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ABSTRACT

A harmonic morphism between Riemannian manifolds is a map which pre-

serves Laplace’s equation. Harmonic morphisms have been characterised, by

B. Fuglede and T. Ishihara, as a special class of harmonic maps.

Following an idea of J.C. Wood, we study submersive harmonic morphisms

(mainly, to Riemannian manifolds of dimension greater than or equal to three)

by placing them into the context of conformal foliations. In this way we obtain:

(i) New examples and constructions of harmonic morphisms based on:

• Riemannian foliations locally generated by Killing vector fields. These ex-

amples are related to a basic type of harmonic morphism due to R.L. Bryant.

• Homothetic foliations. These constructions are related to a basic type of

harmonic morphism due to P. Baird and J. Eells.

• The Hawking Taub-Nut metric and a related new metric construction, in

dimension four, which contains as a particular case the Eguchi-Hanson II metric.

(ii) Classification results for:

• Harmonic morphisms with one-dimensional fibres on Einstein manifolds.

Along the way an entirely new proof of a fundamental classification theorem of

R.L. Bryant is obtained.

• Submersive harmonic morphisms induced by (infinitesimal) conformal ac-

tions on Einstein manifolds.

• Submersive harmonic morphisms between compact Riemannian manifolds

whose curvatures satisfy certain (non)positivity conditions.
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Introduction

Harmonic morphisms between Riemannian manifolds are smooth maps which pull

back harmonic functions to harmonic functions.

By the fundamental theorem of B. Fuglede [23] and T. Ishihara [35], harmonic

morphisms were characterised as harmonic maps which are horizontally weakly

conformal.

The next important step towards a better understanding of harmonic mor-

phisms was done by P. Baird and J. Eells [6] who found the necessary and suf-

ficient condition for a harmonic morphism to have minimal (regular) fibres (see

Proposition 1.1.10, below). In the particular case of a map ϕ : (Mm, g)→ (N2, h)

to a Riemannian manifold (N2, h) of dimension two the result of P. Baird and

J. Eells states that ϕ is a harmonic morphism if and only if ϕ is horizontally

weakly conformal and its regular fibres are minimal submanifolds of (Mm, g).

This result was then elegantly formulated in the language of conformal foliations

by J.C. Wood [65].

The first classification results for harmonic morphisms were due to P. Baird

and J.C. Wood (see [9]) who completely classified harmonic morphisms with one-

dimensional fibres from three-dimensional Riemannian manifolds with constant

curvature.

More recently, R.L. Bryant [13] proved that from a Riemannian manifold

(Mn+1, g) , n ≥ 3, with constant sectional curvature there are just two types of

submersive harmonic morphisms ϕ : (Mn+1, g) → (Nn, h) with one-dimensional

fibres, namely either

(i) there exists a nowhere zero Killing vector field tangent to the fibres of ϕ

6



or

(ii) ϕ has geodesic fibres orthogonal to an umbilical foliation by hypersurfaces.

Moreover, the type (i) was new (whilst type (ii) was known to P. Baird and

J. Eells [6]). However Bryant’s proof is based on long calculations involving the

theory of exterior differential systems.

We study harmonic morphisms by placing them into the framework of con-

formal foliations, an idea due to J.C. Wood [65]. Unless otherwise stated, we

consider only foliations of codimension greater than or equal to three.

In Chapter 1 we present some basic facts on foliations which produce harmonic

morphisms (i.e. foliations which can be locally defined by submersive harmonic

morphisms). We recall Bryant’s result [13] which states that a conformal foli-

ation produces harmonic morphisms if and only if a certain one-form is closed

(see Proposition 1.3.1). In particular, if the mean curvature forms of a confor-

mal foliation V and of its orthogonal complement H are closed then V produces

harmonic morphisms. Following a suggestion of J.C. Wood we call a foliation

homothetic if it can be locally defined by horizontally homothetic submersions.

This is equivalent to the condition that the foliation is conformal and its orthog-

onal complement has closed mean curvature form.

Note also that, although a Riemannian one-dimensional foliation produces

harmonic morphisms if and only if it is locally generated by Killing vector fields

[13], a one-dimensional foliation locally generated by conformal vector fields pro-

duces harmonic morphisms if and only if it is a homothetic foliation (a conse-

quence of Proposition 3.1.5). This starts to show the importance of homothetic

foliations. Another equivalent condition for a conformal foliation V to be homo-

thetic is that any local dilation (Definition 1.1.8) of it can be locally written as

the product of a function constant along leaves and a function constant along

horizontal curves (in particular, a conformal foliation V is homothetic if and only

if, in a neighbourhood of each point, a local dilation for V can be found which

is constant along horizontal curves). This latter property is also satisfied by

any positive smooth function f defined on the Riemannian manifold (M, g) and

which has the property that V produces harmonic morphisms on both (M, g) and
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(M, f 2 g). This is a particular case of a result which answers a question formu-

lated by X. Mo (cf. [32]).

For a foliation V on M there exists a metric g on M with respect to which V
is a homothetic foliation if and only if V is a foliation of type (A) in the sense of

I. Vaisman [62]. However, all the above geometrical properties of the homothetic

foliations appear to be new.

In terms of foliations which produce harmonic morphisms the types (i) and

(ii) above correspond to:

(i) Riemannian one-dimensional foliations locally generated by Killing vector

fields,

(ii) homothetic foliations with geodesic leaves orthogonal to an umbilical foli-

ation by hypersurfaces.

The starting point of the results of Chapter 2 was to try to generalise the type

(i) above to foliations of higher dimensions. In Theorem 2.2.6 we give necessary

and sufficient conditions for a conformal foliation locally generated by conformal

vector fields to produce harmonic morphisms. In the particular case when the fo-

liation is Riemannian and locally generated by Killing vector fields this condition

depends only on the induced infinitesimal action and on the integrability tensor

of the horizontal distribution. Many natural constructions of Riemannian folia-

tions which produce harmonic morphisms can be thus obtained. Moreover, most

of the constructions can be generalised to homothetic foliations locally generated

by conformal vector fields.

In Chapter 2 we also study foliations locally generated by homothetic vector

fields and their relations to homothetic foliations and harmonic morphisms. This

is motivated by the fact that, on a Ricci-flat manifold, given any foliation V locally

generated by conformal vector fields and which produces harmonic morphisms,

either V is locally generated by homothetic vector fields or any harmonic mor-

phism produced by V can be locally decomposed into a totally geodesic harmonic

morphism followed by another harmonic morphism. This is shown in Section 2.6

where other similar factorisation results are obtained.

8



One of the main achievements of Chapter 3 is a new (and more geometri-

cal) proof of the above mentioned fundamental result of R.L. Bryant. In fact

we slightly generalise this result by replacing, in the hypothesis, the simply-

connectedness of the domain with the orientability of the vertical distribution.

Also, we have looked for extentions of R.L. Bryant’s result to one-dimensional

foliations V which produce harmonic morphisms on Einstein manifolds (M, g),

dimM ≥ 4. In fact we prove the following:

• V must be of type (i) or type (ii) if its orthogonal complement is integrable

(Theorem 3.2.4).

• V must be of type (i) or type (ii) if it is homothetic (Corollary 3.2.6).

• If dimM = 4 then V is of one of the types (i), (ii) or (iii) (Theorem 3.4.4)

where types (i) and (ii) are as before and type (iii) is the following: (M4, g)

is Ricci-flat and, up to homotheties, any harmonic morphism ϕ : (U, g|U) →
(N3, h) , with dilation λ , produced by V such that V|U and N3 are orientable is

(locally) described by:

(a) (N3, h) has constant sectional curvature equal to one;

(b) 1
2

d(λ−2) is a (flat) principal connection for V with respect to suitably

chosen V ∈ Γ(V) such that g(V, V ) = λ2 (Definition 3.4.1);

(c) the local connection form A of H with respect to 1
2

d(λ−2) satisfies the

equation dA+ 2 ∗A = 0 on (N3, h) where ∗ is the Hodge star-operator of (N3, h)

with respect to some orientation of N3 .

The construction of the metric g in type (iii) above appears to be in the spirit

of work of P.E. Jones and K.P. Tod (see [16]).

Examples of harmonic morphisms of type (iii) are given in Section 3.5 . There

we prove that these are always submersive (Proposition 3.5.1). Also, we show

that any surjective harmonic morphism of type (iii) with connected fibres and

complete codomain is, up to homotheties and Riemannian coverings, the restric-

tion of the radial projection (R4 \ {0}, ga) → S3 where ga is the Eguchi-Hanson

II metric [21] (when a = 0, ga is the restriction of the canonical metric on R4

and ϕ0 is a well-known harmonic morphism simultaneously of type (ii) and (iii) ).

In particular, there exists no surjective harmonic morphism of type (iii) whose

domain and codomain are both complete.
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In Section 3.7 we study surjective harmonic morphisms ϕ : (M4, g)→ (N3, h)

(the necessity of surjectivity was pointed out by J.C. Wood) between complete

Einstein manifolds of dimension four and three, respectively. If M4 and N3 are

simply-connected we prove the following:

• If ϕ is submersive then, up to homotheties, it is one of the following pro-

jections R4 → R3 , H4 → R3 , H4 → H3 induced by the following canonical

warped-product decompositions R4 = R1×R3 , H4 = H1×r R3 , H4 = H1×sH3

where Hk is the hyperbolic space of dimension k (Theorem 3.7.1).

• If ϕ has exactly one critical point then there exists a ≥ 0 such that, up to

homotheties, ϕ : (R4, ga)→ (R3, h0) is the Hopf polynomial with ga the Hawking

Taub-NUT metric (a > 0) and g0 , h0 the canonical metrics on R4 , R3 , respec-

tively (Theorem 3.7.10).

• If M4 is compact and ϕ non-constant then (M4, g) and (N3, h) are flat and,

up to homotheties and Riemannian coverings, ϕ is the canonical projection be-

tween flat tori T 4 → T 3 (Theorem 3.7.11).

The necessary curvature formulae for Chapter 3 are given in Appendix B.

In Chapter 4 we present some results on harmonic morphisms defined on com-

pact Riemannian manifolds. In Section 1 these are based on a known formula of

P. Walczak [64] which we recall in Appendix A. The results of Section 2 are based

on two integral formulae which are proved in Theorem 4.2.2. From Chapter 4 we

mention here the following results:

• On a compact Riemannian manifold with nonpositive Ricci curvature any

one-dimensional foliation which produces harmonic morphisms and admits a

global density is locally generated by parallel vector fields (Theorem 4.1.2).

• On a compact Riemannian manifold with positive sectional curvature there

exists no homothetic foliation which produces harmonic morphisms and has in-

tegrable orthogonal complement (Corollary 4.1.6).

• For n ∈ {3, 4, 5} if (Mn+1, g) , (Nn, h) are compact with scalar curvatures

sM ≥ 0, sN ≤ 0 and, if at least one of these inequalities is strict, then there

exists no nonconstant submersive harmonic morphism ϕ : (Mn+1, g) → (Nn, h)

(Corollary 4.2.10).

