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Introduction

This book is based on my PhD Thesis [49]. From the later work I

have included here only the classification of harmonic morphisms with one-

dimensional fibres on Einstein manifolds of dimension at least five [55] and on

conformally-flat Riemannian manifolds of dimension at least four [53]. Else-

where, I shall collect some of my other subsequent work, such as twistorial

maps and the related theory of harmonic morphisms between Weyl spaces

(see, for example, [56] , [42] , [6]).

Harmonic morphisms between Riemannian manifolds are smooth maps

which pull back harmonic functions to harmonic functions.

By the fundamental theorem of B. Fuglede [21] and T. Ishihara [33], har-

monic morphisms were characterised as harmonic maps which are horizontally

weakly conformal.

The next important step towards a better understanding of harmonic

morphisms was done by P. Baird and J. Eells [5] who found the necessary

and sufficient condition for a harmonic morphism to have minimal (regu-

lar) fibres (see Proposition 1.1.10, below). In the particular case of a map

ϕ : (Mm, g) → (N2, h) to a Riemannian manifold (N2, h) of dimension two

the result of P. Baird and J. Eells states that ϕ is a harmonic morphism if and

only if ϕ is horizontally weakly conformal and its regular fibres are minimal

submanifolds of (Mm, g). This result was then elegantly formulated in the

language of conformal foliations by J.C. Wood [68].

The first classification results for harmonic morphisms were due to P. Baird

and J.C. Wood (see [7] , [9]) who completely classified harmonic morphisms
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with one-dimensional fibres from three-dimensional Riemannian manifolds with

constant curvature.

Later, R.L. Bryant [14] (see Corollary 3.8.5) proved that from a Riemann-

ian manifold (Mn+1, g) , n ≥ 3, with constant sectional curvature there are

just two types of submersive harmonic morphisms ϕ : (Mn+1, g) → (Nn, h)

with one-dimensional fibres, namely either

(i) there exists a nowhere zero Killing vector field tangent to the fibres

of ϕ or

(ii) ϕ has geodesic fibres orthogonal to an umbilical foliation by hyper-

surfaces.

Moreover, the type (i) was new (whilst type (ii) was known to P. Baird

and J. Eells [5]).

We study harmonic morphisms by placing them into the framework of

conformal foliations, an idea due to J.C. Wood [68]. Unless otherwise stated,

we consider only foliations of codimension greater than or equal to three.

In Chapter 1 we present some basic facts on foliations which produce har-

monic morphisms (i.e. foliations which can be locally defined by submersive

harmonic morphisms). We recall Bryant’s result [14] which states that a con-

formal foliation produces harmonic morphisms if and only if a certain one-form

is closed (see Proposition 1.3.1). In particular, if the mean curvature forms of

a conformal foliation V and of its orthogonal complement H are closed then

V produces harmonic morphisms. Following a suggestion of J.C. Wood we call

a foliation homothetic if it can be locally defined by horizontally homothetic

submersions. This is equivalent to the condition that the foliation is conformal

and its orthogonal complement has closed mean curvature form.

Note also that, although a Riemannian one-dimensional foliation pro-

duces harmonic morphisms if and only if it is locally generated by Killing

vector fields [14], a one-dimensional foliation locally generated by conformal

vector fields produces harmonic morphisms if and only if it is a homothetic

foliation (a consequence of Proposition 3.1.5). This starts to show the impor-

tance of homothetic foliations. Another equivalent condition for a conformal
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foliation V to be homothetic is that any local dilation (Definition 1.1.8) of it

can be locally written as the product of a function constant along leaves and

a function constant along horizontal curves (in particular, a conformal folia-

tion V is homothetic if and only if, in a neighbourhood of each point, a local

dilation for V can be found which is constant along horizontal curves). This

latter property is also satisfied by any positive smooth function f defined on

the Riemannian manifold (M, g) and which has the property that V produces

harmonic morphisms on both (M, g) and (M,f2 g).

For a foliation V on M there exists a metric g on M with respect to

which V is a homothetic foliation if and only if V is a foliation of type (A) in

the sense of I. Vaisman [66]. However, all the above geometrical properties of

the homothetic foliations appear to be new.

In terms of foliations which produce harmonic morphisms the types (i)

and (ii) above correspond to:

(i) Riemannian one-dimensional foliations locally generated by Killing

vector fields,

(ii) homothetic foliations with geodesic leaves orthogonal to an umbilical

foliation by hypersurfaces.

The starting point of the results of Chapter 2 was to try to generalise the

type (i) above to foliations of higher dimensions. In Theorem 2.2.6 we give

necessary and sufficient conditions for a conformal foliation locally generated

by conformal vector fields to produce harmonic morphisms. In the particular

case when the foliation is Riemannian and locally generated by Killing vec-

tor fields this condition depends only on the induced infinitesimal action and

on the integrability tensor of the horizontal distribution. Many natural con-

structions of Riemannian foliations which produce harmonic morphisms can

be thus obtained. Moreover, most of the constructions can be generalised to

homothetic foliations locally generated by conformal vector fields.

In Chapter 2 we also study foliations locally generated by homothetic

vector fields and their relations to homothetic foliations and harmonic mor-

phisms. This is motivated by the fact that, on a Ricci-flat manifold, given any
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foliation V locally generated by conformal vector fields and which produces

harmonic morphisms, either V is locally generated by homothetic vector fields

or any harmonic morphism produced by V can be locally decomposed into a

totally geodesic harmonic morphism followed by another harmonic morphism.

This is shown in Section 2.6 where other similar factorisation results are ob-

tained.

In Chapter 3 we present [48] , [52] , [55] , [53] the classification of har-

monic morphisms with one-dimensional fibres on Einstein manifolds and on

conformally-flat Riemannian manifolds. More precisely, we prove the follow-

ing for a one-dimensional foliation which produces harmonic morphisms on a

Riemannian manifold (M, g) :

• If (M, g) is Einstein, dimM ≥ 5 , then V is of type (i) or type (ii)

(Theorem 3.4.1).

• If (M, g) is Einstein, dimM = 4 , then V is of one of the types (i), (ii)

or (iii) (Theorem 3.5.4) where types (i) and (ii) are as before and type (iii)

is the following: (M4, g) is Ricci-flat and, up to homotheties, any harmonic

morphism ϕ : (U, g|U ) → (N3, h) , with dilation λ , produced by V such that

V |U and N3 are orientable is (locally) described by:

(a) (N3, h) has constant sectional curvature equal to one;

(b) 1
2 d(λ−2) is a (flat) principal connection for V with respect to suit-

ably chosen V ∈ Γ(V ) such that g(V, V ) = λ2 (Definition 3.5.1);

(c) the local connection form A of H with respect to 1
2 d(λ−2) satisfies

the equation dA+ 2 ∗A = 0 on (N3, h) where ∗ is the Hodge star-operator of

(N3, h) with respect to some orientation of N3 .

• If (M, g) is analytic and conformally-flat, dimM ≥ 4 , then V is of

type (i) or type (ii’) (Theorem 3.8.1), where type (i) is as before and type (ii’)

is the following: the orthogonal complement of V is integrable and its leaves

endowed with the metrics induced by ρ2g have constant sectional curvature,

where ρ is any local density of V .

Note that, any foliation of type (ii) on a constant curvature Riemannian

manifold satisfies the condition (ii’), above.
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On the other hand, a foliation V of type (iii) can never be of type (i),

whilst its orthogonal complement is integrable if and only if V is of type (ii).

Therefore the above mentioned classification result of R.L. Bryant is an im-

mediate consequence of Theorems 3.4.1 , 3.5.4 and 3.8.1 .

Examples of harmonic morphisms of type (iii) are given in Section 3.6 .

There we prove that these are always submersive (Proposition 3.6.1). Also, we

show that any surjective harmonic morphism of type (iii) with connected fibres

and complete codomain is, up to homotheties and Riemannian coverings, the

restriction of the radial projection (R4 \ {0}, ga)→ S3 where ga is the Eguchi-

Hanson II metric [19] (when a = 0, ga is the restriction of the canonical metric

on R4 and ϕ0 is a well-known harmonic morphism simultaneously of type (ii)

and (iii) ). In particular, there exists no surjective harmonic morphism of type

(iii) whose domain and codomain are both complete.

See [54] , [56] , [42] , [43] for more relations to Einstein and self-dual metric

constructions and for relations to Twistor Theory of the harmonic morphisms

of type (iii).

In Section 3.7 we study surjective harmonic morphisms ϕ : (M4, g) →
(N3, h) between complete Einstein manifolds of dimensions four and three,

respectively. If M4 and N3 are simply-connected we prove the following:

• If ϕ is submersive then, up to homotheties, it is one of the follow-

ing projections R4 → R3 , H4 → R3 , H4 → H3 induced by the following

canonical warped-product decompositions R4 = R1 × R3 , H4 = H1 ×r R3 ,

H4 = H1 ×s H3 where Hk is the hyperbolic space of dimension k (Theorem

3.7.1).

• If ϕ has exactly one critical point then there exists a ≥ 0 such that,

up to homotheties, ϕ : (R4, ga)→ (R3, h0) is the Hopf polynomial with ga the

Gibbons-Hawking Taub-NUT metric (a > 0) and g0 , h0 the canonical metrics

on R4 , R3 , respectively (Theorem 3.7.10).

In Chapter 4 we present some results on harmonic morphisms defined on

compact Riemannian manifolds. In Section 4.1 these are based on a known

formula of P. Walczak [67] which we recall in Appendix A.1 . The results of
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Section 4.2 are based on two integral formulae which are proved in Theorem

4.2.2. From Chapter 4 we mention here the following results:

• On a compact Riemannian manifold with nonpositive Ricci curvature

any one-dimensional foliation which produces harmonic morphisms and admits

a global density is locally generated by parallel vector fields (Theorem 4.1.2).

• On a compact Riemannian manifold with positive sectional curvature

there exists no homothetic foliation which produces harmonic morphisms and

has integrable orthogonal complement (Corollary 4.1.6).

• For n ∈ {3, 4, 5} if (Mn+1, g) , (Nn, h) are compact with scalar curva-

tures sM ≥ 0, sN ≤ 0 and, if at least one of these inequalities is strict, then

there exists no nonconstant submersive harmonic morphism ϕ : (Mn+1, g)→
(Nn, h) (Corollary 4.2.10).

• If (M4, g) is a compact four-dimensional Einstein manifold and ϕ :

(M4, g) → (N3, h) is a non-constant harmonic morphism then, up to homo-

theties and Riemannian coverings, ϕ is the canonical projection T 4 → T 3

between flat tori (Theorem 4.3.2).



CHAPTER 1

Foliations which produce harmonic morphisms

1.1. Foliations and harmonic morphisms

We recall some basic definitions and results on harmonic morphisms and

conformal foliations.

Definition 1.1.1 ([21], [33]). A harmonic morphism between Riemannian

manifolds is a smooth map ϕ : (Mm, g)→ (Nn, h) such that for any harmonic

function f : (U, h|U ) → R, defined on some open Riemannian submanifold

(U, h|U ) of (N,h) with ϕ−1(U) 6= ∅, the pull back f◦ϕ : (ϕ−1(U), g|ϕ−1(U))→ R
is a harmonic function.

By the fundamental result of B. Fuglede [21] and T. Ishihara [33] the

harmonic morphisms form a special class of harmonic maps which we now

describe.

Definition 1.1.2 ([21], [33]). A smooth map ϕ : (Mm, g) → (Nn, h) between

Riemannian manifolds is called horizontally weakly conformal if at each point

x ∈ M either ϕ is submersive (i.e. ϕ∗,x : TxM → Tϕ(x)N is surjective) and

ϕ∗|Hx is conformal, where Hx = (kerϕ∗,x)⊥, or ϕ∗,x = 0.

Let λ : M → R be the nonnegative function such that λ(x) is the confor-

mal factor of ϕ∗|Hx if x ∈ M is a regular point of ϕ and λ(x) = 0 if x is a

critical point of ϕ. Then λ is called the dilation of ϕ.

Remark 1.1.3 ([21], [33]). Let λ be the dilation of the horizontally weakly

conformal map ϕ : (Mm, g) → (Nn, h). Then, because λ2 = 1
n |ϕ∗|

2, λ is

continuous on M and smooth outside the set of critical points; λ2 is smooth

on M .
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Theorem 1.1.4 ([21], [33]). A map ϕ : (M, g) → (N,h) is a harmonic mor-

phism if and only if ϕ is a harmonic map which is horizontally weakly confor-

mal.

Let (M, g) be a Riemannian manifold (it will always be assumed that M

is paracompact and connected) and V (the tangent bundle of) a foliation or,

more generally, a distribution on it. The orthogonal complement of V will de

denoted by H . Then, H and V will be called the horizontal and vertical

distributions, respectively. Following [11], we shall denote the corresponding

projections by the same letters H and V ; we shall denote by X, Y horizontal

vector fields, i.e. sections of H and by U, V vertical vector fields, i.e. sections

of V .

Definition 1.1.5 (see [68]). A foliation V on (M, g) is called conformal if for

any vertical vector field U ∈ Γ(V ) and horizontal vector fields X,Y ∈ Γ(H )

we have

(LUg)(X,Y ) = µ(U) g(X,Y )

for some vertical one-form µ ∈ Γ(TM) and where L denotes the Lie differen-

tiation.

By Theorem 1.1.4 the connected components of a submersive harmonic

morphism ϕ : (M, g) → (N,h) form a conformal foliation. Conversely, we

make the following definition:

Definition 1.1.6 (cf. [68]). Let (M, g) be a Riemannian manifold and let V

be a foliation on it.

We shall say that V produces harmonic morphisms on (M, g) if V is

locally defined by submersive harmonic morphisms (i.e. each point of M has

an open neighbourhood U which is the domain of a submersive harmonic mor-

phism ϕ : (U, g|U )→ (N,h) whose fibres are open subsets of the leaves of V .

Remark 1.1.7. When codimV = 2 , V produces harmonic morphisms if

and only if it is conformal and its leaves are minimal [68] ; in this case any

local submersion ϕ on M whose fibres are open subsets of the leaves can be

made into a harmonic morphism. Indeed, it suffices to choose a metric on the
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codomain such that ϕ is horizontally conformal.

We shall see (as an immediate consequence of Corollary 1.1.14) that, when

codimV 6= 2 and V produces harmonic morphisms, then each submersion

ϕ : U → N defined on an open subset U ⊆ M with zero first Betti number

and which locally defines V can be made into a harmonic morphism (i.e. there

exists a Riemannian metric h on N such that ϕ : (O, g|O) → (N,h) is a

harmonic morphism).

Definition 1.1.8 (cf. [66, (1.4)]). Let V be a conformal foliation on the Rie-

mannian manifold (M, g) . A smooth positive function λ : O → R on an open

subset O of M will be called a local dilation of V if V |O is a Riemannian

foliation on (O, λ2 g|O). If O = M then we shall call λ a (global) dilation

of V .

Remark 1.1.9. 1) It is obvious that local dilations for a conformal foliation

V can be found in the neighbourhood of each point; in fact, this is equivalent

to the definition of its conformality. If V is simple, i.e. its leaves are the fibres

of a (horizontally conformal) submersion ϕ , then it admits a (global) dilation,

for example, the dilation of ϕ .

2) A smooth positive function λ is a local dilation for V if and only if(
LU (λ2 g)

)
(X,Y ) = 0

for any vertical vector field U and any horizontal vector fields X, Y . Hence,

if we multiply a local dilation of a conformal foliation by a smooth positive

function which is constant along the leaves then we obtain another local di-

lation of the foliation. Conversely, if two local dilations λj , j = 1, 2 , of a

conformal foliation V have the same domain then λ2 = λ1 ρ where the factor

ρ is a smooth positive function, constant along the leaves of V .

3) Let V be a foliation, not necessarily conformal. Let H denote its

orthogonal complement. Recall that its second fundamental form HB is the

horizontal V -valued tensor field defined by

HB(X,Y ) =
1
2
V (∇XY +∇YX) , (1.1.1)
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where X, Y are horizontal vector fields (see [60, Ch. IV, 3.16]). A simple

calculation (see [9]) gives the following formula

(LUg)(X,Y ) = −2g
(
HB(X,Y ), U

)
, (1.1.2)

where U, X, Y are as above.

It follows quickly (see [9]) that any local dilation λ of a conformal foliation

V is characterised by the relation

trace(HB) = nV (grad(log λ)) , (1.1.3)

where n = codimV .

Note that formula (1.1.2) shows that V is a conformal foliation if and

only if H is an umbilical distribution, i.e. HB(X,X) is independent of X for

g(X,X) = 1 , if H is integrable this condition says that its integral submani-

folds are umbilical (see [60]).

Let ϕ : (Mm, g)→ (Nn, h) be a horizontally conformal submersion with

dilation λ . Let τ denote the tension field of ϕ and VB the second fundamental

of the foliation V induced by the fibres, then we have the fundamental equation

[5] (see [9] for a different proof):

τ + trace(VB) + (n− 2)H (grad(log λ)) = 0 . (1.1.4)

From this, P. Baird and J. Eells concluded:

Proposition 1.1.10 ([5]). (a) When n = 2 , ϕ is a harmonic morphism if

and only if its fibres are minimal.

(b) When n 6= 2 any two of the following assertions imply the remaining

assertion:

(i) ϕ is a harmonic morphism,

(ii) ϕ has minimal fibres,

(iii) ϕ is horizontally homothetic (i.e. λ is constant along horizontal

curves).

Note that in the above proposition it is unnecessary for ϕ to be submer-

sive (see [9]).
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Let ω denote a local volume form of V . It can easily be seen that, the

fundamental equation (1.1.4) is equivalent to

V ∗
(
LX(λ2−n ω)

)
= λ2−n g(X, τ)ω , (1.1.5)

for any horizontal vector field X . Thus, we have the following:

Proposition 1.1.11 ([14], [47]). A horizontally conformal submersion with

dilation λ is a harmonic morphism if and only if the parallel displacement

defined by the horizontal distribution preserves the mass of the fibres, where

the fibres are given the mass density λ2−n .

Definition 1.1.12. Let V be a foliation of codimension n , which produces

harmonic morphisms on (M, g) . Let λ be a local dilation of V which restricts

to give dilations of harmonic morphisms which locally define V . Then ρ =

λ2−n is called a local density of V . If λ is globally defined on M then ρ is

called a (global) density.

Proposition 1.1.13. Let V be a foliation which produces harmonic mor-

phisms on (M, g) . Then there exists a Riemannian regular covering ξ :

(M̃, g̃)→ (M, g) with the following properties:

(i) ξ∗(V ) admits a global density.

(ii) If η : (P, k) → (M, g) is any Riemannian regular covering such that

η∗(V ) admits a global density then there exists a unique Riemannian regular

covering σ : (P, k)→ (M̃, g̃) such that η = ξ ◦ σ .

Moreover, ξ is the unique Riemannian regular covering satisfying (i) and

(ii) .

Proof. Let [a] ∈ H1(M,R) be the cohomology class defined by the differ-

entials of the logarithms of the local densities of V and let ξ : M̃ →M be the

regular covering corresponding to it (M̃ is connected).

Let g̃ = ξ∗(g) . It is obvious that ξ∗(V ) produces harmonic morphisms

on (M̃, g̃) .

Also ξ∗[a] = 0 ∈ H1(M̃,R) . Hence, there exists a positive smooth func-

tion ρ : M̃ → (0,∞) such that ξ∗(a) = d log ρ .

Then ρ is a global density of ξ∗(V ) .
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Let η : (P, k) → (M, g) be any other Riemannian regular covering such

that η∗(V ) admits a global density. If H and K are the groups of ξ and η , re-

spectively, then ξ and η correspond to surjective group morphisms π1(M)→ H

and π1(M) → K , respectively, where π1(M) is the fundamental group of M

(see [61, Part I, §14.6]).

Now, η∗(V ) admits a global density if and only if η∗(ξ) is a trivial cov-

ering and this happens if and only if the image of the injective group mor-

phism π1(P ) → π1(M) is contained in the kernel of the group morphism

π1(M) → H . But the image of π1(P ) → π1(M) is equal to the kernel of

π1(M) → K and hence the surjective group morphism π1(M) → H can be

factorised π1(M) → K → H . The surjective group morphism K → H in-

duces a Riemannian regular covering σ : (P, k) → (M̃, g̃) having the required

properties.

The uniqueness of ξ is obvious. �

Corollary 1.1.14. Let (M, g) be a Riemannian manifold with zero first Betti

number. Let V be a foliation of codimension not equal to two which produces

harmonic morphisms on (M, g) .

Then, V admits a global density λ2−n .

1.2. Metric deformations

We next discuss how much the metric of M can be changed preserving

the property of producing harmonic morphisms (cf. [3], [44]).

Proposition 1.2.1 (cf. [44, Theorem 5.1]). Let V be a foliation on (M, g) ,

with dim V = p and codimV = n . Let r and s be smooth positive functions

on M . Let gH and gV denote the horizontal and the vertical components of

g , and set g̃ = s2 gH + r2 gV .

(a) If n 6= 2 , then, any two of the following assertions imply the remain-

ing assertion:

(i) V produces harmonic morphisms on (M, g) ,

(ii) V produces harmonic morphisms on (M, g̃) ,
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(iii) rp sn−2 is locally the product of a function constant on horizon-

tal curves and a function constant on vertical curves.

(b) If n = 2 , then the same implications are true after replacing (iii)

with:

(iii′) r is constant along horizontal curves.

Proof. Suppose that V is conformal and let λ and λ̃ be local dilations

of V with respect to g and g̃ , respectively. Then λ̃ = a s−1λ , where a is a

smooth positive function which is constant along vertical curves.

Let ω and ω̃ be local volume forms of V with respect to g and g̃ , respec-

tively. Then ω̃ = rp ω .

It follows that

λ̃2−n ω̃ = a2−n(sn−2 rp)(λ2−nω) . (1.2.1)

To prove that (i), (ii)⇒(iii) note that (1.2.1) and Proposition 1.1.11 im-

plies that if λ2−n and λ̃2−n are local densities of V with respect to g and g̃ ,

respectively, then

sn−2 rp = an−2 b , (1.2.2)

where b is a smooth positive function constant along horizontal curves.

To prove that (i), (iii)⇒(ii) , suppose that λ2−n is a local density of V

with respect to g and choose smooth positive functions a and b which satisfy

(1.2.2) and such that a is constant along vertical curves and b is constant along

horizontal curves. Now, (1.2.1) implies that λ̃ = a s−1λ corresponds to a local

density of V with respect to g̃ .

The proof of (ii), (iii)⇒(i) is similar. �

Corollary 1.2.2 (cf. [44]). Let V be a foliation with codimV 6= 2 on (M, g) .

Let a and b be smooth positive functions on M such that a is constant along

vertical curves and b is constant along horizontal curves. Then the following

assertions are equivalent:

(i) V produces harmonic morphisms on (M, g) ,

(ii) V produces harmonic morphisms on (M, a2 b2 g) .
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If codimV = 2 then (i)⇐⇒ (ii) if and only if the function a is constant

on M .

Proof. This is an immediate consequence of Proposition 1.2.1 . �

Propositions 1.1.11 and 1.2.1 suggests the following:

Definition 1.2.3 ([44], cf. [47]). Let V be a distribution of dimension p and

codimension n on the Riemannian manifold (M, g). For a positive smooth

function σ on M we define the metric σg by

σg = σ2 gH + σ
4−2n
p gV ,

where gH and gV are the horizontal and the vertical components of g , respec-

tively.

Proposition 1.2.4 (cf. [44]). Let V be a conformal foliation on (M, g) and

let σ be a positive smooth function on M . Then,

(i) V is also a conformal foliation on (M, σg) . Furthermore, λ is a local

dilation of V with respect to g if and only if λσ−1 is a local dilation with

respect to σg .

(ii) V produces harmonic morphisms on (M, g) if and only if it produces

harmonic morphisms on (M, σg) .

(iii) If V produces harmonic morphisms and admits a global dilation λ

such that λ2−n is a density for V with respect to g then, V is a Riemannian

foliation with minimal leaves on (M, λg) .

Proof. Statement (i) follows from Remark 1.1.9(2) whilst (ii) follows from

Proposition 1.2.1.

If codimV = 2 assertion (iii) is obvious. If codimV 6= 2 first note that if

λ is a local dilation of V with respect to g then V is a Riemannian foliation

on (M, λg) . Now the proof of Proposition 1.2.1 shows that if λ2−n is a density

for V then the constant function λ̃ = 1 is a dilation which corresponds to a

density for V with respect to λg . Thus, by (1.1.4) the leaves of V are minimal

submanifolds of (M, λg) . �



Foliations which produce harmonic morphisms 23

The next result shows that the metric on the codomain is much more

rigid.

Proposition 1.2.5 ([14]). Let ϕj : (M, g) → (N,hj) , j = 1, 2 , be noncon-

stant harmonic morphisms having the same fibres. Suppose that N is connected

and dimN 6= 2 .

Then, h1 and h2 are homothetic.

Proof. Let λj be the dilation of ϕj (j = 1, 2) . Then λ2 = λ1 σ where

σ : M → R is a smooth positive function, constant along the fibres.

Recall from Proposition 1.1.11 that the property that ϕj is a harmonic

morphism is equivalent to the property that the parallel displacement defined

by the horizontal distribution preserves λ2−n
j ω , where n = dimN and ω is a

local volume form for the vertical distribution. Hence, σ is also constant along

horizontal curves.

It follows that σ is constant on M , and the proposition is proved. �

An immediate consequence of Proposition 1.2.5 is the following:

Corollary 1.2.6. A foliation of codimension q 6= 2 which produces harmonic

morphisms is given by a Haefliger structure [30] with values in the groupoid

of germs of homothetic diffeomorphisms of the sheaf of germs of Riemannian

metrics on Rq .

In the following theorem we attach assertion (iv) to a well-known list of

equivalent assertions (see [45, Appendix B]).

Theorem 1.2.7. Let M be a compact manifold with zero first Betti number.

For a foliation V on M with compact leaves the following assertions are

equivalent:

(i) the holonomy group of each leaf of V is finite,

(ii) there exists a metric g on M such that V is a Riemannian foliation

on (M, g),

(iii) there exists a metric g on M such that the leaves of V are minimal

submanifolds of (M, g),
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(iv) there exists a metric g on M such that V produces harmonic mor-

phisms on (M, g).

Moreover, if codimV = 2 , is not necessary to assume that the first Betti

number of M is zero.

Proof. It is well-known that the assertions (i), (ii) and (iii) are equivalent.

Moreover, if any of these properties holds then there exists a metric g on M

such that V is a Riemannian foliation with minimal leaves on (M, g) . (To see

this let h be a metric on M with respect to which V has minimal leaves and

let k be a metric on M with respect to which V is Riemannian. If H is

the orthogonal complement of V with respect to h and K is the orthogonal

complement of V with respect to k let g = hV + kH where, hV is the vertical

component of h and kH is the metric on H induced by the restriction of k to

K via the canonical isomorphisms of vector bundles H → TM/V → K .) But

any Riemannian foliation with minimal leaves produces harmonic morphisms.

Conversely, suppose that V produces harmonic morphisms on (M, g) . If

codimV = 2 then by Proposition 1.1.10 , V has minimal leaves (see [68]). If

codimV 6= 2 then by Corollary 1.1.14 , there exists a global density λ2−n of

V , and V is a Riemannian foliation with minimal leaves on (M, λg) . �

1.3. Characterisation of the conformal foliations which produce

harmonic morphisms

We now characterise conformal foliations which produce harmonic mor-

phisms. Recall [68] that a conformal foliation V of codimV = 2 produces

harmonic morphisms if and only if its leaves are minimal. For codimV 6= 2 ,

the situation is more complicated and we have the following reformulation of

a result of R.L. Bryant [14] (see [9] for another treatment).

Proposition 1.3.1 ([14]). Let V be a conformal foliation of codimV 6= 2 on

(M, g) and let H be its orthogonal complement. Let VB and HB be the second

fundamental forms of V and H , respectively.

Then, V produces harmonic morphisms on (M, g) if and only if the vector
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field

(n− 2) trace(HB)− n trace(VB)

is locally a gradient vector field. (Here trace(HB) =
∑

j
HB(Xj , Xj) and

trace(VB) =
∑

α
VB(Uα, Uα) for local orthonormal frames {Xj} and {Uα} of

H and V , respectively.)

Proof. Note that the following relation holds

(n− 2) trace(HB)− n trace(VB) = n(n− 2) grad(log λ) , (1.3.1)

if and only if:

trace(HB) = nV (grad(log λ)) , (1.3.1a)

and

trace(VB) = −(n− 2)H (grad(log λ)) . (1.3.1b)

By Remark 1.1.9(3) , (1.3.1a) holds if and only λ is a local dilation of

V . This together with the fundamental equation (1.1.4) , imply that (1.3.1a)

and (1.3.1b) hold if and only if V , restricted to the domain of λ , produces

harmonic morphisms and λ2−n is a density of it. �

Note that Corollary 1.1.14 can be proved using (1.3.1) .

Proposition 1.3.1 provides one of the essential ingredients necessary to

obtain the following result (see [9] for a proof).

Proposition 1.3.2. Let (M, g) be a real-analytic Riemannian manifold, and

let V be a foliation which produces harmonic morphisms on (M, g).

Then V is a real-analytic foliation. Moreover, if codim V 6= 2 , then

any harmonic morphism produced by V is a real-analytic map onto a real-

analytic Riemannian manifold. If codim V = 2 , then V is locally defined by

real-analytic submersive harmonic morphisms onto real-analytic Riemannian

two-manifolds.

Corollary 1.3.3. Let ϕ : (M, g) → (N,h) be a submersive harmonic mor-

phism from a real-analytic manifold onto a smooth manifold.
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If dimN 6= 2 then there exists a real-analytic structure on N with respect

to which ϕ and h are real-analytic. If dimN = 2 then ϕ is real-analytic with

respect to the real-analytic structure on N induced by the conformal structure

of h .

Remark 1.3.4. In Corollary 1.3.3 , if dimN = 2 , then we can remove the hy-

pothesis that ϕ is submersive; note, however, that the metric of N may always

be chosen such that not to be real-analytic (just apply a suitable conformal

deformation).

If dimN ≥ 3 , we do not know if the hypothesis that ϕ is submersive can

be removed.

1.4. Homothetic foliations

By the mean curvature form of V we mean the one-form (trace(VB))[

obtained by applying the musical isomorphism (see [11]) [ : TM → T ∗M with

similar terminology for H (see [64]). Then we have.

Corollary 1.4.1. Let V be a conformal foliation with codimV 6= 2 and let

H be its orthogonal complement. Then any two of the following assertions

imply the other one:

(i) V produces harmonic morphisms,

(ii) V has closed mean curvature form,

(iii) H has closed mean curvature form.

Proof. This is an immediate consequence of Proposition 1.3.1 and the

fact that (trace(VB))[ is closed if and only if trace(VB) is locally a gradient

and similarly for H . �

We now introduce a new sort of foliation midway between conformal and

Riemannian foliations.

Proposition 1.4.2. For a conformal foliation V on the Riemannian manifold

(M, g) the following assertions are equivalent:

(i) the leaves of V can be, locally, given as fibres of horizontally homo-

thetic submersion;
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(ii) each point of M has an open neighbourhood on which there can be

defined a local dilation of V which is constant along horizontal curves;

(iii) any local dilation λ of V , defined on an open subset O with zero

first Betti number, is a product λ = a b , where a and b are positive smooth

functions such that a is constant along vertical curves and b is constant along

horizontal curves;

(iv) the mean curvature of the orthogonal complement of V is locally a

gradient vector field.

Proof. The equivalence (i)⇐⇒ (ii) is obvious. Also, by Remark 1.1.9(2)

it follows that (ii)⇐(iii).

By the same remark, if (ii) holds then, any local dilation λ : O → R of V

is, locally, a product λ = a b as in (iii). If on the same open subset of O , we

also have λ = a1 b1 then, a−1 a1 = b b−1
1 = const. Hence the differentials of the

logarithms of the factors a , b from the local decompositions of λ define closed

one-forms on O. If the first Betti number of O is zero then these one-forms

are exact and the implication (ii)⇒(iii) is proved.

