρ−2,

we obtain

∗H IH = ρ−1 ∗ρ2h dA = ρ−2 ∗h dA = 2ρ−2A .

On the other hand, V is a foliation by geodesics

on (M 4, ρ2g) , and the ‘Lee form’ α of ϕ∗(∇h) with

respect to the metric induced by ρ2g on H is given

by α = −ρ−2 dH(ρ2) = −2ρ−1 dHρ , where dHρ is

equal to dρ on H , and is zero on V .

Define, similarly, dVρ and, note that, dρ = dVρ+

dHρ . Furthermore, as (dVρ)(V ) = V (ρ) = ρ−1, we

have dVρ = ρ−1θ and, consequently, dHρ = dρ −
ρ−1θ .

Therefore α = −2ρ−1(dρ − ρ−1θ) = 2ρ−2A =

∗H IH , and Corollary 3.5.4 implies that

ϕ : (M 4, [g])→ (N 3, [h],∇h)

is twistorial.

Then, similarly to Example 4.2.3 ,

ϕ : (M 4, [g], D)→ (N 3, [h],∇h)
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is a harmonic morphism, where D is the Obata con-

nections of a hyper-complex structure on M 4, com-

patible with [g] .

We end this section with the following:

Remark 4.2.5. 1) For the maps ϕ : (M 4, [g]) →
(N 3, [h],∇h) of Examples 4.2.3 and 4.2.4 to be twi-

storial it is not necessary to assume (N 3, h) of con-

stant curvature.

2) Let (M 4, J1, J2, J3) be a four-dimensional hy-

per-complex manifold and let c be the induced con-

formal structure on M 4.

Then (M 4, c) is anti-self-dual with respect to the

orientation determined by Jj , (j = 1, 2, 3) .

Indeed, if a ∈ S2 then J = a1J1 + a2J2 + a3J3 is

a Hermitian structure on (M 4, c) . Moreover, DJ =

0 , whereD is the Obata connection of (M 4, J1, J2, J3) ;

in particular, R
(
Λ2(T JM)

)
(T JM) ⊆ T JM , where

R is the curvature form of D.

As this holds for any a ∈ S2, from Proposition

A.1.11 it quickly follows that (M 4, c) is anti-self-

dual.

Furthermore, a straightforward calculation shows

that the symmetrized Ricci tensor of D is zero; in

particular, (M 4, c,D) is Einstein–Weyl.

3) Let (M 4, [g], D) be as in Example 4.2.3 , with
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u nonconstant. Then D is, locally, the Levi-Civita

connection of some representative of [g] if and only

if (N 3, h) is flat.

Similarly, if (M 4, [g], D) is as in Example 4.2.4

then D is, locally, the Levi-Civita connection of

some representative of [g] if and only if (N 3, h) has

constant sectional curvature equal to 1 .

These two facts can be proved either directly or

by using [26, Corollary 3.5.5 , Proposition 3.7.2] .

4.3. Harmonic morphisms from

four-dimensional Einstein–Weyl spaces

The following result was proved in [30] for Ein-

stein manifolds and then generalized to Einstein–

Weyl spaces in [21] .

Theorem 4.3.1. Let (M 4, cM , D) be a four-dimen-

sional Einstein–Weyl space and let ϕ be a submer-

sive harmonic morphism from (M 4, cM , D) to a two-

dimensional conformal manifold (N 2, cN) .

Then ϕ is twistorial, with respect to a suitable

orientation on M 4.

Proof. As Einstein–Weyl spaces are real ana-

lytic (see [10] ) we may assume ϕ real-analytic (cf.

[5, Proposition 4.7.11] ).

As before, orient V = ker dϕ and H = V ⊥ so

that the isomorphisms H = ϕ∗(TN) and TM =
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V ⊕H be orientation preserving.

Let U and Y be nowhere zero local sections of

the eigenbundles, corresponding to −i , of the rota-

tions of angles π/2 on V and H , respectively; in

particular, U and Y are isotropic.

As H is umbilical, from (3.5.6) , we quickly ob-

tain that

(4.3.1) g([U, Y ], Y ) = 0 = g([U, Y ], Y ) .