10



Chapter 1

Foliations which produce

harmonic morphisms

1.1 Foliations and harmonic morphisms

We recall some basic definitions and results on harmonic morphisms and confor-

mal foliations.

Definition 1.1.1 ([23],[35]). A harmonic morphism between Riemannian man-

ifolds is a smooth map ϕ : (Mm, g) → (Nn, h) such that for any harmonic func-

tion f : (U, h|U) → R, defined on some open Riemannian submanifold (U, h|U)

of (N, h) with ϕ−1(U) 6= ∅, the pull back f ◦ ϕ : (ϕ−1(U), g|ϕ−1(U)) → R is a

harmonic function.

By the fundamental result of B. Fuglede [23] and T. Ishihara [35] the harmonic

morphisms form a special class of harmonic maps which we now describe.

Definition 1.1.2 ([23],[35]). A smooth map ϕ : (Mm, g) → (Nn, h) between

Riemannian manifolds is called horizontally weakly conformal if at each point

x ∈ M either ϕ is submersive (i.e. ϕ∗,x : TxM → Tϕ(x)N is surjective) and ϕ∗|Hx
is conformal, where Hx = (kerϕ∗,x)

⊥, or ϕ∗,x = 0.

Let λ : M → R be the nonnegative function such that λ(x) is the conformal

factor of ϕ∗|Hx if x ∈ M is a regular point of ϕ and λ(x) = 0 if x is a critical

point of ϕ. Then λ is called the dilation of ϕ.
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Remark 1.1.3 ([23],[35]). Let λ be the dilation of the horizontally weakly con-

formal map ϕ : (Mm, g) → (Nn, h). Then, because λ2 = 1
n
|ϕ∗|2, λ is continuous

on M and smooth outside the set of critical points; λ2 is smooth on M .

Theorem 1.1.4 ([23],[35]). A map ϕ : (M, g)→ (N, h) is a harmonic morphism

if and only if ϕ is a harmonic map which is horizontally weakly conformal.

Let (M, g) be a Riemannian manifold (it will always be assumed that M is

paracompact and connected) and V (the tangent bundle of) a foliation or, more

generally, a distribution on it. The orthogonal complement of V will de denoted

by H . Then, H and V will be called the horizontal and vertical distributions,

respectively. Following [11], we shall denote the corresponding projections by

the same letters H and V ; we shall denote by X, Y horizontal vector fields, i.e.

sections of H and by U, V vertical vector fields, i.e. sections of V .

Definition 1.1.5 (see [65]). A foliation V on (M, g) is called conformal if for any

vertical vector field U ∈ Γ(V) and horizontal vector fields X, Y ∈ Γ(H) we have

(LU g)(X, Y ) = µ(U) g(X, Y )

for some vertical one-form µ ∈ Γ(TM) and where L denotes the Lie differentia-

tion.

By Theorem 1.1.4 the connected components of a submersive harmonic mor-

phism ϕ : (M, g) → (N, h) form a conformal foliation. Conversely, we make the

following definition:

Definition 1.1.6 (cf. [65]). Let (M, g) be a Riemannian manifold and let V be

a foliation on it.

We shall say that V produces harmonic morphisms on (M, g) if V is locally

defined by submersive harmonic morphisms (i.e. each point of M has an open

neighbourhood U which is the domain of a submersive harmonic morphism ϕ :

(U, g|U)→ (N, h) whose fibres are open subsets of the leaves of V .
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Remark 1.1.7. When codimV = 2 , V produces harmonic morphisms if and only

if it is conformal and its leaves are minimal [65] ; in this case any local submersion

ϕ on M whose fibres are open subsets of the leaves can be made into a harmonic

morphism. Indeed, it suffices to choose a metric on the codomain such that ϕ is

horizontally conformal.

We shall see (as an immediate consequence of Corollary 1.1.14) that, when

codimV 6= 2 and V produces harmonic morphisms, then each submersion ϕ :

U → N defined on an open subset U ⊆ M with zero first Betti number and

which locally defines V can be made into a harmonic morphism (i.e. there exists

a Riemannian metric h on N such that ϕ : (O, g|O)→ (N, h) is a harmonic mor-

phism).

Definition 1.1.8 (cf. [62, (1.4)]). Let V be a conformal foliation on the Rieman-

nian manifold (M, g) . A smooth positive function λ : O → R on an open subset

O of M will be called a local dilation of V if V|O is a Riemannian foliation on

(O, λ2 g|O). If O = M then we shall call λ a (global) dilation of V .

Remark 1.1.9. 1) It is obvious that local dilations for a conformal foliation V
can be found in the neighbourhood of each point; in fact, this is equivalent to

the definition of its conformality. If V is simple, i.e. its leaves are the fibres of

a (horizontally conformal) submersion ϕ , then it admits a (global) dilation, for

example, the dilation of ϕ .

2) A smooth positive function λ is a local dilation for V if and only if(
LU(λ2 g)

)
(X, Y ) = 0

for any vertical vector field U and any horizontal vector fields X, Y . Hence, if we

multiply a local dilation of a conformal foliation by a smooth positive function

which is constant along the leaves then we obtain another local dilation of the

foliation. Conversely, if two local dilations λj , j = 1, 2 , of a conformal foliation

V have the same domain then λ2 = λ1 ρ where the factor ρ is a smooth positive

function, constant along the leaves of V .

3) Let V be a foliation, not necessarily conformal. LetH denote its orthogonal
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complement. Recall that its second fundamental form HB is the horizontal V-

valued tensor field defined by

HB(X, Y ) =
1

2
V(∇XY +∇YX) , (1.1.1)

where X, Y are horizontal vector fields (see [56, Ch.IV, 3.16]). A simple calcula-

tion (see [9]) gives the following formula

(LU g)(X, Y ) = −2g
(HB(X, Y ), U

)
, (1.1.2)

where U, X, Y are as above.

It follows quickly (see [9]) that any local dilation λ of a conformal foliation V
is characterised by the relation

trace(HB) = nV(grad(log λ)) , (1.1.3)

where n = codimV .

Note that formula (1.1.2) shows that V is a conformal foliation if and only ifH
is an umbilical distribution, i.e. HB(X,X) is independent of X for g(X,X) = 1 ,

if H is integrable this condition says that its integral submanifolds are umbilical

(see [56]).

Let ϕ : (Mm, g) → (Nn, h) be a horizontally conformal submersion with

dilation λ . Let τ denote the tension field of ϕ and VB the second fundamental

of the foliation V induced by the fibres, then we have the fundamental equation

[6] (see [9] for a different proof):

τ + trace(VB) + (n− 2)H(grad(log λ)) = 0 . (1.1.4)

From this, P. Baird and J. Eells concluded:

Proposition 1.1.10 ([6]). (a) When n = 2 , ϕ is a harmonic morphism if and

only if its fibres are minimal.

(b) When n 6= 2 any two of the following assertions imply the remaining as-

sertion:

(i) ϕ is a harmonic morphism,

(ii) ϕ has minimal fibres,

(iii) ϕ is horizontally homothetic (i.e. λ is constant along horizontal curves).
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Note that in above proposition it is unnecessary for ϕ to be submersive (see

[9]).

Let ω denote a local volume form of V . It can easily be seen that, the

fundamental equation (1.1.4) is equivalent to

V∗
(
LX(λ2−n ω)

)
= λ2−n g(X, τ)ω , (1.1.5)

for any horizontal vector field X . Thus, we have the following:

Proposition 1.1.11 ([13],[46]). A horizontally conformal submersion with dila-

tion λ is a harmonic morphism if and only if the parallel displacement defined by

the horizontal distribution preserves the mass of the fibres, where the fibres are

given the mass density λ2−n .

Definition 1.1.12. Let V be a foliation of codimension n , which produces har-

monic morphisms on (M, g) . Let λ be a local dilation of V which restricts to

give dilations of harmonic morphisms which locally define V . Then ρ = λ2−n is

called a local density of V . If λ is globally defined on M then ρ is called a (global)

density.

Proposition 1.1.13. Let V be a foliation which produces harmonic morphisms

on (M, g) . Then there exists a Riemannian regular covering ξ : (M̃, g̃)→ (M, g)

with the following properties:

(i) ξ∗(V) admits a global density.

(ii) If η : (P, k)→ (M, g) is any Riemannian regular covering such that η∗(V)

admits a global density then there exists a unique Riemannian regular covering

σ : (P, k)→ (M̃, g̃) such that η = ξ ◦ σ .

Moreover, ξ is the unique Riemannian regular covering satisfying (i) and (ii) .

Proof. Let [a] ∈ H1(M,R) be the cohomology class defined by the differentials

of the logarithms of the local densities of V and let ξ : M̃ → M be the regular

covering corresponding to it (M̃ is connected).

Let g̃ = ξ∗(g) . It is obvious that ξ∗(V) produces harmonic morphisms on

(M̃, g̃) .

Also ξ∗[a] = 0 ∈ H1(M̃,R) . Hence, there exists a positive smooth function
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ρ : M̃ → (0,∞) such that ξ∗(a) = d log ρ .

Then ρ is a global density of ξ∗(V) .

Let η : (P, k) → (M, g) be any other Riemannian regular covering such that

η∗(V) admits a global density. If H and K are the groups of ξ and η , respectively,

then ξ and η correspond to surjective group morphisms π1(M)→ H and π1(M)→
K , respectively, where π1(M) is the fundamental group of M (see [57, Part I,

§14.6]).

Now, η∗(V) admits a global density if and only if η∗(ξ) is a trivial covering and

this happens if and only if the image of the injective group morphism π1(P ) →
π1(M) is contained in the kernel of the group morphism π1(M) → H . But the

image of π1(P ) → π1(M) is equal to the kernel of π1(M) → K and hence the

surjective group morphism π1(M) → H can be factorised π1(M) → K → H .

The surjective group morphism K → H induces a Riemannian regular covering

σ : (P, k)→ (M̃, g̃) having the required properties.

The uniqueness of ξ is obvious.

Corollary 1.1.14. Let (M, g) be a Riemannian manifold with zero first Betti

number. Let V be a foliation of codimension not equal to two which produces

harmonic morphisms on (M, g) .

Then, V admits a global density λ2−n .

1.2 Metric deformations

We next discuss how much the metric of M can be changed preserving the prop-

erty of producing harmonic morphisms (cf. [4], [43]).

Proposition 1.2.1 (cf. [43, Theorem 5.1]). Let V be a foliation on (M, g) , with

dimV = p and codimV = n . Let r and s be smooth positive functions on M .

Let gH and gV denote the horizontal and the vertical components of g , and set

g̃ = s2 gH + r2 gV .

(a) If n 6= 2 , then, any two of the following assertions imply the remaining

assertion:

(i) V produces harmonic morphisms on (M, g) ,
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(ii) V produces harmonic morphisms on (M, g̃) ,

(iii) rp sn−2 is locally the product of a function constant on horizontal

curves and a function constant on vertical curves.

(b) If n = 2 , then the same implications are true after replacing (iii) with:

(iii′) r is constant along horizontal curves.