The equivalence (ii)⇐⇒ (iv) follows from Remark 1.1.9(3) . �

Remark 1.4.3. 1) If a conformal foliation satisfies one of the properties from

the above proposition then the holonomy groupoid of each leaf is formed of

germs of homothetic diffeomorphisms.

2) In (iii) above instead of H1(O; R) = 0 we could ask that the first basic

cohomology group (see [64]) of V |O be zero. This follows from the fact that

the set of differentials {da} define a closed basic one-form on O .

3) Alternatively, it is sufficient to ask that the orthogonal complement

H |O of V |O is an Ehresmann connection [12] with trivial holonomy (in partic-

ular, H |O is integrable). To see this, note that the set of differentials {d(log b)}
define a closed one-form which, when restricted to a leaf L , is exact (because it

coincide with d((log λ)|L)). When H is an Ehresmann connection with trivial

holonomy these exact forms can be matched together to define an exact form

on O.
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The notion of local dilations for conformal foliations can be generalized

to conformal distributions, although, in this case, these might not exist. Nev-

ertheless, if a conformal distribution admits local dilations then these share

the same properties (Remark 1.1.9(2) and (3)) as the local dilations of a con-

formal foliation. Moreover, assertions (ii), (iii) and (iv) from Proposition 1.4.2

remain equivalent for conformal distributions which admit local dilations in a

neighbourhood of each point.

Proposition 1.4.2 suggests the following definition.

Definition 1.4.4 (cf. [66, §2]). Let V be a distribution on the Riemannian

manifold (M, g). We shall say that V is homothetic if it is conformal and the

mean curvature of its orthogonal complement is locally a gradient vector field.

Remark 1.4.5. 1) Let V be a foliation on M . Then, there exists a metric

g on M such that V is a homothetic foliation on (M, g) if and only if V is a

foliation of type (A) in the sense of I. Vaisman [66].

2) Note that, unlike conformal distributions, homothetic distributions al-

ways admit local dilations, even if nonintegrable. Indeed, if V is a homothetic

distribution with codimV = n and H is its orthogonal complement, then any

local smooth positive function λ on M which has the property

n grad(log λ) = trace(HB) , (1.4.1)

is a local dilation of V .

Moreover, if V is a homothetic distribution and λ is a local dilation of it

defined on an open set O such that λ = a b as in (iii) from Proposition 1.4.2 ,

then any other local dilation defined on O is of this form.

Proposition 1.4.6. Let V be a foliation on (M, g) with orthogonal comple-

ment H .

If H is a homothetic distribution then the parallel displacement defined

by it consists of (local) homothetic diffeomorphisms between leaves of V .

Conversely, if H is conformal, integrable and the parallel displacement

defined by it is formed of (local) homothetic diffeomorphisms between leaves of

V , then it is a homothetic distribution.
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Proof. If H is conformal and integrable then it admits local dilations.

Let λ be a local dilation of H . Then for any horizontal vector field X invariant

under the holonomy of V (i.e. for any basic vector field X ) we have:

LX(λ2 (g|V )) = 0 . (1.4.2)

If (ψt) is the local flow of X , then (1.4.2) is equivalent to the fact that for any

t we have

(ψt)∗(λ2(g|V )) = λ2(g|V ) . (1.4.3)

The proof follows from (1.4.3) by using the fact that, if H is conformal,

then it is homothetic if and only if in the neighbourhood of each point a local

dilation can be found, which is constant along the leaves of V . �

Proposition 1.4.7. Let V be a homothetic foliation of codimension not equal

to two on (M, g). Then, the following assertions are equivalent:

(i) V produces harmonic morphisms;

(ii) the mean curvature of V is locally a gradient vector field.

In particular, a homothetic foliation whose orthogonal complement is a

homothetic distribution produces harmonic morphisms with umbilical fibres.

Proof. Since V is homothetic we have that trace(HB) is, locally, a gradi-

ent vector field. From Proposition 1.3.1 it follows that V produces harmonic

morphisms if and only if trace(VB) is, locally, a gradient vector field.

The last assertion follows from the fact that (see Remark 1.1.9(3) ) V is

umbilical if and only if H is a conformal distribution. �

Corollary 1.4.8. Let V be a foliation with minimal leaves and codimV 6= 2 .

Then, V produces harmonic morphisms if and only if it is homothetic.

See [1] for other relations between harmonic maps and minimal subman-

ifolds.

Remark 1.4.9. 1) In Proposition 1.4.7 condition (ii) is a bit more general

than saying H is homothetic since it is not assumed to be conformal.

2) Any Riemannian foliation is homothetic.
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3) Given a horizontally homothetic submersion the connected compo-

nents of its fibres form a homothetic foliation. Conversely, note that if ϕ :

(M, g) → (N,h) is a horizontally conformal submersion such that its fibres

form a homothetic foliation then it is not true, in general, that ϕ is hori-

zontally homothetic. If the first Betti number of M is zero then ϕ can be

factorised into a horizontally homothetic submersion followed by a conformal

diffeomorphism. (By Remark 1.4.3(2), (3) this factorization can also be done

when the first Betti number of N is zero or when the horizontal distribution

H is an Ehresmann connection with trivial holonomy, in which case H is

integrable and M is diffeomorphic to the product of N and the fibre.)

Example 1.4.10. 1) Doubly-warped-products (see [57], and the references

therein). If (Mp, g) and (N q, h) are Riemannian manifolds and r : M → R
and s : N → R are positive smooth functions then the doubly-warped-product

of (Mp, g) and (N q, h) is defined to be:

Ms × rN = (M ×N, s2 π∗M (g) + r2 π∗N (h) ) ,

where πM and πN are the projections onto M and N , respectively.

The projections πM : Ms× rN → (M, g) and πN : Ms× rN → (N,h) are

horizontally homothetic so their fibres define a pair of complementary orthog-

onal homothetic foliations. Conversely, any Riemannian manifold endowed

with a pair of complementary orthogonal homothetic foliations is canonically

locally isometric to a doubly-warped-product. Hence, by Proposition 1.4.7 ,

when p, q 6= 2 both of the foliations induced by the factors of a doubly-warped-

product produce harmonic morphisms. More precisely, if p 6= 2 the following

projection is a harmonic morphism with umbilical fibres:

πM : Ms × rN −→ (M, r
2q
p−2 g) . (1.4.4)

The fact that the above projection is a harmonic morphism also follows

from Proposition 1.2.4(iii) .

A concrete example of a warped-product is provided by the open subsets

in spheres (Sp+q \ Sp−1
0 , gp+q), where Sp−1

0 = Rp ∩ Sp+q and Rp ≡
{
x ∈
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Rp+q+1 |xp+1 = . . . = xp+q+1 = 0
}

and gp+q is the restriction of the canonical

metric on Sp+q . The warped-product is the one induced by the following

diffeomorphism:

Φ : Sp+q \ Sp−1
0 −→ Sp+ × Sq

Φ(x, y) =
(
(x, |y|), 1

|y|
y
)
.

where Sp+ =
{
x ∈ Sp+1 |xp+1 > 0

}
. To make Φ an isometry we must give

Sp+×Sq the warped-product structure Sp+×r Sq where r(x1, . . . , xp+1) = xp+1.

Thus, if p 6= 2 , (1.4.4) particularises to give the following harmonic mor-

phism with umbilical fibres:

ϕ : (Sp+q \ Sp−1
0 , gp+q) −→ (Sp+, r

2q
p−2 gp)

ϕ(x1, . . . , xp+q+1) =
(
x1, . . . , xp,

√
(xp+1)2 + . . .+ (xp+q+1)2

)
.

By Proposition 1.2.5 any other metric on Sp+ with respect to which ϕ

above is a harmonic morphism is homothetic to the one considered. Also,

note that, although ϕ can be extended to a continuous map ϕ̃ on Sp+q , the

considered metric on the codomain cannot be extended to the range of ϕ̃.

2) Doubly-twisted-products (see [57], and the references therein). These

are defined in the same way as doubly-warped-products, but now r, s : M ×
N → R. It is easy to see that a Riemannian manifold endowed with a pair of

complementary orthogonal foliations which are both umbilical (equivalently,

both conformal) is, canonically, locally isometric to a doubly-twisted-product.

If p 6= 2 , it follows from Proposition 1.2.1 that the foliation V induced by

the second factor of the doubly-twisted-product Ms × rN produces harmonic

morphisms if and only if the function rq sp−2 is, locally, the product of a

function constant on M and a function constant on N .

If p = 2 , then V produces harmonic morphisms if and only if r is a

function defined onN . In this case, V has totally geodesic leaves andMs × rN

is isometric to the twisted product Ms × Ñ where Ñ = (N, r2 h) .

It follows that a pair of complementary orthogonal umbilical foliations

both of codimension not equal to two are both homothetic if and only if each

of them produces harmonic morphisms.





CHAPTER 2

Group actions and harmonic morphisms

2.1. Mean curvature forms and adapted Bott connections

In this section we shall establish the fact that the exterior derivative of

the mean curvature form of a distribution is the curvature form of the con-

nection induced on the determinant bundle of the distribution by its adapted

Bott connection (see [59]). By using this or by direct calculation we obtain for-

mulae for the exterior derivative of the mean curvature form of a distribution.

(We do not imagine that these formulae are new, but we could not find them

in the literature.) Some of these formulae apply to prove that if a conformal

foliation V has integrable orthogonal complement H and if V and H both

have basic mean curvature forms then V produces harmonic morphisms.

The following simple lemma will be used later on.

Lemma 2.1.1 (cf. [60, Chapter IV, Example 4.10]). Let V be a foliation on

(M, g) and let V ∈ Γ(V ) be a conformal vector field.

Then
[
V,X

]
= 0 for any basic vector field X .

Proof. Let H = V ⊥ and X ∈ Γ(H ) a basic vector field. Then [V,X] ∈
Γ(V ) .

But V is conformal and hence we can write

0 = (LV g)(W,X) = −g(W, [V,X])

for any W ∈ Γ(V ) . Hence [V,X] = 0 . �

The result of Lemma 2.1.1 is equivalent to the fact that any conformal

vector field tangent to a foliation V is an infinitesimal automorphism of the
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orthogonal complement of V (see [60] or [35] for the definition of the infini-

tesimal automorphism of a distribution).

Let V and H be two complementary orthogonal distributions (not nec-

essarily integrable) on (M, g) .

Definition 2.1.2 (see [64]). The adapted Bott connection
H
∇ on H is defined

by
H
∇E X = H

[
V E,X

]
+ H

(
∇H EX

)
for E ∈ Γ(TM) , X ∈ Γ(H ) where ∇ is the Levi-Civita connection of (M, g) .

The adapted Bott connection
V
∇ on V is defined similarly by reversing

the roles of V and H .

Remark 2.1.3 (see [64]). It is easy to see that
H
∇ is compatible with the

metric induced by g on H if and only if H is totally geodesic. Nevertheless,

since
H
∇X = H ∇X for any X ∈ Γ(H ) we have that

H
∇X(g|H ) = 0 .

Let HI be the integrability tensor of H which is the V -valued horizontal

two-form defined by HI (X,Y ) = −V [X,Y ] for X , Y ∈ Γ(H ) .

Proposition 2.1.4. Let H be a distribution on (M, g) . Then

d
(
trace(HB)[

)
(X,Y ) = g

(
trace(HB),HI (X,Y )

)
, (2.1.1)

d
(
trace(HB)[

)
(X,V ) =

V
∇X
(
trace(HB)[

)
(V ) (2.1.2)

for any horizontal vectors X ,Y and vertical vector V .

Proof. This is a straightforward calculation using the fact that trace(HB)

is a vertical vector field. �

Let n = dim H and let
∧
nH be the determinant line bundle of H .

Let HR ∈ Γ(End(H ) ⊗
∧

2(T ∗M)) be the curvature form of
H
∇ . Then

the curvature form of the connection induced by
H
∇ on

∧
nH is trace(HR) ∈

Γ(
∧

2(T ∗M)) .
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Proposition 2.1.5 (see [59]). Let H be a distribution on (M, g) . Then

trace(HR) = d
(
trace(HB)[

)
.

Proof. Let
H
ω be a local volume form of H considered with respect to

the metric induced by g .

Recall that trace(HR) = dA where A is any local connection form of the

connection induced by
H
∇ on

∧
nH . Thus it suffices to show that

H
∇E

H
ω = −g(E, trace(HB))

H
ω (2.1.3)

for any E ∈ TM .

If E ∈H then the right hand side of (2.1.3) is zero. Also, the left hand

side is zero because if E ∈H then
H
∇E(g|H ) = 0 (see Remark 2.1.3).

If E ∈ V then
H
∇E

H
ω = H ∗(LE

H
ω) . Thus, if E ∈ V then (2.1.3) reduces

to a well-known formula (see [68]). �

Proposition 2.1.6 (see [60], [64]). Let X ∈ Γ(H ) be a horizontal vector field.

Then the following assertions are equivalent.

(i)
H
∇V X = 0 for any V ∈ Γ(V ) ;

(ii) H [X,V ] = 0 for any V ∈ Γ(V ) ;

(iii) LX
(
Γ(V )

)
⊆ Γ(V ) ;

(iv) X is an infinitesimal automorphism of V .

Proof. The equivalences (i) ⇐⇒ (ii) and (ii) ⇐⇒ (iii) are trivial. Also,

(ii)⇐⇒ (iv) follows easily from [36, Chapter 1, Corollary 1.10] . �

Remark 2.1.7. If in Proposition 2.1.6 we further assume that H is integrable

then the following assertions can be added.

(v) LX ◦V = V ◦ LX ;

(vi) LX ◦H = H ◦ LX .

Example 2.1.8 (see [64]). Suppose that V is integrable. Then any basic vec-

tor field X ∈ Γ(H ) for V with respect to H is an infinitesimal automorphism

of V ; in fact, if V is integrable a horizontal vector field X ∈ Γ(H ) is basic if

and only if any of the assertions (i), (ii), (iii) or (iv) holds.
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The following definition does not require any assumption on the distri-

bution H .

Definition 2.1.9 (see [64, (4.34)]). Let E ∈ Γ(TM) . The horizontal diver-

gence divH E of E is defined by

H ∗(LE
H
ω) = (divH E)

H
ω ,

where
H
ω is any local volume form of H (endowed with the metric induced

by g).

The vertical divergence divV is defined similarly (note that

divE = divH E + divV E

for any E ∈ Γ(TM) ).

A standard calculation gives the following proposition.

Proposition 2.1.10. Let E ∈ Γ(TM) . Then divH E is the (pointwise) trace

of the linear endomorphism H −→H defined by Y 7−→H (∇YE) .

Hence, divH E is globally well-defined (i.e. it does not depend on
H
ω).

Remark 2.1.11. 1) Obviously, if H is integrable and X ∈ Γ(H ) then the

restriction of divH X to each leaf L of H is equal to the divergence of the

restriction of X to (L, g|L) .

2) If V ∈ Γ(V ) then divH V = −g(trace(HB), V ) .

Lemma 2.1.12. (a) Suppose that X ∈ Γ(H ) is an infinitesimal automor-

phism of V . Then

HR(V,W )X = H (∇VI (V,W )X)

for any vertical V and W .

(b) Suppose that H is integrable and let X, Y ∈ Γ(H ) and V ∈ Γ(V )

be such that [V,X] = 0 = [V, Y ] . Then

HR(V,X)Y =
H
∇V (H ∇YX) .
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Proof. (a) Let V, W ∈ Γ(V ) . Then

HR(V,W )X = [
H
∇V ,

H
∇W ]X −

H
∇[V,W ]X

= −
H
∇V [V,W ]X −

H
∇H [V,W ]X = H (∇VI (V,W )X) .

(b) We have

HR(V,X)Y = [
H
∇V ,

H
∇X ]Y −

H
∇[V,X] Y

=
H
∇V (

H
∇X Y ) =

H
∇V (H ∇XY )

=
H
∇V (H [X,Y ] + H ∇YX) .

Because H is integrable we have that H [X,Y ] = [X,Y ] and from

[V,X] = 0 = [V, Y ] , by using the Jacobi identity, we obtain that [V, [X,Y ]] =

0 . Hence
H
∇V (H [X,Y ]) = 0 and the lemma follows. �

Let
{
Xa

}
be a local frame for H over the open subset U ⊆ M and let{

Vr
}

be a local frame for V over U . We shall denote ‘horizontal’ indices by

a, b, c and ‘vertical’ indices by r, s, t .

Lemma 2.1.13. (a) Suppose that the Xa are infinitesimal automorphisms

of V .

Then

d
(
trace(HB)[

)
rs

=
(
caba + divH Xb

)
VI

b
rs , (2.1.4)

where
{
ccab
}

are defined by H [Xa, Xb] = ccabXc .

(b) If both H and V are locally generated by infinitesimal automorphisms

of V and H , respectively, and H is integrable then

V ∗
(
d
(
trace(HB)[

))
= divH (VI ) .

Proof. (a) This follows from Proposition 2.1.5 , Proposition 2.1.10 and

Lemma 2.1.12(a) .

(b) This follows from (a) and the fact that V ∗(LX(VI )) = 0 for any

infinitesimal automorphism X ∈ Γ(H ) of V . �
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(Note that it seems to be impossible to formulate invariantly assertion

(a) of Lemma 2.1.13 .)

Proposition 2.1.14 (see [59]). If V is integrable then d
(
trace(HB)[

)
(V,W ) =

0 for any vertical V and W .

Proof. This follows from Lemma 2.1.13 because if V is integrable then

any basic vector field for V is an infinitesimal automorphism of V . �

Proposition 2.1.15. Suppose that both V and H are integrable. Then the

following assertions are equivalent.

(i) The mean curvature form of H is closed;

(ii) The mean curvature form of H is basic (for V ).

Proof. This follows from Proposition 2.1.4 and Proposition 2.1.14 . �

Proposition 2.1.16. Suppose that H is integrable and locally generated by

infinitesimal automorphisms of V . Let V ∈ Γ(V ) and let X ∈ Γ(H ) be an

infinitesimal automorphism of V . Then

d
(
trace(HB)[

)
(V,X) = V (divH X) = −

V
∇X(trace(HB)[)(V ) . (2.1.5)

Proof. Note that (2.1.5) is tensorial in V and thus we can suppose that

V is basic for H . Then the proof follows from Proposition 2.1.4 , Proposi-

tion 2.1.5 , Proposition 2.1.10 and Lemma 2.1.12(b) . �

By reversing the roles of V and H in Proposition 2.1.4 and Lemma 2.1.13

and Proposition 2.1.16 we obtain the corresponding formulae for d
(
trace(VB)[

)
.

The following simple lemma holds for any complementary orthogonal

distributions H and V .

Lemma 2.1.17. Let f be any smooth function on M . Then

H
∇V (H ∗(df))(X) =

V
∇X(V ∗(df))(V ) (2.1.6)

for any vertical V and horizontal X .
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Proof. Let X and V be vector fields which are horizontal and vertical,

respectively. The following relation is trivial

V (X(f))−X(V (f))− [V,X](f) = 0 . (2.1.7)

But (2.1.7) is equivalent to the following

V (X(f))−H [V,X](f) = X(V (f))− V [X,V ](f)

which is obviously equivalent to (2.1.6). �

Proposition 2.1.18. Let V be a foliation of codim V = n 6= 2 which produces

harmonic morphisms on (M, g) . Then the following assertions are equivalent.

(i) The mean curvature form of V is basic;

(ii) The mean curvature form of H is invariant under the parallel dis-

placement determined by H (i.e.
V
∇X(trace(HB)[)(V ) = 0).

Proof. Recall that trace(HB)[ = nV ∗(d log λ) (see [9]) for any local dila-

tion λ of V .

Also, from the fundamental equation (1.1.4) of P. Baird and J. Eells it fol-

lows that trace(VB)[ = −(n− 2)H ∗(d log λ) for any local density λ2−n of V .

Now the equivalence (i)⇐⇒ (ii) follows from Lemma 2.1.17 . �

Theorem 2.1.19. Let V be a conformal foliation on (M, g) of codimV 6= 2 .

Suppose that the orthogonal complement H of V is integrable.

Then any two of the following assertions imply the remaining assertion.

(i) V produces harmonic morphisms;

(ii) The mean curvature form of V is basic (for H );

(iii) The mean curvature form of H is basic (for V ).

Moreover, if any two of (i) , (ii) or (iii) hold then both V and H have

closed mean curvature forms.

Proof. If (i) holds then the equivalence (ii)⇐⇒ (iii) follows from Propo-

sition 2.1.18 .

Suppose that both the assertions (ii) and (iii) hold. Then (i) follows from

Proposition 2.1.15 and Proposition 1.3.1 . �
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Proposition 2.1.20. (a) If V is integrable then

d
(
trace(HB)[

)
(V,W ) = 0 = d

(
trace(VB)[

)
(V,W ) (2.1.8)

for any vertical V and W .

(b) Let V be a conformal foliation on (M, g). Then the following asser-

tions are equivalent.

(i) For any local dilation λ of V the one-form

trace(VB)[ + (n− 2)H ∗(d log λ)

is basic (n = dim H );

(ii) For any horizontal X and vertical V we have

d
(
(n− 2) trace(HB)[ − n trace(VB)[

)
(X,V ) = 0 . (2.1.9)

Proof. (a) The first equality of (2.1.8) follows from Proposition 2.1.14 .

The second equality of (2.1.8) follows from (2.1.1) of Proposition 2.1.4

by reversing the roles of H and V .

(b) Let λ be a local dilation of V and recall that, according to (1.1.3) ,

we have trace(HB) = nV (grad(log λ)) . Hence, by applying (2.1.2) of Propo-

sition 2.1.4 and Lemma 2.1.17 we obtain that(
(n− 2) d

(
trace(HB)[

)
− n d

(
trace(VB)[

))
(X,V )

= (n− 2)
V
∇X
(
trace(HB)[

)
(V ) + n

H
∇V
(
trace(VB)[

)
(X)

=n(n− 2)
V
∇X(V ∗(d log λ))(V ) + n

H
∇V
(
trace(VB)[

)
(X)

=n(n− 2)
H
∇V (H ∗(d log λ))(X) + n

H
∇V
(
trace(VB)[

)
(X)

for any horizontal X and vertical V and the proof of (i)⇐⇒ (ii) follows from

the fact that the basic vector fields (for V ) are precisely those horizontal vector

fields which are infinitesimal automorphisms of V (see Example 2.1.8(1) ). �

2.2. Characterisation of the conformal actions which produce

harmonic morphisms

On a two-dimensional Riemannian manifold a foliation (of dimension

one) produces harmonic morphisms if and only if it is locally generated by
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conformal vector fields. This follows from the well-known fact that a harmonic

morphism to a one-dimensional Riemannian manifold is essentially a harmonic

function and, if the domain is two-dimensional, this is locally the real part

of a conformal map. If the manifold has dimension greater than two then

it is not true that any foliation locally generated by conformal vector fields

produces harmonic morphisms. In this section we shall give necessary and

sufficient conditions for a foliation locally generated by conformal vector fields

to produce harmonic morphisms (Theorem 2.2.6). To state this result we need

some preparations.

Firstly, we recall the following definition.

Definition 2.2.1 (cf. [63]). Let V be a foliation on the Riemannian manifold

(M, g).

Then V is locally generated by conformal (resp. Killing) vector fields if

in the neighbourhood of each point a local frame for V can be found which is

formed of conformal (resp. Killing) vector fields.

We also need the following:

Definition 2.2.2. Let V be an orientable foliation of dimension p on a smooth

manifold M . Let H be a complementary distribution (i.e. V ⊕H = TM) .

Let HI be its integrability tensor. Let
V
ω be a volume form on V (i.e. a vertical

nonvanishing p-form).

Suppose that V is locally generated by local frames
{
Vr
}

such that

(1) V ∗(LVr
V
ω) = 0 ,

(2) Vr is an infinitesimal automorphism of H , for any r .

We define the two-form trace(ad(HI )) on M by

trace(ad(HI )) = csrs
HI

r
,

where HI = Vr ⊗ HI r and
[
Vr, Vs

]
= ctrsVt .

Example 2.2.3. Let V be an orientable foliation on (M, g), H = V ⊥ and
V
ω

a volume form for V with respect to g.

Then, (i) if
{
Vr
}

is a local frame for V made up of Killing fields then they
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satisfy (1) and (2) of Definition 2.2.2 ; (ii) more generally, the
{
Vr
}

satisfy (1)

of Definition 2.2.2 if and only if their restrictions to each leaf are divergence-

free.

It can be shown, directly, that the above definition is independent of the

local frame
{
Vr
}

of V such that (1) and (2) above, hold. This also follows

from the following proposition.

Proposition 2.2.4. Let V , H , HI ,
V
ω,
{
Vr
}

be as in Definition 2.2.2 and

let VR be the curvature form of
V
∇.

Then,

(a) trace(ad(HI )) = trace(VR) ;

(b) V ∗
(
LHI (X,Y )

V
ω
)

= trace(ad(HI ))(X,Y )
V
ω for any basic vector fields

X and Y .

Further, the following assertions are equivalent:

(i) trace(ad(HI )) = 0 ,

(ii) At least locally there can be defined smooth positive basic functions ρ

such that V ∗(LX(ρ
V
ω)) = 0 for any horizontal field X ,

(iii) V ∗
(
LHI (X,Y )

V
ω
)

= 0 for any basic vector fields X and Y .

In particular, if the first Betti number of M is zero and (i) holds then V

is taut (i.e. there exists a Riemannian metric on M with respect to which the

leaves of V are minimal).

Proof. Let g be a Riemannian metric on M such that H = V ⊥ and
V
ω

is equal to the induced volume form on V , and let
V
∇ be the adapted Bott

connection on V corresponding to g .

Note that (1) of Definition 2.2.2 is equivalent to the fact that divV Vα = 0.

The proof of (a) and (b) follows from Proposition 2.1.5, Lemma 2.1.13,

Proposition 2.1.14 and Propostion 2.1.16 reversing the roles of H and V .

Assertion (a) is equivalent to the fact that trace(ad(HI )) is the curvature

form of the connection induced by
V
∇ on Λr(V ) . It is easy to see that this

connection is flat if and only if assertion (ii) holds. The equivalence (i)⇐⇒ (ii)
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now follows from (a).

The equivalence (i)⇐⇒ (iii) follows from (b). �

Remark 2.2.5. Note that trace(ad(HI )) is well-defined also for nonorientable

foliations (in which case
V
ω is defined just up to the sign). Also, note that

trace(ad(HI )) is well-defined for foliations locally generated by conformal vec-

tor fields.

We now state the main result of this section.

Theorem 2.2.6. Let V be a conformal foliation of codimV = n 6= 2 on

(Mm, g) , m ≥ 3 . Suppose that V is locally generated by conformal vector

fields and let H denote its orthogonal complement.

Then the following assertions are equivalent:

(i) V produces harmonic morphisms.

(ii) The mean curvature form of V is basic and the following relation

holds:

trace(ad(HI )) =
m− 2
n

g(trace(HB),HI ) . (2.2.1)

Proof. By Proposition 1.3.1 , V produces harmonic morphisms if and

only if

(n− 2) d
(
trace(HB)[

)
− n d

(
trace(VB)[

)
= 0 . (2.2.2)

By Proposition 2.1.20(a) the left hand side of (2.2.2) is automatically

zero when evaluated on a pair of vertical vectors.

Let λ be a local dilation of V .

Let V ∈ Γ(V ) be a conformal vector field on (M, g) . It is obvious that

V restricted to any leaf L of V is a conformal vector field on (L, g|L) . Using

this it is easy to see that

divV V = −(m− n)V (log λ) . (2.2.3)
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Let X ∈ Γ(H ) be a basic vector field. Then

H
∇V (H ∗(d log λ))(X) = V (X(log λ)) = X(V (log λ))

= − 1
m− n

X(divV V ) =
1

m− n
H
∇V (trace(VB)[)(X) ,

(2.2.4)

where we have also applied Lemma 2.1.1 and Proposition 2.1.16 (reversing the

roles of H and V in the latter). From Proposition 2.1.20(b) and (2.2.4) it

follows that the left hand side of (2.2.2) is zero when evaluated on a pair made

up of a vertical vector and a horizontal vector if and only if V has basic mean

curvature form.

Now, using Lemma 2.1.13(a) (with the roles of H and V reversed) and

(2.2.3) it is easy to see that

d
(
trace(VB)[

)
(X,Y ) = trace(ad(HI ))(X,Y )− m− n

n
g(trace(HB),HI (X,Y ))

(2.2.5)

for any horizontal X and Y . By combining (2.2.5) and Proposition 2.1.4 we

obtain that the left hand side of (2.2.2) is zero when evaluated on a pair of

horizontal vectors if and only if (2.2.1) holds. The theorem is proved. �

Remark 2.2.7. The first condition of Theorem 2.2.6(ii) (i.e. V has basic

mean curvature form) can be replaced with the fact that the mean curvature

form of H is invariant under the parallel displacement determined by H .

Corollary 2.2.8. Let V be a foliation on (Mm, g) , m ≥ 3 , which is locally

generated by conformal vector fields and has integrable orthogonal complement.

Then the following assertions are equivalent.

(i) V produces harmonic morphisms;

(ii) V has basic mean curvature form.

Moreover, if either assertion (i) or (ii) holds then both V and its orthog-

onal complement have closed mean curvature forms.

Proof. The equivalence (i)⇐⇒ (ii) is an immediate consequence of The-

orem 2.2.6 .
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The last assertion follows from Proposition 2.1.4 , Lemma 2.1.13 , Proposi-

tion 2.1.16 and Theorem 2.2.6 . �

2.3. Isometric actions and harmonic morphisms

From Theorem 2.2.6 we obtain the following.

Corollary 2.3.1. Let V be a Riemannian foliation of codim V 6= 2 on (Mm, g) ,

m ≥ 3 , and let HI be the integrability tensor field of its orthogonal comple-

ment. Suppose that V is locally generated by Killing fields.

Then the following assertions are equivalent:

(i) V produces harmonic morphisms,

(ii) trace(ad(HI )) = 0 .

Proof. It is obvious that V has basic mean curvature. Also, trace(HB) =

0 and the proof follows from Theorem 2.2.6 . �

Remark 2.3.2. It is easy to see that Corollary 2.3.1 holds more generally for

Riemannian foliations locally generated by infinitesimal automorphisms of the

horizontal distribution which when restricted to any leaf are divergence-free.

When the foliation is simple the result of Corollary 2.3.1 takes a more

concrete form.

Corollary 2.3.3. Let ϕ : (M, g) → (N,h) , dimN 6= 2 , be a Riemannian

submersion whose fibres are connected and locally generated by Killing fields

and let HI be the integrability tensor of the horizontal distribution. Then the

following assertions are equivalent.

(i) ϕ lifts to a harmonic morphism ϕ̃ : (M̃, g̃)→ (Ñ , h̃) where (M̃, g̃)→
(M, g) is a Riemannian regular covering and Ñ → N is a regular covering

such that h̃ and the pull-back of h to Ñ are conformally equivalent.

(ii) trace(ad(HI )) = 0 .

Proof. From Corollary 2.3.1 it follows that it is sufficient to prove that if

V (= kerϕ∗) produces harmonic morphisms then (i) holds.

Let M̃ →M be the regular covering which corresponds to the cohomology
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class [a] ∈ H1(M ; R) induced by the differentials of the logarithms of the

dilations of the (local) harmonic morphisms produced by V (= kerϕ∗) . (From

the fundamental equation it follows that a can be also defined as the one-

form obtained by applying the musical isomorphism [ to −1
n−2 trace(V B).) It

is obvious that the pull-back of [a] to M̃ is zero; let λ be a smooth positive

function on M̃ such that d(log λ) is equal to the pull-back of a to M̃ .

Since a is basic (see Remark 2.3.2(1) ) there exists a regular covering

Ñ → N whose pull-back by ϕ is M̃ → M . It is obvious that ϕ lifts to a

smooth map ϕ̃ : M̃ → Ñ . Note that we can suppose that λ is constant along

the fibres of ϕ̃ and hence there exists a positive smooth function λ̄ on Ñ such

that ϕ̃ ∗(λ̄) = λ.

Let g̃ be the pull-back of g to M̃ and h̄ be the pull-back of h to Ñ .