Let J± be the positive/negative almost Hermit-

ian structure on (M 4, cM) with respect to which

ϕ : (M 4, J±)→ (N 2, J) is holomorphic, where J is

the positive Hermitian structure on (N 2, cN) .

We have to prove that either J+ or J− is inte-

grable. In fact, as {U, Y } and {U, Y } are sets of

eigenvectors of J+ and J−, respectively, we have

to prove that one of these sets span an integrable

(complex) distribution; by (4.3.1) , this holds if and

only if either g([U, Y ], U) = 0 or g([U, Y ], U) = 0 .

We may assume that g = 2(U � U + Y � Y )

is a local representative of cM . Note that, for any

E ∈ TM , we have

E = g(E,U)U+g(E,U)U+g(E, Y )Y +g(E, Y )Y .



Harmonic morphisms and twistorial maps 119

Therefore if R is the curvature form and Ric is the

Ricci tensor of D then

Ric(Y, Y ) =g(R(U, Y )Y, U) + g(R(U, Y )Y, U)

+ g(R(Y, Y )Y, Y ) + g(R(Y , Y )Y, Y ) .

(4.3.2)

As (M 4, cM , D) is Einstein–Weyl, Ric(Y, Y ) =

0 . Further, as R(Y, Y ) = 0 and D is a conformal

connection, the last two terms of the right hand side

of (4.3.2) are zero. Also, from (A.1.4) and Lemma

A.1.3 it, quickly, follows that the first two terms of

the right hand side of (4.3.2) are equal.

Hence, (4.3.2) gives g(R(U, Y )Y, U) = 0 .

By using, again, that H is umbilical we ob-

tain that DY Y is horizontal. Also, by Corollary

2.5.4(a) , we have that ϕ has minimal fibres; equiv-

alently, g(DUU, Y ) = g(DUU, Y ) = 0 .

Thus, g(DUDY Y, U) = −g(DY Y,DUU) = 0 .

We claim that, also, g(DYDUY, U) = 0 . Indeed,

we have

DUY =g(DUY, U)U + g(DUY, U)U

+ g(DUY, Y )Y + g(DUY, Y )Y

=g(DUY, U)U + g(DUY, Y )Y .
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Hence,

g(DYDUY, U) =g
(
DY

(
g(DUY, U)U

+ g(DUY, Y )Y
)
, U
)

=0 ,

as U is isotropic and DY

(
g(DUY, Y )Y

)
is horizon-

tal.

Similar calculations show that

g(D[U,Y ]Y, U) = g([U, Y ], U)g([U, Y ], U) .

We have, thus, proved that

g(R(U, Y )Y, U) = −g([U, Y ], U)g([U, Y ], U) = 0 ,

By analyticity, we obtain that either g([U, Y ], U)

or g([U, Y ], U) is zero, and the proof is complete.

�

Next, we prove the following result.

Corollary 4.3.2. Let ϕ be a harmonic morphism

between the Einstein–Weyl spaces (M 4, cM , D
M) and

(N 3, cN , D
N) of dimensions four and three, respec-

tively.

Then ϕ is twistorial and (M 4, cM) is anti-self-

dual, with respect to a suitable orientation on M 4.

Proof. The fact that ϕ is twistorial, with re-

spect to a suitable orientation on M 4, follows from
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Corollary 4.1.2 , Theorem 4.3.1 , and Proposition

3.5.3 . Then, by Corollary 3.5.5 , (M 4, cM) is anti-

self-dual. �

Note that, Examples 4.2.3 and 4.2.4 give har-

monic morphisms between Einstein–Weyl spaces of

dimensions four and three (consequence of Remark

4.2.5(2) ).





APPENDIX A

The curvature of Weyl spaces

Let (Mm, c,D) be a Weyl space, m = dimM ,

and let R be the curvature form of D.

Also, let F be the curvature form of the connec-

tion, corresponding to D, on the line bundle L of

Mm. Note that, Lemma 2.2.1 implies that if α is

the Lee form of D, with respect to some represen-

tative of c , then F = dα .