Proof. Suppose that V is conformal and let λ and λ̃ be local dilations of V with

respect to g and g̃ , respectively. Then λ̃ = a s−1λ , where a is a smooth positive

function which is constant along vertical curves.

Let ω and ω̃ be local volume forms of V with respect to g and g̃ , respectively.

Then ω̃ = rp ω .

It follows that

λ̃2−n ω̃ = a2−n(sn−2 rp)(λ2−nω) . (1.2.1)

To prove that (i),(ii)⇒(iii) note that (1.2.1) and Proposition 1.1.11 implies

that if λ2−n and λ̃2−n are local densities of V with respect to g and g̃ , respectively,

then

sn−2 rp = an−2 b , (1.2.2)

where b is a smooth positive function constant along horizontal curves.

To prove that (i),(iii)⇒(ii) , suppose that λ2−n is a local density of V with

respect to g and choose smooth positive functions a and b which satisfy (1.2.2)

and such that a is constant along vertical curves and b is constant along horizontal

curves. Now, (1.2.1) implies that λ̃ = a s−1λ corresponds to a local density of V
with respect to g̃ .

The proof of (ii),(iii)⇒(i) is similar.

Corollary 1.2.2 (cf. [43]). Let V be a foliation with codimV 6= 2 on (M, g) . Let

a and b be smooth positive functions on M such that a is constant along vertical

curves and b is constant along horizontal curves. Then the following assertions

are equivalent:

(i) V produces harmonic morphisms on (M, g) ,

(ii) V produces harmonic morphisms on (M, a2 b2 g) .

If codimV = 2 then (i) ⇐⇒ (ii) if and only if the function a is constant on

M .
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Proof. This is an immediate consequence of Proposition 1.2.1 .

Propositions 1.1.11 and 1.2.1 suggests the following:

Definition 1.2.3 ([43], cf. [46]). Let V be a distribution of dimension p and codi-

mension n on the Riemannian manifold (M, g). For a positive smooth function

σ on M we define the metric σg by

σg = σ2 gH + σ
4−2n
p gV ,

where gH and gV are the horizontal and the vertical components of g , respectively.

Proposition 1.2.4 (cf. [43]). Let V be a conformal foliation on (M, g) and let σ

be a positive smooth function on M . Then,

(i) V is also a conformal foliation on (M, σg) . Furthermore, λ is a local dila-

tion of V with respect to g if and only if λσ−1 is a local dilation with respect to
σg .

(ii) V produces harmonic morphisms on (M, g) if and only if it produces har-

monic morphisms on (M, σg) .

(iii) If V produces harmonic morphisms and admits a global dilation λ such

that λ2−n is a density for V with respect to g then, V is a Riemannian foliation

with minimal leaves on (M, λg) .

Proof. Statement (i) follows from Remark 1.1.9(2) whilst (ii) follows from Propo-

sition 1.2.1.

If codimV = 2 assertion (iii) is obvious. If codimV 6= 2 first note that if λ

is a local dilation of V with respect to g then V is a Riemannian foliation on

(M, λg) . Now the proof of Proposition 1.2.1 shows that if λ2−n is a density for V
then the constant function λ̃ = 1 is a dilation which corresponds to a density for

V with respect to λg . Thus, by (1.1.4) the leaves of V are minimal submanifolds

of (M, λg) .

The next result shows that the metric on the codomain is much more rigid.

Proposition 1.2.5 ([13]). Let ϕj : (M, g) → (N, hj) , j = 1, 2 , be nonconstant

harmonic morphisms having the same fibres. Suppose that N is connected and
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dimN 6= 2 .

Then, h1 and h2 are homothetic.

Proof. Let λj be the dilation of ϕj (j = 1, 2) . Then λ2 = λ1 σ where σ : M → R
is a smooth positive function, constant along the fibres.

Recall from Proposition 1.1.11 that the property that ϕj is a harmonic mor-

phism is equivalent to the property that the parallel displacement defined by the

horizontal distribution preserves λ2−n
j ω , where n = dimN and ω is a local vol-

ume form for the vertical distribution. Hence, σ is also constant along horizontal

curves.

It follows that σ is constant on M , and the proposition is proved.

An immediate consequence of Proposition 1.2.5 is the following:

Corollary 1.2.6. A foliation of codimension q 6= 2 which produces harmonic

morphisms is given by a Haefliger structure [33] with values in the groupoid of

germs of homothetic diffeomorphisms of the sheaf of germs of Riemannian metrics

on Rq .

In the following theorem we attach assertion (iv) to a well-known list of equiv-

alent assertions (see [44, Appendix B]).

Theorem 1.2.7. Let M be a compact manifold with zero first Betti number.

For a foliation V on M with compact leaves the following assertions are equiv-

alent:

(i) the holonomy group of each leaf of V is finite,

(ii) there exists a metric g on M such that V is a Riemannian foliation on

(M, g),

(iii) there exists a metric g on M such that the leaves of V are minimal sub-

manifolds of (M, g),

(iv) there exists a metric g on M such that V produces harmonic morphisms

on (M, g).

Moreover, if codimV = 2 , is not necessary to assume that the first Betti

number of M is zero.
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Proof. It is well-known that the assertions (i), (ii) and (iii) are equivalent. More-

over, if any of these properties holds then there exists a metric g on M such that

V is a Riemannian foliation with minimal leaves on (M, g) . (To see this let h be a

metric on M with respect to which V has minimal leaves and let k be a metric on

M with respect to which V is Riemannian. If H is the orthogonal complement of

V with respect to h and K is the orthogonal complement of V with respect to k

let g = hV + kH where, hV is the vertical component of h and kH is the metric on

H induced by the restriction of k to K via the canonical isomorphisms of vector

bundles H → TM/V → K .) But any Riemannian foliation with minimal leaves

produces harmonic morphisms.

Conversely, suppose that V produces harmonic morphisms on (M, g) . If

codimV = 2 then by Proposition 1.1.10 , V has minimal leaves (see [65]). If

codimV 6= 2 then by Corollary 1.1.14 , there exists a global density λ2−n of V ,

and V is a Riemannian foliation with minimal leaves on (M, λg) .

1.3 Characterisation of the conformal foliations

which produce harmonic morphisms

We now characterise conformal foliations which produce harmonic morphisms.

Recall [65] that a conformal foliation V of codimV = 2 produces harmonic mor-

phisms if and only if its leaves are minimal. For codimV 6= 2 , the situation is more

complicated and we have the following reformulation of a result of R.L. Bryant

[13] (see [9] for another treatment).

Proposition 1.3.1 ([13]). Let V be a conformal foliation on (M, g) of codimV 6=
2 and H its orthogonal complement. Let VB and HB be the second fundamental

forms of V and H , respectively.

Then, V produces harmonic morphisms on (M, g) if and only if the vector

field

(n− 2) trace(HB)− n trace(VB)

is locally a gradient vector field. (Here trace(HB) =
∑

j
HB(Xj, Xj) , trace(VB) =
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∑
α
VB(Uα, Uα) for local orthonormal frames {Xj} and {Uα} of H and V , respec-

tively.)

Proof. Note that the following relation holds

(n− 2) trace(HB)− n trace(VB) = n(n− 2) grad(log λ) , (1.3.1)

if and only if:

trace(HB) = nV(grad(log λ)) , (1.3.1a)

and

trace(VB) = −(n− 2)H(grad(log λ)) . (1.3.1b)

By Remark 1.1.9(3) , (1.3.1a) holds if and only λ is a local dilation of V .

This together with the fundamental equation (1.1.4) , imply that (1.3.1a) and

(1.3.1b) hold if and only if V , restricted to the domain of λ , produces harmonic

morphisms and λ2−n is a density of it.

Note that Corollary 1.1.14 can be proved using (1.3.1) .

1.4 Homothetic foliations

By the mean curvature form of V we mean the one-form (trace(VB))[ obtained

by applying the musical isomorphism (see [11]) [ : TM → T ∗M with similar

terminology for H (see [60]). Then we have.

Corollary 1.4.1. Let V be a conformal foliation with codimV 6= 2 and let H be

its orthogonal complement. Then any two of the following assertions imply the

other one:

(i) V produces harmonic morphisms,

(ii) V has closed mean curvature form,

(iii) H has closed mean curvature form.
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Proof. This is an immediate consequence of Proposition 1.3.1 and the fact that

(trace(VB))[ is closed if and only if trace(VB) is locally a gradient and similarly

for H .

We now introduce a new sort of foliation midway between conformal and

Riemannian foliations.

Proposition 1.4.2. For a conformal foliation V on the Riemannian manifold

(M, g) the following assertions are equivalent:

(i) the leaves of V can be, locally, given as fibres of horizontally homothetic

submersion;

(ii) each point of M has an open neighbourhood on which there can be defined

a local dilation of V which is constant along horizontal curves;

(iii) any local dilation λ of V , defined on an open subset O with zero first Betti

number, is a product λ = a b , where a and b are positive smooth functions such

that a is constant along vertical curves and b is constant along horizontal curves;

(iv) the mean curvature of the orthogonal complement of V is locally a gradient

vector field.

Proof. The equivalence (i)⇐⇒ (ii) is obvious. Also, by Remark 1.1.9(2) it follows

that (ii)⇐(iii).

By the same remark, if (ii) holds then, any local dilation λ : O → R of V
is, locally, a product λ = a b as in (iv). If on the same open subset of O , we

also have λ = a1 b1 then, a−1 a1 = b b−1
1 = const. . Hence the differentials of the

logarithms of the factors a , b from the local decompositions of λ define closed

one-forms on O. If the first Betti number of O is zero then these one-forms are

exact and the implication (ii)⇒(iii) is proved.

The equivalence (ii)⇐⇒ (iv) follows from Remark 1.1.9(3) .

Remark 1.4.3. 1) If a conformal foliation satisfies one of the properties from the

above proposition then the holonomy groupoid of each leaf is formed of germs of

homothetic diffeomorphisms.

2) In (iii) above instead of H1(O; R) = 0 we could ask that the first basic

cohomology group (see [60]) of V|O be zero. This follows from the fact that the
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set of differentials {d a} define a closed basic one-form on O .

3) Alternatively, it is sufficient to ask that the orthogonal complement H|O
of V|O is an Ehresmann connection [12] with trivial holonomy (in particular, H|O
is integrable). To see this, note that the set of differentials {d(log b)} define a

closed one-form which, when restricted to a leaf L , is exact (because it coincide

with d((log λ)|L)). When H is an Ehresmann connection with trivial holonomy

these exact forms can be matched together to define an exact form on O.

The notion of local dilations for conformal foliations can be generalized to con-

formal distributions, although, in this case, these might not exist. Nevertheless,

if a conformal distribution admits local dilations then these share the same prop-

erties (Remark 1.1.9(2) and (3)) as the local dilations of a conformal foliation.

Moreover, assertions (ii), (iii) and (iv) from Proposition 1.4.2 remain equivalent

for conformal distributions which admit local dilations in a neighbourhood of

each point.

Proposition 1.4.2 suggests the following definition.

Definition 1.4.4 (cf. [62, §2]). Let V be a distribution on the Riemannian man-

ifold (M, g). We shall say that V is homothetic if it is conformal and the mean

curvature of its orthogonal complement is locally a gradient vector field.