Then ϕ̃ : (M̃, g̃) → (Ñ , λ̄2 h̄) is a harmonic morphism and the corollary is

proved. �

Remark 2.3.4. If in Corollary 2.3.3 we have thatH1(M ; R) = 0 orH1(N ; R) =

0 then assertion (i) can be replaced by the following stronger assertion:

(i′) There exists a Riemannian metric h1 on N which is conformally

equivalent to h such that ϕ : (M, g)→ (N,h1) is a harmonic morphisms.

The same improvement can be made if the foliation formed by the fibres

is generated by a commuting family of Killing fields {V1, . . . , Vr} (in particu-

lar, if the foliation is generated by an Abelian Lie group of isometries). To see

this define λ by g(V1 ∧ . . .∧ Vr, V1 ∧ . . .∧ Vr) = λ2n−4 , n = dimN . Then λ is

the dilation of the induced harmonic morphism.

In some cases trace(ad(HI )) can be defined in a different way:

Lemma 2.3.5. Let V be a Riemannian foliation on (M, g) generated by the

action of a closed subgroup G of the isometry group of (M, g). Let {Vr} be a

local frame of V made up of Killing vector fields induced by the action of G

and let {ctrs} be defined by [Vr, Vs] = ctrs Vt.

Then there exists a well-defined vertical one-form trace ◦ ad ∈ Γ(V ∗) such

that

(trace ◦ ad)(Vr) = csrs .
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Moreover, we have trace(ad(HI )) = (trace ◦ ad)(HI ) .

Proof. Let x ∈M and let hx be the Lie algebra of the isotropy group Hx

at x of the action of G on M . Because G is a closed subgroup of the isometry

group, the isotropy groups are compact and hence we can find a subspace

mx of the Lie algebra g of G such that g = hx ⊕ mx and [hx,mx] ⊆ mx (for

example, take mx to be the orthogonal complement of hx in g with respect to

an AdHx-invariant metric on g).

Then, by identifying, as usual, mx = Vx, (trace ◦ ad)x is the restriction

to mx of the trace of the adjoint representation of g.

If y = x a, a ∈ G, is another point on the same leaf, then we can take

my = (Ad a−1)(mx).

If y ∈M can be joined to x by a horizontal curve then from Lemma 2.1.1

it follows that Hy = Hx.

Hence trace ◦ ad is well-defined.

The last assertion of the proposition is obvious. �

Let V be a foliation on (M, g) locally generated by Killing fields. Al-

though trace ◦ ad is not always well-defined, to simplify the exposition, we

shall write trace ◦ ad = 0 to mean that in the neighbourhood of each point a

local frame
{
Vr
}

for V can be found which is made up of Killing fields and is

such that csrs = 0 where ctrs are defined by
[
Vr, Vs

]
= ctrsVt .

The following two corollaries follows immediately from Corollary 2.3.1 .

Corollary 2.3.6. A foliation of codimension not equal to two which is locally

generated by Killing fields and which has integrable orthogonal complement

produces harmonic morphisms.

Corollary 2.3.7. A foliation of codimension not equal to two which is locally

generated by Killing fields and for which trace ◦ ad = 0 produces harmonic

morphisms.

The above result admits the following partial converse.

Proposition 2.3.8. Let V be a foliation of codimension not equal to two

which produces harmonic morphisms on (M, g) and is locally generated by
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Killing fields. Let HI be the integrability tensor of the orthogonal complement

H of V .

Suppose that on each leaf L of V a point x ∈ L can be found such that

Vx is spanned by
{

HI (X,Y ) |X, Y ∈Hx

}
.

Then trace ◦ ad = 0 .

Proof. From Corollary 2.3.1 it follows that it is sufficient to prove that Vx

is spanned by
{

HI (X,Y ) |X, Y ∈ Hx

}
at each point x ∈ M . From Lemma

2.1.1 it follows that [V,HI (X,Y )] = 0 for any Killing field V ∈ Γ(V ) and any

basic vector fields X,Y ∈ Γ(H ).

The proof follows from the fact that any two points of a leaf can be

joined by a curve which is piecewisely an integral curve of a Killing vector

field V ∈ Γ(V ) (see [60, Chapter I, Theorem 4.4]). �

Next we give an example of a Riemannian foliation locally generated by

Killing fields for which trace(ad(HI )) = 0 but HI 6= 0 and trace ◦ ad 6= 0.

Example 2.3.9. Let F be a Riemannian foliation locally generated by Killing

fields and which produces harmonic morphisms on (M, g). Suppose that the

orthogonal complement of F is not integrable (see examples, below).

Let G be the Lie group defined by

G =
{ (

a b
0 a−1

) ∣∣ a > 0 , b ∈ R
}
.

Endow G with a right invariant metric γ and consider the Riemannian

product manifold (M ×G, π∗M (g) + π∗G(γ) ) where πM and πG are the projec-

tions onto M and G, respectively. Let V = F × TG . It is obvious that V

is a foliation locally generated by Killing fields and which produces harmonic

morphisms on (M ×G, π∗M (g) + π∗G(γ) ).

Notice, however, that the orthogonal complement H of V is noninte-

grable so HI 6= 0, and also trace ◦ ad 6= 0.

For the next application we recall the following definition (cf. [11, 7.84]).

Definition 2.3.10. Let (Lp, h) be a locally homogeneous Riemannian manifold

(i.e. a Riemannian manifold whose tangent bundle admits, in a neighbourhood
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of each point, local frames made up of Killing fields).

Then (Lp, h) is called naturally reductive if each point x ∈ L has an open

neighbourhood on which a local frame
{
Vr
}
r=1,...,p

made up of Killing fields can

be found such that h([Vr, Vs], Vt) + h(Vs, [Vr, Vt]) = 0 at x .

The following well-known lemma follows from the fact that any skew-

symmetric endomorphism is trace-free.

Lemma 2.3.11. Let (L, h) be a naturally reductive locally-homogeneous Rie-

mannian manifold. Then trace ◦ ad = 0 .

The following result follows from Corollary 2.3.7 and Lemma 2.3.11 .

Proposition 2.3.12. A foliation of codimension not equal to two which is

locally generated by Killing fields and whose leaves are naturally reductive pro-

duces harmonic morphisms.

Theorem 2.3.13. Let G be a Lie group which acts as an isometry group on

the Riemannian manifold (M, g) .

Suppose that the following conditions are satisfied:

(i) The orbits of the action of G on M have the same codimension not

equal to two.

(ii) There exists on G a bi-invariant Riemannian metric.

(iii) The canonical representation of an isotropy group is irreducible.

Then, the connected components of the orbits form a Riemannian folia-

tion with umbilical leaves which produces harmonic morphisms.

Proof. The fact that (i) implies that the connected components of the or-

bits form a Riemannian foliation is well-known (see [60, Chapter IV, Example

4.10]). Let V be this foliation.

By chosing an AdG invariant metric on the Lie algebra of G and restrict-

ing it to the orthogonal complement of the Lie algebra of the isotropy group

at x ∈M we can induce a metric h̄x on Vx which by (iii) must be homothetic

to gx|Vx (see [36, vol. I, Appendix 5]). Then h̄ is a metric on V which can be

extended to a metric h on M such that h|H = g|H where H is the orthogonal



50 Radu Pantilie

complement of V .

Since h|V is induced by an AdG invariant metric, V has naturally reduc-

tive leaves with respect to h . But g and h are homothetic when restricted to

a leaf and hence the leaves of V are also naturally reductive with respect to

g . Moreover, from the fact that V has totally geodesic leaves with respect to

h , and g and h are conformal when restricted to V and equal when restricted

to H it follows that the leaves of V are umbilical with respect to g . �

Remark 2.3.14. Note that the same argument as above can be applied to

show that the Ricci tensor of each leaf is proportional to the induced metric

(see [11, 7.44]); hence, in the above theorem, each leaf is an Einstein manifold.

Theorem 2.3.15. Let G be a closed subgroup of the isometry group of (M, g)

which generates a foliation V of codimension not equal to two.

(i) Suppose that the Lie algebra g of G satisfies trace(ad g)=0 . Then, V

produces harmonic morphisms.

(ii) Conversely, if V produces harmonic morphisms and on each orbit Q a

point x ∈ Q can be found such that Vx is spanned by
{

HI (X,Y ) |X, Y ∈Hx

}
where HI is the integrability tensor of the orthogonal complement of V , then

trace(ad g) = 0 .

Proof. (i) It is sufficient to prove that trace ◦ ad = 0 .

Let H be the isotropy group of G at x ∈M . Since G is a closed subgroup

of the isometry group we have that H is compact and hence we can find m ⊆ g

such that g = h⊕m and [h,m] ⊆ m .

Let
{
A1, . . . , Ar

}
be a basis of h and

{
Ar+1, . . . , As

}
a basis of m . Let{

cγαβ
}

be the corresponding structural constants of g .

Because trace(ad g) = 0 we have that
∑s

α=1 c
α
αβ = 0 for β = 1, . . . , s.

Also, [h,m] ⊆ m implies that cγαβ = 0 for α, γ = 1, . . . , r and β = r +

1, . . . , s .

Let β ∈
{
r + 1, . . . , s

}
. Then

∑s
α=r+1 c

α
αβ = −

∑r
α=1 c

α
αβ = 0 and it

follows that (trace ◦ ad)x = 0 .

(ii) Note that if a point of an orbit has the assumed property then on
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each component of that orbit a point can be found with the same property.

The proof now follows from Proposition 2.3.8 . �

Corollary 2.3.16. Let G be a compact Lie group of isometries of (M, g) .

If the principal orbits of G have codimension not equal to two then their

connected components form a Riemannian foliation which produces harmonic

morphisms.

In particular, if (M, g) is compact and the principal orbits of the isome-

try group are of codimension not equal to two then their connected components

form a Riemannian foliation which produces harmonic morphisms.

Remark 2.3.17. Let G be a Lie group and let g be its Lie algebra. Recall that

if G is connected then trace(ad g) = 0 if and only if G is unimodular, i.e. its

left and right invariant Haar measures (which are unique up to multiplicative

constants) are equal.

Theorem 2.3.18. Let ξ = (P,N,G) be a principal bundle, dimN 6= 2 , whose

total space P is endowed with a Riemannian metric g which is invariant under

the action of G.

Let H be the induced principal connection on ξ and h the (unique) Rie-

mannian metric on N such that the projection π : (P, g) → (N,h) is a Rie-

mannian submersion.

Then the following assertions are equivalent:

(i) The connection induced by H on the determinant bundle of the ad-

joint bundle Ad ξ is flat.

(ii) The projection π lifts to a harmonic morphism π̃ : (P̃ , g̃) → (Ñ , h̃)

where (P̃ , g̃)→ (P, g) is a Riemannian regular covering and Ñ → N is a regu-

lar covering such that h̃ and the pull-back of h to Ñ are conformally equivalent.

Moreover, (P̃ , Ñ , G) is, in a natural way, a principal bundle.

Proof. Let Ω ∈ Γ(g⊗Λ2(T ∗P )) be the curvature form of H . It is obvious

that trace(ad HI ) = (trace ◦ad)(Ω). But (trace ◦ad)(Ω) is the pull back, by

π, of the curvature form of the determinant bundle of Ad ξ . Hence, (i) is

equivalent to the fact that the fibres of π form a (Riemannian) foliation which
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produces harmonic morphisms.

Now, from the Corollary 2.3.1 it follows that it is sufficient to prove that

(P̃ , Ñ , G) is, in a natural way, a principal bundle. Using the same notations as

in Corollary 2.3.3 (with P = M) this follows from the fact that P̃ is the total

space of ξ + η ∈ H1(N,G ×K) , where η ∈ H1(N,K) is the regular covering

corresponding to [b] ∈ H1(N,R) and [b] is such that π∗[b] = [a] . �

Remark 2.3.19. 1) From the holonomy theorem (see [36]) it follows that

assertion (i) of Theorem 2.3.18 is equivalent to the fact that the identity com-

ponent H of the holonomy group of H satisfies det(AdGH) = 1 .

2) Let V be a foliation on (M, g) generated by the action of a closed

subgroup G of the isometry group of (M, g) . Then it can be proved, directly

by using the mass invariance characteristic property of harmonic morphisms

(see Proposition 1.1.11), that V produces harmonic morphisms if and only if

the identity component H of the holonomy group at x of the orthogonal com-

plement of V satisfies det(AdGH) = 1 . (The holonomy group of H (= V ⊥)

at x ∈M consists of those a ∈ G such that x and xa can be joined by a hori-

zontal path, cf. [12].) In this way another proof can be obtained for the result

of Corollary 2.3.1 applied to foliations globally generated by closed subgroups

of the isometry group.

Corollary 2.3.20. Let (P,N,G) be a principal bundle, dimN ≥ 3 , whose

total space P is endowed with a Riemannian metric g which is invariant under

the action of G.

Let H ⊆ G be a closed subgroup and suppose that trace(ad h)= 0 and

trace(ad g)= 0. Let E = P×GG/H be the total space of the associated bundle.

Then in a neighbourhood of any point, there exist Riemannian metrics on

E and N with respect to which the restriction of the natural projection E → N

to that neighbourhood is a harmonic morphism.

Proof. It is well-known that (P,E,H) is in a natural way a principal

bundle (see [36]). From Theorem 2.3.18 it follows that both of the foliations

induced on P by the actions of G and of H produces harmonic morphisms.

Thus, at least locally, we can find metrics on E and on N with respect to
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which the projections P → E and P → N are harmonic morphisms. Since

the first of these is surjective this implies that the projection E → N can

also be made, at least locally, a harmonic morphism (see [18, 2.31] and [28,

Proposition 1.1]). �

It is obvious that Corollary 2.3.20 still holds if dimG − dimH 6= 1 =

dimN .

Corollary 2.3.21. Let (G, g) be a Lie group endowed with a right (left) in-

variant Riemannian metric. Let K ⊆ H ⊆ G be closed subgroups such that

trace(ad k) = 0, trace(ad h) = 0 and dimG− dimH ≥ 3 .

Then in a neighbourhood of any point, there exist Riemannian metrics on

G/H and G/K with respect to which the restriction of the natural projection

G/K → G/H to that neighbourhood is a harmonic morphism.

It is obvious that Corollary 2.3.21 still holds if dimG − dimH = 1 6=
dimH − dimK .

Example 2.3.22. 1) A one-dimensional Riemannian foliation produces har-

monic morphisms if and only if it is locally generated by Killing vector fields.

This result is due to R.L. Bryant [14] and the ‘if’ part follows also from Corol-

lary 2.3.7 (see also Proposition 3.1.3 , below).

Let ϕ : (Mn+1, g) → Nn, n ≥ 3, be a submersion with connected one-

dimensional fibres and let V be the foliation formed by the fibres of ϕ. Suppose

that there exists a nowhere zero Killing vector field V ∈ Γ(V ). Let ḡ be the

unique metric on N such that ϕ : (Mn+1, g) → (Nn, ḡ) is a Riemannian sub-

mersion and let λ be the positive smooth function such that g(V, V ) = λ2n−4.

Then, because V is Killing, λ is basic, i.e. there exists a positive smooth func-

tion λ̄ on Nn such that λ = λ̄ ◦ϕ. Then, ϕ : (M, g)→ (N, λ̄2 ḡ) is a harmonic

morphism [14]. We shall say that ϕ is induced by an (infinitesimal) isometric

action.

2) The foliation formed on (an open subset of) a hypersphere Sn by the

intersections with it of a parallel family of planes in Rn+1 of codimension not

equal to three produces harmonic morphisms. This follows from Corollary
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2.3.6 or from Theorem 2.3.13 . This can also be proved by noting that the

foliation is induced by one of the projections of a warped-product (see Ex-

ample 1.4.10). Similar examples can be obtained on Euclidean spaces and on

hyperbolic spaces.

3) Let K = R ,C ,H and consider on Gln(K) , n ≥ 2 , the following well-

known right invariant Riemannian metric

g =
n∑

i,j=1

∣∣ dxik · (x−1)kj
∣∣ 2 .

Let K ⊆ H ⊆ G ⊆ Gln(K) be closed subgroups such that trace(ad k) = 0,

trace(ad h) = 0 and dimG − dimH 6= 2 6= dimG − dimK . Then, at least

locally, a metric can be found on G/H (which is unique up to homotheties)

such that the projection G → G/H becomes, suitably restricted, a harmonic

morphism. (If G or G/H has zero first Betti number then this metric can be

defined globally on G/H .) Also, at least locally, a metric can be found on

the total space of the projection G/K → G/H such that the induced foliation

produces harmonic morphisms. (If G/K and G/H both have zero first Betti

number then there can be defined (global) metrics on them such that the

projection G/K → G/H becomes a harmonic morphism.)

For example, the foliations formed by the fibres of the following natural

maps produce harmonic morphisms:

Glp+q(K)→Gp+q,p(K)×Gp+q,q(K) ,

Glp+q(K)→Vp+q,p(K)×Gp+q,q(K) ,

Glp+q(K)→PGlp+q(K)

where, for p, q ≥ 1, Gp+q,p(K) is the Grassmanian manifold of p-dimensional

subspaces of Kp+q , Vp+q,p(K) is the Stiefel manifold of p-frames on Kp+q and

for the first projection p+ q ≥ 3 if K = R . If K = H, or K = R and p+ q ≥ 3,

then the first Betti number of Glp+q(K) is zero and hence in these cases on the

image of each of the above maps a metric can be found such that the induced

map becomes a harmonic morphism.

In particular, consider on Gl+2 (R) the coordinates given by x =
(
x1 x3
x2 x4

)
.
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With respect to these coordinates we have

g =
1

(x1x4 − x2x3)2

{
(x2

3 + x2
4)(dx2

1+ dx2
2) + (x2

1 + x2
2)(dx2

3 + dx2
4)

− 2(x1x3 + x2x4)(dx1 dx3 + dx2 dx4)
}
.

Then on the images of the following maps there exist Riemannian met-

rics, unique up to homotheties, with respect to which the induced maps are

harmonic morphisms.

ϕ1 :Gl+2 (R)→ PGl+2 (R) , given by the natural projection,

ϕ2 :Gl+2 (R)→ R2 × RP 1, given by ϕ2(x1, x2, x3, x4) =
(
(x1, x2), [x3 : x4]

)
.

If K = C or H then we can also consider the foliation induced by the map

Gl2(K)→ KP 1 ×KP 1 .

Other examples can be obtained by considering other linear Lie groups.

2.4. Homothetic foliations locally generated

by conformal vector fields

From results of Section 2 and 3 we obtain necessary and sufficient condi-

tions for a foliation to be homothetic.

Corollary 2.4.1. Let V be a conformal foliation on (M, g) with integrable

orthogonal complement H . If both V and H have basic mean curvature forms

then V is a homothetic foliation. If, further, codim V 6= 2 and dimM ≥ 3

then V produces harmonic morphisms.

Proof. This is an immediate consequence of Theorem 2.1.19 . �

Proposition 2.4.2. Let V be a foliation of codim V = n on (Mm, g) which

is locally generated by conformal vector fields and let H denote its orthogonal

complement.

If V is homothetic then g(trace(HB),HI ) = 0 .

Conversely, if g(trace(HB),HI ) = 0 then the following assertions are

equivalent:

(i) V is a homothetic foliation;

(ii) The mean curvature form of V is basic;
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(iii) The mean curvature form of H is invariant under the parallel dis-

placement determined by H ;

(iv) In the neighbourhood of each point of M there a exists a local dila-

tion λ of V such that for any horizontal vector X and conformal vector field

V tangent to V we have X(V (log λ)) = 0 .

Proof. The first assertion is an immediate consequence of formula (2.1.1)

from Proposition 2.1.4 .

Suppose now that g(trace(HB),HI ) = 0 .

The equivalence (i)⇐⇒ (iii) follows from Proposition 2.1.4 .

From the proof of Theorem 2.2.6 it follows that

1
m− n

V
∇V (trace(VB)[)(X) = X(V (log λ)) =

H
∇V (H ∗(d log λ))(X) (2.4.1)

for any X ∈ Γ(H ) , any conformal vector field V ∈ Γ(V ) and any local

dilation λ of V . The first equality of (2.4.1) implies that (ii)⇐⇒ (iv) .

From the second equality of (2.4.1) and (2.1.2) of Proposition 2.1.4 we

obtain the equivalence (iii)⇐⇒ (iv) and the proposition is proved. �

Theorem 2.4.3. Let V be a foliation of codimV 6= 2 on (Mm, g) , m ≥ 3 ,

which is locally generated by conformal vector fields. Then any two of the

following assertions imply the other one.

(i) V produces harmonic morphisms;

(ii) V is homothetic;

(iii) trace(ad(HI )) = 0 .

Proof. This is a consequence of Proposition 2.4.2 and of Theorem 2.2.6 .

�

Remark 2.4.4. 1) There is another way to prove that in Theorem 2.4.3

if (ii) holds then (i) ⇐⇒ (iii) . To see this let λ be a local dilation of V

which is constant along horizontal curves. Then, with respect to λ2g , V is a

Riemannian foliation locally generated by Killing fields. Thus, condition (ii)

of Theorem 2.2.6 says the same thing when written for a local frame made up

of fields which are conformal with respect to g and when written for the same
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frame with the metric λ2g so that the fields are now Killing fields. Moreover,

since λ is constant along horizontal curves, V produces harmonic morphisms

with respect to g if and only if it produces harmonic morphisms with respect

to λ2g (Corollary 1.2.2). The proof of the theorem now follows from Corollary

2.3.1 (which can be proved directly).

2) It is not difficult to see using Theorem 2.4.3 that the following classes

of foliations of codimension not equal to two produce harmonic morphisms:

• homothetic foliations locally generated by conformal fields and with

integrable orthogonal complement;

• homothetic foliations generated by the local action of an Abelian Lie

group of conformal transformations;

• homothetic foliations generated by the action of a unimodular closed

subgroup of the group of conformal transformations;

• homothetic foliations formed by the components of the fibres of prin-

cipal bundles for which the total space is endowed with a metric such

that the structural group acts by conformal transformations and the

connection induced on the determinant bundle of the adjoint bundle

is flat.

From Theorem 2.4.3 we obtain the following.

Corollary 2.4.5. Let V be a foliation of codim V 6= 2 on (Mm, g) , m ≥ 3

which is locally generated by conformal vector fields. Suppose that the orthog-

onal complement H of V is integrable. Then the following assertions are

equivalent.

(i) V produces harmonic morphisms;

(ii) V is homothetic.

Remark 2.4.6. We shall see (Proposition 3.1.5) that if dim V = 1 then (i)

and (ii) of Corollary 2.4.5 imply that V is locally generated by conformal

vector fields.

Next we give a construction of a foliation which produces harmonic mor-

phisms which has basic mean curvature form but is nowhere homothetic.
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Example 2.4.7. Let ϕ : (Mn+1, h) → (Nn, h̄) , n ≥ 1 , be a Riemannian

submersion with geodesic fibres and let V be the foliation formed by the

fibres of ϕ .

Suppose that V is a local vertical field such that h(V, V ) = 1 . Because

ϕ has geodesic leaves we have that [V,X] = 0 for any basic X .

Let θ = V [ and Ω = dθ . It is easy to see that Ω = 0 if and only

if the horizontal distribution H is integrable. Also, Ω is basic and since

dΩ = ddθ = 0, at least locally, we can find a basic one-form A such that

Ω = −dA .

Thus dθ = Ω = −dA and hence d(A + θ) = 0 . It follows that, at least

locally, we can write A+θ = dσ for some smooth local function σ on M . Note

that the horizontal component of dσ is basic, being equal to A .

Supposing that σ is defined on the whole M , let gσ be the Riemannian

metric on M defined by

gσ = e−2σ ϕ∗(h̄) + e(2n−4)σ θ2 .

Then ϕ : (M, gσ) → (N, h̄) is a harmonic morphism [14] . Moreover, the

mean curvature form of V with respect to gσ is (2 − n)A and therefore is

basic. However, from Proposition 2.1.4 and Proposition 2.1.14 it follows that

the connected components of the fibres of ϕ form a homothetic foliation with

respect to gσ only over the set of points where the horizontal distribution is

integrable . Thus if H is nowhere integrable then V is nowhere homothetic

with respect to gσ .

Let ρ be any other function which has the same properties as σ (i.e.

ϕ : (M, gρ)→ (N, h̄) is a harmonic morphism, the mean curvature form of V

with respect to gρ is basic and V is nowhere homothetic on (M, gρ) ). Then,

there exists a unique constant c ∈ R such that ρ − c σ is, at least locally, a

basic function.

To see this note that because the induced foliation is nowhere homothetic

then we must have:

(i) M =
{
x ∈ M |V (V (ρ)) = 0

}
(otherwise on some open subset of M

the level hypersurfaces of V (ρ) would be integral submanifolds of the horizontal
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distribution);

(ii) the interior of the set
{
x ∈ M |V (ρ) = 0

}
is empty (otherwise the

restriction of V to some open subset of M would be Riemannian).

Thus we have V (ρ) = c , for some constant c 6= 0 . Hence dρ = c θ +B .

Then B must be basic (because X(V (ρ)) = 0 for any horizontal X) and

hence 0 = cdθ + dB which is equivalent to dB = −cΩ .

It follows that d(ρ− c σ) = dρ− cdσ = c θ +B − c θ − cA = B − cA .

Because B − cA is a closed basic one-form, at least locally, we can find a

basic function whose differential is equal to d(ρ− c σ) and hence ρ− c σ is, at

least locally, a basic function.

2.5. Homothetic actions and harmonic morphisms

Recall that a vector field V on a Riemannian manifold (M, g) is homo-

thetic if LV g = a g for some constant a ∈ R (see [70]).

The first thing to note about a foliation locally generated by homothetic

vector fields is the following.

Proposition 2.5.1. Let V be a foliation on (M, g) locally generated by ho-

mothetic vector fields. Then either V is Riemannian and locally generated by

Killing vector fields or V is nowhere Riemannian.

Proof. Let P =
{
x ∈M | V is Riemannian at x

}
.

It is obvious that P is closed. Also let
{
Vr
}

be a local frame of V , defined

on a connected open subset U and made up of homothetic vector fields. It is

obvious that if U ∩ P 6= ∅ then Vr are Killing fields and thus U ⊆ P . Hence

P is also open and, since M is connected, either P = M or P = ∅ . �

From Proposition 2.4.2 we obtain the following.

Corollary 2.5.2. Let V be a foliation locally generated by homothetic vector

fields on the Riemannian manifold (M, g) .

Then V is a homothetic foliation if and only if g(trace(HB),HI ) = 0 .

In particular, a foliation locally generated by homothetic vector fields and

with integrable orthogonal complement is a homothetic foliation.
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Proof. Let V be a homothetic vector field on (M, g) which is tangent

to the foliation. Then it is easy to see that LV g = −2V (log λ)g where λ is

any local dilation of the foliation. But V is homothetic and hence V (log λ)

is a constant function. The proof now follows from (i) ⇐⇒ (iv) of Proposi-

tion 2.4.2 . �

Remark 2.5.3. Let V be a conformal foliation on (M, g) and define the

vertical one-form µ by the relation (LV g)(X,Y ) = µ(V ) g(X,Y ) where V is

vertical and X, Y are horizontal [66] (see [9]). Then µ = −2 V ∗(d(log λ))

where λ is a local dilation of V , and, because trace(HB) = nV (grad(log λ)),

we have µ = − 2
n trace(HB)[ (see [9]).

By Corollary 2.5.2 , if V is locally generated by homothetic vector fields

then V is a homothetic foliation if and only if µ(HI ) = 0 .

Proposition 2.5.4. Let V be a one-dimensional foliation of codim V 6= 2 on

(Mm, g) , m ≥ 3 , which is not a Riemannian foliation and which is locally

generated by homothetic vector fields. Then the following assertions are equiv-

alent:

(i) V produces harmonic morphisms,

(ii) V is a homothetic foliation,

(iii) H is integrable.

Proof. It is easy to see that because V is locally generated by homothetic

vector fields its mean curvature form is basic. The proof now follows from

Theorem 2.2.6 and Corollary 2.5.2 . �

Note that in Proposition 2.5.4 the equivalence (ii) ⇐⇒ (iii) holds also

when codim V = 2 .

Proposition 2.5.5 (cf. [66, Proposition 2.8]). Let V be a foliation on (Mm, g)

locally generated by homothetic vector fields. Then there exists a Riemannian

foliation W ⊆ V locally generated by Killing fields. Moreover, if V is not

Riemannian then dim V = dim W + 1.

Proof. Suppose that V is not Riemannian. Then by Proposition 2.5.1 the

foliation V is nowhere Riemannian. Since V is conformal we can find local
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dilations of it in the neighbourhood of each point. Let λ be a local dilation of

V defined on the open subset U ⊆M . For x ∈ U let

Wx =
{
V ∈ Vx | V (log λ) = 0

}
= Vx ∩ (grad(log λ)x)⊥ .

Since any two local dilations of V differ locally by a factor which is constant

along the leaves it follows that Wx does not depend on λ . Because V is

nowhere Riemannian, Wx 6= Vx . Also grad(log λ) is nonvanishing and hence

dim
(
(grad(log λ)x)⊥

)
= m− 1 where m = dimM . We have

dim Wx = dim
(
Vx ∩ (grad(log λ)x)⊥

)
= dim Vx + dim

(
(grad(log λ)x)⊥

)
− dim

(
Vx + (grad(log λ)x)⊥

)
.

It follows that the minimum value of dim Wx occurs precisely when Vx +

(grad(log λ)x)⊥ = TxM . If this is the case, then dim Wx = dim Vx+ (m−1)−
m = dim Vx−1 . Since Wx ⊂ Vx , Wx 6= Vx it follows that dim Wx = dim Vx−1 .

Thus W = (Wx)x∈M defines a distribution on M . Then W is integrable be-

cause it is the intersection of two transversal foliations.

Let V ∈ Γ(V ) be a homothetic vector field. It is easy to see that if

Vx ∈ Wx then V ∈ Γ(W ) . Since V is locally generated by homothetic vector

fields it follows that W is locally generated by Killing fields. (This also im-

plies that W is integrable since any Killing field which is tangent to V must be

tangent to W and the bracket of any two Killing fields is a Killing field.) �

We can now characterise geometrically the homothetic (infinitesimal) ac-

tions which induce homothetic foliations and their relations with harmonic

morphisms.

Theorem 2.5.6. Let V be a foliation locally generated by homothetic vector

fields and let H be its orthogonal complement.

Then the following assertions are equivalent:

(a) V is a homothetic foliation;

(b) either V is Riemannian and locally generated by Killing fields or there

exists a Riemannian foliation W ⊆ V locally generated by Killing fields such

that dim V = dim W + 1 and the distribution F = W ⊕H is integrable.

Moreover, if (a) or (b) hold and dim V ≥ 2 , codim V ≥ 3 then the
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following assertions are equivalent:

(i) V produces harmonic morphisms,

(ii) The restriction of W to any leaf of F produces harmonic morphisms.

Proof. The equivalence (a) ⇐⇒ (b) follows from Corollary 2.5.2 and

Proposition 2.5.5 .

Suppose that (a) or (b) hold and V is not Riemannian. Let V ∈ Γ(V )

be a homothetic vector field which is not Killing. (Such a vector field can be

found in the neighbourhood of each point of M because V is locally generated

by homothetic vector fields and W 6= V .) Note that, for any Killing field

W ∈ Γ(W ) we have that [V,W ] is also Killing and hence [V,W ] ∈ Γ(W ) . Us-

ing this fact together with Theorem 2.2.6 and Corollary 2.5.2 it is not difficult

to see that the assertions (i) and (ii) are equivalent. �

Remark 2.5.7. 1) If V is homothetic then the leaves of F are level hyper-

surfaces of the local dilations of V which are constant along horizontal curves.

2) In Theorem 2.5.6 if (a) or (b) hold and codim V = 1 then (i)⇐⇒ (ii) .

Let G be a Lie group which acts to the right by homotheties on (M, g)

and for a ∈ G let ρ(a) ∈ (0,∞) be the conformal factor of the homothetic

transformation induced by a ∈ G on (M, g) . Then it is easy to see that

ρ : G → (0,∞) is a morphism of Lie groups (hence, if ρ is nonconstant, G is

isomorphic to a semi-direct product of kerρ and
(
(0,∞), ·)

)
. In particular, if

G is compact then ρ is constant. Nevertheless, if G is compact, then there

might exist local morphisms of Lie groups G→ (0,∞) (see Example 2.5.8(3) ,

below) which can be used to construct homothetic local actions.