The curvature form of the connection induced

by D on L∗ ⊗ TM is a two form with values in

the endomorphism bundle of L∗ ⊗ TM . Therefore

there exists a two-form R0 with values in the endo-

morphism bundle of TM such that IdL∗ ⊗R0 is the

curvature form of the connection induced by D on

L∗ ⊗ TM . Moreover, as Dc = 0 , we have

(A.1.3) c(R0(U, V )X, Y ) = −c(X,R0(U, V )Y ) ,

for any U, V,X, Y ∈ TM .

Furthermore,

( IdL∗ ⊗R0 )(X, Y )(s∗ ⊗ Z)

= −F (X, Y )s∗ ⊗ Z + s∗ ⊗R(X, Y )Z ,
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for any X, Y, Z ∈ TM and α∗ ∈ L∗ and, hence,

(A.1.4) R = R0 + F ⊗ IdTM .

We shall, also, denote by R0 the section of L2⊗(
⊗4T ∗M

)
, given by

R0(T,X, Y, Z) = −c(R0(T,X)Y, Z) ,

for any T,X, Y, Z ∈ TM . Note that, by (A.1.3) ,

we have that R0 is a section of ⊗2
(
Λ2(T ∗M)

)
.

In this appendix we shall show that R0 admits

a decomposition [9] similar to the decomposition of

the Riemannian curvature tensor (see [7] and the

references therein).

For this, recall that is h and k are covariant

tensors of second degree on Mm then h ? k is the

section of ⊗2
(
Λ2(T ∗M)

)
, given by

(h? k)(T,X, Y, Z)

= h(T, Y )k(X,Z) + h(X,Z)k(T, Y )

− h(T, Z)k(X, Y )− h(X, Y )k(T, Z) ,

for any T,X, Y, Z ∈ TM .

Obviously, h ? k = k ? h . Also, if h and k are

both (skew-)symmetric then h ? k is a section of

�2
(
Λ2(T ∗M)

)
, where � denotes the second sym-

metric power. On the other hand, if h is symmetric

and k is skew-symmetric then h? k is a section of
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Λ2
(
Λ2(T ∗M)

)
.

Let �2R0 and Λ2R0 be the symmetric and skew-

symmetric parts of R0, respectively; that is,

(�2R0)(T,X, Y, Z) =1
2

(
R0(T,X, Y, Z)

+R0(Y, Z, T,X)
)
,

(Λ2R0)(T,X, Y, Z) =1
2

(
R0(T,X, Y, Z)

−R0(Y, Z, T,X)
)
,

for any T,X, Y, Z ∈ TM .

Lemma A.1.3. We have Λ2R0 = −1
2F ? c .

Proof. From the algebraic Bianchi identity and

(A.1.4) we obtain

R0(T,X, Y, Z) +R0(X, Y, T, Z) +R0(Y, T,X, Z)

= −F (T,X)c(Y, Z)− F (X, Y )c(T, Z)

− F (Y, T )c(X,Z) ,

(A.1.5)

for any T,X, Y, Z ∈ TM .

The proof follows by taking the sum of the re-

lations obtained from (A.1.5) by applying circular

permutations to (T,X, Y, Z) . �

Lemma A.1.4. �2R0 satisfies the algebraic Bianchi

identity.
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Proof. As R0 = �2R0 + Λ2R0 , from Lemma

A.1.3 we obtain

2(�2R0)(T,X, Y , Z) = 2R0(T,X, Y, Z)

+F (T, Y )c(X,Z) + F (X,Z)c(T, Y )

−F (T, Z)c(X, Y )− F (X, Y )c(T, Z) ,

(A.1.6)

for any T,X, Y, Z ∈ TM .

Now, the proof follows quickly from (A.1.5) and

(A.1.6) . �

To carry on, recall (see [20] ) that the Ricci ten-

sor of D is the covariant tensor of second degree

Ric on Mm defined by

Ric(X, Y ) = trace
(
Z 7→ R(Z,X)Y

)
,

for any X, Y ∈ TM .