Remark 1.4.5. 1) Let V be a foliation on M . Then, there exists a metric g on

M such that V is a homothetic foliation on (M, g) if and only if V is a foliation

of type (A) in the sense of I. Vaisman [62].

2) Note that, unlike conformal distributions, homothetic distributions always

admit local dilations, even if nonintegrable. Indeed, if V is a homothetic distri-

bution with codimV = n and H is its orthogonal complement, then any local

smooth positive function λ on M which has the property

n grad(log λ) = trace(HB) , (1.4.1)

is a local dilation of V .

Moreover, if V is a homothetic distribution and λ is a local dilation of it

defined on an open set O such that λ = a b as in (iii) from Proposition 1.4.2 ,

then any other local dilation defined on O is of this form.
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Proposition 1.4.6. Let V be a foliation on (M, g) with orthogonal complement

H.

If H is a homothetic distribution then the parallel displacement defined by it

consists of (local) homothetic diffeomorphisms between leaves of V .

Conversely, if H is conformal, integrable and the parallel displacement defined

by it is formed of (local) homothetic diffeomorphisms between leaves of V , then

it is a homothetic distribution.

Proof. If H is conformal and integrable then it admits local dilations. Let λ be

a local dilation of H . Then for any horizontal vector field X invariant under the

holonomy of V (i.e. for any basic vector field X ) we have:

LX(λ2 (g|V)) = 0 . (1.4.2)

If (ψt) is the local flow of X , then (1.4.2) is equivalent to the fact that for any t

we have

(ψt)
∗(λ2(g|V)) = λ2(g|V) . (1.4.3)

The proof follows from (1.4.3) by using the fact that, if H is conformal, then

it is homothetic if and only if in the neighbourhood of each point a local dilation

can be found, which is constant along the leaves of V .

Proposition 1.4.7. Let V be a homothetic foliation of codimension not equal to

two on (M, g). Then, the following assertions are equivalent:

(i) V produces harmonic morphisms;

(ii) the mean curvature of V is locally a gradient vector field.

In particular, a homothetic foliation whose orthogonal complement is a homo-

thetic distribution produces harmonic morphisms with umbilical fibres.

Proof. Since V is homothetic we have that trace(HB) is, locally, a gradient vector

field. From Proposition 1.3.1 it follows that V produces harmonic morphisms if

and only if trace(VB) is, locally, a gradient vector field.

The last assertion follows from the fact that (see Remark 1.1.9(3) ) V is um-

bilical if and only if H is a conformal distribution.
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Corollary 1.4.8. Let V be a foliation with minimal leaves and codimV 6= 2 .

Then, V produces harmonic morphisms if and only if it is homothetic.

See [2] for other relations between harmonic maps and minimal submanifolds.

Remark 1.4.9. 1) In Proposition 1.4.7 condition (ii) is a bit more general than

saying H is homothetic since it is not assumed to be conformal.

2) Any Riemannian foliation is homothetic.

3) Given a horizontally homothetic submersion the connected components of

its fibres form a homothetic foliation. Conversely, note that if ϕ : (M, g)→ (N, h)

is a horizontally conformal submersion such that its fibres form a homothetic foli-

ation then it is not true, in general, that ϕ is horizontally homothetic. If the first

Betti number of M is zero then ϕ can be factorised into a horizontally homothetic

submersion followed by a conformal diffeomorphism. (By Remark 1.4.3(2)(3) this

factorization can also be done when the first Betti number of N is zero or when

the horizontal distribution H is an Ehresmann connection with trivial holonomy,

in which case H is integrable and M is diffeomorphic to the product of N and

the fibre.)

Example 1.4.10. 1) Doubly-warped-products (see [53], and the references therein).

If (Mp, g) and (N q, h) are Riemannian manifolds and r : M → R and s : N → R
are positive smooth functions then the doubly-warped-product of (Mp, g) and

(N q, h) is defined to be:

Ms × rN = (M ×N, s2 π∗M(g) + r2 π∗N(h) ) ,

where πM and πN are the projections onto M and N , respectively.

The projections πM : Ms × rN → (M, g) and πN : Ms × rN → (N, h) are

horizontally homothetic so their fibres define a pair of complementary orthogonal

homothetic foliations. Conversely, any Riemannian manifold endowed with a pair

of complementary orthogonal homothetic foliations is canonically locally isomet-

ric to a double-warped-product. Hence, by Proposition 1.4.7 , when p, q 6= 2 both

of the foliations induced by the factors of a double-warped-product produce har-

monic morphisms. More precisely, if p 6= 2 the following projection is a harmonic
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morphism with umbilical fibres:

πM : Ms × rN −→ (M, r
2q
p−2 g) . (1.4.4)

The fact that the above projection is a harmonic morphism also follows from

Proposition 1.2.4(iii) .

A concrete example of a warped product is provided by the open subsets in

spheres (Sp+q\Sp−1
0 , gp+q), where Sp−1

0 = Rp∩Sp+q and Rp ≡
{
x ∈ Rp+q+1 |xp+1 =

. . . = xp+q+1 = 0
}

and gp+q is the restriction of the canonical metric on Sp+q .

The warped-product is the one induced by the following diffeomorphism:

Φ : Sp+q \ Sp−1
0 −→ Sp+ × Sq

Φ(x, y) =
(
(x, |y|), 1

|y|
y
)
.

where Sp+ =
{
x ∈ Sp+1 |xp+1 > 0

}
. To make Φ an isometry we must give Sp+×Sq

the warped-product structure Sp+ ×r Sq where r(x1, . . . , xp+1) = xp+1. Thus,

if p 6= 2 , (1.4.4) particularises to give the following harmonic morphism with

umbilical fibres:

ϕ : (Sp+q \ Sp−1
0 , gp+q) −→ (Sp+, r

2q
p−2 gp)

ϕ(x1, . . . , xp+q+1) =
(
x1, . . . , xp,

√
(xp+1)2 + . . .+ (xp+q+1)2

)
.

By Proposition 1.2.5 any other metric on Sp+ with respect to which ϕ above

is a harmonic morphism is homothetic to the one considered. Also, note that, al-

though ϕ can be extended to a continuous map ϕ̃ on Sp+q , the considered metric

on the codomain cannot be extended to the range of ϕ̃.

2) Doubly-twisted-products(see [53], and the references therein). These are de-

fined in the same way as doubly-warped-products, but now r, s : M ×N → R. It

is easy to see that a Riemannian manifold endowed with a pair of complementary

orthogonal foliations which are both umbilical (equivalently, both conformal) is,

canonically, locally isometric to a double-twisted-product.

If p 6= 2 , it follows from Proposition 1.2.1 that the foliation V induced by the

second factor of the double-twisted-product Ms × rN produces harmonic mor-

phisms if and only if the function rq sp−2 is, locally, the product of a function
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constant on M and a function constant on N .

If p = 2 , then V produces harmonic morphisms if and only if r is a function

defined on N . In this case, V has totally geodesic leaves and Ms × rN is isometric

to the twisted product Ms × Ñ where Ñ = (N, r2 h) .

It follows that a pair of complementary orthogonal umbilical foliations both

of codimension not equal to two are both homothetic if and only if each of them

produces harmonic morphisms.
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Chapter 2

Group actions and harmonic

morphisms

2.1 Mean curvature forms and adapted Bott con-

nections

In this section we shall establish the fact that the exterior derivative of the mean

curvature form of a distribution is the curvature form of the connection induced

on the determinant bundle of the distribution by its adapted Bott connection (see

[55]). By using this or by direct calculation we obtain formulae for the exterior

derivative of the mean curvature form of a distribution. (We do not imagine that

these formulae are new, but we could not find them in the literature.) Some

of these formulae apply to prove that if a conformal foliation V has integrable

orthogonal complement H and if V and H both have basic mean curvature forms

then V produces harmonic morphisms.

The following simple lemma will be used later on.

Lemma 2.1.1 (cf. [56, Chapter IV, Example 4.10]). Let V be a foliation on

(M, g) and let V ∈ Γ(V) be a conformal vector field.

Then
[
V,X

]
= 0 for any basic vector field X .
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Proof. Let H = V⊥ and X ∈ Γ(H) a basic vector field. Then [V,X] ∈ Γ(V) .

But V is conformal and hence we can write

0 = (LV g)(W,X) = −g(W, [V,X])

for any W ∈ Γ(V) . Hence [V,X] = 0 .

The result of Lemma 2.1.1 is equivalent to the fact that any conformal vector

field tangent to a foliation V is an infinitesimal automorphism of the orthogonal

complement of V (see [56] or [36] for the definition of the infinitesimal automor-

phism of a distribution).

Let V and H be two complementary orthogonal distributions (not necessarily

integrable) on (M, g) .

Definition 2.1.2 (see [60]). The adapted Bott connection
H
∇ on H is defined by

H
∇E X = H

[
VE,X

]
+H

(
∇HEX

)
for E ∈ Γ(TM) , X ∈ Γ(H) where ∇ is the Levi-Civita connection of (M, g) .

The adapted Bott connection
V
∇ on V is defined similarly by reversing the

roles of V and H .

Remark 2.1.3 (see [60]). It is easy to see that
H
∇ is compatible with the metric

induced by g on H if and only if H is totally geodesic. Nevertheless, since
H
∇X = H∇X for any X ∈ Γ(H) we have that

H
∇X(g|H) = 0 .

Let HI be the integrability tensor of H which is the V-valued horizontal two-

form defined by HI (X, Y ) = −V [X, Y ] for X , Y ∈ Γ(H) .

Proposition 2.1.4. Let H be a distribution on (M, g) . Then

d
(
trace(HB)[

)
(X, Y ) = g

(
trace(HB),HI (X, Y )

)
, (2.1.1)

d
(
trace(HB)[

)
(X, V ) =

V
∇X

(
trace(HB)[

)
(V ) (2.1.2)

for any horizontal vectors X ,Y and vertical vector V .
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Proof. This is a straightforward calculation using the fact that trace(HB) is a

vertical vector field.

Let n = dimH and let
∧
nH be the determinant line bundle of H .

Let HR ∈ Γ(End(H)⊗
∧

2(T ∗M)) be the curvature form of
H
∇ . Then the curva-

ture form of the connection induced by
H
∇ on

∧
nH is trace(HR) ∈ Γ(

∧
2(T ∗M)) .

Proposition 2.1.5 (see [55]). Let H be a distribution on (M, g) . Then

trace(HR) = d
(
trace(HB)[

)
.

Proof. Let
H
ω be a local volume form of H considered with respect to the metric

induced by g .

Recall that trace(HR) = dA where A is any local connection form of the

connection induced by
H
∇ on

∧
nH . Thus it suffices to show that

H
∇E

H
ω = −g(E, trace(HB))

H
ω (2.1.3)

for any E ∈ TM .

If E ∈ H then the right hand side of (2.1.3) is zero. Also, the left hand side

is zero because if E ∈ H then
H
∇E(g|H) = 0 (see Remark 2.1.3).