Here are a few well-known examples of morphisms of Lie groups ρ : G→
(0,∞) .

Example 2.5.8. 1) For K = R ,C ,H define ρ : Gln(K) → (0,∞) by ρ(a) =

|det a| .
2) For K = R ,C ,H define ρ : COn(K) → (0,∞) by |Au| = ρ(A)|u| for

u ∈ Kn and A ∈ COn(K) .

3) The canonical morphisms of Lie groups det : Un → S1 and Spinc
n =
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Spinn ×Z2 S
1 → S1, [a, z] 7→ z2, when composed with the exponential of

arg : S1 \ {−1} → (−π, π) induce local morphisms of Lie groups Un → (0,∞)

and Spinc
n → (0,∞) , respectively.

From now on we shall suppose that G acts freely on M . In this case

there exists a natural isomorphism of vector bundles V = M × g where g is

the Lie algebra of G .

Hence HI can be viewed as a g-valued two form on M which has prop-

erties similar to the properties of the curvature form of a principal connection

(in particular, R∗a(
HI ) = Ad a−1 · HI where Ra is the transformation induced

by a ∈ G on M).

Also ρ∗ can be viewed as a vertical one form on M . Moreover, we have

that ρ∗ = µ (see Remark 2.5.3 for the definition of µ).

It follows from Corollary 2.5.2 that the foliation induced by the free ac-

tion of G on (M, g) is homothetic if and only if ρ∗(HI ) = 0 .

By identifying G with an orbit we can induce on it a metric which we

shall denote by γ . Then it is easy to see that ρ−2γ is right invariant.

Suppose that ρ is nonconstant and let V be the foliation on G formed

by the components of the fibres of ρ . This is generated by the action of the

normal subgroup H = ker ρ . Then it is obvious that H acts by isometries on

(G, γ) and hence V is a Riemannian foliation on it.

Also, H (= V ⊥) is a (one-dimensional) homothetic foliation with geo-

desic leaves for which ρ−1 is a global dilation.

Thus both V and H produce harmonic morphisms and, in particular,

ρ induces a harmonic function on (G, γ) (which gives another argument for

the fact that if G is compact then ρ cannot be globally defined unless it is

constant).

Example 2.5.9. Let G and ρ be as in Example 2.5.8(1) or (2) and define

h = |dx · x−1|2 . Then g = ρ2 h has all the above properties.

Next we show that the results of Theorem 2.5.6 takes a more concrete

form in the case of homothetic free actions.
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Proposition 2.5.10. Let G be a connected Lie group which acts freely to the

right by homotheties on (M, g) and let V G be the induced foliation. Let ρ :

G→ (0,∞) be the corresponding morphism of Lie groups and let H = ker ρ .

Then the following assertions are equivalent:

(i) V G is a homothetic foliation;

(ii) there exists a hypersurface N of M such that H acts by isometries on

(N, g|N ) to generate a Riemannian foliation V H and such that M = N ×H G.

Further, if (i) or (ii) hold and 2 ≤ dimG ≤ dimM−3, then V G produces

harmonic morphisms if and only if V H produces harmonic morphisms.

Proof. Let H be the orthogonal complement of V G and let W be the

foliation induced by the isometric (free) action of H on M . Then, assertion

(i) is equivalent to the fact that ρ∗(HI ) = 0 which, since HI is the integrability

tensor of H , is equivalent to the fact that the distribution F = W ⊕H is

integrable .

Suppose that (i) holds and let N be a leaf of F . Then V H = W |N and

the implication (i)⇒(ii) follows.

The implication (i)⇐(ii) is now obvious.

The last assertion follows from the fact that if (i) holds then HI is h-

valued and R∗a(
HI ) = Ad a−1 · HI . �

Remark 2.5.11. In Proposition 2.5.10 we also have that if (i) , or (ii) , holds

then g is determined by ρ and the induced metric h on N .

To see this recall that we have considered the metric γ induced on G

by identifying it with an orbit. Suppose that this identification and N were

chosen such that the identity element of G is contained in N . Then H acts

by isometries on
(
N × G, π∗N (h) + π∗G(γ)

)
(where πN : N × G → N and

πG : N × G → G are the canonical projections) and (M, g) is the induced

isometric quotient.

Example 2.5.12. Let ρ : G → (0,∞) be as in Example 2.5.8 and let H =

ker ρ . Then trace(ad h) = 0 (here, as above, h is the Lie algebra of H).

Let (Q,M,H) be a principal bundle whose total space is endowed with

a Riemannian metric h such that H acts by isometries on (Q, h) . (Obviously,
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any such h corresponds to a triple (γ,H , k) where γ is a Riemannian metric

on the vector bundle AdQ → M , H is a principal connection on (Q,M,H)

and k is a Riemannian metric on M .)

From Remark 2.5.11 it follows that a metric (and just a local metric, for

ρ from Example 2.5.8(3) ) can be found on P = Q×H G with respect to which

the foliation induced by G is homothetic (but not Riemannian) and produces

harmonic morphisms.

2.6. Conformal actions and harmonic morphisms

on Einstein manifolds

In this section we study foliations which are locally generated by con-

formal vector fields and produce harmonic morphisms on Einstein manifolds.

Note that, as before, no compactness or completeness assumptions are made.

The main results of this section are the following:

Theorem 2.6.1. Let (Mm, g) , m ≥ 3 be an Einstein manifold (MRicci =

c g , c ∈ R). Let V be a foliation with codim V 6= 2 which is locally generated

by conformal vector fields.

Suppose that V produces harmonic morphisms on (Mm, g) . Then either

V is Riemannian and locally generated by Killing fields or the set of points

where V is Riemannian has empty interior. Moreover, we have the following:

(i) If c > 0 then either V is Riemannian and locally generated by Killing

vector fields or any harmonic morphism produced by V can be locally decom-

posed into a harmonic morphism with geodesic fibres and integrable horizontal

distribution followed by another harmonic morphism.

(ii) If c < 0 then, at least outside the points where V is Riemannian, any

harmonic morphism produced by V can be locally decomposed into a harmonic

morphism with geodesic fibres and integrable horizontal distribution followed

by another harmonic morphism.

(iii) If c = 0 then either V is locally generated by homothetic vector fields

or any harmonic morphism produced by V can be locally decomposed into a

harmonic morphism with geodesic fibres, constant dilation and integrable hor-

izontal distribution followed by another harmonic morphism.



66 Radu Pantilie

Corollary 2.6.2. Let (Mm, g) , m ≥ 3 be an Einstein manifold (MRicci = c g)

and let V be a foliation on it with codim V 6= 2 which is locally generated by

conformal vector fields.

Suppose that V produces harmonic morphisms on (Mm, g) .

(i) If c > 0 then any harmonic morphism produced by V can be locally

decomposed into two harmonic morphisms in which the first one either has

geodesic fibres and integrable horizontal distribution or is induced by an iso-

metric quotient.

(ii) If c < 0 then at least outside a set with empty interior any harmonic

morphism produced by V can be locally decomposed into two harmonic mor-

phisms in which the first one either has geodesic fibres and integrable horizontal

distribution or is induced by an isometric quotient.

Remark 2.6.3. We shall see (Proposition 3.2.4) that when dim V = 1 the

assertion (i) above holds for c ∈ R.

Theorem 2.6.4. Let (Mm, g) be a Ricci-flat Riemannian manifold and let V

be a homothetic foliation on it with dim V ≥ 2 , codim V ≥ 3 which is locally

generated by conformal vector fields.

Suppose that V produces harmonic morphisms on (Mm, g) . Then one of

the following assertions holds.

(a) V is Riemannian and locally generated by Killing fields;

(b) there exists a Riemannian foliation W ⊆ V , dim W = dim V − 1 ,

locally generated by Killing fields such that F = W ⊕H is integrable and the

restriction of W to any leaf of F produces harmonic morphisms;

(c) any harmonic morphism produced by V can be locally decomposed into

two harmonic morphisms in which the first one has geodesic fibres, constant

dilation and integrable horizontal distribution.

Corollary 2.6.5. Let (Mm, g) be a Ricci-flat Riemannian manifold and let V

be a foliation on it with dim V ≥ 2 , codim V ≥ 3 which is locally generated by

conformal vector fields and with integrable orthogonal complement, dim V ≥ 2 ,

codim V ≥ 3 .

Suppose that V produces harmonic morphisms on (Mm, g) . Then one of
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the following assertions holds.

(a) V is Riemannian and locally generated by Killing fields;

(b) there exists a Riemannian foliation W ⊆ V , dim W = dim V − 1 ,

locally generated by Killing fields such that F = W ⊕H is integrable and the

restriction of W to any leaf of F produces harmonic morphisms;

(c) any harmonic morphism produced by V can be locally decomposed into

two harmonic morphisms in which the first one has geodesic fibres, constant

dilation and integrable horizontal distribution.

The proofs of the above results are based on results obtained in the

previous sections. We also need a few lemmas some of which are well-known.

In the proof of the next simple lemma we use a result (Proposition 3.1.5)

which we shall prove in Chapter 3. Also, note that Lemma 2.6.6 reformulates,

in terms of homothetic foliations, a well-known fact.

Lemma 2.6.6 (cf. [37]). Let V be a one-dimensional foliation on a Riemann-

ian manifold (M, g) . Then the following assertions are equivalent.

(i) V is a homothetic foliation with geodesic leaves and integrable orthog-

onal complement;

(ii) V is locally generated by (nowhere zero) conformal vector fields V ∈
Γ(V ) such that dV [ = 0 .

Proof. A vector field V ∈ Γ(TM) is conformal if and only if LV g = 2µ g

for some function µ ; then dV [ = 0 if and only if ∇V = µ IdTM . Now it is

obvious that any such V which is nowhere zero generates a conformal foliation

with geodesic leaves and integrable orthogonal complement. Moreover, |V |−1

is a local dilation for it whose gradient is tangent to the leaves and thus V

generates a homothetic foliation.

Conversely, if V satisfies (i) then it produces harmonic morphisms. But

V is homothetic and hence V is locally generated by conformal vector fields

(see Proposition 3.1.5, below). Now, if V ∈ Γ(V ) is conformal and nowhere

zero and X ∈ Γ(H ) is basic then by applying Lemma 2.1.1 we obtain

(dV [)(V,X) = 2g(X,∇V V ) = 2g(X,∇UU)g(V, V ) = 0 (2.6.1)
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where U = 1
|V | V . Also, from Proposition 2.1.4 we obtain

(dV [)(X,Y ) = g(trace(HB),HI (X,Y )) = 0 . (2.6.2)

From (2.6.1) and (2.6.2) it follows that dV [ = 0 and the lemma is proved. �

The following lemma is well-known.

Lemma 2.6.7 (see [70]). Let V be a conformal vector field on an Einstein

manifold (Mm, g) ; write LV g = 2σg , MRicci = c g . Then

∇dσ = − c

m− 1
σg . (2.6.3)

Hence

∆σ =
cm

m− 1
σ . (2.6.4)

Proof. Formula (2.6.3) follows after a straightforward but tedious com-

putation (see [70]). �

The following simple lemma is well-known.

Lemma 2.6.8. Let f be a smooth function on a Riemannian manifold (M, g)

such that ∇df = −kf g for some constant k ∈ R . Then

kf 2 + |df |2 = constant .

Proof. Simply compute the differential d(kf 2 + |df |2) . �

The following simple lemma seems to be less well-known.

Lemma 2.6.9. Let V be a foliation (codimV > 0) on a Riemannian manifold

(M, g) and let V ∈ Γ(V ) be such that ∇V [ = µ g for some smooth function µ

on M .

If for some x ∈M we have that Vx = 0 then µ(x) = 0 .

Proof. Let X ∈ Γ(V ⊥) be a basic vector field. Then [V,X] ∈ Γ(V ) . But

[V,X] = ∇VX −∇XV = ∇VX − µX .

Thus if Vx = 0 then [V,X]x = −µ(x)Xx ∈ Vx and hence µ(x) = 0 . �
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The following simple lemma is an immediate consequence of Lemma 2.6.8

and Lemma 2.6.9.

Lemma 2.6.10. Let V be a foliation on a Riemannian manifold (M, g) and

let grad f ∈ Γ(V ) be such that ∇df = −kf g for some nonnegative constant

k ≥ 0 .

If for some x ∈M we have that (grad f)x = 0 then grad f = 0 . Moreover,

if k > 0 then f = 0 .

Proof. If k = 0 then | grad f | = constant .

If k > 0 and for some x ∈M we have that (grad f)x = 0 then by Lemma

2.6.9 we have f(x) = 0 . The proof now follows from Lemma 2.6.8 . �

Proof of Theorem 2.6.1. Let H be the orthogonal complement of V . Let

V ∈ Γ(V ) be a conformal vector field. Then at least locally we can write

LV g = −2V(log λ)g for some local dilation λ of V . By Lemma 2.1.1 we have

that V is an infinitesimal automorphism of H .

Because V produces harmonic morphisms from Theorem 2.2.6 it follows

that the mean curvature form of V is basic. Applying Proposition 2.1.16 with

the roles of V and H reversed we obtain that, for any basic vector field X ∈
Γ(H ), we have that X(V (log λ)) = 0 . It follows that grad(V(log λ)) ∈ Γ(V ) .

Now recall that (M, g) is an Einstein manifold and thus it is an analytic

manifold (see [11]). From the regularity of solutions for elliptic operators

and (2.6.4) it follows that V(log λ) is an analytic function. Hence either V is

Riemannian or the interior of the set where V is Riemannian is empty.

From Lemma 2.6.6 and Lemma 2.6.7 it follows that if grad(V(log λ)) is

nowhere zero then it generates a one-dimensional homothetic foliation F with

geodesic leaves and integrable orthogonal complement. Moreover F ⊆ V .

Also, note that, if c = 0, then grad(V(log λ)) is a parallel vector field.

Let x ∈M and suppose that for any conformal vector field V ∈ Γ(V ) we

have grad(V(log λ))x = 0.

If c 6= 0, then from Lemma 2.6.9 it follows that V is Riemannian at x .

This establishes assertion (ii) .

If c > 0 then from Lemma 2.6.10 it follows that V is Riemannian in a
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neighbourhood of x and this establishes assertion (i) .

If c = 0, let U be a locally finite open covering of M such that each

U ∈ U is connected and there exists a local frame {V U
r }r=1,...,dim V for V , over

U , made up of conformal vector fields: LV Ur g = σUr g , r = 1, . . . ,dim V . Let

F be the set of points x ∈M at which (dσUr )x = 0 , r = 1, . . . ,dim V , for all

U ∈ U with x ∈ U . From Lemma 2.6.10 it follows that if U ∈ U is such that

F ∩U 6= ∅ then V U
r are homothetic vector fields. Since U is locally finite, this

implies that F is open and closed which, because M is connected, establishes

assertion (iii) . �

Proof of Corollary 2.6.2. This follows from assertions (i) and (ii) of The-

orem 2.6.1 . �

Proof of Theorem 2.6.4. This follows from Theorems 2.5.6 and 2.6.1 . �

Proof of Corollary 2.6.5. This follows from Proposition 2.4.2 and Theo-

rem 2.6.4 . �



CHAPTER 3

Harmonic morphisms with one-dimensional fibres

3.1. Basic facts

In this section we present, for later use, a few facts about one-dimensional

foliations which produce harmonic morphisms. Here, V will always denote a

one-dimensional foliation.

The following lemma, due to R.L. Bryant [14] , will be used several times

in this chapter. The case n = 2 was used by P. Baird and J.C. Wood in [8,

§3] .

Lemma 3.1.1. Let V be a conformal one-dimensional foliation on (Mn+1, g).

Then, the following assertions are equivalent.

(i) V produces harmonic morphisms;

(ii) each point has a neighbourhood on which a local dilation λ of V can be

found such that, if V is a vertical field with g(V, V ) = λ2n−4 , then [V,X] = 0

for any basic field X .

Proof. From (1.1.5) it follows that assertion (i) is equivalent to the pos-

sibility of finding in the neighbourhood of each point a local dilation λ of V

such that

V ∗(LX(λ2−n ω)) = 0 (3.1.1)

for any basic vector field X and where ω is a local volume of V .

If V is as in (ii) and θ is its dual vertical one-form (i.e. θ is the unique

vertical one-form such that θ(V ) = 1 ) then λn−2 θ is a local volume form

of V . Hence (3.1.1) is equivalent to (LX θ)(V ) = 0 which is equivalent to

[V,X] = 0 . �

Remark 3.1.2. 1) From the proof above we see that (ii) is a characterisation

of those local dilations which restrict to give dilations of harmonic morphisms
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which locally define the foliation.

2) If V is as above, let θ be its dual vertical one-form. Using the fact that

[V,X] = 0 for any basic vector field X , it follows that the two-form Ω = d θ is

basic. (In fact, θ and Ω = d θ are, respectively, the connection form and the

curvature form of a principal (local) connection, see Theorem 3.1.9).

The equivalence (iii) ⇐⇒ (i) from the following proposition is due to

R.L. Bryant [14] .

Proposition 3.1.3. For n 6= 2 , let V be a one-dimensional Riemannian

foliation on (Mn+1, g) and let H be its orthogonal complement. Then, the

following assertions are equivalent:

(i) V produces harmonic morphisms,

(ii) H is a homothetic distribution,

(iii) V is locally generated by Killing fields.

Furthermore, if V is orientable and the first Betti number of M is zero

then (iii) above can be replaced by

(iii′) V is globally generated by a Killing field.

Proof. (i)⇐⇒ (ii) This follows from Proposition 1.4.7 , since, being Rie-

mannian, V is homothetic and, being of codimension one, H is conformal.

(ii)⇒(iii) Let ρ be a local dilation of H which is constant along the

leaves of V and let V be a local vertical field such that g(V, V ) = ρ−2 .

Because ρ is constant along the leaves of V we have

(LV g)(V, V ) = 0 . (3.1.2)

Because ρ is a local dilation of H we have

(LX(ρ2 g))(V, V ) = 0 (3.1.3)

for any horizontal vector field X . It is easy to see that (3.1.3) is equivalent to

g([X,V ], V ) = 0 . This implies that for any horizontal vector field we have

(LV g)(V,X) = 0 . (3.1.4)
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Since V is Riemannian we have

(LV g)(X,Y ) = 0 , (3.1.5)

for any horizontal vector fields X and Y .

Equations (3.1.2),(3.1.4) and (3.1.5) show that V is a Killing field.

(iii)⇒(ii) Since dim V = 1 , the orthogonal complement H of V is a

conformal distribution.

If V is a (local) nonvanishing Killing field, which (locally) generates V ,

and |V | its norm then |V |−1 is a local dilation for the horizontal distribution

H . Moreover, H is homothetic, since |V | is constant along the leaves of V .

The last assertion follows from the fact that when the first Betti number

of M is zero and V is orientable we can find a global density λ2−n of V (which

is also a local dilation for H ) and a vertical vector field V defined on M , such

that g(V, V ) = λ2n−4 . �

Remark 3.1.4. 1) Note that if n = 2 then (i)⇒(ii)⇐⇒ (iii). In fact, in this

case, a one-dimensional foliation V produces harmonic morphisms on (M3, g)

if and only if its leaves are geodesics (see [8]). Thus, being of codimension

one, H is a Riemannian distribution. However, if n = 2 then (ii)⇒(i) fails,

as simple examples show.

2) If in the above proposition we further assume that H is integrable

then V induces, locally, a warped-product structure on (M, g).

One might guess that a similar proposition to the one above holds in

general for any conformal one-dimensional foliation, just by replacing ‘Killing

fields’, with ‘conformal fields’. It is not difficult to see that this is not true,

the actual situation being described by the following:

Proposition 3.1.5. For n ≥ 3, let V be a one-dimensional foliation on

(Mn+1, g). Then any two of the following assertions imply the remaining

assertion.

(i) V produces harmonic morphisms,

(ii) V (or H ) is homothetic,

(iii) V is locally generated by conformal vector fields.
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Furthermore, if V is orientable and the first Betti number of M is zero

then (iii) above can be replaced by

(iii′) V is (globally) generated by a conformal field.

Proof. (i), (ii)⇒(iii) Let λ2−n be a local density for V . By Proposition

1.4.2 , we can suppose that λ = a b , where a is constant along leaves and b is

constant along horizontal curves.

Let W be a local vertical vector field such that g(W,W ) = a2n−4 b−2 . It

is a straightforward calculation to check that W is a local conformal vector

field on (M, g) .

(ii), (iii)⇒(i) Since V is homothetic, by Proposition 1.4.2 , we can find

a local dilation b of V which is constant along horizontal curves.

Let W be a local conformal vector field which (locally) generates V . We

can suppose that b and W are defined on the same open subset of M . It is

easy to see that, since W is conformal, we have that b2 g(W,W ) is constant

along leaves.

We can choose a smooth positive local function a onM such that g(W,W ) =

a2n−4 b−2. Hence a is constant along the leaves and thus λ = a b is a local

dilation of V .

If V is a local field, tangent to the leaves and such that g(V, V ) = λ2n−4

then, from the fact that W is conformal it follows that [V,X] = 0 for any

basic X. Hence, by Lemma 3.1.1 , V is a foliation which produces harmonic

morphisms.

(iii), (i)⇒(ii) Let λ2−n be a local density for V . Let V be a local vector

field, tangent to the leaves and such that g(V, V ) = λ2n−4 , and let W be a

local conformal vector field tangent to the leaves. We can suppose that V and

W are defined on the same open set.

Since W is conformal, for any basic X we have (LW g)(W,X) = 0 , and

hence, [W,X] = 0 . But, by Lemma 3.1.1 we also have [V,X] = 0 for any ba-

sic X . Hence if b is such that W = bV , then b is constant on horizontal curves.

Since λ is a local dilation of the conformal foliation V , from Remark 1.1.9 ,

we see that

(LW g)(V, V ) = W (log(λ−2))g(V, V ) . (3.1.6)
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Relation (3.1.6) together with W = bV implies after a straightforward

calculation that λn−1 b is constant along leaves. Thus, we can write λ = r s

where r , s are positive smooth functions on M such that r is constant along

the leaves and s is constant along horizontal curves. From Proposition 1.4.2 ,

we get that V is a homothetic foliation. �

Remark 3.1.6. Note that, if in Proposition 3.1.5 we have n = 2 , the impli-

cation (ii),(iii)⇒(i) fails, the other implications still holding.

If n = 1 , then (i)⇐⇒ (iii) but they do not imply (ii).

Lemma 3.1.7 (cf. [8, Remark 5.3]). Let V be a one-dimensional homothetic

foliation on (M, g). Then, at least away of the points where V is Riemannian,

its orthogonal complement is integrable.

Proof. By Proposition 1.4.2 , V admits a local dilation λ whose gradient

is vertical. The points x ∈ M , where V is not Riemannian are characterised

by (gradλ)x 6= 0 . Hence, in a neighbourhood of such a point, the level hyper-

surfaces of λ are integral submanifolds of the horizontal distribution. �

Lemma 3.1.8. Let ϕ : (Mn+1, g) → (Nn, h) be a harmonic morphism with

one-dimensional fibres. Let λ denote the dilation of ϕ and let V be a (local)

vertical vector field on M such that g(V, V ) = λ2n−4.

Then, the following assertions are equivalent:

(i) the fibres of ϕ form a homothetic foliation at least on the complement

of the interior of the set {x ∈M | d(V (log λ))(x) = 0 6= (V (log λ))(x)} ;

(ii) for any basic field X , we have V (X(log λ)) = 0 .

Proof. Let µ be the vertical one-form on M such that for any horizontal

fields X, Y we have (LV g)(X,Y ) = µ(V )g(X,Y ) . Hence, by the definition of

λ we have µ(V ) = −2V (log λ) .

Let H be the horizontal distribution and H B its second fundamental

form. Using (1.1.3) we obtain the following relation:

µ = − 2
n

(trace(H B))[ .
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Hence, V is homothetic if and only if µ is closed.

By Lemma 3.1.1 , for any basic X we have [V,X] = 0 , and hence:

(dµ)(V,X) = −V (µ(X))−X(µ(V ))− µ[V,X] = −X(µ(V ))

= 2X(V (log λ)) = 2V (X(log λ)) .

The lemma follows. �

In [8, Proposition 3.5] , P. Baird and J.C. Wood gave a global descrip-

tion of the metric of a Riemannian manifold of dimension three, on which a

harmonic morphism can be defined. In [14, Theorem 1] , R.L. Bryant gave

a local description of the metric of the total space of a submersive harmonic

morphism with one-dimensional fibres (with no restriction on the dimension

of the total space). The following theorem explains how the latter result can

be globalized, giving also a simpler proof of Bryant’s local result.

Theorem 3.1.9 (cf. [14, Theorem 1]). Let ϕ : (Mn+1, g)→ (Nn, h) , n ≥ 1 , be

a submersive harmonic morphism with connected one-dimensional fibres of the

same homotopy type. Let λ be the dilation of ϕ and suppose that V (= kerϕ∗)

is orientable.

Then, there exists:

(i) a principal bundle π : P → N with group G = (R,+) or G = (S1, ·) ,

(ii) a principal connection θ ∈ Γ(T ∗P ) on π ,

(iii) a diffeomorphic embedding ι : M → P

such that:

1) π ◦ ι = ϕ ,

2) g = λ−2(ϕ∗h) + λ2n−4(ι∗θ)2 .

Furthermore, if the fibres are all diffeomorphic to circles, or are all com-

plete with respect to the metric induced by λg , then ι is onto, and hence, ϕ

itself is a principal bundle and the horizontal distribution is a principal con-

nection on it.

Note that, by the result of P. Baird [14], we know that ϕ is automatically

submersive except when n ≤ 3 .
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Proof. Let V be a vertical field such that g(V, V ) = λ2n−4. By Lemma

3.1.1 , the horizontal distribution H is invariant under the local flow of V .

Thus, the integral curves of V are the fibres of a local principal bundle, and

H is a principal connection on it. If θ is the vertical one-form dual to V then,

it is obvious that λg = ϕ∗h+ θ2 . (This establishes [14, Theorem 1] .)

To end the proof we shall prove the following assertions:

(a) if the fibres are diffeomorphic to circles then ϕ is a principal bundle with

group (S1, ·) ;

(b) if the fibres are diffeomorphic to R then, there exists a diffeomorphic

embedding ι : M → N × R , such that π1 ◦ ι = ϕ , and a principal connection

on the trivial principal bundle π1 : N ×R→ N , with group (R,+) , such that

H is the restriction to M of it.

From now on, all the considerations which will be made in this proof will

be done with respect to the metric λg on M .

For x ∈ M , let Ix ⊆ R be the open interval which is the domain of the

(maximal) geodesic with velocity Vx. Let Q =
{

(x, r) ∈ M × R | r ∈ Ix
}

, and

define Ψ : Q→M , by Ψ(x, r) = exp rVx .

If the fibres are all circles then Q = M ×R . Since d θ(V,X) = 0 for any

horizontal vector field X, by applying the Stokes theorem we obtain that the

fibres have the same length. Hence Ψ descends to a map M × S1 →M which

is a free action of (S1, ·) on M . Thus assertion (a) is proved.

Suppose now that the fibres are diffeomorphic to R . If they are all

complete with respect to the metric induced from λg then, Q = M ×R and Ψ

represents a free action of (R,+) on M , and thus the proof of the theorem is

finished. Otherwise, since ϕ is a submersion, we can find local sections of it

in the neighbourhood of each point of N . Let S be a family of such sections

whose domains form an open covering {Os}s∈S of N .

Let s , t ∈ S . For x ∈ Os ∩ Ot , let as t(x) be the (unique) real number

such that t(x) = Ψ
(
s(x), as t(x)

)
.

It is obvious that {as t}s,t∈S is a cocycle with values in (R,+) , which

induces a principal bundle. This bundle is trivial because R is contractible.

Moreover, set As = s∗θ ; then the family of one-forms {As}s∈S , defines a
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principal connection on this bundle.

The total space N × R of this bundle, can be retrieved, as usual from

the cocycle {as t}s,t∈S as the space of equivalence classes [x, r] , under the

identifications [x, r] ≡ [x, as t(x)r] , x ∈ Os ∩Ot .

For x ∈ M , let s ∈ S be such that ϕ(x) ∈ Os and, rx ∈ Is(ϕ(x)) be the

real number which satisfies x = Ψ(s(ϕ(x)), rx) . (Note that rx depends just on

x and s.) We can define ι : M → N × R by ι(x) = [ϕ(x), rx] , x ∈ M and the

theorem follows. �

Remark 3.1.10. The proof of above theorem, can be simplified considerably

when H is an Ehresmann connection (see [12] for the definition of Ehresmann

connection). It is not difficult to prove that a sufficient condition for H to be

an Ehresmann connection is that V be a complete vector field.

3.2. Towards the classification

All of the main results of this section hold for Riemannian manifolds

of dimension at least four. None of the results of this section requires the

compactness or the completeness of the manifold.

In this section V will always denote a one-dimensional foliation which

produces harmonic morphisms on (Mn+1, g) (n ≥ 1) and ρ = e(2−n)σ will

denote a local density of it. As before, h = eσg will denote the associated

(local) metric on M with respect to which V is Riemannian and has geodesic

leaves and H will denote the orthogonal complement of V .

Proposition 3.2.1 (cf. [11, Chapter 9, §J]). For n ≥ 3 , let ϕ : (Mn+1, g)→
(Nn, h̄) be a harmonic morphism with one-dimensional geodesic fibres.

(a) If H is integrable then the following assertions are equivalent:

(i) (M, g) is Einstein,

(ii) (N, h̄) is Einstein and the following relation holds

cM

n
λ2 − cN

n− 1
λ4 +

(
U(λ)

)2 +
3
4
λ2n+2

∣∣Ω∣∣2
h

= 0 , (3.2.1)

where cN is the Einstein constant of (Nn, h̄) , U is a vertical local vector field

such that g(U,U) = 1 and cM = MRicci(U,U) .
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Moreover, if (i) or (ii) holds then

KM
X∧Y −

cM

n
= λ2

(
KN
ϕ∗X∧ϕ∗Y −

cN

n− 1

)
, (3.2.2)

where KM and KN are the sectional curvature of (M, g) and (N,h) , respec-

tively, and X ,Y are horizontal.

(b) When n = 4 and M and N are oriented consider also the following

assertion:

(iii) Ω is the pull back of a (anti-)self-dual form on (N, h̄) .

Then, any two of the assertions (i), (ii) and (iii) imply the remaining

assertion.

Proof. (a) By Proposition 1.1.10, we have that X(σ) = 0 for any horizon-

tal X . Lemma 3.1.1 implies that [V,X] = 0 and hence X(V (σ)) = V (X(σ)) =

0 . By hypothesis, Ω = 0 so, from (A.2.24) for any horizontal X we have

Ricci(X,V ) = 0. Similarly, from (A.2.23) we get:

MRicci(X,Y ) = (NRicci)(ϕ∗X,ϕ∗Y )− e−2σ (∆Mσ)h(X,Y ) . (3.2.3)

It follows that (M, g) is Einstein if and only if (N, h̄) is Einstein and

(3.2.1) holds.

If (i) or (ii) holds then (3.2.2) follows from (3.2.1) and the following

formula

λ2KM
X∧Y − λ4KN

ϕ∗X∧ϕ∗Y +
(
U(λ)

)2 = 0

which can be obtained directly or as a consequence of a formula of S. Gud-

mundsson [27] .

(b) Let Ω̄ be the two-form on N such that ϕ∗(Ω̄) = Ω . Note that (hd∗Ω)|H =

0 if and only if Ω̄ is coclosed on (N, h̄) .

If (iii) holds the equivalence (i)⇐⇒ (ii) can be proved in a similar way to

(a) , using the fact that any closed (anti-)self-dual form is coclosed and that,

for any two-form ω on a four-dimensional oriented Euclidean space (E4, <,>)

and u, v ∈ E, we have (see [13]):

< iuω, ivω >=
1
2
|ω|2 < u, v > +2 < iuω+, ivω− > , (3.2.4)
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where, ω+ and ω− are, respectively, the self-dual and the anti-self-dual com-

ponents of ω.