Unlike the Riemannian case, the Ricci tensor of

a Weyl space is not symmetric.

Lemma A.1.5. We have Λ2 Ric = −m
2 F .

Proof. By the algebraic Bianchi identity, we

have

R(Z,X)Y +R(X, Y )Z +R(Y, Z)X = 0 ,

for any X, Y, Z ∈ TM .

Now, Ric(X, Y ) = trace
(
Z 7→ R(Z,X)Y

)
and,
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as R(Y, Z) = −R(Z, Y ) , we have

trace
(
Z 7→ R(Y, Z)X

)
= −Ric(Y,X) ,

for any X, Y ∈ TM .

On the other hand, (A.1.4) implies that

trace
(
Z 7→ R(X, Y )Z

)
= mF (X, Y ) ,

for any X, Y ∈ TM .

Hence, Ric(X, Y )+mF (X, Y )−Ric(Y,X) = 0 ,

for any X, Y ∈ TM , and the proof is complete. �

Lemma A.1.6. We have

(�2 Ric)(X, Y ) = tracec
(
(�2R0)(·, X, ·, Y )

)
,

for any X, Y ∈ TM .

Proof. From (A.1.4) we obtain

Ric(X, Y ) = F (Y,X) + trace
(
Z 7→ R0(Z,X)Y

)
,

for any X, Y ∈ TM .

Let L be the line bundle of Mm. If A is a ten-

sor of degree (1, 1) on Mm then traceA = tracec b ,

where b is the L2-valued covariant tensor of sec-

ond degree defined by b(X, Y ) = c(AX, Y ) , for any

X, Y ∈ TM .
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Therefore

2(�2Ric)(X, Y ) = tracec
(
c(R0(·, X)Y, ·)

+ c(R0(·, Y )X, ·)
)

= tracec
(
R0(·, X, ·, Y )

+R0(·, Y, ·, X)
)

=2 tracec
(
(�2R0)(·, X, ·, Y )

)
,

for any X, Y ∈ TM . �

We can now prove the following result of [9] .

Corollary A.1.7. If (Mm, c) is a Weyl space, where

m = dimM , then

R0 =
1

2m(m− 1)
Sc? c+

1

m− 2
(�2

0Ric) ? c

− 1

2
F ? c+W ,

(A.1.7)

where S = tracec Ric , and �2
0 denotes the trace

free symmetric part, whilst W is a section of L2 ⊗(
�2
(
Λ2(T ∗M)

))
satisfying the algebraic Bianchi i-

dentity and

tracec
(
W (·, X, ·, Y )

)
= 0 ,

for any X, Y ∈ TM .

Proof. This follows quickly from Lemmas A.1.3 ,

A.1.4 and A.1.6 (cf. [7, 1.116] ). �
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The section W of L2⊗
(
�2
(
Λ2(T ∗M)

))
is called

the Weyl tensor of (Mm, c,D) . It depends only

of (Mm, c) . Indeed, by (A.1.4) , (A.1.7) and [25,

Proposition 2.2] (see [26, Proposition A.4.2] ), it is

sufficient to show that, for some representative g of

c , we have

g(R(X, Y )X, Y ) = g(Rg(X, Y )X, Y ) ,

for any X, Y ∈ TCM spanning an isotropic space,

where Rg is the curvature form of the Levi-Civita

connection of g . This follows by computing R in

terms of Rg and the Lee form of D with respect to

g and by using Remark 2.2.5(2) (cf. [7, Theorem

1.159(b)] ).

The following notion is essential in three-dimen-

sional Twistor Theory.

Definition A.1.8. An Einstein–Weyl space is a

Weyl space (Mm, c,D) for which the trace free sym-

metric part of its Ricci tensor is zero.

The three-dimensional Einstein–Weyl spaces can

be characterised as follows.

Proposition A.1.9. Let (M 3, c,D) be a three-di-

mensional Weyl space. Then the following asser-

tions are equivalent:

(i) (M 3, c,D) is Einstein–Weyl;
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(ii) R(Λ2q)q ⊆ q , for any two-dimensional coi-

sotropic space q on (M 3, c) , where R is the curva-

ture form of D.