If E ∈ V then
H
∇E

H
ω = H∗(LE

H
ω) . Thus, if E ∈ V then (2.1.3) reduces to a

well-known formula (see [65]).

Proposition 2.1.6 (see [56],[60]). Let X ∈ Γ(H) be a horizontal vector field.

Then the following assertions are equivalent.

(i)
H
∇V X = 0 for any V ∈ Γ(V) ;

(ii) H[X, V ] = 0 for any V ∈ Γ(V) ;

(iii) LX
(
Γ(V)

)
⊆ Γ(V) ;

(iv) X is an infinitesimal automorphism of V.

Proof. The equivalences (i) ⇐⇒ (ii) and (ii) ⇐⇒ (iii) are trivial. Also, (ii) ⇐⇒
(iv) follows easily from [37, Chapter 1, Corollary 1.10] .
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Remark 2.1.7. If in Proposition 2.1.6 we further assume that H is integrable

then the following assertions can be added.

(v) LX ◦ V = V ◦ LX ;

(vi) LX ◦H = H ◦ LX .

Example 2.1.8 (see [60]). Suppose that V is integrable. Then any basic vector

field X ∈ Γ(H) for V with respect to H is an infinitesimal automorphism of V ;

in fact, if V is integrable a horizontal vector field X ∈ Γ(H) is basic if and only

if any of the assertions (i), (ii), (iii) or (iv) holds.

The following definition does not require any assumption on the distribution

H .

Definition 2.1.9 (see [60, (4.34)]). Let E ∈ Γ(TM) . The horizontal divergence

divHE of E is defined by

H∗(LE
H
ω) = (divHE)

H
ω

where
H
ω is any local volume form of H (endowed with the metric induced by g).

The vertical divergence divV is defined similarly (note that

divE = divHE + divV E

for any E ∈ Γ(TM) ).

A standard calculation gives the following proposition.

Proposition 2.1.10. Let E ∈ Γ(TM) . Then divHE is the (pointwise) trace of

the linear endomorphism H −→ H defined by Y 7−→ H(∇YE) .

Hence, divHE is globally well-defined (i.e. it does not depend on
H
ω).

Remark 2.1.11. 1) Obviously, if H is integrable and X ∈ Γ(H) then the restric-

tion of divHX to each leaf L of H is equal to the divergence of the restriction of

X to (L, g|L) .

2) If V ∈ Γ(V) then divH V = −g(trace(HB), V ) .
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Lemma 2.1.12. (a) Suppose that X ∈ Γ(H) is an infinitesimal automorphism

of V. Then
HR(V,W )X = H(∇VI (V,W )X)

for any vertical V and W .

(b) Suppose that H is integrable and let X, Y ∈ Γ(H) and V ∈ Γ(V) be such

that [V,X] = 0 = [V, Y ] . Then

HR(V,X)Y =
H
∇V (H∇YX) .

Proof. (a) Let V, W ∈ Γ(V) . Then

HR(V,W )X = [
H
∇V ,

H
∇W ]X −

H
∇[V,W ] X

= −
H
∇V[V,W ] X −

H
∇H[V,W ] X = H(∇VI (V,W )X) .

(b) We have

HR(V,X)Y = [
H
∇V ,

H
∇X ]Y −

H
∇[V,X] Y

=
H
∇V (

H
∇X Y ) =

H
∇V (H∇XY )

=
H
∇V (H[X, Y ] +H∇YX) .

Because H is integrable we have that H[X, Y ] = [X, Y ] and from [V,X] =

0 = [V, Y ] , by using the Jacobi identity, we obtain that [V, [X, Y ]] = 0 . Hence
H
∇V (H[X, Y ]) = 0 and the lemma follows.

Let
{
Xa

}
be a local frame for H over the open subset U ⊆ M and let

{
Vr
}

be a local frame for V over U . We shall denote ‘horizontal’ indices by a, b, c and

‘vertical’ indices by r, s, t .

Lemma 2.1.13. (a) Suppose that the Xa are infinitesimal automorphisms of V .

Then

d
(
trace(HB)[

)
rs

=
(
caba + divHXb

) VI brs (2.1.4)

where
{
ccab
}

are defined by H[Xa, Xb] = ccabXc .

(b) If both H and V are locally generated by infinitesimal automorphisms of

V and H , respectively, and H is integrable then

V∗
(
d
(
trace(HB)[

))
= divH(VI ) .
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Proof. (a) This follows from Proposition 2.1.5 , Proposition 2.1.10 and Lemma

2.1.12(a) .

(b) This follows from (a) and the fact that V∗(LX(VI )) = 0 for any infinitesimal

automorphism X ∈ Γ(H) of V .

(Note that it seems to be impossible to formulate invariantly assertion (a) of

Lemma 2.1.13 .)

Proposition 2.1.14 (see [55]). If V is integrable then d
(
trace(HB)[

)
(V,W ) = 0

for any vertical V and W .

Proof. This follows from Lemma 2.1.13 because if V is integrable then any basic

vector field for V is an infinitesimal automorphism of V .

Proposition 2.1.15. Suppose that both V and H are integrable. Then the fol-

lowing assertions are equivalent.

(i) The mean curvature form of H is closed;

(ii) The mean curvature form of H is basic (for V).

Proof. This follows from Proposition 2.1.4 and Proposition 2.1.14 .

Proposition 2.1.16. Suppose that H is integrable and locally generated by in-

finitesimal automorphisms of V. Let V ∈ Γ(V) and let X ∈ Γ(H) be an infinites-

imal automorphism of V. Then

d
(
trace(HB)[

)
(V,X) = V (divHX) = −

V
∇X(trace(HB)[)(V ) . (2.1.5)

Proof. Note that (2.1.5) is tensorial in V and thus we can suppose that V is

basic for H. Then the proof follows from Proposition 2.1.4 , Proposition 2.1.5 ,

Proposition 2.1.10 and Lemma 2.1.12(b) .

By reversing the roles of V and H in Proposition 2.1.4 and Lemma 2.1.13 and

Proposition 2.1.16 we obtain the corresponding formulae for d
(
trace(VB)[

)
.

The following simple lemma holds for any complementary orthogonal distri-

butions H and V .
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Lemma 2.1.17. Let f be any smooth function on M . Then

H
∇V (H∗(df))(X) =

V
∇X(V∗(df))(V ) (2.1.6)

for any vertical V and horizontal X .

Proof. Let X and V be vector fields which are horizontal and vertical, respec-

tively. The following relation is trivial

V (X(f))−X(V (f))− [V,X](f) = 0 . (2.1.7)

But (2.1.7) is equivalent to the following

V (X(f))−H[V,X](f) = X(V (f))− V [X, V ](f)

which is obviously equivalent to (2.1.6).

Proposition 2.1.18. Let V be a foliation of codimV = n 6= 2 which produces

harmonic morphisms on (M, g) . Then the following assertions are equivalent.

(i) The mean curvature form of V is basic;

(ii) The mean curvature form of H is invariant under the parallel displacement

determined by H (i.e.
V
∇X(trace(HB)[)(V ) = 0).

Proof. Recall that trace(HB)[ = nV∗(d log λ) (see [9]) for any local dilation λ of

V .

Also, from the fundamental equation (1.1.4) of P. Baird and J. Eells it follows

that trace(VB)[ = −(n− 2)H∗(d log λ) for any local density λ2−n of V .

Now the equivalence (i)⇐⇒ (ii) follows from Lemma 2.1.17 .

Theorem 2.1.19. Let V be a conformal foliation on (M, g) of codimV 6= 2 .

Suppose that the orthogonal complement H of V is integrable.

Then any two of the following assertions imply the remaining assertion.

(i) V produces harmonic morphisms;

(ii) The mean curvature form of V is basic (for H);

(iii) The mean curvature form of H is basic (for V).

Moreover, if any two of (i) , (ii) or (iii) hold then both V and H have closed

mean curvature forms.
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Proof. If (i) holds then the equivalence (ii) ⇐⇒ (iii) follows from Proposition

2.1.18 .

Suppose that both the assertions (ii) and (iii) hold. Then (i) follows from

Proposition 2.1.15 and Proposition 1.3.1 .

Proposition 2.1.20. (a) If V is integrable then

d
(
trace(HB)[

)
(V,W ) = 0 = d

(
trace(VB)[

)
(V,W ) (2.1.8)

for any vertical V and W .

(b) Let V be a conformal foliation on (M, g). Then the following assertions

are equivalent.

(i) For any local dilation λ of V the one-form trace(VB)[+(n−2)H∗(d log λ)

is basic (n = dimH);

(ii) For any horizontal X and vertical V we have

d
(
(n− 2) trace(HB)[ − n trace(VB)[

)
(X, V ) = 0 . (2.1.9)

Proof. (a) The first equality of (2.1.8) follows from Proposition 2.1.14 .

The second equality of (2.1.8) follows from (2.1.1) of Proposition 2.1.4 by

reversing the roles of H and V .

(b) Let λ be a local dilation of V and recall that trace(HB) = nV(grad(log λ)) .

Hence, by applying (2.1.2) of Proposition 2.1.4 and Lemma 2.1.17 we obtain that(
(n− 2) d

(
trace(HB)[

)
− n d

(
trace(VB)[

))
(X, V )

= (n− 2)
V
∇X

(
trace(HB)[

)
(V ) + n

H
∇V

(
trace(VB)[

)
(X)

=n(n− 2)
V
∇X(V∗(d log λ))(V ) + n

H
∇V

(
trace(VB)[

)
(X)

=n(n− 2)
H
∇V (H∗(d log λ))(X) + n

H
∇V

(
trace(VB)[

)
(X)

for any horizontal X and vertical V and the proof of (i)⇐⇒ (ii) follows from the

fact that the basic vector fields (for V) are precisely those horizontal vector fields

which are infinitesimal automorphisms of V (see Example 2.1.8(1) ).
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2.2 Characterisation of the conformal actions

which produce harmonic morphisms

On a two-dimensional Riemannian manifold a foliation (of dimension one) pro-

duces harmonic morphisms if and only if it is locally generated by conformal

vector fields. This follows from the well-known fact that a harmonic morphism to

a one-dimensional Riemannian manifold is essentially a harmonic function and, if

the domain is two-dimensional, this is locally the real part of a conformal map. If

the manifold has dimension greater than two then it is not true that any foliation

locally generated by conformal vector fields produces harmonic morphisms. In

this section we shall give necessary and sufficient conditions for a foliation locally

generated by conformal vector fields to produce harmonic morphisms (Theorem

2.2.6). To state this result we need some preparations.

Firstly, we recall the following definition.

Definition 2.2.1 (cf. [59]). Let V be a foliation on the Riemannian manifold

(M, g).

Then V is locally generated by conformal (resp. Killing) vector fields if in the

neighbourhood of each point a local frame for V can be found which is formed of

conformal (resp. Killing) vector fields.

We also need the following:

Definition 2.2.2. Let V be an orientable foliation of dimension p on a smooth

manifold M . Let H be a complementary distribution (i.e. V ⊕ H = TM) . Let
HI be its integrability tensor. Let

V
ω be a volume form on V (i.e. a vertical

nonvanishing p-form).