The prove (i), (ii)⇒(iii) we adapt a method of [13].

First note that, by (A.2.24) , Ω̄ is coclosed.

Now, recall from [13], that (3.2.4) gives the decomposition of the sym-

metric bilinear map (u, v) 7→< iuω, ivω > into its ‘spherical’ part and its

‘trace-free’ part. Also, the bilinear map (u, v) 7→< iuα, ivβ > induces a nat-

ural isomorphism between the space of ‘trace-free’ symmetric bilinear maps

and Λ2
+(E)⊗Λ2

−(E) (see [13]). Using these facts it is easy to see that at each

point Ω̄ is either self-dual or anti-self-dual.

If N± = { y ∈ N | (Ω̄±)y = 0 } then by the Baire category theorem at least

one of the two sets N+ and N− has nonempty interior. If N+ has nonempty

interior then, following [13], we apply Aronszajn’s unique continuation theo-

rem (see [17] noting that Ω̄ , and hence also Ω̄+ , is closed and coclosed) to

obtain Ω̄+ = 0. Hence Ω̄ is anti-self-dual. �

Remark 3.2.2. 1) From Lemma 3.1.7 we see that if the foliation given by

the fibres of ϕ is nowhere Riemannian then H is automatically integrable.

2) Since the decomposition of two-forms into self-dual and anti-self-dual

parts is conformally invariant, the condition that Ω be the pull back of a (anti-

)self-dual form is equivalent to the condition that Ω restricted to the horizontal

distribution be (anti-)self-dual.

The following elementary algebraic lemma will be useful later on.

Lemma 3.2.3. Let E be an Euclidean linear space of dimension at least two

and α a linear function on it such that, for any pair of orthogonal vectors

{u, v} we have α(u)α(v) = 0.

Then α = 0.

Proof. Let u, v ∈ E be orthogonal and such that |u| = |v|. Since u+v and

u− v are also orthogonal we get that 0 = α(u+ v)α(u− v) = α(u)2 − α(v)2.

Thus α(u) = ±α(v) and since by hypothesis at least one of must be zero

they are both zero. The lemma is proven. �
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Recall that on a Riemannian manifold of dimension at least four a Rie-

mannian foliation with one-dimensional leaves produces harmonic morphisms

if and only if it is locally generated by Killing fields (Proposition 3.1.3) and a

foliation by geodesics produces harmonic morphisms if and only if it is homo-

thetic (Corollary 1.4.8).

Proposition 3.2.4. Let (Mn+1, g) be an Einstein manifold of dimension

n+ 1 ≥ 4 , and let V be a one-dimensional foliation which produces harmonic

morphisms on (M, g) . Suppose that, either, the orthogonal complement H of

V is integrable, or, V is a homothetic foliation.

Then either,

(i) V is a Riemannian foliation locally generated by Killing vector fields,

or

(ii) V is a homothetic foliation by geodesics orthogonal to an umbilical

foliation by hypersurfaces.

Proof. By passing to a Riemannian covering if necessary, we can suppose

that V admits a global density.

By the remarks above we need to prove just the ‘only if’ part.

Suppose that H is integrable. Then from (A.2.23) of Appendix B, for

any orthogonal pair {X,Y } formed of basic vector fields we have:

NRicci(ϕ∗X,ϕ∗Y ) = (n− 1)(n− 2)X(σ)Y (σ) . (3.2.5)

Since n ≥ 3 and the left-hand side of (3.2.5) is a basic function we get

that X(σ)Y (σ) is a basic function.

Also, from (A.2.24) we obtain that

V (X(σ)) = X(V (σ)) = (n− 2)V (σ)X(σ) .

Hence:

0 =V (X(σ)Y (σ)) = V (X(σ))Y (σ) +X(σ)V (Y (σ))

= 2(n− 2)V (σ)X(σ)Y (σ) .

If, at a point x we have that V (σ)(x) 6= 0 , then this holds in an open

neighbourhood O of x. It follows that X(σ)Y (σ) = 0 on O .
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Using Lemma 3.2.3 we see that gradσ restricted to O is vertical and

hence, from Proposition 1.1.10 , it follows that V restricted to O has geodesic

leaves.

Now, recall that, being Einstein, (M, g) is analytic (see [11, 5.26]). To-

gether with Proposition 1.3.2 this shows that V has geodesic leaves.

Thus, we have proved that if H is integrable then either (i) or (ii) holds

on M .

Suppose, now, that V is homothetic and let

F =
{
x ∈M |V is Riemannian at x

}
.

Suppose that M \ F 6= ∅ . Then, by Lemma 3.1.7, we have that H , the

orthogonal complement of V , is integrable at least on M \ F . Therefore, by

analyticity, H is integrable on M .

The last assertion follows quickly from (A.1.1) and the proof is complete.

�

Next, we prove the following:

Proposition 3.2.5. Let V be a one-dimensional foliation which produces har-

monic morphisms on (Mn+1, g) . Suppose that the following conditions are

satisfied, for any horizontal X :

(i) X(V (σ)) = 0 ,

(ii) MRicci(X,V ) = 0 .

Then V is homothetic.

Proof. By Lemma 3.1.8 it is sufficient to prove that V is homothetic on

the interior S of the set {x ∈M | d(V (σ))(x) = 0 6= (V (σ))(x)} .

By (A.2.24) on S we have

e(2n−2)σ
{1

2
(hd∗Ω)(X) + (n− 1)Ω(X, gradh σ)

}
= (n− 1)(n− 2)X(σ)V (σ) ,

(3.2.6)

for any basic vector field X .

By hypothesis the right hand side above is a basic function on S . Also,

the second factor from the left hand side of (3.2.6) is basic and thus, if this

second factor is nonzero, then e(2n−2)σ is a basic function. This implies that
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V is Riemannian and, in particular, homothetic.

If the second factor from the left hand side of (3.2.6) is zero on an open

subset S0 of S then the right hand is also zero and hence V has geodesic fibres

on S0 . From Corollary 1.4.8 it follows that V is homothetic on S0 . �

The following proposition will be used later on.

Proposition 3.2.6. Let (M, g) be an Einstein manifold and V a one-dimensional

foliation of codimension not equal to two which produces harmonic morphisms

on (M, g) .

Then the following assertions are equivalent:

(i) V has basic mean curvature form;

(ii) V is a homothetic foliation.

Proof. As above, we may suppose that V admits a global density e(2−n)σ.

From the fundamental equation it follows quickly that (i) holds if and only

if X(σ) is a basic function for any basic vector field X ∈ Γ(H ) .

Therefore, if (M, g) is Einstein, Proposition 3.2.5 gives that (i)⇒(ii) .

Conversely, if V is homothetic then, from Proposition 1.4.2 it follows

quickly that X(σ) is a basic function for any basic vector field X ∈ Γ(H ) . �

3.3. Constructions of 1-dim foliations which produce harmonic

morphisms on Einstein manifolds

In this section we use well-known results on warped-products and con-

formal vector fields (see [37], [11, Chapter 9, §J]) to obtain one-dimensional

foliations with integrable orthogonal complement and which produce harmonic

morphisms on Einstein manifolds which are not of constant curvature.

3.3.1. Homothetic foliations with geodesic leaves.

Proposition 3.3.1 (cf. [37, Lemma 13(iv)]). Let ϕ : (Mn+1, g) → (Nn, h) ,

n ≥ 3 , be a nonconstant harmonic morphism with geodesic leaves and inte-

grable horizontal distribution.

(i) If (Mn+1, g) has constant curvature then (Nn, h) has constant curva-

ture.
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(ii) If (Mn+1, g) is Einstein and (Nn, h) has constant curvature then

(Mn+1, g) has constant curvature.

Proof. Assertion (i) is an immediate consequence of (3.2.2) .

If (Mn+1, g) is Einstein then from (3.2.1) and from (A.2.1) we obtain

KM
X∧U =

cM

n
, (3.3.1)

where X is any horizontal vector.

The proof of (ii) follows from (3.2.2) and (3.3.1) . �

Corollary 3.3.2 (cf. [37, Corollary 15]). Let ϕ : (M4, g) → (N3, h) be a

harmonic morphism with one-dimensional geodesic leaves and integrable hor-

izontal distribution.

If (M4, g) is Einstein then both (M4, g) and (N3, h) have constant cur-

vature.

Proof. If (M4, g) is Einstein then by Proposition 3.2.1 , (N3, h) is Ein-

stein. But N3 is three-dimensional and thus (N3, h) has constant curvature.

The proof follows from Proposition 3.3.1(ii) . �

Corollary 3.3.3 (cf. [37], [11, Chapter 9, §J]). Given any Einstein manifold

(Nn, h) of dimension n there exists an Einstein manifold (Mn+1, g) of dimen-

sion n + 1 and a harmonic morphism ϕ : (Mn+1, g) → (Nn, h) with geodesic

fibres and integrable horizontal distribution.

If n ≥ 4 and (Nn, h) does not have constant curvature then (Mn+1, g)

does not have constant curvature.

Proof. Let (Nn, h) be Einstein and let λ be a (local) solution of (3.2.1)

(see [11, 9.109]).

Let Mn+1 = R×Nn and g = dt2 +λ−2 h . It is obvious that the canonical

projection (Mn+1, g)→ (Nn, h) is a harmonic morphism with geodesic leaves

and integrable horizontal distribution. Also (Mn+1, g) is an Einstein manifold

by Proposition 3.2.1 . Moreover, if (Nn, h) does not have constant curvature

then, by Proposition 3.3.1 , (Mn+1, g) does not have constant curvature. �



Harmonic morphisms with one-dimensional fibres 85

3.3.2. Riemannian foliations locally generated by Killing fields.

The following results are consequences of [11, Corollary 9.107, 9.108, 9.109].

Proposition 3.3.4 ([11]). Let (Nn, h) be a Riemannian manifold and ρ :

Nn → (0,∞) a smooth positive function.

Let Mn+1 = R×Nn and g = ρ2 dt2 + h . Then, the following assertions

are equivalent.

(i) (Mn+1, g) is Einstein (MRicci = cM g) .

(ii) (Nn, h) has constant scalar curvature sN = (n − 1) cM and the fol-

lowing relation holds
N
∇ dρ = − cM

n
ρh+ ρZN , (3.3.2)

where
N
∇ is the Levi-Civita connection on (Nn, h) and ZN = NRicci−(sN/n)h

is the trace-free part of NRicci .

Proof. From [11, 9.106a, 9.106c] or, by a straightforward calculation the

following equations can be obtained:

(MRicci)|TN = NRicci−ρ−1
N
∇ dρ ,

(MRicci)|TR =ρ−1(∆Nρ) g|TR .
(3.3.3)

Also, [11, 9.106b] gives that MRicci(X, ∂/∂t) = 0 for any X ∈ Γ(TN). From

this and (3.3.3) the proof easily follows. �

Corollary 3.3.5. For each n ≥ 5 there exists Einstein manifolds (Mn+1, g)

not of constant curvature, endowed with a nowhere zero Killing field which has

integrable orthogonal complement. Moreover, the construction can be done in

such a way that the (locally) induced isometric quotients are also Einstein.

Proof. If the equation
N
∇ dρ = a ρ h , where a ∈ R , has solutions then

there exists a homothetic one-dimensional foliation with geodesic leaves and

integrable orthogonal complement (see Lemma 2.6.6). Recall that ZN = 0

if and only if (Nn, h) is Einstein (see [11, 1.118]). Hence, [11, 9.109] and

Corollary 3.3.3 implies that there exists an Einstein manifold (Nn, h) , n ≥ 5 ,

not of constant curvature, on which (3.3.2) has a (local) solution ρ which is
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positive. Then, by Proposition 3.3.4 , (Mn+1, g) (where Mn+1 = R×Nn and

g = ρ2 dt2 + h) is Einstein. Clearly V = ∂/∂t is a nowhere zero Killing field

on (Mn+1, g) . �

3.4. The classification on Einstein manifolds

In this section we prove the following theorem.

Theorem 3.4.1. Let (M, g) be an Einstein manifold of dimension at least 5 ,

and let V be a one-dimensional foliation which produces harmonic morphisms

on (M, g) .

Then either,

(i) V is a Riemannian foliation locally generated by Killing vector fields,

or

(ii) V is a homothetic foliation by geodesics orthogonal to an umbilical

foliation by hypersurfaces.

Proof. By Proposition 1.3.2, if the horizontal distribution H is integrable

on an open subset of M , then H is integrable on M . Thus, by Proposition

3.2.4, it is sufficient to prove the case when H is nowhere integrable. Also,

writing n + 1 = dim M , we can suppose that the leaves of V are the fibres

of a harmonic morphism ϕ : (Mn+1, g) → (Nn, h) , where dim N = n with

n ≥ 4 , and from now on we shall use the notations of Lemma A.2.5 .

Let Ω2 ∈ Γ(End(H )) be the field of self-adjoint negative semi-definite

endomorphisms of (H , h|H ) defined by h(Ω2(X), Y ) = −h(iXΩ, iY Ω) for hor-

izontal X and Y .

By Lemma A.3.3 , Ω2 can be consistently diagonalized on a dense open

subset of M ; let x0 ∈ M be a point of this subset. There is an open neigh-

bourhood U of x0 and an orthonormal frame {X1, . . . , Xn} for (H , h|H ) over

U such that Ω2(Xi) = −µ2
i Xi for some continuous functions µi : U → [0,∞)

with µ2
i smooth. Because Ω and h|H are basic we also have that Ω2 is basic;

hence the µi are basic as well. We can thus suppose that the Xi are basic.

From (A.2.23) we have
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NRicci(ϕ∗Xi, ϕ∗Xj) = (n− 1)(n− 2)Xi(σ)Xj(σ) (i, j = 1, . . . , n , i 6= j).

(3.4.1)

We have the following alternative. Either

(1) there exists x ∈ U and distinct j1 , j2 , j3 such that Xjk(σ)x 6= 0 (k =

1, 2, 3) , or

(2) for any x ∈ U there are at most two distinct values of j , say j1 , j2 such

that Xjk(σ)x 6= 0 (k = 1, 2) .

Suppose that (1) holds. By (3.4.1) we have that Xi(σ)Xj(σ) is basic for

any i 6= j . Hence Xj1(σ)2Xj2(σ)2Xj3(σ)2 is basic, and, because Xjk(σ) 6= 0

on some open subset of U , we have that Xjk(σ) is basic (k = 1, 2, 3) . Thus,

if (1) holds, Xi(σ) is basic for all i = 1, . . . , n , on some open subset of U .

Then, by Proposition 1.3.2 and Proposition 3.2.6 , V is homothetic on M and

the proof follows from Proposition 3.2.4 .

Suppose that (2) holds. If Xj(σ) = 0 for all j = 1, . . . , n , then V is a

homothetic foliation and the proof of the theorem follows from Proposition

3.2.4 . Therefore we can suppose that, after renumbering if necessary, we have

X1(σ)x 6= 0 at some point x ∈ U . Then this holds on some open subset of U .

Then, either Xj(σ) = 0 for j = 2, . . . , n on some open subset of U , or there

exists a point x ∈ U such that, after renumbering if necessary, X1(σ)x 6= 0

and X2(σ)x 6= 0 . In the latter case, because (2) holds, we must have that

Xj(σ) = 0 (j = 3, . . . , n) on some open subset of U . It follows that there

exists an open subset U1 of U such that Xj(σ) = 0 (j ≥ 3). From now on we

shall work on U1 .

By (A.2.23) we have

cM e−2σ = NRicci(ϕ∗Xi, ϕ∗Xi) − 1
2 e(2n−2)σ µ2

i

− e−2σ ∆Mσ − (n− 1)(n− 2)Xi(σ)2 (i = 1, . . . , n) .

(3.4.2)

From (3.4.2) we get

NRicci(ϕ∗Xi,ϕ∗Xi) − NRicci(ϕ∗Xj , ϕ∗Xj)− 1
2 e(2n−2)σ

(
µ2
i − µ2

j

)
− (n− 1)(n− 2)

(
Xi(σ)2 −Xj(σ)2

)
= 0 (i, j = 1, . . . , n) .

(3.4.3)
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From (3.4.3) it follows that 1
2 e(2n−2)σ

(
µ2
i −µ2

j

)
is basic for i, j ≥ 3 . Thus,

if µi 6= µj at some point for some i, j ≥ 3 , i 6= j , then eσ is basic and so V

is Riemannian on some open subset of M ; hence, by Proposition 1.3.2 , V is

Riemannian on (M, g) . It remains to consider the case when µ3 = . . . = µn =

µ for some function µ .

Now, either, µ1 = µ2 on some open subset, or, µ1 6= µ2 on a dense open

subset. In the former case, by (3.4.3), we have that X1(σ)2 −X2(σ)2 is basic

on some open subset. But, by (3.4.1), X1(σ)X2(σ) is also basic, and hence

X1(σ) , X2(σ) are basic on some open subset. Since Xj(σ) = 0 for j ≥ 3 , V

has basic mean curvature form. Then, by Proposition 3.2.6 , V is homothetic

on some open subset and hence, by Proposition 1.3.2 , V is homothetic on

(M, g) ; the proof of the theorem follows from Proposition 3.2.4 .

It remains to consider the case when µ1 6= µ2 . Because Ω is skew-

symmetric, at each point x , for any i ∈ {1, . . . , n} with µi(x) 6= 0 there exists

j ∈ {1, . . . , n} , j 6= i , such that µi(x) = µj(x) . Hence, at each point x ,

we have that either µ1(x) = µ(x) and µ2(x) 6= µ(x) or µ1(x) 6= µ(x) and

µ2(x) = µ(x) . Suppose that µ1(x) 6= µ(x) ; then this holds at all points of an

open subset, and on that subset we must have µ2 = µ . Moreoever, because

Ω is skew-symmetric, we must have µ1 = 0 and so µ is not identically zero; in

particular n− 1 is even, i.e., n = 2k + 1 for some integer k ≥ 1 .

From (3.4.3) we get

NRicci(ϕ∗X2, ϕ∗X2)− NRicci(ϕ∗X3, ϕ∗X3) = (n− 1)(n− 2)X2(σ)2 ;

hence, X2(σ) is basic. Thus, if X2(σ) 6= 0 , since X1(σ)X2(σ) is basic, we

deduce that X1(σ) is also basic and the proof follows as before. There remains

the case when X2(σ) = 0 which we now consider. Summing-up the previous

discussion, we have that n = 2k+1 , k ≥ 1 , and we are now on an open subset

on which we have the following:

µ1 = 0 , µ2 = . . . = µn = µ ,

X2(σ) = . . . = Xn(σ) = 0 ,

µ andX1(σ) are not identically zero.
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Moreover, we can assume that µ and X1(σ) are nowhere zero. Furthermore,

because Ω2(X1) = −µ2
1 we have that |iX1Ω| 2h = µ2

1 = 0 . Hence iX1Ω = 0 ,

equivalently igradhσΩ = 0 .

From this and (A.2.24) it follows that we have for i = 1, . . . , n ,

0 = 1
2 e(2n−2)σ (hd∗Ω)(Xi) + (n− 1)Xi(V (σ))− (n− 1)(n− 2)Xi(σ)V (σ) .

(3.4.4)

Next, we compute (hd∗Ω)(X1) .

(hd∗Ω)(X1) = −
2k+1∑
j=1

(∇XjΩ)(Xj , X1)

= −
2k+1∑
j=1

{
Xj(Ω(Xj , X1)− Ω(∇XjXj , X1)− Ω(Xj ,∇XjX1)

}
=

2k+1∑
j=1

Ω(Xj ,∇XjX1) =
2k+1∑
j=2

Ω(Xj ,∇XjX1)

=
k∑
j=1

{
Ω(X2j ,∇X2jX1) + Ω(X2j+1,∇X2j+1 , X1)

}
.

We can choose a basic orthonormal local frame {X1, X2, . . . , X2k+1} such that

(Ωij) =



0 0 0 . . . 0 0

0 0 −µ . . . 0 0

0 µ 0 . . . 0 0

. . . . . . . . . . . . . . . . . . . . . . .

0 0 0 . . . 0 −µ
0 0 0 . . . µ 0


. (3.4.5)

Then, from the above calculation we have

(hd∗Ω)(X1) =
k∑
j=1

{
h(∇X2jX1, X2j+1) Ω2j,2j+1 + h(∇X2j+1X1, X2j) Ω2j+1,2j

}
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=
k∑
j=1

{
−µh(∇X2jX1, X2j+1) + µh(∇X2j+1X1, X2j)

}
= µ

k∑
j=1

{
h(X1,∇X2jX2j+1)− h(X1,∇X2j+1X2j)

}
= µ

k∑
j=1

h(X1, [X2j , X2j+1]) .

Recall that Xj(σ) = 0 for all j ≥ 2 ; hence

[X2j , X2j+1](σ) = 0 ⇐⇒ −V [X2j , X2j+1](σ) = H [X2j , X2j+1](σ)

⇐⇒ Ω(X2j , X2j+1)V (σ) = h
(
[X2j , X2j+1],H (gradh σ)

)
⇐⇒ −µV (σ) = h

(
[X2j , X2j+1], X1

)
X1(σ)

⇐⇒ h
(
[X2j , X2j+1], X1

)
= −µ V (σ)

X1(σ)
.

It follows from the last equation that

(hd∗Ω)(X1) = − k µ2 V (σ)
X1(σ)

. (3.4.6)

From (3.4.4) and (3.4.6) we get

0 = −1
2 k µ

2 e4kσ V (σ)
X1(σ)

+ 2kX1(V (σ))− 2k(2k − 1)X1(σ)V (σ)

which is equivalent to

µ2 e4kσ V (σ) = 4X1(σ)X1(V (σ))− 4(2k − 1)X1(σ)2 V (σ) . (3.4.7)

From (3.4.3) with i = 1 , j = 2 , we get that 1
2 e4kσ µ2− 2k(2k− 1)X1(σ)2

is basic and hence on differentiating this with respect to V we obtain

2k e4kσ V (σ)µ2 − 4k(2k − 1)X1(σ)X1(V (σ)) = 0

which is equivalent to

µ2 e4kσ V (σ) = 2(2k − 1)X1(σ)X1(V (σ)) . (3.4.8)

From (3.4.7) and (3.4.8) we get that

4X1(σ)X1(V (σ))− 4(2k − 1)X1(σ)2 V (σ) = 2(2k − 1)X1(σ)X1(V (σ))
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which, because X1(σ) is nowhere zero, is equivalent to

X1(V (σ)) = −2(2k − 1)
2k − 3

X1(σ)V (σ) . (3.4.9)

From (3.4.8) and (3.4.9) it follows that

µ2 e4kσ V (σ) = −4(2k − 1)2

2k − 3
X1(σ)2 V (σ)

which, if V is not Riemannian (equivalently, V (σ) 6= 0), implies that

µ2 e4kσ = −4(2k − 1)2

2k − 3
X1(σ)2 . (3.4.10)

This is impossible if k ≥ 2 , since X1(σ) 6= 0 , µ 6= 0 . The proof of the theorem

is complete. �

Remark 3.4.2. The same proof as above applies for the case dimM = 4 up

to (3.4.10) . However, from (3.4.10) and iX1Ω = 0 , we now have

dH
(
λ−2

)
= ∗H Ω , (3.4.11)

where dH is the differential composed with the horizontal projection and ∗H is

the Hodge star-operator on (H , h|H ) with respect to some orientation of H .

From the proof of Theorem 3.4.1 it follows that if (M4, g) is a 4-dimen-

sional Einstein manifold and ϕ : (M4, g)→ (N3, h) is a submersive harmonic

morphism to a Riemannian 3-manifold which is not of type 1 or of type 2 (i.e.

V = kerϕ∗ is neither Riemannian, nor geodesic with integrable horizontal

distribution), then the ‘monopole equation’ (3.4.11) must hold.

Since by [4] any harmonic morphism with one-dimensional fibres from

a Riemannian manifold of dimension at least 5 is submersive, from Theo-

rem 3.4.1 we obtain the following.

Corollary 3.4.3. Let (Mn+1, g) be an Einstein manifold of dimension n+1 ≥
5 , and let ϕ : (Mn+1, g)→ (Nn, h) be a non-constant harmonic morphism to

a Riemannian manifold of dimension n .

Then either,

(i) the components of the fibres of ϕ form a Riemannian foliation locally

tangent to nowhere zero Killing vector fields, or
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(ii) ϕ is a horizontally homothetic submersion with geodesic fibres orthog-

onal to an umbilical foliation by hypersurfaces.

3.5. The four-dimensional case

To state the main result of this section we need a definition which is a

trivial generalization to foliations of the well-known notion of principal con-

nection on a principal bundle. For simplicity, we give this definition just for

one-dimensional foliations.

Definition 3.5.1. Let V be a one-dimensional foliation and let V ∈ Γ(V ) be

a nowhere zero vector field tangent to V .

A principal connection for V (with respect to V ) is a complementary

distribution H ⊆ TM , H ⊕ V = TM such that V is an infinitesimal auto-

morphism of H (i.e. H is invariant under the local flow of V ).

The connection form θ of H is the ‘vertical’ dual of V (i.e. θ(V ) = 1

and θ|H = 0) and the curvature form of H is Ω = dθ . Note that Ω

is basic and it can be interpreted as the integrability tensor of H (indeed

Ω(X,Y )V = −V ([X,Y ]) for any horizontal vector fields X and Y ).

It is obvious that a one form θ defines a principal connection for V with

respect to V if and only if θ(V ) = 1 and LV θ = 0 .

Example 3.5.2. Let V be an orientable one-dimensional geodesic foliation

on (M, g) . Then H (= V ⊥) is a principal connection for V with respect to

U ∈ Γ(V ) where g(U,U) = 1 . The connection form is U [ .

An orientable one-dimensional foliation V on M admits a principal con-

nection if and only if it is geodesible (i.e. there exists a Riemannian metric

h on M such that the leaves of V are geodesics on (M,h) ). Indeed, given

the principal connection H (with respect to some V ∈ Γ(V )), if we choose

any metric h such that h(V, V ) = 1 and h(V,X) = 0 for X ∈ H then the

leaves of V are geodesics of (M,h) . Also the set of principal connections of

V (if nonempty) with respect to a given nowhere zero vector field V ∈ Γ(V )

is an affine space over the linear space of basic one-forms: if θj , j = 1, 2 are
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connection forms then θ1 − θ2 is locally the pull back by ϕ : U → N of a

one-form A ∈ Γ(T ∗N) where U is an open subset of M and the fibres of ϕ

are open subsets of leaves of V . Fix V ∈ Γ(V ) . Then, in a neighbourhood of

each point of N , a local section s of ϕ can be found which, in a neighbourhood

of its image, defines a principal connection θs which is flat (i.e. dθs = 0). If θ

defines a principal connection then the one-form A such that θ = θs+ϕ∗(A) is

the local connection form of θ with respect to s . Because V is one-dimensional

we can define the local connection form of a principal connection with respect

to a (local) flat principal connection by using any parallel section of the flat

connection. Also note that the existence of a global flat principal connection

imposes, severe restrictions on the topology of the foliation and of the man-

ifold. For example, as is well known, if the leaves of V are the fibres of a

principal bundle ξ = (M,N,S1) over a simply-conected N and ξ admits a flat

principal connection then ξ is trivial and, in particular, M and N × S1 are

diffeomorphic.

The orthogonal complement of a one-dimensional foliation which pro-

duces harmonic morphisms is a principal connection of it.

Proposition 3.5.3. Let V be a one-dimensional foliation which produces har-

monic morphisms on (Mn+1, g) where dimM = n + 1 . Let ρ = e(2−n)σ be a

local density of V . Suppose that V restricted to the domain of σ is orientable

and let V ∈ Γ(V ) be such that g(V, V ) = e(2n−4)σ(= ρ−2) .

Then the horizontal distribution H (= V ⊥) is a principal connection for

V with respect to V .

Proof. This follows from Lemma 3.1.1. �

We now state the main result of this section.

Theorem 3.5.4. Let (M4, g) be an Einstein manifold of dimension four

and V a one-dimensional foliation which produces harmonic morphisms on

(M4, g) .

Then, one of the following assertions holds:

(i) V is Riemannian and locally generated by Killing fields;
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(ii) V is a homothetic foliation by geodesics with integrable orthogonal

complement;

(iii) (M4, g) is Ricci-flat and, up to homotheties, any harmonic morphism

ϕ : (U, g|U )→ (N3, h) , with dilation λ , produced by V such that V |U and N3

are orientable is (locally) described as follows:

(a) (N3, h) has constant sectional curvature kN = 1 ,

(b) 1
2 d(λ−2) is a (flat) principal connection for V with respect to suit-

ably chosen V ∈ Γ(V ) such that g(V, V ) = λ2 ,

(c) the local connection form A of H with respect to 1
2 d(λ−2) satisfies

the equation dA+ 2 ∗ A = 0 on (N3, h) where ∗ is the Hodge star-operator of

(N3, h) with respect to some orientation of N3 .

Moreover, only (i) and (ii) or (ii) and (iii) can occur simultaneously, in

which case (M4, g) must be Ricci-flat.

From Theorem 3.5.4 we obtain the following.

Corollary 3.5.5. Let (M4, g) be an orientable Einstein manifold of dimension

four, and (N3, h) an orientable Riemannian manifold of dimension three.

Let ϕ : (M4, g) → (N3, h) be a submersive harmonic morphism; denote

its dilation by λ and let V ∈ Γ(V ) be such that g(V, V ) = λ2 .

Then, one of the following assertions (i) , (ii) , (iii) holds:

(i) V is a Killing field;

(ii) ϕ is horizontally homothetic and has geodesic fibres orthogonal to an

umbilical foliation by hypersurfaces;

(iii) (a) (M4, g) is Ricci-flat and (N3, h) has constant sectional curvature

kN = c2

4 (c 6= 0) ,

(b) 1
c d(λ−2) is a (flat) principal connection for kerϕ∗ with respect

to V ,

(c) the local connection form A of (kerϕ∗)⊥ with respect to 1
c d(λ−2)

satisfies dA+c∗A = 0 on (N3, h) where ∗ is the Hodge star-operator of (N3, h)

defined by some orientation of N3 .

Remark 3.5.6. 1) If M4 is not orientable then we can replace (M4, g) by

a Riemannian double covering (M̃4, g̃) such that M̃4 is orientable. Then we
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replace ϕ by ϕ̃ = ϕ ◦ ξ where ξ : (M̃4, g̃) → (M4, g) is the projection of the

covering.

2) If N3 is not orientable we can pull back ϕ to a Riemannian double-

covering (Ñ3, h̃) of (N3, h) such that Ñ3 is orientable.

Proof of Theorem 3.5.4. Suppose that neither assertion (i) nor assertion

(ii) holds. Then, by Remark 3.4.2 if ϕ : (O, g|O)→ (N, h̄) , (dimN = 3) , is a

harmonic morphism produced by V the relation (3.4.11) must hold.

If Ω = 0 on O then, from (3.4.11) , it follows that λ is constant along

horizontal curves which would imply that assertion (ii) holds.

If Ω 6= 0 , then, by analyticity, it is non-zero on a dense open subset of O .

Now, note that the right hand side of (3.4.11) is basic. Hence V (X(λ−2)) = 0

for any basic vector field X ∈ Γ(H ). But V commutes with basic vector

fields and hence V (λ−2) is constant along horizontal curves. It follows that,

if V (λ−2) is non-constant then H is integrable, equivalently, Ω = 0 . Thus,

V (λ−2) = c for some constant c ∈ R . Furthermore, as V is not Riemannian,

c 6= 0 .

Then (1/c) d(λ−2) is a (flat) principal connection for V . Let A ∈ Γ(T ∗N)

be a local connection form of H with respect to (1/c) d(λ−2) , that is, A is

the one-form on N which satisfies

θ =
1
c

d(λ−2) + ϕ∗(A) . (3.5.1)

From (3.4.11) and (3.5.1) , it follows that

− c ϕ∗(A) = dH (λ−2) = ∗H Ω = ∗H ϕ∗(dA) = ϕ∗(∗ dA) . (3.5.2)

Hence dA + c ∗ A = 0 which implies assertion (iii) , except for the fact that

(N, h̄) has constant sectional curvature equal to c2/4 which we shall now prove.