Proof. Any two-dimensional coisotropic space

on (M 3, c) is spanned by some X, Y ∈ TCM , where

Y is isotropic and X ∈ Y ⊥. Together with (A.1.4)

this shows that assertion (ii) is equivalent to:

(ii’) c(R0(X, Y )X, Y ) = 0 for any isotropic

Y ∈ TCM and X ∈ Y ⊥.

In dimension three the Weyl tensor is zero. Thus,

(A.1.7) becomes

R0 =
1

12
Sc? c+ (�2

0Ric) ? c− 1

2
F ? c ,

which implies that (i)⇐⇒(ii’) . �

If (V, g) is an oriented Euclidean space then the

Hodge ∗-operator acting on k-forms is characterised

by ω ∧ ∗η = g(ω, η)vg , for any ω, η ∈ ΛkV ∗, where

vg is the volume form of (V, g) .

For example, if (X1, . . . , Xm) is an orthonormal

basis of (V, g) , with m = dimV , then

∗(X1 ∧ . . . ∧Xk) = ±Xk+1 ∧ . . . ∧Xm ,

according to whether or not (X1, . . . , Xm) is posi-

tive.
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The Hodge ∗-operator can be defined on any ori-

ented Riemannian vector bundle. We shall apply it

to (L∗⊗TM, c) , where (Mm, c) is a conformal man-

ifold and L is its line bundle.

As Λk(L∗⊗TM)∗ = Lk⊗ΛkT ∗M we obtain the

operator

∗ : Lk ⊗ ΛkT ∗M −→ Ln−k ⊗ Λn−kT ∗M .

By tensorising this with Id(L∗)k we obtain the

operator

∗ : ΛkT ∗M −→ Ln−2k ⊗ Λn−kT ∗M .

Furthermore, the Hodge ∗-operator extends to

bundle valued forms.

Now, note that the Weyl tensor of a confor-

mal manifold (Mm, c) corresponds to a two-form on

Mm, also, denoted by W , with values in the endo-

morphism bundle of TM ; that is, c(W (T,X)Y, Z) =

−W (T,X, Y, Z) , for any T,X, Y, Z ∈ TM .

The following notion is essential in four-dimen-

sional Twistor Theory.

Definition A.1.10. A four-dimensional (oriented)

conformal manifold (M 4, c) is anti-self-dual if its

Weyl tensor is anti-self-dual; that is,

∗W = −W .
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Similarly to Proposition A.1.9 , we have the fol-

lowing result.

Proposition A.1.11. Let (M 4, c) be a four-dimen-

sional conformal manifold. Then the following as-

sertions are equivalent:

(i) (M 4, c) is anti-self-dual;

(ii) R(Λ2q)q ⊆ q , for any self-dual space q on

(M 4, c) , where R is the curvature form of some

(and, hence, any) Weyl connection on (M 4, c) .

Proof. As any self-dual space is isotropic, (A.1.7)

implies that assertion (ii) is equivalent to:

(ii’) W (Λ2q)q ⊆ q , for any self-dual space q

on (M 4, c) .

Next, we look to the Weyl tensor of (M 4, c) as

an L2-valued quadratic form on the bundle Λ2TM

of bivectors on M 4.

Then straightforward calculations show that, in

dimension four, the condition tracec
(
W (·, X, ·, Y )

)
=

0 , for any X, Y ∈ TM , implies that W |Λ2
+⊗Λ2

−
= 0 ,

where Λ2
+ and Λ2

− are the bundles of self-dual bivec-

tors and anti-self-dual bivectors on (M 4, c) , respec-

tively; moreover, tracec
(
W |Λ2

±

)
= 0 (see [7, 1.128] ).

Therefore (i) holds if and only if W |Λ2
+

= 0 ;

equivalently, W restricted to the line spanned by

an isotropic self-dual form is zero. But any such
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line is spanned by some X ∧ Y , where {X, Y } span

a self-dual space on (M 4, c) .

The proof is complete. �
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