Suppose that V is locally generated by local frames
{
Vr
}

such that

(1) V∗(LVr
V
ω) = 0 ,

(2) Vr is an infinitesimal automorphism of H , for any r .

We define the two-form trace(ad(HI )) on M by

trace(ad(HI )) = csrs
HI

r

where HI = Vr ⊗ HI
r

and
[
Vr, Vs

]
= ctrsVt .
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Example 2.2.3. Let V be an orientable foliation on (M, g), H = V⊥ and
V
ω a

volume form for V with respect to g.

Then, (i) if
{
Vr
}

is a local frame for V made up of Killing fields then they

satisfy (1) and (2) of Definition 2.2.2 ; (ii) more generally, the
{
Vr
}

satisfy (1) of

Definition 2.2.2 if and only if their restrictions to each leaf are divergence-free.

It can be shown, directly, that the above definition is independent of the local

frame
{
Vr
}

of V such that (1) and (2) above, hold. This also follows from the

following proposition.

Proposition 2.2.4. Let V, H, HI ,
V
ω,
{
Vr
}

be as in Definition 2.2.2 and let VR

be the curvature form of
V
∇.

Then,

(a) trace(ad(HI )) = trace(VR) ;

(b) V∗
(
LHI (X,Y )

V
ω
)

= trace(ad(HI ))(X, Y )
V
ω for any basic vector fields X and

Y .

Further, the following assertions are equivalent:

(i) trace(ad(HI )) = 0 ,

(ii) At least locally there can be defined smooth positive basic functions ρ such

that V∗(LX(ρ
V
ω)) = 0 for any horizontal field X ,

(iii) V∗
(
LHI (X,Y )

V
ω
)

= 0 for any basic vector fields X and Y .

In particular, if the first Betti number of M is zero and (i) holds then V is

taut (i.e. there exists a Riemannian metric on M with respect to which the leaves

of V are minimal).

Proof. Let g be a Riemannian metric on M such that H = V⊥ and
V
ω is equal to

the induced volume form on V , and let
V
∇ be the adapted Bott connection on V

corresponding to g .

Note that (1) of Definition 2.2.2 is equivalent to the fact that divV Vα = 0.

The proof of (a) and (b) follows from Proposition 2.1.5, Lemma 2.1.13, Propo-

sition 2.1.14 and Propostion 2.1.16 reversing the roles of H and V .

Assertion (a) is equivalent to the fact that trace(ad(HI )) is the curvature form

of the connection induced by
V
∇ on Λr(V) . It is easy to see that this connection
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is flat if and only if assertion (ii) holds. The equivalence (i)⇐⇒ (ii) now follows

from (a).

The equivalence (i)⇐⇒ (iii) follows from (b).

Remark 2.2.5. Note that trace(ad(HI )) is well-defined also for nonorientable

foliations (in which case
V
ω is defined just up to the sign). Also, note that

trace(ad(HI )) is well-defined for foliations locally generated by conformal vector

fields.

We now state the main result of this section.

Theorem 2.2.6. Let V be a conformal foliation of codimV = n 6= 2 on (Mm, g) ,

m ≥ 3 . Suppose that V is locally generated by conformal vector fields and let H
denote its orthogonal complement.

Then the following assertions are equivalent:

(i) V produces harmonic morphisms.

(ii) The mean curvature form of V is basic and the following relation holds:

trace(ad(HI )) =
m− 2

n
g(trace(HB),HI ) . (2.2.1)

Proof. By Proposition 1.3.1 , V produces harmonic morphisms if and only if

(n− 2) d
(
trace(HB)[

)
− n d

(
trace(VB)[

)
= 0 . (2.2.2)

By Proposition 2.1.20(a) the left hand side of (2.2.2) is automatically zero

when evaluated on a pair of vertical vectors.

Let λ be a local dilation of V .

Let V ∈ Γ(V) be a conformal vector field on (M, g) . It is obvious that V

restricted to any leaf L of V is a conformal vector field on (L, g|L) . Using this it

is easy to see that

divV V = −(m− n)V (log λ) . (2.2.3)

Let X ∈ Γ(H) be a basic vector field. Then

H
∇V (H∗(d log λ))(X) = V (X(log λ)) = X(V (log λ))

= − 1

m− n
X(divV V ) =

1

m− n
H
∇V (trace(VB)[)(X)

(2.2.4)
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where we have also applied Lemma 2.1.1 and Proposition 2.1.16 (reversing the

roles of H and V in the latter). From Proposition 2.1.20(b) and (2.2.4) it follows

that the left hand side of (2.2.2) is zero when evaluated on a pair made up of a

vertical vector and a horizontal vector if and only if V has basic mean curvature

form.

Now, using Lemma 2.1.13(a) (with the roles of H and V reversed) and (2.2.3)

it is easy to see that

d
(
trace(VB)[

)
(X, Y ) = trace(ad(HI ))(X, Y )− m− n

n
g(trace(HB),HI (X, Y ))

(2.2.5)

for any horizontal X and Y . By combining (2.2.5) and Proposition 2.1.4 we

obtain that the left hand side of (2.2.2) is zero when evaluated on a pair of

horizontal vectors if and only if (2.2.1) holds. The theorem is proved.

Remark 2.2.7. The first condition of Theorem 2.2.6(ii) (i.e. V has basic mean

curvature form) can be replaced with the fact that the mean curvature form of

H is invariant under the parallel displacement determined by H .

Corollary 2.2.8. Let V be a foliation on (Mm, g) , m ≥ 3 , which is locally

generated by conformal vector fields and has integrable orthogonal complement.

Then the following assertions are equivalent.

(i) V produces harmonic morphisms;

(ii) V has basic mean curvature form.

Moreover, if either assertion (i) or (ii) holds then both V and its orthogonal

complement have closed mean curvature forms.

Proof. The equivalence (i) ⇐⇒ (ii) is an immediate consequence of Theorem

2.2.6 .

The last assertion follows from Proposition 2.1.4 , Lemma 2.1.13 , Proposition 2.1.16

and Theorem 2.2.6 .

2.3 Isometric actions and harmonic morphisms

From Theorem 2.2.6 we obtain the following.
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Corollary 2.3.1. Let V be a Riemannian foliation of codimV 6= 2 on (Mm, g) ,

m ≥ 3 , and let HI be the integrability tensor field of its orthogonal complement.

Suppose that V is locally generated by Killing fields.

Then the following assertions are equivalent:

(i) V produces harmonic morphisms,

(ii) trace(ad(HI )) = 0 .

Proof. It is obvious that V has basic mean curvature. Also, trace(HB) = 0 and

the proof follows from Theorem 2.2.6 .

Remark 2.3.2. It is easy to see that Corollary 2.3.1 holds more generally for

Riemannian foliations locally generated by infinitesimal automorphisms of the

horizontal distribution which when restricted to any leaf are divergence-free.

When the foliation is simple the result of Corollary 2.3.1 takes a more concrete

form.

Corollary 2.3.3. Let ϕ : (M, g) → (N, h) , dimN 6= 2 , be a Riemannian sub-

mersion whose fibres are connected and locally generated by Killing fields and let
HI be the integrability tensor of the horizontal distribution. Then the following

assertions are equivalent.

(i) ϕ lifts to a harmonic morphism ϕ̃ : (M̃, g̃)→ (Ñ , h̃) where (M̃, g̃)→ (M, g)

is a Riemannian regular covering and Ñ → N is a regular covering such that h̃

and the pull-back of h to Ñ are conformally equivalent.

(ii) trace(ad(HI )) = 0 .

Proof. From Corollary 2.3.1 it follows that it is sufficient to prove that if V(=

kerϕ∗) produces harmonic morphisms then (i) holds.

Let M̃ → M be the regular covering which corresponds to the cohomology

class [a] ∈ H1(M ; R) induced by the differentials of the logarithms of the dilations

of the (local) harmonic morphisms produced by V (= kerϕ∗) . (From the funda-

mental equation it follows that a can be also defined as the one-form obtained

by applying the musical isomorphism [ to −1
n−2

trace(VB).) It is obvious that the

pull-back of [a] to M̃ is zero; let λ be a smooth positive function on M̃ such that
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d(log λ) is equal to the pull-back of a to M̃ .

Since a is basic (see Remark 2.3.2(1) ) there exists a regular covering Ñ → N

whose pull-back by ϕ is M̃ → M . It is obvious that ϕ lifts to a smooth map

ϕ̃ : M̃ → Ñ . Note that we can suppose that λ is constant along the fibres of ϕ̃

and hence there exists a positive smooth function λ̄ on Ñ such that ϕ̃ ∗(λ̄) = λ.

Let g̃ be the pull-back of g to M̃ and h̄ be the pull-back of h to Ñ . Then

ϕ̃ : (M̃, g̃)→ (Ñ , λ̄2 h̄) is a harmonic morphism and the corollary is proved.

Remark 2.3.4. If in Corollary 2.3.3 we have that H1(M ; R) = 0 or H1(N ; R) = 0

then assertion (i) can be replaced by the following stronger assertion:

(i′) T here exists a Riemannian metric h1 on N which is conformally equivalent

to h such that ϕ : (M, g)→ (N, h1) is a harmonic morphisms.

The same improvement can be made if the foliation formed by the fibres is

generated by a commuting family of Killing fields {V1, . . . , Vr} (in particular, if

the foliation is generated by an Abelian Lie group of isometries). To see this

define λ by g(V1 ∧ . . . ∧ Vr, V1 ∧ . . . ∧ Vr) = λ2n−4 , n = dimN . Then λ is the

dilation of the induced harmonic morphism.

In some cases trace(ad(HI )) can be defined in a different way:

Lemma 2.3.5. Let V be a Riemannian foliation on (M, g) generated by the

action of a closed subgroup G of the isometry group of (M, g). Let {Vr} be a local

frame of V made up of Killing vector fields induced by the action of G and let

{ctrs} be defined by [Vr, Vs] = ctrs Vt.

Then there exists a well-defined vertical one-form trace ◦ ad ∈ Γ(V∗) such that

(trace ◦ ad)(Vr) = csrs .

Moreover, we have trace(ad(HI )) = (trace ◦ ad)(HI ) .

Proof. Let x ∈ M and let hx be the Lie algebra of the isotropy group Hx at x

of the action of G on M . Because G is a closed subgroup of the isometry group,

the isotropy groups are compact and hence we can find a subspace mx of the Lie

algebra g of G such that g = hx ⊕ mx and [hx,mx] ⊆ mx (for example, take mx

to be the orthogonal complement of hx in g with respect to an AdHx-invariant
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metric on g).

Then, by identifying, as usual, mx = Vx, (trace ◦ ad)x is the restriction to mx

of the trace of the adjoint representation of g.

If y = x a, a ∈ G, is another point on the same leaf, then we can take

my = (Ad a−1)(mx).

If y ∈ M can be joined to x by a horizontal curve then from Lemma 2.1.1 it

follows that Hy = Hx.

Hence trace ◦ ad is well-defined.

The last assertion of the proposition is obvious.