From Lemma A.2.5 we obtain that the Ricci tensors of (M, g) and (N, h̄)

satisfy the following relations, on O :

MRicci |V ⊗V = 0 , MRicci |V ⊗H = 0 ,

MRicci |H ⊗H = ϕ∗
(

NRicci
)
− c2

2
ϕ∗(h̄) .

(3.5.3)
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From (3.5.3) it follows easily that, if (M4, g) is Einstein and (3.4.11)

holds, then it is Ricci-flat and (N, h̄) has constant sectional curvature equal

to c2/4 . �

Remark 3.5.7. 1) The equation dA+ c ∗ A = 0 for a one-form A on an ori-

ented three-dimensional Riemannian manifold is the Beltrami fields equation

(see [34]). Obviously, if A satisfies the Beltrami fields equation, with c con-

stant, then ∆A = c2A , where ∆ is the Hodge Laplacian; also, F = dA satifies

d∗F = c ∗ F .

2) The codomain of a harmonic morphism of type (iii) of Theorem 3.5.4

always has constant positive sectional curvature. In the limit, when this tends

to zero, we obtain a harmonic morphism of type (i) .

3) Harmonic morphisms of type (iii) are also of type (ii) if and only if

A = 0 .

4) The results of Theorems 3.4.1 and 3.5.4 shows that, on an Einstein

manifold of dimension at least four, the nonlinear system of partial differential

equations whose solutions are harmonic morphisms with fibres of dimension

one can be reduced to one of three types of systems of linear partial dif-

ferential equations of the first order. For type (i) this is Killing’s equation,

and for type (iii) it is the above mentioned Beltrami fields equation. Finally,

the one-dimensional foliation V on (M, g) is of type (ii) if and only if it is lo-

cally generated by vector fields W ∈ Γ(V ) which satisfies 4∇W = divW Id TM

where ∇ is the Levi-Civita connection of (M, g) (see [51, Lemma 6.5]).

See [69] , [42] for other situations in which the nonlinear system of partial

differential equations whose solutions are harmonic morphisms can be reduced

to a linear system of partial differential equations of the first order.

3.6. The third type

We shall say that a harmonic morphism ϕ : (M4, g)→ (N3, h) is of type

(iii) ( (i), (ii) ) if its regular fibres form a foliation of type (iii) ( (i), (ii) ) of

Theorem 3.5.4 . In this section the harmonic morphisms of type (iii) will be

the main object of study.
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The first thing to note about the harmonic morphisms of type (iii) is that

they are always submersive.

Proposition 3.6.1. Let ϕ : (M4, g) → (N3, h) be a harmonic morphism of

type (iii).

Then ϕ is submersive.

Proof. By passing, if necessary, to a two-fold covering, we can suppose

that the vertical distribution V (which is well-defined outside the set of critical

points) is orientable. Then, as before, let V ∈ Γ(V ) be such that g(V, V ) = λ2

where λ is the dilation of ϕ . Since, up to a multiplicative constant, d(λ−2)

is a (flat) principal connection with respect to V , we have that V (λ−2) is a

nonzero constant. This implies that the connected components of any regular

fibre of ϕ are noncompact.

Suppose that ϕ is not submersive and let x0 ∈ M be a critical point of

it. Recall that, by a result of P. Baird [4, Proposition 5.1] , the set of critical

points of ϕ must be discrete. Then from the main result of [16] it follows that

ϕ is topologically locally equivalent at x0 to the cone on the Hopf fibration

S3 → S2 . Hence, in a neighbourhood of x0 , the components of the regular

fibres of ϕ are diffeomorphic to S1 . But we have seen that all the regular

fibres of ϕ have noncompact components and hence ϕ cannot have critical

points. �

Also, we have the following result.

Corollary 3.6.2. Let ϕ : (M4, g) → (N3, h) be a harmonic morphism of

type (iii).

Then the vertical distribution of ϕ is orientable.

Proof. If V is any local vertical vector field such that g(V, V ) = λ2 then

V (λ−2) is a nonzero constant. Hence, there exists a unique vertical vector

field V on M such that g(V, V ) = λ2 and V (λ−2) > 0 . �

Remark 3.6.3. Let ϕ : (M4, g) → (N3, h) be a harmonic morphism of type

(iii) with connected fibres; denote its dilation by λ . Then H ∗(d(λ−2)) is
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a basic one-form; let A ∈ Γ(T ∗N) be such that −1
2 H ∗(d(λ−2)) = ϕ∗(A) .

Because (N3, h) is of constant curvature it is an analytic manifold. But A

satisfies ∆A = 4A and so is analytic. Using this fact it is easy to see that, if

N3 is orientable, then there exists an orientation of it such that dA+2∗A = 0

on N3 .

From the proof of Theorem 3.5.4 it follows that any harmonic morphism

of type (iii) is locally determined by the local connection form A . This is also

illustrated by the following example.

Example 3.6.4. Let h be the canonical metric on the three-dimensional

sphere S3 . LetA = i∗
(
−x2 dx1 + x1 dx2 − x4 dx3 + x3 dx4

)
where i : S3 ↪→ R4

is the canonical inclusion.

Let ∗ be the Hodge star-operator on (S3, h) considered with the usual

orientation of S3 . Then

dA− 2 ∗A = 0 .

To show this, firstly note that A is the canonical connection form on the

Hopf bundle (S3, S2, S1) . Also |A| = 1 and thus it is sufficient to verify that

A ∧ dA = 2 vS3 where vS3 is the usual volume form on S3 .

For a ∈ R let ga be the Riemannian metric on R4 \{0} = (0,∞) × S3

defined by

ga = ρ2 h+ ρ−2 (ρdρ+ aA)2 .

Then, for any a 6= 0, the canonical projection ϕa :
(
R4 \{0}, ga

)
→ (S3, h)

is a harmonic morphism of type (iii) whilst g0 is the restriction to R4 \{0} of

the canonical metric on R4 and thus ϕ0 : R4 \{0} → S3 is the usual radial

projection; note that this is also of type (ii) .

Note that (R4 \{0}, ga) is the Eguchi-Hanson II metric [19] and thus is

Ricci-flat and anti-self-dual.

Let ψa = π ◦ ϕa where π : S3 → S2 is the Hopf fibration. Then ψa is a

harmonic morphism with totally geodesic fibres. Any fibre of it is isometric

with (R2 \{0}, γa) where γa is given in polar coordinates (ρ, θ) by

γa = ρ2 dθ2 + ρ−2 (ρ dρ+ adθ)2 .
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It is easy to see that any point of R2 \{0} is at finite distance from 0 with

respect to γa . Hence (R2\{0}, γa) is not complete. Because the fibres of ψa are

closed and totally geodesic we obtain that ga is not complete for any a ∈ R .

We shall prove that the ϕa of Example 3.6.4 are, essentially, the only

surjective harmonic morphisms of type (iii) with connected fibres and complete

simply-connected codomain. For this we need the following:

Proposition 3.6.5. Let S3
(
= Sp(1)

)
be the three-dimensional sphere endowed

with its canonical metric and orientation and let ∗ be the Hodge star-operator

on it.

(i) The space of solutions of the equation

dA+ 2 ∗A = 0 , A ∈ Γ(T ∗S3) (3.6.1)

is the space of left-invariant one-forms on S3 .

(ii) The space of solutions of the equation

dA− 2 ∗A = 0 , A ∈ Γ(T ∗S3) (3.6.2)

is the space of right-invariant one-forms on S3 .

Proof. (i) Let S3 × Sp(1) → S3 be the unique spin structure on S3 and

let S3 × H → S3 be the spinor bundle induced by the action of the Clifford

algebra Cl3 = H ⊕H on H given by (x, y) · q = x · q .

Consider the trivialization TS3 = S3 × Im H induced by the canonical

left action of S3
(
= Sp(1)

)
on itself. Thus any one-form A on S3 can be

viewed as a spinor field A : S3 → Im H ⊆ H which is constant if and only if

the corresponding one-form is left-invariant.

Consider the Dirac operator D obtained by using the trivial flat connec-

tion on S3×H → S3 . Then it is easy to see that A ∈ Γ(T ∗S3) satisfies (3.6.1)

if and only if DA = 0 . Also a straightforward calculation gives D2 = ∆ + 2D

where ∆ is the usual Laplacian acting on H -valued functions on S3 . Thus,

any solution A of (3.6.1) induces a harmonic H -valued function on S3 which

must be constant if A is globally defined on S3 .

(ii) Since the isometry x 7→ x−1 of S3 reverses the orientation, it pulls
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back solutions of (3.6.1) to solutions of (3.6.2) . Thus the proof of (ii) follows

from (i) . �

Remark 3.6.6. There are other ways to describe the solutions of the equations

(3.6.1) and (3.6.2) . For example, since any orthogonal complex structure on

R4(= H ) compatible with the canonical orientation can be described as left

multiplication by imaginary quaternions of length one (see [15]) any solution

of (3.6.2) is, up to a multiplicative constant, of the form

A = i∗
(∑
a,b

Jab x
b dxa

)
,

where J is any orthogonal complex structure which induces the canonical

orientation on R4 (that is, if {u1, u2} is a complex basis of (R4, J) then

(u1, Ju1, u2, Ju2) is positively oriented) and i : S3 ↪→ R4 is the canonical in-

clusion. This can also be checked directly.

Also, any solution A of (3.6.2) can be written A = ∗ i∗(F ) where F ∈
Λ2

+(R4) is a self-dual two-form.

In fact, by using these characterisations an alternative proof for Propo-

sition 3.6.5 can be obtained. First, note that, for each one of the equations

(3.6.1) and (3.6.2) we have a three dimensional space of solutions. Then, it is

easy to see that if A satisfies (3.6.1) or (3.6.2) then A is coclosed and ∆A = 4A

where ∆ is the Hodge Laplacian on S3 . Thus A is in the eigenspace corre-

sponding to the first eigenvalue of ∆ acting on coclosed one-forms of S3 and

it is well-known that this space is of dimension six (see [23, 7.2] or apply one

of the results from [41, page 148] and [35, Chapter II, Theorem 2.3] ).

Proposition 3.6.7. Let ϕ : (M4, g)→ (N3, h) be a surjective harmonic mor-

phism of type (iii) such that (N3, h) is complete, simply-connected and ϕ has

connected fibres.

Then there exists a ∈ R such that, up to homotheties, ϕ is a restriction

of ϕa :
(
R4 \{0}, ga

)
→ (S3, h) from Example 3.6.4 .

Proof. Up to a homothety, we can identify (N3, h) with S3 considered

with its canonical metric and orientation. Let λ be the dilation of ϕ . Then,

by Proposition 3.6.5 , there exists a ∈ R such that, up to an isometry of S3 ,
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−1
2 H ∗(d(λ−2)) = aϕ∗(A) where A ∈ Γ(T ∗S3) is as in Example 3.6.4 . By

Proposition 3.6.1 , ϕ is submersive and let V = kerϕ∗ . Because V is ori-

entable we can find V ∈ Γ(V ) such that g(V, V ) = λ2 .

Because ϕ is of type (iii) we have that V (λ−2) is a nonzero constant.

This implies that the restriction of λ to any fibre of ϕ is a diffeomorphism

onto some open subinterval of (0,∞) . Hence the map Φ : M4 → S3 × (0,∞)

defined by Φ(x) = (ϕ(x), λ(x)−1) , x ∈M4 , is a diffeomorphic embedding.

Then from the proof of Theorem 3.5.4 it follows that the map Φ from

(M4, g) to
(
S3× (0,∞), ga

)
is a local isometry and hence an isometric embed-

ding. Also, it is obvious that ϕa ◦ Φ = ϕ . �

Corollary 3.6.8. Let ϕ : (M4, g) → (N3, h) be a surjective harmonic mor-

phism of type (iii) with connected fibres and such that (N3, h) is complete.

Then (M4, g) is not complete.

Proof. Up to homotheties, the universal covering of (N3, h) is S3 with its

canonical metric and orientation. Then, ϕ can be pulled back via S3 → N3

to a harmonic morphism whose total space is complete if and only if (M4, g)

is complete. Define Φ as in the proof of Proposition 3.6.7 . Then Φ is a local

isometry and because (R4\{0}, ga) is not complete (M4, g) is not complete. �

3.7. Harmonic morphisms ϕ : (M4, g)→ (N3, h)

between Einstein manifolds

In this section (M4, g) and (N3, h) will be Einstein manifolds of dimen-

sion four and three, respectively, (since N3 is three-dimensional this means

that (N3, h) is of constant curvature) and ϕ : (M4, g) → (N3, h) will be a

harmonic morphism. Recall that, by a result of P. Baird [4, Proposition 5.1] ,

the set of critical points of ϕ is discrete and hence, by the second axiom of

countability, at most countable.

We now state one of the main results of this section enumerating all sur-

jective submersive harmonic morphisms between complete simply-connected

Einstein manifolds of dimension four and three, respectively.



102 Radu Pantilie

Theorem 3.7.1. Let (M4, g) be a complete simply-connected Einstein mani-

fold and let (N3, h) be complete, simply-connected and with constant curvature.

Let ϕ : (M4, g)→ (N3, h) be a surjective submersive harmonic morphism

with connected fibres.

Then, up to homotheties, ϕ is one of the following projections: R4 → R3 ,

H4 → R3 , H4 → H3 induced by the following canonical warped-product de-

compositions R4 = R1 × R3 , H4 = H1 ×r R3 , H4 = H1 ×s H3 where Hk

denotes the hyperbolic space of dimension k .

Proof. First we prove that (M4, g) has constant curvature and that ϕ has

geodesic fibres and integrable horizontal distribution.

By Corollaries 3.5.5 and 3.6.8 either (i) the vertical distribution of ϕ is

Riemannian and locally generated by Killing fields or (ii) ϕ has geodesic fibres

and integrable horizontal distribution.

Suppose that case (i) holds. Then there exists a function λ̌ on N3 such

that eσ = ϕ∗(λ̌). Also, there exists a two-form F on N3 such that Ω = ϕ∗(F ) .

Furthermore, by Remark 3.4.2 , we have

F = ∗ dλ̌−2 , (3.7.1)

where ∗ is the Hodge star-operator on (N3, h) .

But dF = 0 and thus (3.7.1) implies that λ̌−2 is a positive harmonic

function on (N3, h) .

From (A.2.23) and (A.2.25) we obtain

kN = λ̌−2 cM (3.7.2)

where kN is the constant sectional curvature of (N3, h) and cM is the Einstein

constant of (M4, g) . Thus either λ̌ is constant or kN = cM = 0 . But in

the latter case, by Liouville’s theorem, λ̌−2 must be constant. Hence, ϕ has

geodesic fibres. Moreover, by (3.7.1) , F = 0 ; equivalently, H is integrable.

Thus, we always have case (ii). The fact that (M4, g) has constant cur-

vature now follows from Corollary 3.3.2 .

Note that H is an Ehresmann connection for ϕ (see [9] ); moreover, H
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is flat (i.e. integrable). Hence, any maximal integral submanifold of it is a cov-

ering space of N3 . But N3 is simply-connected and hence ϕ admits a (global)

horizontal section. The proof of the theorem follows. �

From the proof of Theorem 3.7.1 we, also, obtain.

Proposition 3.7.2. Let ϕ : (M4, g) → (N3, h) be a harmonic morphism be-

tween Einstein manifolds and let λ be its dilation . Suppose that the regular

fibres of ϕ form a Riemannian foliation.

Then, up to homotheties, ϕ can be (locally) characterised as follows:

• (M4, g) is Ricci-flat and (N3, h) is flat;

• λ−2 is the pull back of a local positive harmonic function u on (N3, h)

(in particular, λ−2 is a harmonic function on (M4, g) );

• Any local connection form A (= s∗θ) of the horizontal distribution sat-

isfies

dA = ∗ du ,

where ∗ is the Hodge star-operator of (N3, h) with respect to some (local)

orientation (equivalently, the curvature form F = dA satisfies the monopole

equation F = ∗ du);

• In a neighbourhood of the local section s of ϕ where ϕ is equivalent to

a projection we have

g = uh+ u−1(dt+A)2 .

Remark 3.7.3. 1) Note that the metric g of Proposition 3.7.2 is constructed

by applying the Gibbons-Hawking construction [31] , [24] (cf. [40]).

2) Let ϕ : (M4, g)→ (N3, h) be a harmonic morphism between Einstein

manifolds. If (M4, g) does not have constant curvature or the horizontal dis-

tribution is nonintegrable then (M4, g) is Ricci-flat and ϕ is of type (i) (and

hence locally given as in Proposition 3.7.2) or type (iii) of Theorem 3.5.4 .

This follows from Theorem 3.5.4 and Corollary 3.3.2 .

Let a ≥ 0 . If we apply the Gibbons-Hawking construction (with the

convention dA = − ∗ du) to the harmonic function ua : R3 \ {0} → (0,∞)
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defined by ua(y) = 1
4

(
1
|y| + a

)
, y ∈ R3 \ {0} , then the following metric is

obtained [31] , [24] (see [40]).

Definition 3.7.4. Let a > 0 . The Gibbons-Hawking Taub-NUT metric is

the Riemannian metric on R4 defined by

ga = (a|x|2 + 1) g0 −
a(a|x|2 + 2)
a|x|2 + 1

(
−x2 dx1 + x1 dx2 − x4 dx3 + x3 dx4

)2
.

For a = 0 this gives the canonical metric g0 on R4 .

Note that g1 is discussed in [40] .

Remark 3.7.5. 1) For any a ≥ 0 the Hopf polynomial map ϕ :
(
R4, ga

)
→(

R3, h0

)
,
(
z1, z2

)
7→
(∣∣z1

∣∣2− ∣∣z2
∣∣2, 2z1z2

)
, can be thought of as the harmonic

morphism induced by the isometric action (see Example 2.3.22(1) ) of S1 on

(R4, ga) where h0 is the canonical metric on R3 . In particular, (R4, ga) is

Ricci-flat for any a ≥ 0 ; moreover, (R4, ga) is, also, self-dual (see [56] ) and

therefore hyper-Kähler.

2) Moreover, we can consider a = ϕ∗(ǎ) to be the pull back of a nonneg-

ative harmonic function ǎ defined in the neighbourhood of 0 ∈ R3 . Then, the

resulting metric ga is still Ricci-flat self-dual and with respect to it the Hopf

polynomial map, suitably restricted, is a harmonic morphism.

For the next construction we follow C.R. LeBrun’s discussion [40] of the

Gibbons-Hawking construction [31] , [24] .

Example 3.7.6. Let u : R3 \Cu → (0,∞) be a positive harmonic func-

tion whose set of singularities Cu = {yj}j∈I is discrete. Hence I is finite or

countable. Thus by applying Bôcher’s theorem, the ‘minimum’ and Harnack’s

principles (see [2]) we obtain

u(y) = a+
∑
j∈I

bj
|y − yj |

(y ∈ R3) , (3.7.3)

where a ≥ 0 and bj ≥ 0 are nonnegative constants. Suppose that u has the

same residue b (> 0) at each singular point, i.e. bj = b for each j ∈ I.

Let Fu ∈ Γ(Λ2(T ∗(R3 \Cu))) be defined by Fu = − ∗ du where ∗ is the
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Hodge star-operator on R3 . Because u is harmonic we have dFu = 0 . Then,

taking S1 = R/4πbZ , the cohomology class

1
4πb

[Fu] ∈ H2(R3 \Cu,Z) = H1(R3 \Cu, S1)

is the first Chern class of a principal bundle ξu = (Pu, R3 \Cu , S1) with pro-

jection ψu : Pu → R3 \Cu . It is not difficult to see, by using the homotopy

sequence of ξu , that Pu is simply-connected.

As is well-known, Fu is the curvature form of a principal connection given

by θu ∈ Γ(T ∗Pu) . Note that if A is a local connection form of θu with respect

to some local section of ξu , then dA = − ∗ du .

Let h0 be the canonical metric on R3 and define γu = ψ∗u(uh0)+ψ∗u(u−1)θ2
u .

Then ψu : (Pu, γu)→ (R3 \Cu, h0|R3\Cu) is a harmonic morphism.

The key point of the construction is the fact that ψu can be extended to

a harmonic morphism whose codomain is R3 .

To prove this, first note that if Cu = {0} then ξu is the cylinder on the

Hopf bundle (S3, S2, S1) and hence ψu is the restriction of the Hopf polyno-

mial map to R4 \ {0} . Moreover, one can easily verify that γu is homothetic

to the restriction of the Gibbons-Hawking Taub-NUT metric g4a to R4 \ {0}
where, from now on, we consider, for simplicity, that b = 1

4 .

Let v(y) = b
|y−y1| and w = u− v . Then

ξu = ξv+w = ξv|R3\Cu · ξw|R3\Cu

where ‘ · ’ denotes the group operation in H1(R3 \Cu, S1) . There exists a

neighbourhood U of y1 such that U ∩ Cu = {y1} and hence w|U is a well-

defined positive harmonic function. By taking U to be contractible we get

that ξw|U is trivial (equivalently, it is the neutral element of H1(U, S1) ). Then

ξu|U\{y1} = ξv|U\{y1} and hence ψu can be extended so that its image contains

y1 . More precisely, we can add a point x1 to ψ−1
u (U) such that the extended

map is smoothly equivalent in a neighbourhood of x1 to the cone on the Hopf

fibration S3 → S2 . Moreover, because w has no singularities in U the metric

γu extends over x1 to a metric which is homothetic, in the neighbourhood of

x1 , to the metric g4w of Remark 3.7.5(2) .
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In this way (Pu, γu) can be extended to a Riemannian manifold (Mu, gu)

and ψu can be extended to a surjective harmonic morphism ϕu : (Mu, gu) →
(R3, h0) where h0 is the canonical metric on R3 . Note that (Mu, gu) is Ricci-

flat, simply-connected and that ϕu is induced by an isometric action.

Proposition 3.7.7. Let (M4, g) be a four-dimensional Einstein manifold and

let ϕ : (M4, g)→ (N3, h) be a harmonic morphism with one-dimensional fibres

to a three-dimensional Riemannian manifold.

If ϕ has critical points, then (M4, g) is Ricci-flat and the fibres of ϕ are

locally generated by Killing vector fields. If, further, the vertical distribution

of ϕ is orientable then there exists a (real-analytic) Killing vector field tangent

to the fibres of ϕ whose zero set is equal to the set of critical points of ϕ .

Proof. As ϕ has critical points, by Corollary 3.5.5 and Proposition 3.6.1 ,

either the fibres of ϕ are locally generated by Killing vector fields or ϕ is a

horizontally homothetic submersion. But in the latter case, by a result of

B. Fuglede [22] , ϕ would be submersive.

Suppose that the vertical distribution V of ϕ is orientable and let λ be

the dilation of ϕ . Also, as above, let V ∈ Γ(V ) be such that g(V, V ) = λ2, let

θ be its vertical dual and denote Ω = dθ .

Obviously, V can be extended to a continuous vector field on M whose

zero set is equal to Cϕ , the set of critical points of ϕ .

Then Proposition 3.1.3 implies that V is a Killing field on (M\Cϕ, g|M\Cϕ) .

Hence it satisfies the equation

∇∗∇V = MRicci(V ) (3.7.4)

(see, for example, [35, page 44]), where MRicci ∈ Γ(TM ⊗ T ∗M) denotes the

(1,1) tensor field associated to the Ricci tensor of (M4, g) . From the regular-

ity of solutions of elliptic equations (see [11, page 467]) it follows that V is a

smooth (in fact, analytic) vector field on M .

To complete the proof we have to show that (M4, g) is Ricci-flat, without

the assumption that V is orientable. Nevertheless, as Cϕ is discrete, for any

critical point x0 there exists a neighbourhood U such that V restricted to
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U \ {x0} is orientable. Moreover, by [16] , we may suppose that ϕ|U is topo-

logically equivalent to the cone over the Hopf fibration S3 → S2; in particular,

ϕ|U has connected fibres.

Then, on U \ {x0} , because λ and Ω are basic they are the pull-backs of

a function and a two-form, respectively, which are defined on N3 . For sim-

plicity, we shall denote the corresponding objects on N3 by the same letters

λ and Ω. Recall that MRicci = cMg and g|H = λ−2ϕ∗(h) . Thus (A.2.23)

can be written as an equation on N3. Furthermore, by applying (A.2.25) , the

corresponding equation on N3 can be written as follows:

NRicci = 2cMλ−2 h− 1
2λ

4(∗Ω)⊗ (∗Ω) + 2λ−2 dλ⊗ dλ . (3.7.5)

From (3.7.5), it follows that any vector orthogonal to both (∗Ω)] and

gradλ is an eigenvector for NRicci , the corresponding eigenvalue being cMλ−2 .

Hence, if cM 6= 0 , this eigenvalue tends to ∞ as we approach a critical value

of ϕ , which is obviously impossible (apply, for example, Lemma A.3.1 ) . Thus

cM = 0 , i.e., MRicci = 0 . �

We can now prove the next main result of this section enumerating all the

surjective harmonic morphisms with critical points between complete, simply-

connected Einstein manifolds of dimensions four and three.

Theorem 3.7.8. Let (M4, g) be a complete Einstein manifold and let (N3, h)

be complete, simply-connected and with constant curvature.

Let ϕ : (M4, g)→ (N3, h) be a surjective harmonic morphism; denote its

dilation by λ . Suppose that ϕ has critical points.

Then, up to homotheties, (N3, h) = (R3, h0) where h0 is the canoni-

cal metric on R3 . Moreover, λ−2 = ϕ∗(u) for a positive harmonic function

u : R3 \ Cu → (0,∞) having the same (positive) residue at each (fundamental)

pole y ∈ Cu, (M4, g) = (M4
u , gu) and ϕ = ϕu .

Proof. By passing to a two-fold covering we can suppose that the verti-

cal distribution of ϕ is orentable. Then, by Proposition 3.7.7 , there exists a

Killing field V on (M, g) tangent to the fibres of ϕ .

Although ϕ has critical points, an argument due to R. Hermann (see [11,
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9.45]) can be adapted to prove that the horizontal distribution H (which is

well-defined outside the set of critical points) is an Ehresmann connection [12]

for ϕ restricted to the set of regular points. By applying [11, 9.40] , it is easy

to see that ϕ can be factorised into a harmonic morphism with connected fi-

bres followed by a Riemannian covering over (N3, h) . But the latter must be

trivial because N3 is simply-connected and hence ϕ has connected fibres.

Now, as in the proof of Theorem 3.7.1 we obtain (3.7.2) and the monopole

equation (3.7.1) and hence λ̌−2 is a harmonic function where λ = ϕ∗(λ̌) .

Because ϕ has critical points its dilation cannot be constant. This, to-

gether with (3.7.2) , implies that (M4, g) is Ricci-flat and (N3, h) is flat. Hence,

up to homotheties, (N3, h) = (R3, h0) where h0 is the canonical metric on R3 .

Using the completeness of (M4, g) and the fact that V is Killing it is not

difficult to prove (directly or by using Theorem 3.1.9) that the restriction of

ϕ to the set of regular points is the projection of a principal bundle ξ with

group (R,+) or (S1, ·) and the horizontal distribution is a principal connec-

tion on it. But ϕ extends the projection of ξ over the critical points. Hence

in the neighbourhood of each critical point ξ is a restriction of the cylinder on

the Hopf bundle (S3, S2, S1) or its dual. Hence the structural group of ξ is

S1 = R/LZ where L (> 0) is the period of the orbits of V .

Let {yj}j∈I be the set of critical values of ϕ . Using the Chern-Weil mor-

phism (see [36]) and (3.7.1) it is easy to see that the first Chern number of ξ

suitably restricted to a sphere about any yj is given by c1 = −4πbj/L where

bj(> 0) is the residue of λ̌−2 at yj . But we must have c1 = ±1 and hence

bj = bk for any j, k ∈ I and the proof follows. �

Remark 3.7.9. Note that the period L of V is the mass of the regular fibres,

i.e. L =
∫

fibre ρ where ρ (= λ−1) is the density of ϕ . Because ρ is constant

along the fibres we have that L is equal to ρ|fibre multiplied by the length of

the considered fibre (see Definition 4.2.1).

We end this section with the following classification result.

Theorem 3.7.10. Let (M4, g) be a complete Einstein manifold and let (N3, h)

be complete, simply-connected and with constant curvature.
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Let ϕ : (M4, g) → (N3, h) be a surjective harmonic morphism. Suppose

that ϕ has exactly one critical point.

Then there exists a ≥ 0 such that, up to homotheties, ϕ : (R4, ga) →
(R3, h0) is the Hopf polynomial map with ga the Gibbons-Hawking Taub-NUT

metric (a > 0) and g0 , h0 the canonical metrics on R4 , R3 , respectively.

Proof. This follows from Theorem 3.7.8 . �

3.8. The classification on conformally-flat Riemannian manifolds

This section is devoted to the following result and its consequences.

Theorem 3.8.1. Let ϕ : (Mn+1, g) → (Nn, h) be a harmonic morphism be-

tween Riemannian manifolds, (n ≥ 3) ; denote by λ the dilation of ϕ .

If (Mn+1, g) is real-analytic and conformally-flat then either

(i) ϕ is of Killing type, or

(ii) the horizontal distribution of ϕ is integrable and its leaves endowed

with the metrics induced by λ−2n+4g have constant curvature.

Proof. By Corollary 1.3.3 , at least away of the critical points (which may

occur only if n = 3 , see [9] ), we have ϕ : (Mn+1, g)→ (Nn, h) real-analytic.

As the dimension of the intersection of (the complexification of) H with

any isotropic two-dimensional space, on (Mn+1, g) , is at least 1 , Proposition

A.4.2 implies that (Mn+1, g) is conformally-flat if and only if, for any U ∈ Γ(V )

and X,Y ∈ Γ(H ) with g(U,U) = g(X,X) , g(X,Y ) = 0 , g(Y, Y ) = 0 , we

have RM (U ± iX,Y, U ± iX,Y ) = 0 ; equivalently,

RM (U, Y, U, Y ) = RM (X,Y,X, Y )

RM (U, Y,X, Y ) = 0 .
(3.8.1)

From (A.2.2) , it follows quickly that the second relation of (3.8.1) is equivalent

to

(h∇Y Ω)(X,Y ) + 3(n− 1)Y (σ)Ω(X,Y ) = 0 . (3.8.2)

Thus, by assuming X and Y basic and using Lemma 3.1.1 , we obtain

Y (V (σ))Ω(X,Y ) = 0 , (3.8.3)
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where V is the fundamental vector field of ϕ .

Next, we shall use the first relation of (3.8.1) . For this, we assume X and

Y basic with g(X,X) = e−2σ (equivalently, h(X,X) = 1 ), and U = e−(n−1)σV

(so that, g(U,U) = g(X,X) ). Thus, the first relation of (3.8.1) becomes

e−(2n−2)σRM (V, Y, V, Y ) = RM (X,Y,X, Y )

which, by applying (A.2.1) and (A.2.3) , is equivalent to

RN (X,Y,X, Y ) = −(n− 1)h(h∇Y (H (gradh σ)), Y )− (n− 1)2Y (σ)2

+
1
4

e(2n−2)σ
{
h(iY Ω, iY Ω) + 3Ω(X,Y )2

}
,

(3.8.4)

where we have denoted by the samy symbol RN and its pull-back by ϕ to

Mn+1.

We may assume that Y is the horizontal lift of an isotropic geodesic (local)

vector field on (the complexification of) (Nn, h) ; equivalently, h∇Y Y = 0 .

Then (3.8.4) becomes

RN (X,Y,X, Y ) = −(n− 1)Y (Y (σ))− (n− 1)2Y (σ)2

+
1
4

e(2n−2)σ
{
h(iY Ω, iY Ω) + 3Ω(X,Y )2

}
.

(3.8.5)

As RN (X,Y,X, Y ) is basic, from (3.8.3) and (3.8.5) it easily follows that

either Ω = 0 or

V (σ)
{
h(iY Ω, iY Ω) + 3Ω(X,Y )2

}
= 0 . (3.8.6)

Now, from Ω 6= 0 it follows that there exist Y ∈ H isotropic and X ∈
Y ⊥ ∩H such that the second factor of the left hand side of (3.8.6) is not

zero. Thus, we have proved that either Ω = 0 (equivalently, H is integrable)

or V (σ) = 0 (equivalently, ϕ is of Killing type).