Let V be a foliation on (M, g) locally generated by Killing fields. Although

trace ◦ ad is not always well-defined, to simplify the exposition, we shall write

trace ◦ ad = 0 to mean that in the neighbourhood of each point a local frame{
Vr
}

for V can be found which is made up of Killing fields and is such that

csrs = 0 where ctrs are defined by
[
Vr, Vs

]
= ctrsVt .

The following two corollaries follows immediately from Corollary 2.3.1 .

Corollary 2.3.6. A foliation of codimension not equal to two which is locally gen-

erated by Killing fields and which has integrable orthogonal complement produces

harmonic morphisms.

Corollary 2.3.7. A foliation of codimension not equal to two which is locally

generated by Killing fields and for which trace ◦ ad = 0 produces harmonic mor-

phisms.

The above result admits the following partial converse.

Proposition 2.3.8. Let V be a foliation of codimension not equal to two which

produces harmonic morphisms on (M, g) and is locally generated by Killing fields.

Let HI be the integrability tensor of the orthogonal complement H of V .

Suppose that on each leaf L of V a point x ∈ L can be found such that Vx is

spanned by
{HI (X, Y ) |X, Y ∈ Hx

}
.

Then trace ◦ ad = 0 .

Proof. From Corollary 2.3.1 it follows that it is sufficient to prove that Vx is

spanned by
{HI (X, Y ) |X, Y ∈ Hx

}
at each point x ∈M . From Lemma 2.1.1 it
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follows that [V,HI (X, Y )] = 0 for any Killing field V ∈ Γ(V) and any basic vector

fields X, Y ∈ Γ(H).

The proof follows from the fact that any two points of a leaf can be joined by

a curve which is piecewisely an integral curve of a Killing vector field V ∈ Γ(V)

(see [56, Chapter I, Theorem 4.4]).

Next we give an example of a Riemannian foliation locally generated by Killing

fields for which trace(ad(HI )) = 0 but HI 6= 0 and trace ◦ ad 6= 0.

Example 2.3.9. Let F be a Riemannian foliation locally generated by Killing

fields and which produces harmonic morphisms on (M, g). Suppose that the

orthogonal complement of F is not integrable (see examples, below).

Let G be the Lie group defined by

G =
{ (

a b
0 a−1

) ∣∣ a > 0 , b ∈ R
}
.

Endow G with a right invariant metric γ and consider the Riemannian product

manifold (M ×G, π∗M(g) + π∗G(γ) ) where πM and πG are the projections onto M

and G, respectively. Let V = F × TG . It is obvious that V is a foliation

locally generated by Killing fields and which produces harmonic morphisms on

(M ×G, π∗M(g) + π∗G(γ) ).

Notice, however, that the orthogonal complement H of V is nonintegrable so
HI 6= 0, and also trace ◦ ad 6= 0.

For the next application we recall the following definition (cf. [11, 7.84]).

Definition 2.3.10. Let (Lp, h) be a locally homogeneous Riemannian manifold

(i.e. a Riemannian manifold whose tangent bundle admits, in a neighbourhood

of each point, local frames made up of Killing fields).

Then (Lp, h) is called naturally reductive if each point x ∈ L has an open

neighbourhood on which a local frame
{
Vr
}
r=1,...,p

made up of Killing fields can

be found such that h([Vr, Vs], Vt) + h(Vs, [Vr, Vt]) = 0 at x .

The following well-known lemma follows from the fact that any skew-symmetric

endomorphism is trace-free.
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Lemma 2.3.11. Let (L, h) be a naturally reductive locally-homogeneous Rieman-

nian manifold. Then trace ◦ ad = 0 .

The following result follows from Corollary 2.3.7 and Lemma 2.3.11 .

Proposition 2.3.12. A foliation of codimension not equal to two which is lo-

cally generated by Killing fields and whose leaves are naturally reductive produces

harmonic morphisms.

Theorem 2.3.13. Let G be a Lie group which acts as an isometry group on the

Riemannian manifold (M, g) .

Suppose that the following conditions are satisfied:

(i) The orbits of the action of G on M have the same codimension not equal

to two.

(ii) There exists on G a bi-invariant Riemannian metric.

(iii) The canonical representation of an isotropy group is irreducible.

Then, the connected components of the orbits form a Riemannian foliation

with umbilical leaves which produces harmonic morphisms.

Proof. The fact that (i) implies that the connected components of the orbits form

a Riemannian foliation is well-known (see [56, Chapter IV, Example 4.10]). Let

V be this foliation.

By chosing an AdG invariant metric on the Lie algebra of G and restricting it

to the orthogonal complement of the Lie algebra of the isotropy group at x ∈M
we can induce a metric h̄x on Vx which by (iii) must be homothetic to gx|Vx (see

[37, vol.I, Appendix 5]). Then h̄ is a metric on V which can be extended to a

metric h on M such that h|H = g|H where H is the orthogonal complement of V .

Since h|V is induced by an AdG invariant metric, V has naturally reductive

leaves with respect to h . But g and h are homothetic when restricted to a leaf and

hence the leaves of V are also naturally reductive with respect to g . Moreover,

from the fact that V has totally geodesic leaves with respect to h , and g and h

are conformal when restricted to V and equal when restricted to H it follows that

the leaves of V are umbilical with respect to g .
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Remark 2.3.14. Note that the same argument as above can be applied to show

that the Ricci tensor of each leaf is proportional to the induced metric (see

[11, 7.44]); hence, in the above theorem, each leaf is an Einstein manifold.

Theorem 2.3.15. Let G be a closed subgroup of the isometry group of (M, g)

which generates a foliation V of codimension not equal to two.

(i) Suppose that the Lie algebra g of G satisfies trace(ad g) = 0 . Then, V
produces harmonic morphisms.

(ii) Conversely, if V produces harmonic morphisms and on each orbit Q a point

x ∈ Q can be found such that Vx is spanned by
{HI (X, Y ) |X, Y ∈ Hx

}
where HI

is the integrability tensor of the orthogonal complement of V, then trace(ad g) =

0 .

Proof. (i) It is sufficient to prove that trace ◦ ad = 0 .

Let H be the isotropy group of G at x ∈ M . Since G is a closed subgroup

of the isometry group we have that H is compact and hence we can find m ⊆ g

such that g = h⊕m and [h,m] ⊆ m .

Let
{
A1, . . . , Ar

}
be a basis of h and

{
Ar+1, . . . , As

}
a basis of m . Let

{
cγαβ
}

be the corresponding structural constants of g .

Because trace(ad g) = 0 we have that
∑s

α=1 c
α
αβ = 0 for β = 1, . . . , s.

Also, [h,m] ⊆ m implies that cγαβ = 0 for α, γ = 1, . . . , r and β = r+ 1, . . . , s .

Let β ∈
{
r + 1, . . . , s

}
. Then

∑s
α=r+1 c

α
αβ = −

∑r
α=1 c

α
αβ = 0 and it follows

that (trace ◦ ad)x = 0 .

(ii) Note that if a point of an orbit has the assumed property then on each

component of that orbit a point can be found with the same property. The proof

now follows from Proposition 2.3.8 .

Corollary 2.3.16. Let G be a compact Lie group of isometries of (M, g) . If

the principal orbits of G have codimension not equal to two then their connected

components form a Riemannian foliation which produces harmonic morphisms.

In particular, if (M, g) is compact and the principal orbits of the isometry

group are of codimension not equal to two then their connected components form

a Riemannian foliation which produces harmonic morphisms.
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Remark 2.3.17. Let G be a Lie group and let g be its Lie algebra. Recall that if

G is connected then trace(ad g) = 0 if and only if G is unimodular, i.e. its left and

right invariant Haar measures (which are unique up to multiplicative constants)

are equal.

Theorem 2.3.18. Let ξ = (P,N,G) be a principal bundle, dimN 6= 2 , whose

total space P is endowed with a Riemannian metric g which is invariant under

the action of G.

Let H be the induced principal connection on ξ and h the (unique) Rieman-

nian metric on N such that the projection π : (P, g) → (N, h) is a Riemannian

submersion.

Then the following assertions are equivalent:

(i) The connection induced by H on the determinant bundle of the adjoint

bundle Ad ξ is flat.

(ii) The projection π lifts to a harmonic morphism π̃ : (P̃ , g̃)→ (Ñ , h̃) where

(P̃ , g̃)→ (P, g) is a Riemannian regular covering and Ñ → N is a regular cover-

ing such that h̃ and the pull-back of h to Ñ are conformally equivalent. Moreover,

(P̃ , Ñ , G) is, in a natural way, a principal bundle.

Proof. Let Ω ∈ Γ(g ⊗ Λ2(T ∗P )) be the curvature form of H. It is obvious that

trace(adHI ) = (trace ◦ad)(Ω). But (trace ◦ad)(Ω) is the pull back, by π, of the

curvature form of the determinant bundle of Ad ξ . Hence, (i) is equivalent to the

fact that the fibres of π form a (Riemannian) foliation which produces harmonic

morphisms.

Now, from the Corollary 2.3.1 it follows that it is sufficient to prove that

(P̃ , Ñ , G) is, in a natural way, a principal bundle. Using the same notations as

in Corollary 2.3.3 (with P = M) this follows from the fact that P̃ is the total

space of ξ + η ∈ H1(N,G × K) , where η ∈ H1(N,K) is the regular covering

corresponding to [b] ∈ H1(N,R) and [b] is such that π∗[b] = [a] .

Remark 2.3.19. 1) From the holonomy theorem (see [37]) it follows that asser-

tion (i) of Theorem 2.3.18 is equivalent to the fact that the identity component

H of the holonomy group of H satisfies

det(AdGH) = 1 .
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2) Let V be a foliation on (M, g) generated by the action of a closed subgroup

G of the isometry group of (M, g) . Then it can be proved, directly by using the

mass invariance characteristic property of harmonic morphisms (see Proposition

1.1.11), that V produces harmonic morphisms if and only if the identity compo-

nent H of the holonomy group at x of the orthogonal complement of V satisfies

det(AdGH) = 1 . (The holonomy group of H (= V⊥) at x ∈ M consists of those

a ∈ G such that x and xa can be joined by a horizontal path, cf. [12].) In this

way another proof can be obtained for the result of Corollary 2.3.1 applied to

foliations globally generated by closed subgroups of the isometry group.

Corollary 2.3.20. Let (P,N,G) be a principal bundle, dimN ≥ 3 , whose total

space P is endowed with a Riemannian metric g which is invariant under the

action of G.

Let H ⊆ G be a closed subgroup and suppose that trace(ad h)= 0 and

trace(ad g)= 0. Let E = P ×G G/H be the total space of the associated bundle.

Then in a neighbourhood of any point, there exist Riemannian metrics on E

and N with respect to which the restriction of the natural projection E → N to

that neighbourhood is a harmonic morphism.

Proof. It is well-known that (P,E,H) is in a natural way a principal bundle (see

[37]). From Theorem 2.3.18 it follows that both of the foliations induced on P by

the actions of G and of H produces harmonic morphisms. Thus, at least locally,

we can find metrics on E and on N with respect to which the projections P → E

and P → N are harmonic morphisms. Since the first of these is surjective this

implies that the projection E → N can also be made, at least locally, a harmonic

morphism (see [19, 2.31] and [30, Proposition 1.1]).