Next, we study the case Ω = 0 . Then (3.8.2) (and hence, also, the second

relation of (3.8.1) ) is automatically satisfied, whilst (3.8.4) is equivalent to

RN (X,Y,X, Y ) = h∇(dH u)(Y, Y )− (dH u)(Y )2 , (3.8.7)

where u = −(n− 1)σ and, recall that, X and Y are basic with h(X,X) = 1 ,

h(X,Y ) = 0 and h(Y, Y ) = 0 .
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Let h1 = e2uh|H = e(−2n+4)σg|H .

We have proved that, if H is integrable, (3.8.1) is equivalent to the fact

that the curvature tensor RP of any leaf P of H , endowed with the metric

induced by h1 , satisfies RP (X,Y,X, Y ) = 0 .

It follows that if H is integrable then h1 induces a conformally-flat Ein-

stein metric on each leaf of H ; equivalently, h1 induces a metric of constant

curvature on each leaf of H . The proof is complete. �

Example 3.8.2. Let (Nn, h) be Rn, endowed with the canonical metric, and

let

Mn+1 =
{

(t, x) ∈ R× Rn
∣∣ |tx| < 1

}
,

where | · | denotes the Euclidean norm on Rn.

Define λ : Mn+1 → (0,∞) by λ(t, x) = (1−|tx|2)
1

n−1 , (t, x) ∈Mn+1, and

let g = λ−2h+ λ2n−4 dt2.

Then ϕ : (Mn+1, g) → (Nn, h) , (t, x) 7→ x , is a harmonic morphism

which satisfies assertion (ii) of Theorem 3.8.1 ; in particular, (Mn+1, g) is

conformally-flat, (n ≥ 3) . Furthermore, ϕ is neither of Killing type nor its

fibres are geodesics.

Remark 3.8.3. If n = 3 then Theorem 3.8.1 holds, also, in the complex-

analytic category. Indeed, the only point in the proof of Theorem 3.8.1 where

it is essential for ϕ to be ‘real’ is when we deduce from Ω 6= 0 that there exist

Y ∈ H isotropic and X ∈ Y ⊥ ∩H such that the second factor of the left

hand side of (3.8.6) is not zero. But, if n = 3 and h(X,X) = 1 then

h(iY Ω, iY Ω) + 3Ω(X,Y )2 = 4Ω(X,Y )2 ,

which, also, in the complex-analytic category, is not zero, for suitable choices

of X and Y , if Ω 6= 0 .

For the proof of the following result the interested reader should con-

sult [53] .

Corollary 3.8.4. The Hopf polynomial map ϕ : R4 → R3 is, up to local

conformal diffeomorphisms with basic conformality factors, the only harmonic
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morphism with one-dimensional fibres and nonintegrable horizontal distribu-

tion between conformally-flat Riemannian manifolds, of dimensions at least

three.

We end this chapter with the following result of R.L. Bryant.

Corollary 3.8.5 ([14]). For n ≥ 3 let (Mn+1, g) be a Riemannian manifold

with constant sectional curvature and let ϕ : (Mn+1, g) → (Nn, h) be a sub-

mersive harmonic morphism with orientable vertical distribution.

Then, either

(i) the fibres of ϕ form a Riemannian foliation generated by a Killing

field or

(ii) ϕ is horizontally homothetic and has geodesic fibres orthogonal to an

umbilical foliation by hypersurfaces.

Proof. This is a trivial consequence of Theorems 3.4.1 , 3.5.4 and 3.8.1 .

�



CHAPTER 4

Harmonic morphisms on compact Riemannian

manifolds

4.1. Mixed curvature and harmonic morphisms

In this section we give some applications of (A.1.1) of Appendix A to

harmonic morphisms.

The following Proposition is a generalization to conformal one-dimensional

foliations of the corresponding results for Riemannian one-dimensional folia-

tions from [58] .

Proposition 4.1.1. Let (M, g) be compact.

(i) If (M, g) has nonpositive Ricci curvature, then any conformal one-

dimensional foliation is Riemannian and its orthogonal complement is a totally

geodesic foliation. Further, Ricci(U,U) = 0 for any U tangent to the foliation.

(ii) If (M, g) has negative Ricci curvature then there exists no one-dimen-

sional conformal foliation on it.

Proof. By passing to a finite covering, if necessary, we can suppose that

both the foliation V and the manifold M are oriented.

Since V is conformal we have H B 0 = 0 where H B 0 is the trace-free

part of H B . But, as for any codimension one foliation, H is also conformal.

Hence V B 0 = 0.

Next, note that, because V is one-dimensional, the mixed curvature is

equal to the Ricci curvature restricted to V .

Thus integrating (A.1.1) gives∫
M

Ricci(U,U) vg =
∫
M

{p− 1
p
| trace(HB)|2 +

1
4
|HI|2

}
vg ,
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where U is a unit vector field tangent to V and vg is the volume element of

(M, g).

The proposition follows. �

By a well-known result of S. Bochner (see [35, Ch. II, Theorem 4.3] ) any

Killing field on a compact Riemannian manifold with nonpositive Ricci tensor

is parallel. The following theorem can be viewed as an extension of that result.

Theorem 4.1.2. On a compact Riemannian manifold with nonpositive Ricci

curvature any one-dimensional foliation which produces harmonic morphisms

and admits a global density is locally generated by parallel vector fields. In par-

ticular, it is Riemannian, has geodesic leaves and its orthogonal complement is

a totally geodesic Riemannian foliation. Hence the foliation corresponds to a

local Riemannian product structure of the manifold. In particular, the univer-

sal cover of (M, g) is a Riemannian product. If M is simply-connected, or the

foliation is simple and the base space is simply-connected, then the foliation

corresponds to a Riemannian product structure on (M, g) .

Proof. If the dimension of the manifold is three then the leaves are

geodesics. This together with Proposition 4.1.1 , gives the result.

Assume that the manifold has dimension greater than three. As before,

by passing to a finite covering if necessary, we can suppose that both the foli-

ation V and the manifold M are oriented.

By Proposition 4.1.1 the foliation is Riemannian; hence, by the proof

of Proposition 3.1.3 , it is globally generated by a Killing field, namely ρ−1U

where ρ is a global density for V and U is a unit vertical vector field. Now,

Bochner’s result mentioned above implies that the foliation is generated by

parallel vector fields. Hence V is a Riemannian foliation by geodesics and its

orthogonal complement is a totally geodesic Riemannian foliation.

The fact that V induces on the universal cover of (M, g) a Riemannian

product structure follows from the de Rham decomposition theorem. If the

foliation is simple then the leaves are compact and, hence, any curve in the

base space admits (global) horizontal lifts, these induce an isometry between

the fibres over the endpoints of the curve. Since the horizontal distribution is
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integrable, this isometry depends only on the homotopy class of the curve. It

follows that, when the base space is simply-connected, this isometry depends

only on the two fibres and the theorem is proved. �

Remark 4.1.3. 1) In Proposition 4.1.1(i) and Theorem 4.1.2 we can replace

the condition on the Ricci curvature by the condition:
∫
M Ricci(U,U) vg ≤ 0

for any vector field U tangent to the foliation.

2) The nonexistence, due to S. Bochner, of Killing vector fields on com-

pact Riemannian manifolds with negative Ricci tensor can be proved by using

(A.1.1) . In fact, if V is a Killing field on (M, g) which generates the (possi-

bly singular) foliation V , and σ = |V | then σ−1 is a dilation for the homo-

thetic distribution H (see the proof of Proposition 3.1.3). By (1.4.1) we have

trace(V B) = grad(log(σ−1)) . It is easy to see that, in this case, (A.1.1) gives

(sign convention for the Laplacian as in [11])

σ∆σ + | gradσ|2 +
1
4
σ2
∣∣H I

∣∣2 = Ricci(V, V ) . (4.1.1)

If σ attains a maximum at a point where V is not zero then the left hand

side of (4.1.1) is nonnegative from which the result follows.

3) Recall that, by another well-known result of S. Bochner, on a compact

Riemannian manifold with positive Ricci curvature there exists no harmonic

one-forms (in particular, the first Betti number of such a manifold is zero). As

is well-known (see [11]) this can be proved by using the Weitzenböck formula

for the Hodge Laplacian acting on exterior forms. Also formula (A.1.1) can

be obtained from the Weitzenböck formula applied to a local volume form of

one of the two distributions.

By Corollary 1.1.14 , any foliation which produces harmonic morphisms

on a simply-connected manifold admits a global density and hence, in this

case, the hypotheses of the above theorem can be weakened. Also, we have

the following:

Corollary 4.1.4. Any nonconstant submersive harmonic morphism with fi-

bres of dimension one which is defined on a compact Riemannian manifold

such that the Ricci curvature Ricci(U,U) is nonpositive when U is tangent
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to the fibres is totally geodesic (or up to a conformal transformation of the

codomain if this is two-dimensional). Hence, if the total space or the base

space is simply-connected, up to a homothety of the codomain (up to a confor-

mal transformation of the codomain if this is two-dimensional), it is a projec-

tion of a Riemannian product.

In order to apply it to nonnegative curvature, note that formula (A.1.1)

can also be written

div(trace(HB)) + div(trace(VB)) +
∣∣ trace(HB)

∣∣2 +
∣∣ trace(VB)

∣∣2
+

1
4

∣∣HI∣∣2 +
1
4

∣∣VI∣∣2 =
∣∣HB∣∣2 +

∣∣VB∣∣2 + smix . (4.1.2)

The next result applies to arbitrary foliations, not necessary conformal.

Proposition 4.1.5. Let (M, g) be a compact Riemannian manifold.

(i) Let V and H be two complementary orthogonal foliations whose mean

curvatures are (globally) gradient vector fields. If the mixed curvature is non-

negative then V and H are totally geodesic and hence they induce on (M, g)

a local Riemannian product structure. Thus, the universal cover of (M, g) is

globally a Riemannian product.

(ii) If the mixed curvature is positive then there exists no pair of com-

plementary orthogonal foliations on (M, g) for which the mean curvatures are

gradient vector fields.

Proof. If trace(H B) = grad(log u) and trace(V B) = grad(log v) for some

smooth positive functions u and v on M , then, (4.1.2) gives the following:

−∆(log u)−∆(log v)+ | grad(log u)|2 + | grad(log u)|2 = |H B|2 + |V B|2 +smix .

(4.1.3)

Equation (4.1.3) can be written as follows:

− u−1∆u− v−1∆v = |H B|2 + |V B|2 + smix . (4.1.4)

Since gradu and grad v are orthogonal (the former being vertical whilst

the latter is horizontal) relation (4.1.4) can be written as follows:

−u−1v−1∆(uv) = |H B|2 + |V B|2 + smix .
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The proof follows by multiplying by u v and integrating over M . �

Corollary 4.1.6. Let (M, g) be compact and with zero first Betti number. Let

V be a homothetic foliation with codimV 6= 2 which produces harmonic mor-

phisms on (M, g) and has integrable orthogonal complement. Then

(i) the total mixed curvature
∫
M smix vg is nonpositive.

(ii) if the mixed curvature is nonnegative then it is identically zero and

V and H are totally geodesic. Hence, the universal cover of (M, g) is globally

a Riemannian product.

On a compact Riemannian manifold with positive sectional curvature

there exists no homothetic foliation which produces harmonic morphisms and

has integrable orthogonal complement.

In Theorem 4.2.11(i) we shall prove that for one-dimensional foliations

the last assertion from above proposition is true without the integrability

assumption on H , when dimM is even and greater than two.

Proof. Since V is homothetic the mean curvature form of H is closed.

But V produces harmonic morphisms and hence, by Corollary 1.4.1 , the mean

curvature form of V is also closed. Since the first Betti number of M is zero

both mean curvatures are globally gradient vector fields. The proof follows

from Proposition 4.1.5. �

Remark 4.1.7. 1) Recall (Remark 1.4.9) that Riemannian foliations are ho-

mothetic, as are the foliations with minimal leaves of codimension not equal

to two and which produce harmonic morphisms.

2) If codimV = 1 then the integrability assumption on the orthogonal

complement of V , made above, can be removed. Further, the mixed curvature

is equal to the restriction of the Ricci curvature to its orthogonal complement.

3) Corollary 4.1.6 admits further consequences in a similar way to Corol-

lary 4.1.4.

Theorem 4.1.8. Let (M, g) be a compact Riemannian manifold of dimension

at least four, with zero first Betti number and with Ricci curvature of constant

sign.
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Then, there exists no orientable one-dimensional homothetic foliation

which produces harmonic morphisms on (M, g) and which has integrable or-

thogonal complement.

Note that, by Lemma 3.1.7 , the integrability of the orthogonal comple-

ment above is automatic except on the set where V is Riemannian.

Proof. Suppose that there exists a foliation V with the stated properties.

By Corollary 4.1.6 the Ricci curvature of (M, g) is nonpositive. Since M has

zero Betti number, V admits a global density. From Theorem 4.1.2 it follows

that V is locally generated by parallel vector fields. Moreover, being orientable

and admiting a global density, as in the proof of Theorem 4.1.2 , V must be

globally generated by a parallel vector field. Hence, the first Betti number of

M is nonzero. This is a contradiction! �

Corollary 4.1.9. On a compact Riemannian manifold with positive Ricci

curvature, there exists no nonvanishing Killing field with integrable orthogonal

complement.

The following immediate consequence of Proposition A.1.1 slightly im-

proves Proposition 5.9 and Proposition 5.10 from [65] .

Corollary 4.1.10. If V is a Riemannian foliation on (M, g) , and smix < 0

at least at one point of M , then V cannot be totally geodesic.

4.2. Two integral formulae for harmonic morphisms with

one-dimensional fibres

Throughout this section ϕ : (Mn+1, g) → (Nn, h) , n ≥ 1, will denote a

non-constant harmonic morphism defined on a compact Riemannian manifold.

Recall that, by a result of P. Baird [4] , ϕ is automatically submersive if n ≥ 4 .

Since closed, all the fibres of ϕ are compact. As is well known [21] if ϕ is

nonconstant then it is open, hence it is surjective and N is also compact. Let

λ denote the dilation of ϕ ; we shall denote by the same letter h the metric

on N and the metric λg on M of Definition 1.2.3 . This metric should be seen

just as an auxiliary tool and thus, whenever we denote a geometric object on
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the total space of ϕ without mentioning a metric then it should be understood

that the metric considered is g.

Definition 4.2.1. We define the mass of a (regular) fibre of ϕ to be the

positive number

m =
∫

fibre
λ2−n vfibre ,

where vfibre is the volume measure of the fibre induced by the metric (see [39]).

By Proposition 1.1.11 the mass is independent of the (regular) fibre and

it can be defined without any restriction on the dimensions.

Theorem 4.2.2. Let ϕ : (Mn+1, g) → (Nn, h) , (n ≥ 1) be a submersive

harmonic morphism and let SM =
∫
M sM vg , SN =

∫
N s

N vh be the total

scalar curvature of (M, g) and (N,h), respectively. Then

SM −mSN = n(n− 1)‖V (gradg(log λ))‖2

−(n− 1)(n− 2)‖H (gradg(log λ))‖2 − 1
4
‖I‖2 .

(4.2.1)

Let n 6= 2 . Then∫
M
λ2(sM−λ2 sN ) vg = n(n− 5)

∫
M
λ2|V (gradg(log λ))|2 vg

−(n2 − 3n+ 6)
∫
M
λ2|H (gradg(log λ))|2 vg −

1
4

∫
M
λ2|I|2 vg .

(4.2.2)

Here, I = H I is the integrability tensor of the horizontal distribution H .

In what follows we shall use the horizontal Laplacian of the associated

Riemannian submersion with geodesic fibres. This was introduced in [10] and

it can be defined as follows:

Definition 4.2.3. If ϕ : M → (N,h) is a submersion endowed with a dis-

tribution H which is complementary to kerϕ∗ , then the horizontal Laplacian

ϕ∗∆N is the second-order differential operator which acts on a local function

f defined in the neighbourhood of the point x ∈M as follows:

(ϕ∗∆N )(f) = −
∑
j

{
Xj(Xj(f))− ((ϕ∗∇N )XjXj)(f)

}
.
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Here, {Xj} is a local orthonormal frame of H (endowed with the metric in-

duced by h) formed of basic vector fields (i.e. sections of H which are pro-

jectable by ϕ to vector fields on N) , and ∇N is the Levi-Civita connection of

(N,h) .

Remark 4.2.4. Note that (ϕ∗∆N )(f ◦ ϕ) = (∆Nf) ◦ ϕ for any local smooth

function f on N .

Lemma 4.2.5. Let ϕ : (Mn+1, g)→ (Nn, h) be a submersive harmonic mor-

phism and let ∆M and ∆N be the Laplace operators on (M, g) and (N,h) ,

respectively. Then

∆Mf = e2σ (ϕ∗∆N )(f)− e(−2n+4)σ
{
V (V (f))− 2(n− 1)V (f)V (σ)

}
.

Remark 4.2.6. Note that V (V (f)) is just minus the ‘vertical’ Laplacian

[10] applied to f of the Riemannian submersion with geodesic fibres asso-

ciated to ϕ : (M, g) → (N,h). More generally, the ‘vertical’ Laplacian of

ϕ : (M, g) → (N,h) is defined by (∆fibref)(x) = (∆ϕ−1(ϕ(x))(f |ϕ−1(ϕ(x))))(x)

where ∆ϕ−1(ϕ(x)) is the Laplacian of the fibre through x endowed with the

metric induced by g . If ϕ is a Riemannian submersion with totally geodesic

fibres, then the sum of the horizontal and the vertical Laplacians is equal to

the Laplacian of the total space.

Proof of Theorem 4.2.2. Recall from the previous section that smix is the

sum of the sectional curvatures of all planes on (M, g) spanned by a horizontal

and a vertical vector from an orthonormal frame adapted to the decomposition

TM = H⊕V. Let sH denote twice the sum of the sectional curvatures of all

planes on (M, g) spanned by the horizontal vectors of a frame as above.

Using the previous two lemmas and the fact that I = V ⊗ Ω , after

a straightforward computation the following relation can be obtained. (An-

other way to obtain it is to use the previous two lemmas together with Corol-

lary 2.2.4 , from [27] .)

sH −e2σ sN = −2(n− 1)∆Mσ − (n− 1)(n− 2)e2σ|H (gradh σ)|2

−2(n− 1)e(−2n+4)σ V (V (σ)) + (3n− 4)(n− 1)e(−2n+4)σ V (σ)2 − 3
4
|I|2 .

(4.2.3)
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Using (1.1.3) , (1.1.4) together with Lemma 4.2.5 and (A.1.1) , we obtain:

smix = (n− 2)∆Mσ + 2(n− 1)e(−2n+4)σ V (V (σ))

−(3n− 4)(n− 1)e(−2n+4)σ V (σ)2 +
1
4
|I|2 .

(4.2.4)

But it is obvious that sM = sH + 2smix and hence from (4.2.3) and

(4.2.4) we obtain

sM−e2σ sN = −2∆Mσ +
2(n− 1)

n
enσ∆fibre(e−nσ)

+n(n− 1)|V (gradg σ)|2 − (n− 1)(n− 2)|H (gradg σ)|2 − 1
4
|I|2 .

(4.2.5)

Integrating (4.2.5) gives (4.2.1) . Relation (4.2.5) can also be written as

follows:

e2σ sM − e4σ sN = −∆M (e2σ) +
2(n− 1)
n− 2

enσ∆fibre(e(−n+2)σ)

+n(n− 5)e2σ|V (gradg σ)|2 − (n2 − 3n+ 6)e2σ|H (gradg σ)|2 − 1
4

e2σ|I|2 .

(4.2.6)

Integrating (4.2.6) gives (4.2.2), since∫
M

enσ∆fibre(e(−n+2)σ) vg =
∫
N
vh

∫
fibre

∆fibre(e(−n+2)σ) vfibre = 0 .

�

Remark 4.2.7. 1) Suppose that n = 1 , i.e. ϕ : (M2, g) → R is a harmonic

function defined on the surface (M2, g) . Then, equation (4.2.4) above reads:

K = −∆(log | dϕ|) ,

where K is the Gauss curvature of (M, g) . As is well-known this can also be

proved by using the local isothermal coordinates induced by ϕ .

2) Computing λ2(sH +smix) , by adding (4.2.3) and (4.2.4) from the above

proof, we can obtain formula (2.2) from [46] applied to harmonic morphisms

with fibres of dimension one.
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Proposition 4.2.8. Let ϕ : (Mn+1, g) → (Nn, h) , n ≥ 2 be a submersive

harmonic morphism. If U is a unit vector field tangent to the fibres of ϕ then

SM ≤ mSN +
∫
M

Ricci(U,U) vg

and equality holds if and only if ϕ has geodesic fibres and H is integrable.

Note that since, Ricci(U,U) is quadratic in U , we do not need V to be

orientable.

Proof. First recall that Ricci(U,U) = smix , then take the sum of (4.2.3)

and (4.2.4) and use the definition of m. �

Corollary 4.2.9. Let ϕ : (Mn+1, g) → (Nn, h) , n ≥ 2 , be a submersive har-

monic morphism.

(i) If ϕ induces a Riemannian foliation on (M, g) then SM ≤ mSN and

equality holds if and only if ϕ is totally geodesic (up to a conformal transfor-

mation of the codomain if n = 2).

(ii) If ϕ has geodesic fibres and H is integrable then SM ≥ mSN and

equality holds if and only if ϕ is totally geodesic (up to a conformal transfor-

mation of the codomain if n = 2).

From Lemma 3.1.7 it follows that when the set of the points where V is

Riemannian has measure zero then the integrability assumption on H in (ii)

is superfluous.

Proof. (i) This is a trivial consequence of formula (4.2.1) from Theo-

rem 4.2.2.

(ii) If n = 2 , then (4.2.1) from Theorem 4.2.2 gives the result. If

n 6= 2 , by Proposition 1.1.10(b) we have H (gradg λ) = 0 . Now apply formula

(4.2.1) . �

The next corollary improves [46, Theorem 2.5] for the dimensions con-

sidered (see also [27, Corollary 2.2.6]).

Corollary 4.2.10. If n ∈ {3, 4, 5} then
∫
M λ2(sM − λ2 sN ) vg ≤ 0. For

n ∈ {3, 4}, equality holds if and only if ϕ is totally geodesic and, for n = 5,
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equality holds if and only if ϕ has geodesic fibres and H is integrable.

Therefore, for n ∈ {3, 4, 5}, if (Mn+1, g) , (Nn, h) are compact with

sM ≥ 0, sN ≤ 0 and at least one of these inequalities is strict then there exists

no nonconstant submersive harmonic morphism ϕ : (Mn+1, g)→ (Nn, h) .

Proof. This is an immediate consequence of formula (4.2.2) from Theorem

4.2.2. �

To end this section we prove two results on homothetic one-dimensional

foliations which produce harmonic morphisms on compact manifolds, the first

of them being a generalization (refered to in Section 3) of a well-known result

of M. Berger (see [35, Ch. II, Corollary 5.7]) concerning Killing fields. To

prove the first of these two results we shall use Lemma A.2.3.

Theorem 4.2.11. Let M be compact with dimension at least four.

(i) If dimM is even and (M, g) has positive sectional curvature then there

exists no homothetic one-dimensional foliation which produces harmonic mor-

phisms on (M, g).

(ii) If (M, g, J) is Kähler and has zero first Betti number then any ho-

mothetic one-dimensional foliation which produces harmonic morphisms on

(M, g) is Riemannian and locally generated by Killing fields.

Proof. (i) Since (M, g) has positive sectional curvature it has positive

Ricci curvature. Thus from Bochner’s result (see Remark 4.1.3(3) ) it follows

that the first Betti number of M is zero .

Suppose that there exists a homothetic foliation V which produces har-

monic morphisms on (M, g) . Because the first Betti number of M is zero,

it follows from Corollary 1.1.14 that V admits a global density λ2−n where

n+ 1 = dimM . We shall denote by h = λg the associated Riemannian metric

on M which makes V a Riemannian foliation with geodesic leaves.

Since V is homothetic, by Proposition 1.4.2 we see that λ is of the form

ea+b with (d a)V = (d b)H = 0. At a point x ∈ M where a− b attains a

minimum we have

0 ≤ (h∇ d a)(V, V )− (h∇ d b)(V, V ) = −(h∇ d b)(V, V ) ,

0 ≤ (h∇ d a)(X,X)− (h∇ d b)(X,X) = (h∇ d a)(X,X) ,
(4.2.7)



124 Radu Pantilie

where, V is as in Lemma 3.1.1 and X is any horizontal vector at x .

Now, evaluated at x , the first formula from Lemma A.2.3 gives

R(X,V,X, V ) = −(n− 2)e(2n−4)(a+b) (h∇ d a)(X,X)

+ e−2(a+b) (h∇ d b)(V, V )h(X,X)

+
1
4

e(4n−6)(a+b) h(iXΩ, iXΩ) ,

(4.2.8)

for any horizontal vector X.

Since Ω is skew-symmetric it must have even rank at each point. But

dimM is even and iV Ω = 0 and hence there must be a horizontal vector X at x

such that iXΩ = 0. By (4.2.7) and (4.2.8) , the sectional curvature of the plane

spanned by X and V would be nonpositive, contradicting the hypothesis.

(ii) Since the first Betti number of M is zero, the foliation V must admit a

global density. By passing to a two-fold covering if necessary, we can suppose

that V is oriented. Hence, by Proposition 3.1.5 , it must be generated by a

conformal vector field. But by a well-known result of A. Lichnerowicz (see [11,

2.125(ii)]) any conformal vector field is Killing on a compact Kähler manifold

of complex dimension greater than two.

The theorem is proved. �

Remark 4.2.12. 1) Note that statement (i) from Theorem 4.2.11 fails if

dimM is odd , for example the Hopf maps S2n+1 → CPn are harmonic Rie-

mannian submersions.

2) In Theorem 4.2.11(i) , if the sectional curvature K of (Mn+1, g) sat-

isfies K ≥ a2 > 0 on M for some positive constant a , then the compactness

assumption on M can be replaced by the weaker condition that (M, g) be

complete. This follows from a well-known result of S. B. Myers (see [11, 6.51])

noting that the Ricci curvature is ≥ na2 g . (A similar remark can be made

for Corollary 4.1.9 .)

Corollary 4.2.13. Let (M, g) be a compact Riemannian manifold of even di-

mension at least four with zero first Betti number and with sectional curvature

of constant sign.
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Then, there exists no orientable one-dimensional homothetic foliation

which produces harmonic morphisms on (M, g) .

Proof. This follows from Theorem 4.1.2 and Theorem 4.2.11(i) . �

4.3. Harmonic morphisms with one-dimensional fibres

on compact Einstein manifolds

Firstly, we prove the following result.

Proposition 4.3.1. Let (M, g) be a compact Einstein manifold of dimension

at least five and let ϕ : (M, g) → (N,h) be a harmonic morphisms with one-

dimensional fibres.

Then the fibres of ϕ form a Riemannian foliation locally generated by

Killing vector fields.

Proof. By [4] (see [9] ) we have that ϕ is submersive. Furthermore, by

passing to a two-fold covering we may suppose that the vertical distribution

V of ϕ is orientable.

Suppose that assertion (ii) of Corollary 3.4.3 holds and let W be the

(nowhere zero) vertical vector field such that g(W,W ) = λ−2, where λ is the

dilation of ϕ . It follows that ∇W = µ IdTM where µ is a smooth function

on M . Hence, W is conformal and dW [ = 0 . By a result of K. Yano and

T. Nagano (see [35]), either W is Killing or (M, g) is Sm with its canonical

metric, where m = dimM . But in the latter case W = gradu for some

function u on Sm; in particular, W would have zeroes.

The proof is complete. �

We end with the following theorem.

Theorem 4.3.2. Let (M4, g) be a compact four-dimensional Einstein mani-

fold and let ϕ : (M4, g)→ (N3, h) be a non-constant harmonic morphism to a

Riemannian three-dimensional manifold.

Then, up to homotheties and Riemannian coverings, ϕ is the canonical

projection T 4 → T 3 between flat tori.
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Proof. As above, up to a covering, the vertical distribution V of ϕ is

orientable.

If ϕ has critical points then, by Proposition 3.7.7 , we have that (M4, g)

is Ricci-flat and there exists a Killing vector field V tangent to the fibres of ϕ

whose zero set is equal to the set of critical points of ϕ . Then, by a well-known

result of S. Bochner (see [11, 1.84] or apply (3.7.4) ) V is parallel and hence

nowhere zero; in particular, ϕ is submersive.

As V is an orientable one-dimensional foliation on M4, the Euler number

of M4 is zero. Hence, by a result of M. Berger, (M4, g) is flat (see [11, 6.32] ) .

Now, an argument similar to the proof of Proposition 4.3.1 shows that

there exists a (nowhere zero) Killing vector field V tangent to the fibres of ϕ .

Moreover, as (M4, g) is flat we have that V is parallel. Hence, the hori-

zontal distribution H is integrable and, by (A.2.23) , we have that, also, (N,h)

is flat.

From a well-known result of C. Ehresmann [20] it follows that the leaf

space of the foliation formed by the connected components of the regular fibres

of ϕ is smooth. Thus by factorising ϕ , if necessary, into a harmonic morphism

followed by a Riemannian covering we can suppose that ϕ has connected fi-

bres.

Then ϕ is, up to homotheties, the quotient induced by V . Hence, ϕ is

the projection of an S1-principal bundle and the horizontal distribution H

is a flat principal connection on it. Then, each holonomy bundle P of it is

a regular covering over N3 with group the holonomy group H(⊆ S1) of H .

Moreover, P considered with the metric induced by g is flat (actually, up to

homotheties, this is the unique metric with respect to which P → N becomes

a Riemannian covering; in particular, P with the considered metric is com-

plete.) Hence M = P×HS1 and the pull back of ϕ by P → N is the projection

P × S1 → P .

Furthermore, from [36, Chapter V, Theorem 4.2] we deduce that P is

covered by an Euclidean cylinder or by a torus and the proof is complete. �



APPENDIX A

Useful supplementary facts

A.1. On pairs of complementary orthogonal distributions

In this appendix we recall a formula of P. Walczak [67] which relates the

curvature of a Riemannian manifold to the geometric properties of a pair of

complementary orthogonal distributions on it..

Let (M, g) be a Riemannian manifold and H , V a pair of complementary

orthogonal distributions on it, with dim H = p and dim V = q . As before, H

and V will be called the horizontal and the vertical distribution, respectively,

and, the corresponding projections will be denoted with the same letters H

and V . We shall denote by X, Y horizontal vector fields and by U, V vertical

vector fields. Let VB and VI denote the second fundamental form and inte-

grability tensor of V , respectively. Recall that they are the unique H -valued

vertical tensor fields which satisfy

VB(U, V ) =
1
2

H (∇UV +∇V U) ,

VI (U, V ) = −H [U, V ] .

Note the minus sign in the last formula.

Recall that trace(VB) is the mean curvature of V , i.e. if {Uα} is a local

orthonormal frame for V then trace(VB) =
∑

α
VB(Uα, Uα) . We shall also

consider the trace free part VB0 defined by

VB0 = VB −1
q

trace(VB)⊗ gV ,

where gV is the vertical component of g . Also, HB , HI ,HB0 are defined

similarly by reversing the roles of V and H .

Recall that smix denotes the mixed scalar curvature which is the sum of

the sectional curvatures of all planes spanned by a horizontal and a vertical
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vector from an orthonormal frame adapted to the orthogonal decomposition

TM = H ⊕ V . The following result is due to P. Walczak.

Proposition A.1.1 ([67]). With the notations above we have

div(trace(HB)) + div(trace(VB)) +
p− 1
p

∣∣ trace(HB)
∣∣2 +

q − 1
q

∣∣ trace(VB)
∣∣2

+
1
4

∣∣HI
∣∣2 +

1
4

∣∣ VI
∣∣2 =

∣∣HB0

∣∣2 +
∣∣ VB0

∣∣2 + smix . (A.1.1)
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A.2. Curvature formulae for harmonic morphisms

with one-dimensional fibres

In this appendix we rewrite in a convenient way S. Gudmundsson’s fun-

damental equations for horizontally conformal submersions. We do this only

for submersive harmonic morphisms with one-dimensional fibres.

In this appendix V will always denote a one-dimensional foliation which

produces harmonic morphisms on (Mn+1, g) (n ≥ 1) and ρ = e(2−n)σ will de-

note a local density of it. As before, h = eσg (see Definition 1.2.3) will denote

the associated (local) metric on M with respect to which V is Riemannian

and has geodesic leaves and H will denote the orthogonal complement of V .

The following lemma can be obtained by a straightforward computation.

Lemma A.2.1. Let σ = log λ, and let V be a local vertical field such that

g(V, V ) = e(2n−4)σ, and θ its dual vertical 1-form. Then, for any basic X and

Y we have:

H (g∇XY ) = H (h∇XY )−X(σ)Y − Y (σ)X + H (gradh σ)h(X,Y ) ,

V (g∇XY ) =
{

e(−2n+2)σ V (σ)h(X,Y )− 1
2

Ω(X,Y )
}
V ,

H (g∇VX) =− V (σ)X +
1
2

e(2n−2)σ (iXΩ)#h ,

V (g∇VX) = (n− 2)X(σ)V ,

H (g∇V V ) =− (n− 2) e(2n−2)σ H (gradh σ) ,

V (g∇V V ) = (n− 2)V (σ)V .

Here, g∇ and h∇ are, respectively, the Levi-Civita connections of (M, g)

and (M,h), Ω = dθ and #h denotes the musical isomorphism defined by the

metric h.

Remark A.2.2. Note that, if dim V = 0, Lemma A.2.1 becomes a well-known

formula (see [11, 1.159]).

Lemma A.2.3. Let X,Y, Z,H be horizontal and V vertical vectors on M ,

such that g(V, V ) = e(2n−4)σ ; then the curvature tensor MR of (M, g) has the
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following components

MR(X,V, Y, V ) =− 1
2

(n− 2) e(2n−4)σ(LH (gradh σ) h)(X,Y )

− (n− 2) e(2n−4)σ{nX(σ)Y (σ)− |H (gradh σ)|2h h(X,Y )}

+ e−2σ{V (V (σ))− (n− 1)V (σ)2}h(X,Y )

+
1
4

e(4n−6)σ h(iXΩ, iY Ω) ,

(A.2.1)

MR(X,Y, Z, V ) = −1
2

e(2n−4)σ(h∇Ω)(X,Y, Z)

+
1
2

(n− 1) e(2n−4)σ{X(σ)Ω(Y, Z) + Y (σ)Ω(Z,X)− 2Z(σ)Ω(X,Y )}

− e−2σ{X(V (σ))− (n− 2)X(σ)V (σ)}h(Y, Z)

+ e−2σ{Y (V (σ))− (n− 2)Y (σ)V (σ)}h(X,Z)

+
1
2

e(2n−4)σ{Ω(X, gradh σ)h(Y,Z)− Ω(Y, gradh σ)h(X,Z)} ,

(A.2.2)
MR(X,Y, Z,H) = e−2σ NR(ϕ∗X,ϕ∗Y, ϕ∗Z,ϕ∗H)

− 1
4

e(2n−4)σ{Ω(H,X)Ω(Y,Z) + Ω(H,Y )Ω(Z,X)− 2Ω(H,Z)Ω(X,Y )}

− 1
2

e−2σV (σ) {−Ω(Y,H)h(X,Z) + Ω(X,H)h(Y,Z)− Ω(X,Z)h(Y,H)

+ Ω(Y,Z)h(X,H)}

− e−2σ{X(σ)H(σ)h(Y,Z)−X(σ)Z(σ)h(Y,H)− Y (σ)H(σ)h(X,Z)

+ Y (σ)Z(σ)h(X,H)}

+ e−2σ{h(X,Z)h(h∇Y (H (gradh σ)), H)− h(Y,Z)h(h∇X(H (gradh σ)), H)

+ h(Y,H)h(h∇X(H (gradh σ)), Z)− h(X,H)h(h∇Y (H (gradh σ)), Z)}

− e−2σ{h(X,Z)h(Y,H)− h(X,H)h(Y,Z)}{e(−2n+2)σ V (σ)2 + |H (gradh σ)|2h} .
(A.2.3)

Here NR is the Riemannian curvature tensor of the codomain of the harmonic

morphism ϕ : (O, g|O)→ (N, h̄) produced by V and h∇ denotes the Levi-Civita

connection of (M,h).
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Proof. Let {X1, . . . , Xn} be a local frame of H formed of basic vector

fields and let gjk = g(Xj , Xk) , hjk = h(Xj , Xk) , Ωjk = Ω(Xj , Xk). Then

{X1, . . . , Xn, V } is a local frame on M . We shall always denote by j, k, l, r, s

‘horizontal’ indices, by α, β ‘vertical’ indices whilst a, b, c, d, a′ will be any kind

of indices.

For {Ea} a local frame on M we denote, as usual, by {Γcab} the corre-

sponding Christoffel symbols of the Levi-Civita connection of (Mn+1, g), i.e.

g∇EaEb = ΓcbaEc .

Then, the local connection forms {Γba} are characterised by Γba(Ec) = Γbac.

Recall that the components MRd
abc of the curvature form of the Levi-Civita

connection of (Mn+1, g) are given by

MR(Ea, Eb)Ec = MR
d
cab Ed ,

where
MR

d
abc = (dΓda)bc + (Γda′ ∧ Γa

′
a )bc . (A.2.4)

Also, let {hΓcab} be the Christoffel symbols of the Levi-Civita connection

of (Mn+1, h).

Then, from Lemma A.2.1, it follows that the Christoffel symbols of

(Mn+1, g), with respect to the local frame {X1, . . . , Xn, V }, are given by

Γlkj = hΓ
l
kj −Xj(σ) δlk −Xk(σ) δlj +X l(σ)hjk

Γαkj = e(−2n+2)σ V (σ)hjk −
1
2

Ωjk

Γkjα =− V (σ) δkj +
1
2

e(2n−2)σ Ωk
j

Γαjα = (n− 2)Xj(σ)

Γjαα =− (n− 2) e(2n−2)σXj(σ)

Γααα = (n− 2)V (σ)

(A.2.5)

where Xj(σ) = Xl(σ)hlj and Ωk
j = Ωjl h

lk.

Because [V,Xj ] = 0, j = 1, . . . , n, from (A.2.4) we obtain

MR
k
αlα = Xl(Γkαα)− V (Γkαl) + Γkjl Γ

j
αα + Γkαl Γ

α
αα − Γkjα Γjαl − Γkαα Γααl
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which, by applying (A.2.5), becomes

MR
k
αlα =− (n− 2) e(2n−2)σXl(Xk(σ))− 2(n− 1)(n− 2) e(2n−2)σXl(σ)Xk(σ)

+ V (V (σ)) δkl − (n− 1) e(2n−2)σ V (σ)Ωk
l −

1
2

e(2n−2)σ V (Ωk
l )

+ {hΓ
k
jl−Xl(σ) δkj −Xj(σ) δkl +Xk(σ)hjl}{−(n− 2) e(2n−2)σXj(σ)}

+ {−V (σ) δkl +
1
2

e(2n−2)σ Ωk
l } (n− 2)V (σ)

− {−V (σ) δkj +
1
2

e(2n−2)σ Ωk
j }{−V (σ) δjl +

1
2

e(2n−2)σ Ωj
l }

− {−(n− 2) e(2n−2)σXk(σ)} (n− 2)Xl(σ) .

(A.2.6)

Because Ω and Xj are basic we have that Ωk
l is basic and thus V (Ωk

l ) = 0.

Lines two, four and five of (A.2.6) contain the terms linear in Ω. These

are

− (n− 1) e(2n−2)σ V (σ) Ωk
l +

1
2

(n− 2) e(2n−2)σ V (σ) Ωk
l + e(2n−2)σ V (σ) Ωk

l

=− 1
2

(n− 2) e(2n−2)σ V (σ) Ωk
l .

(A.2.7)

The first terms of lines one and three of (A.2.6) give

− (n− 2) e(2n−2)σXl(Xk(σ))− (n− 2) e(2n−2)σ hΓ
k
jl X

j(σ)

=− (n− 2) e(2n−2)σ{Xl(Xk(σ)) + hΓ
k
jl X

j(σ)} .
(A.2.8)

Now, it is easy to see that

hΓ
k
αl =

1
2

Ωk
l

and hence, we can write

H
(h∇Xl(gradh σ)

)
= H

(h∇Xl(Xj(σ)Xj + V (σ)V )
)

= {Xl(Xk(σ)) +Xj(σ) hΓ
k
jl +V (σ) hΓ

k
αl}Xk

= {Xl(Xk(σ)) +Xj(σ) hΓ
k
jl +

1
2
V (σ) Ωk

l }Xk .

(A.2.9)

We use (A.2.7), (A.2.8) and (A.2.9) to simplify (A.2.6) thus obtaining
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MR
k
αlα =− (n− 2) e(2n−2)σ hkr h(h∇Xl(gradh σ), Xr)

− 2(n− 1)(n− 2) e(2n−2)σXl(σ)Xk(σ) + (n− 2)2 e(2n−2)σXl(σ)Xk(σ)

+ (n− 2) e(2n−2)σXl(σ)Xk(σ)− (n− 2) e(2n−2)σXl(σ)Xk(σ)

+ (n− 2) e(2n−2)σ |H (gradh σ)|2h δkl
+ V (V (σ)) δkl − V (σ)2 δkl − (n− 2)V (σ)2 δkl

− 1
4

e(4n−4)σ Ωk
j Ωj

l .

(A.2.10)

Hence

MRsαlα =gsk MR
k
αlα = e−2σ hsk

MR
k
αlα

=− (n− 2) e(2n−4)σ h(h∇Xl(gradh σ), Xs)

− (n− 2) e(2n−4)σ{nXs(σ)Xk(σ)− |H (gradh σ)|2h hsl}

+ e−2σ{V (V (σ))− (n− 1)V (σ)2}hsl

+
1
4

e(4n−6)σ Ωsj Ωj
l .

(A.2.11)

It is easy to see that (A.2.11) is equivalent to (A.2.1).

Next, we prove (A.2.2). Because [V,Xj ] = 0, the equation (A.2.4) gives

MR
j
klα = Xl(Γ

j
kα)− V (Γjkl) + Γjrl Γ

r
kα + Γjαl Γ

α
kα − Γjrα Γrkl − Γjαα Γαkl (A.2.12)

which by applying (A.2.5) becomes

MR
j
klα =−Xl(V (σ)) δjk + (n− 1) e(2n−2)σXl(σ) Ωj

k +
1
2

e(2n−2)σXl(Ω
j
k)

− V (hΓ
j
kl) + V (Xk(σ)) δjl + V (Xl(σ)) δjk − V (Xj(σ))hkl

+ {hΓ
j
rl−Xr(σ) δjl −Xl(σ) δjr +Xj(σ)hrl}{−V (σ) δrk +

1
2

e(2n−2)σ Ωr
k}

+ {−V (σ) δjl +
1
2

e(2n−2)σ Ωj
l }(n− 2)Xk(σ)

− {−V (σ) δjr +
1
2

e(2n−2)σ Ωj
r}{hΓ

r
kl−Xk(σ) δrl −Xl(σ) δrk +Xr(σ)hkl}

+ (n− 2) e(2n−2)σXj(σ) {e(−2n+2)σ V (σ)hkl −
1
2

Ωlk} .

(A.2.13)
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Because Xj are basic and V is a Riemannian foliation with respect to h,

we have V (hΓjkl) = 0. Also, because [V,Xl] = 0, the first term of the right

hand side of (A.2.13) and the second term of the second line of (A.2.13) cancel.

Hence, (A.2.13) can be written as follows

MR
j
klα = (n− 1) e(2n−2)σXl(σ) Ωj

k +
1
2

e(2n−2)σXl(Ω
j
k)

+ V (Xk(σ)) δjl − V (Xj(σ))hkl

− V (σ) hΓ
j
kl +V (σ)Xk(σ) δjl + V (σ)Xl(σ) δjk − V (σ)Xj(σ)hkl

+
1
2

e(2n−2)σ hΓ
j
rl Ωr

k −
1
2

e(2n−2)σXr(σ) Ωr
k δ

j
l

− 1
2

e(2n−2)σXl(σ) Ωj
k +

1
2

e(2n−2)σXj(σ) Ωr
k hrl

− (n− 2)V (σ)Xk(σ) δjl +
1
2

(n− 2) e(2n−2)σXk(s) Ωj
l

+ V (σ) hΓ
j
kl−

1
2

e(2n−2)σ Ωj
r

hΓ
r
kl

− V (σ)Xk(σ) δjl − V (σ)Xl(σ) δjk + V (σ)Xj(σ)hkl

+
1
2

e(2n−2)σ Ωj
l Xk(σ) +

1
2

e(2n−2)σ Ωj
kXl(σ)− 1

2
e(2n−2)σ Ωj

rX
r(σ)hkl

+ (n− 2)Xj(σ)V (σ)hkl +
1
2

(n− 2) e(2n−2)σXj(σ) Ωkl

(A.2.14)

where we have used that Ωlk = −Ωkl.

After cancelling the corresponding terms, (A.2.14) becomes

MR
j
klα =

1
2

e(2n−2)σ{Xl(Ω
j
k) + hΓ

j
rl Ωr

k − hΓ
r
kl Ωj

r}

+
1
2

(n− 1) e(2n−2)σXk(σ) Ωj
l +

1
2

(n− 1) e(2n−2)σXj(σ) Ωkl

+ (n− 1) e(2n−2)σXl(σ) Ωj
k −

1
2

e(2n−2)σ{Xr(σ) Ωr
k δ

j
l + Ωj

rX
r(σ)hkl}

+ V (Xk(σ)) δjl − V (Xj(σ))hkl − (n− 2)V (σ)Xk(σ) δjl

+ (n− 2)Xj(σ)V (σ)hkl .

(A.2.15)
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Now, recall that

−(h∇Ω)(Xj , Xk, Xl) = −(h∇XlΩ)(Xj , Xk) = (h∇XlΩ)(Xk, Xj)

= (h∇XlΩ)kj = (h∇XlΩ)rk hrj

= hjr {Xl(Ωr
k) + hΓ

r
sl Ωs

k − hΓ
s
kl Ωr

s} .

(A.2.16)

From (A.2.16), it easily follows that (A.2.2) is equivalent to (A.2.15).

To prove (A.2.3) we use the corresponding fundamental equation for hor-

izontally conformal submersions [27].

Firstly, from λ = eσ, it follows that

gradg(
1
λ2

) = −2 e(−2n+2)σ V (σ)V − 2H (gradh σ) (A.2.17)

and hence∣∣gradg(
1
λ2

)
∣∣2
g

= 4 e−2nσ V (σ)2 + 4 e−2σ|H (gradh σ)|2h . (A.2.18)

Next, a straightforward calculation using Lemma A.2.1 and (A.2.17) gives

H (g∇X(gradg(
1
λ2

))) = 2 e(−2n+2)σ V (σ)2X − V (σ)(iXΩ)#h

− 2H (h∇X(H (gradh σ))) + 2|H (gradh σ)|2hX ,

(A.2.19)

where X is any basic vector field. Hence, if Z is a basic vector field then

g(g∇X(gradg(
1
λ2

)), Z) = 2e−2nσ V (σ)2 h(X,Z) + 2e−2σ|H (gradh σ)|2h h(X,Z)

− e−2σ V (σ) Ω(X,Z)− 2e−2σ h(h∇X(H (gradh σ)), Z) .

(A.2.20)

Recall that Ω = dθ and thus Ω(X,Y ) = −θ([X,Y ]) which, because θ is

the vertical dual of V , is equivalent to

V ([X,Y ]) = −Ω(X,Y )V . (A.2.21)

Now, let ϕ : (O, g|O) → (N, h̄) be a harmonic morphism produced by V ,

with dilation λ = eσ. If we put (A.2.20) and (A.2.21) into the corresponding
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fundamental equation for horizontally conformal submersions [27] we obtain

−MR(X,Y, Z,H) = − e−2σ ϕ∗(NR)(X,Y, Z,H)

+
1
4

e(2n−4)σ{Ω(X,Z)Ω(Y,H)− Ω(Y,Z)Ω(X,H) + 2Ω(X,Y )Ω(Z,H)}

+
1
2
h(X,Z){h(Y,H) 2 e−2nσ V (σ)2 − e−2σ Ω(Y,H)V (σ)

+2 e−2σ|H (gradh σ)|2h h(Y,H)− 2 e−2σ h(h∇Y (H (gradh σ)), H)}

−1
2
h(Y,Z){h(X,H) 2 e−2nσ V (σ)2 − e−2σ Ω(X,H)V (σ)

+2 e−2σ|H (gradh σ)|2h h(X,H)− 2 e−2σ h(h∇X(H (gradh σ), H)}

+
1
2
h(Y,H){h(X,Z) 2 e−2nσ V (σ)2 − e−2σ Ω(X,Z)V (σ)

+2 e−2σ|H (gradh σ)|2h h(X,Z)− 2 e−2σ h(h∇X(H (gradh σ)), Z)}

−1
2
h(X,H){h(Y,Z) 2 e−2nσ V (σ)2 − e−2σ Ω(Y,Z)V (σ)

+2 e−2σ|H (gradh σ)|2h h(Y,Z)− 2 e−2σ h(h∇Y (H (gradh σ)), Z)}

+{h(X,H)h(Y,Z)− h(Y,H)h(X,Z)}{e−2nσ V (σ)2 + e−2σ|H (gradh σ)|2h}

+e−2σ h(X(σ)Y − Y (σ)X,H(σ)Z − Z(σ)H)

+{h(X,Z)h(Y,H)− h(X,H)h(Y,Z)}{e−2nσV (σ)2 + e−2σ|H (gradh σ)|2h},
(A.2.22)

where X, Y , Z, H are basic vector fields.

Now, (A.2.3) follows from (A.2.22) after cancelling the corresponding

terms. �

Remark A.2.4. The formula (A.2.3) can be also proved directly in a similar

way to (A.2.1) and (A.2.2).

The first formula of the following lemma follows after a straightforward

computation using (A.2.1) and (A.2.3) whilst the second formula follows from

(A.2.2) . The third formula of the following lemma follows from (1.1.3) , (1.1.4)

together with Lemma 4.2.5 and (A.1.1) ,
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Lemma A.2.5. Suppose that V restricted to the domain of the local density

ρ = e(2−n)σ is a simple foliation (i.e. the leaves are the fibres of a submer-

sion) and let ϕ : (O, g|O) → (N, h̄) be the induced harmonic morphism. If
MRicci denotes the Ricci tensor of (M, g) and NRicci denotes the Ricci tensor

of (N, h̄) , then,

MRicci(X,Y ) = (NRicci)(ϕ∗X,ϕ∗Y )− 1
2

e(2n−2)σ h(iXΩ, iY Ω)

− e−2σ (∆Mσ)h(X,Y )− (n− 1)(n− 2)X(σ)Y (σ) ,
(A.2.23)

MRicci(X,V ) =
1
2

e(2n−2)σ (hd∗Ω)(X) + (n− 1) e(2n−2)σ Ω(X, gradh σ)

+ (n− 1)X(V (σ))− (n− 1)(n− 2)X(σ)V (σ) ,

(A.2.24)
MRicci(V, V ) = (n− 2) e(2n−4)σ∆Mσ + 2(n− 1)V (V (σ))

−(3n− 4)(n− 1)V (σ)2 +
1
4

e(4n−4)σ|Ω|2h ,
(A.2.25)

where hd∗ is the codifferential on (M,h) .

Remark A.2.6. Putting n = 2 in the above formula we obtain particular

cases of formulae of P. Baird and J.C. Wood [8, Proposition 4.2] .
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A.3. A diagonalization result for self-adjoint bundle

endomorphisms

In this appendix we prove two results used in Chapter 3 .

Lemma A.3.1. For n ≥ 1, let P : Cn × C→ C be defined by

P (a, λ) = λn + a1λ
n−1 + · · ·+ an (a = (a1, . . . , an) ∈ C n , λ ∈ C ).

Let
(
a(k)

)
⊆ Cn be a convergent sequence.

Then the set S =
{
λ ∈ C | ∃ k : P (a(k), λ) = 0

}
is bounded.

Proof. Let P̃ : Cn × CP 1 → CP 1 be defined by

P̃ (a, [λ0, λ1]) = [λn0 , λ
n
1 +a1λ0λ

n−1
1 + · · ·+anλ

n
0 ] (a ∈ Cn , [λ0, λ1] ∈ CP 1).

Obviously S =
⋃
k Sk where Sk =

{
λ ∈ C | P̃ (a(k), [1, λ] ) = [1, 0]

}
;

suppose that S is unbounded. For each k , let λ(k) ∈ Sk be such that |λ| ≤
|λ(k)| for every λ ∈ Sk. Because S is unbounded we must have that

(
λ(k)

)
is

unbounded. By passing to a subsequence, if necessary, we can suppose that

λ(k) →∞ .

Because λ(k) ∈ Sk we have P̃ (a(k), [1, λ(k)] ) = [1, 0] . But

lim
k→∞

P̃ (a(k), [1, λ(k)] ) = P̃ (b, [0, 1]) = [0, 1] ,

where b = limk→∞ a(k) , a contradiction. Hence S must be bounded. �

For the second lemma we need the following definition.

Definition A.3.2. Let E →M be a vector bundle endowed with a Riemannian

metric h , and let T ∈ Γ(�2E∗) . Say that T can be consistently diagonalized at

x0 ∈M if there exists an open neighbourhood U of x0 and a local orthonormal

frame {ej} on U for E∗ such that

T =
∑
j,k

µj δjk e
j ⊗ ek

for some smooth functions µj : U → R .

A similar definition can be made for a field of self-adjoint endomorphisms

T̃ ∈ Γ(EndE) .
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Lemma A.3.3. Let E → M be a vector bundle endowed with a Riemannian

metric h , and let T ∈ Γ(�2E∗) .

Then T can be consistently diagonalized at each point of a dense open

subset of M .

Proof. The proof is by induction on the rank (fibre dimension) of E.

For rankE = 1 the lemma is trivial.

Suppose that the assertion of the lemma is true for rankE < n ; we shall

prove that the assertion is true for rankE = n .

Let P (x, λ) = Px(λ) be the characteristic polynomial of Tx , with respect

to hx (x ∈M). For p = 1, . . . , n , set

Gp =
{
x ∈M | Px has a root of order at most p

}
,

and set G0 = ∅ . Because

M =
n⋃
p=1

Gp \Gp−1 ⊆
n⋃
p=1

Gp \Gp−1 =
n⋃
p=1

Gp \Gp−1 ⊆M ,

we have that

M =
n⋃
p=1

Gp \Gp−1

where A denotes the closure of the set A . To complete the proof, it suffices

to prove that each x ∈
n⋃
p=1

Gp \ Gp−1 has an open neighbourhood U such

that E|U = E1 ⊕ E2 where E1 and E2 are complementary orthogonal vector

subbundles of E of positive rank such that T |E1⊗E2 = 0 .

Let p ∈ {1, . . . , n} be such that Gp \ Gp−1 6= ∅ and let x0 ∈ Gp \ Gp−1 .

Let λ0 be a root of Px0 of order at most p . Because x0 is not in Gp−1 we

have that λ0 has order p . Then, by the Malgrange Preparation Theorem (see

[25, Chapter IV] ), in an open neighbourhood U ⊆ M \ Gp−1 of x0 we have

P (x, λ) = Q(x, λ)R(x, λ) where Q is a polynomial of degree p in λ such that

Q(x0, λ) = (λ−λ0)p and R(x0, λ0) 6= 0. From the fact that P and Q are both

polynomials in λ (with coefficients smooth functions of x ), it follows that R

is also polynomial in λ .

We shall show that there exists an open neighbourhood V ⊆ U of x0 such
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that, for each x ∈ V , Qx has a root of order p . Suppose not. Let
(
x(k)

)
⊆ U

be such that limk→∞ x
(k) = x0 and, for each k , there exists µ(k) ∈ R such that

Q
(
x(k), µ(k)

)
= 0 with µ(k) a root of Qx(k) of order less than p . Obviously,

µ(k) is also a root of Px(k) and, because x(k) ∈ U ⊆M \Gp−1 , µ(k) is a root of

order at least p of Px(k) . Hence R
(
x(k), µ(k)

)
= 0 . Now, by Lemma A.3.1, the

sequence
(
µ(k)

)
is bounded and hence, by passing to a subsequence if necessary,

we can suppose that limk→∞ µ
(k) = µ0 with µ0 ∈ R . Then R(x0, µ0) =

limk→∞R
(
x(k), µ(k)

)
= 0 and also Q(x0, µ0) = limk→∞Q

(
x(k), µ(k)

)
= 0 .

Because R(x0, λ0) 6= 0 we have that µ0 6= λ0 . But this implies that λ0 is

not a root of order p of Qx0 . It follows that, in an open neighbourhood V

of x0 , we have that Qx has only roots or order p for any x ∈ V . Thus we

can write Q(x, λ) =
(
λ − µ(x)

)p , ((x, λ) ∈ V × R), where µ(x) is the root of

∂p−1Q/∂λp−1(x, ·) so that µ is smooth. Hence

P (x, λ) =
(
λ− µ(x)

)p
R(x, λ) ((x, λ) ∈ V × R ).

Moreover, because ∂pP/∂λp(x0, λ0) 6= 0 we can suppose that ∂pP/∂λp
(
x, µ(x)

)
is non-zero for any x ∈ V . It follows that µ(x) is an eigenvalue of order p for

Tx for any x ∈ V .

Let (E1)x be the eigenspace of µ(x) and let (E2)x be its orthogonal com-

plement. It is easy to see that Ej =
⋃
x∈V

(Ej)x , (j = 1, 2), are smooth subbun-

dles of E which have the required properties. The lemma follows. �
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A.4. Conformally-flat Riemannian manifolds

Firstly, we recall (see [38] ) the definition of the Weyl tensor of a Rie-

mannian manifold.

Let (Mm, g) be a Riemannian manifold. For h and k sections of �2(T ∗M)

(that is, h and k are symmetric covariant tensor fields of degree two on Mm),

we shall denote by h? k the section of �2(Λ2(T ∗M)) defined by

(h? k)(T,X, Y, Z) =h(T, Y )k(X,Z) + h(X,Z)k(T, Y )

− h(T,Z)k(X,Y )− h(X,Y )k(T,Z) ,

for any T,X, Y, Z ∈ TM .

If S is a (1,3)-tensor field on (M, g) then we shall denote by the same

symbol S the (0,4)-tensor field defined by S(T,X, Y, Z) = −g(S(T,X, Y ), Z) ,

for any T,X, Y, Z ∈ TM .

The Weyl (curvature) tensor of (Mm, g) is the (1,3)-tensor field W char-

acterised by the following two conditions:

1) trace(X 7→W (X,Y )Z) = 0 , for any Y,Z ∈ TM ,

2) R = g? r+W for some (necessarily unique) section r of �2(T ∗M) ,

where R is the curvature tensor of (Mm, g) .

The Weyl tensor is conformally invariant; that is, if we denote by W g the

Weyl tensor of (Mm, g) then W λ2g = W g, for any positive function λ on Mm.

The Riemannian manifold (Mm, g) is called (locally) conformally-flat if

for each point of Mm there exists an open neighbourhood U and a conformal

diffeomorphism ϕ from U onto some open set of Rm (endowed with its canon-

ical Riemannian metric); the local coordinates on U induced by ϕ are called

flat.

From Liouville’s theorem on local conformal diffeomorphisms between

Euclidean spaces (see [9] ) , it follows easily that if (Mm, g) is conformally-flat

then Mm is real-analytic in flat local coordinates (m ≥ 2) .

The following theorem is due to H. Weyl (see [38] ).

Theorem A.4.1. A Riemannian manifold, of dimension at least four, is

conformally-flat if and only if its Weyl tensor is zero.
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(See [38] for the case when the dimension is less than four.)

The following result is used in Section 3.8 .

Proposition A.4.2. Let (Mm, g) be a Riemannian manifold, (m ≥ 4) . The

following assertions are equivalent.

(i) (Mm, g) is conformally-flat.

(ii) R(X,Y,X, Y ) = 0 for any X,Y ∈ TM spanning an isotropic space

on (M, g) , where R is the curvature tensor of (M, g) , and TM now denotes

the complexified tangent bundle.

Proof. Clearly, assertion (ii) is equivalent to W (X,Y,X, Y ) = 0 for any

X,Y ∈ TM spanning an isotropic space on (M, g) , where W is the Weyl

tensor of (M, g) . Therefore, by Theorem A.4.1 , we have (i)=⇒(ii) .

Suppose that (ii) holds and let (X1, . . . , Xm) be an orthonormal frame

on (Mm, g) . Then for any distinct i, j, k, l ∈ {1, . . . ,m} we have

W (Xi ± iXj , Xk + iXl, Xi ± iXj , Xk + iXl) = 0 .

This is equivalent to the following two relations

W (Xi, Xk + iXl, Xi, Xk + iXl) = W (Xj , Xk + iXl, Xj , Xk + iXl) , (A.4.1)

W (Xi, Xk + iXl, Xj , Xk + iXl) = 0 . (A.4.2)

Also, by applying condition (2) of the definition of the Weyl tensor, we

obtain
m∑
r=1

W (Xr, Xk + iXl, Xr, Xk + iXl) = 0 . (A.4.3)

From (A.4.1) and (A.4.3) , it follows that W (Xj , Xk+iXl, Xj , Xk+iXl) =

0 and, hence, Wjkjk = Wjljl , for any distinct j, k, l ∈ {1, . . . ,m} . Therefore,

for any distinct i, j ∈ {1, . . . ,m} , we have

(m− 1)Wijij =
m∑
r=1

Wirir = 0 .
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From (A.4.2) we obtain that, for any distinct i, j, k, l ∈ {1, . . . ,m} , we

have

Wikjk = Wiljl ,

Wikjl = −Wiljk .
(A.4.4)

The first relation of (A.4.4) implies Wikjk = 0 , whilst from the second

relation of (A.4.4) and the algebraic Bianchi identity it follows quickly that

Wijkl = 0 , for any distinct i, j, k, l ∈ {1, . . . ,m} .

Thus, if (ii) holds then W = 0 which, by Theorem A.4.1 , is equivalent

to (i) . �

If H is a distribution on a Riemannian manifold (Mm, g) we shall denote

by IH the integrability tensor of H , which is the V -valued horizontal two-

form on Mm defined by IH(X,Y ) = −V [X,Y ] , for any horizontal vector

fields X and Y , where V = H ⊥.

Next, we prove the following:

Proposition A.4.3. Let ϕ : (Mm, g) → (Nn, h) be a horizontally conformal

submersion between conformally-flat Riemannian manifolds, (m ≥ n ≥ 4) .

Then g
(
IH(X,Y ), IH(X,Y )

)
= 0 , for any horizontal vectors X and Y

spanning an isotropic space on (Mm, g) .

Proof. As both the hypothesis and the conclusion are conformally-invariant,

we may suppose that ϕ : (Mm, g) → (Nn, h) is a Riemannian submersion.

Then the proof follows easily from Proposition A.4.2 and the following well-

known relation of B. O’Neill (see [9] ):

RM (X,Y,X, Y ) = ϕ∗(RN )(X,Y,X, Y )− 3
4
g(V [X,Y ],V [X,Y ]

)
,

for any horizontal vector fields X and Y . �

Corollary A.4.4. Any horizontally conformal submersion, with fibres of di-

mension at most two, between conformally-flat Riemannian manifolds has in-

tegrable horizontal distribution, if the codomain has dimension at least four.

Proof. Let ϕ : (Mm, g) → (Nn, h) be a horizontally conformal submer-

sion between conformally-flat Riemannian manifolds, m ≥ n ≥ 4 .
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Let x ∈ M and let E ⊆ TxM be an oriented four-dimensional sub-

space. From Proposition A.4.3 , it follows that IH
x : Λ2

+E → Vx is conformal,

where Λ2
+E is the space of self-dual bivectors on (E, g|E) . As Λ2

+E is three-

dimensional, we obtain that either IH
x = 0 or dim(Vx) ≥ 3 . �
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