It is obvious that Corollary 2.3.20 still holds if dimN = 1 6= dimG− dimH .

Corollary 2.3.21. Let (G, g) be a Lie group endowed with a right (left) invariant

Riemannian metric. Let K ⊆ H ⊆ G be closed subgroups such that trace(ad k) =

0, trace(ad h) = 0 and dimG− dimH ≥ 3 .

Then in a neighbourhood of any point, there exist Riemannian metrics on

G/H and G/K with respect to which the restriction of the natural projection

G/K → G/H to that neighbourhood is a harmonic morphism.
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It is obvious that Corollary 2.3.21 still holds if dimG−dimH = 1 6= dimH−
dimK .

Example 2.3.22. 1) A one-dimensional Riemannian foliation produces harmonic

morphisms if and only if it is locally generated by Killing vector fields. This result

is due to R.L. Bryant [13] and the ‘if’ part follows also from Corollary 2.3.7 (see

also Proposition 3.1.3 , below).

Let ϕ : (Mn+1, g) → Nn, n ≥ 3, be a submersion with connected one-

dimensional fibres and let V be the foliation formed by the fibres of ϕ. Suppose

that there exists a nowhere zero Killing vector field V ∈ Γ(V). Let ḡ be the unique

metric on N such that ϕ : (Mn+1, g)→ (Nn, ḡ) is a Riemannian submersion and

let λ be the positive smooth function such that g(V, V ) = λ2n−4. Then, because

V is Killing, λ is basic, i.e. there exists a positive smooth function λ̄ on Nn such

that λ = λ̄ ◦ ϕ. Then, ϕ : (M, g) → (N, λ̄2 ḡ) is a harmonic morphism [13]. We

shall say that ϕ is induced by an (infinitesimal) isometric action.

2) The foliation formed on (an open subset of) a hypersphere Sn by the inter-

sections with it of a parallel family of planes in Rn+1 of codimension not equal to

three produces harmonic morphisms. This follows from Corollary 2.3.6 or from

Theorem 2.3.13 . This can also be proved by noting that the foliation is induced

by one of the projections of a warped-product (see Example 1.4.10). Similar ex-

amples can be obtained on Euclidean spaces and on hyperbolic spaces.

3) Let K = R ,C ,H and consider on Gln(K) , n ≥ 2 , the following well-known

right invariant Riemannian metric

g =
n∑

i,j=1

∣∣ dxik · (x−1)kj
∣∣ 2
.

Let K ⊆ H ⊆ G ⊆ Gln(K) be closed subgroups such that trace(ad k) = 0,

trace(ad h) = 0 and dimG−dimH 6= 2 6= dimG−dimK . Then, at least locally,

a metric can be found on G/H (which is unique up to homotheties) such that

the projection G→ G/H becomes, suitably restricted, a harmonic morphism. (If

G or G/H has zero first Betti number then this metric can be defined globally

on G/H .) Also, at least locally, a metric can be found on the total space of

the projection G/K → G/H such that the induced foliation produces harmonic
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morphisms. (If G/K and G/H both have zero first Betti number then there

can be defined (global) metrics on them such that the projection G/K → G/H

becomes a harmonic morphism.)

For example, the foliations formed by the fibres of the following natural maps

produce harmonic morphisms:

Glp+q(K)→Gp+q,p(K)×Gp+q,q(K) ,

Glp+q(K)→Vp+q,p(K)×Gp+q,q(K) ,

Glp+q(K)→PGlp+q(K)

where, for p, q ≥ 1, Gp+q,p(K) is the Grassmanian manifold of p-dimensional

subspaces of Kp+q , Vp+q,p(K) is the Stiefel manifold of p-frames on Kp+q and for

the first projection p + q ≥ 3 if K = R . If K = H, or K = R and p + q ≥ 3,

then the first Betti number of Glp+q(K) is zero and hence in these cases on the

image of each of the above maps a metric can be found such that the induced

map becomes a harmonic morphism.

In particular, consider on Gl+2 (R) the coordinates given by x =
(
x1 x3
x2 x4

)
. With

respect to these coordinates we have

g =
1

(x1x4 − x2x3)2

{
(x2

3 + x2
4)(dx2

1+ dx2
2) + (x2

1 + x2
2)(dx2

3 + dx2
4)

− 2(x1x3 + x2x4)(dx1 dx3 + dx2 dx4)
}
.

Then on the images of the following maps there exist Riemannian metrics,

unique up to homotheties, with respect to which the induced maps are harmonic

morphisms.

ϕ1 :Gl+2 (R)→ PGl+2 (R) , given by the natural projection,

ϕ2 :Gl+2 (R)→ R2 × RP 1, given by ϕ2(x1, x2, x3, x4) =
(
(x1, x2), [x3 : x4]

)
.

If K = C or H then we can also consider the foliation induced by the map

Gl2(K)→ KP 1 ×KP 1 .

Other examples can be obtained by considering other linear Lie groups.
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2.4 Homothetic foliations locally generated by

conformal vector fields

From results of Section 2 and 3 we obtain necessary and sufficient conditions for

a foliation to be homothetic.

Corollary 2.4.1. Let V be a conformal foliation on (M, g) with integrable or-

thogonal complement H . If both V and H have basic mean curvature forms then

V is a homothetic foliation. If, further, codimV 6= 2 and dimM ≥ 3 then V
produces harmonic morphisms.

Proof. This is an immediate consequence of Theorem 2.1.19 .

Proposition 2.4.2. Let V be a foliation of codimV = n on (Mm, g) which is

locally generated by conformal vector fields and let H denote its orthogonal com-

plement.

If V is homothetic then g(trace(HB),HI ) = 0 .

Conversely, if g(trace(HB),HI ) = 0 then the following assertions are equiva-

lent:

(i) V is a homothetic foliation;

(ii) The mean curvature form of V is basic;

(iii) The mean curvature form of H is invariant under the parallel displace-

ment determined by H ;

(iv) In the neighbourhood of each point of M there a exists a local dilation λ

of V such that for any horizontal vector X and conformal vector field V tangent

to V we have X(V (log λ)) = 0 .

Proof. The first assertion is an immediate consequence of formula (2.1.1) from

Proposition 2.1.4 .

Suppose now that g(trace(HB),HI ) = 0 .

The equivalence (i)⇐⇒ (iii) follows from Proposition 2.1.4 .

From the proof of Theorem 2.2.6 it follows that

1

m− n
V
∇V (trace(VB)[)(X) = X(V (log λ)) =

H
∇V (H∗(d log λ))(X) (2.4.1)
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for any X ∈ Γ(H) , any conformal vector field V ∈ Γ(V) and any local dilation λ

of V . The first equality of (2.4.1) implies that (ii)⇐⇒ (iv) .

From the second equality of (2.4.1) and (2.1.2) of Proposition 2.1.4 we obtain

the equivalence (iii)⇐⇒ (iv) and the proposition is proved.

Theorem 2.4.3. Let V be a foliation of codimV 6= 2 on (Mm, g) , m ≥ 3 , which

is locally generated by conformal vector fields. Then any two of the following

assertions imply the other one.

(i) V produces harmonic morphisms;

(ii) V is homothetic;

(iii) trace(ad(HI )) = 0 .

Proof. This is a consequence of Proposition 2.4.2 and of Theorem 2.2.6 .

Remark 2.4.4. 1) There is another way to prove that in Theorem 2.4.3 if (ii)

holds then (i) ⇐⇒ (iii) . To see this let λ be a local dilation of V which is

constant along horizontal curves. Then, with respect to λ2g , V is a Riemannian

foliation locally generated by Killing fields. Thus, condition (ii) of Theorem 2.2.6

says the same thing when written for a local frame made up of fields which are

conformal with respect to g and when written for the same frame with the metric

λ2g so that the fields are now Killing fields. Moreover, since λ is constant along

horizontal curves, V produces harmonic morphisms with respect to g if and only if

it produces harmonic morphisms with respect to λ2g (Corollary 1.2.2). The proof

of the theorem now follows from Corollary 2.3.1 (which can be proved directly).

2) It is not difficult to see using Theorem 2.4.3 that the following classes of

foliations of codimension not equal to two produce harmonic morphisms:

• homothetic foliations locally generated by conformal fields and with inte-

grable orthogonal complement;

• homothetic foliations generated by the local action of an Abelian Lie group

of conformal transformations;

• homothetic foliations generated by the action of a unimodular closed sub-

group of the group of conformal transformations;
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• homothetic foliations formed by the components of the fibres of principal

bundles for which the total space is endowed with a metric such that the

structural group acts by conformal transformations and the connection in-

duced on the determinant bundle of the adjoint bundle is flat.

From Theorem 2.4.3 we obtain the following.

Corollary 2.4.5. Let V be a foliation of codimV 6= 2 on (Mm, g) , m ≥ 3

which is locally generated by conformal vector fields. Suppose that the orthogonal

complement H of V is integrable. Then the following assertions are equivalent.

(i) V produces harmonic morphisms;

(ii) V is homothetic.

Remark 2.4.6. We shall see (Proposition 3.1.5) that if dimV = 1 then (i) and

(ii) of Corollary 2.4.5 imply that V is locally generated by conformal vector fields.

Next we give a construction of a foliation which produces harmonic morphisms

which has basic mean curvature form but is nowhere homothetic.

Example 2.4.7. Let ϕ : (Mn+1, h) → (Nn, h̄) , n ≥ 1 , be a Riemannian sub-

mersion with geodesic fibres and let V be the foliation formed by the fibres of ϕ .

Suppose that V is a local vertical field such that h(V, V ) = 1 . Because ϕ has

geodesic leaves we have that [V,X] = 0 for any basic X .

Let θ = V [ and Ω = dθ . It is easy to see that Ω = 0 if and only if the

horizontal distribution H is integrable. Also, Ω is basic and since dΩ = ddθ = 0,

at least locally, we can find a basic one-form A such that Ω = − dA .

Thus dθ = Ω = − dA and hence d(A+θ) = 0 . It follows that, at least locally,

we can write A+ θ = dσ for some smooth local function σ on M . Note that the

horizontal component of dσ is basic, being equal to A .

Supposing that σ is defined on the whole M , let gσ be the Riemannian metric

on M defined by

gσ = e−2σ ϕ∗(h̄) + e(2n−4)σ θ2 .

Then ϕ : (M, gσ)→ (N, h̄) is a harmonic morphism [13] . Moreover, the mean

curvature form of V with respect to gσ is (2 − n)A and therefore is basic. How-

ever, from Proposition 2.1.4 and Proposition 2.1.14 it follows that the connected
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components of the fibres of ϕ form a homothetic foliation with respect to gσ only

over the set of points where the horizontal distribution is integrable . Thus if H
is nowhere integrable then V is nowhere homothetic with respect to gσ .

Let ρ be any other function which has the same properties as σ (i.e. ϕ :

(M, gρ) → (N, h̄) is a harmonic morphism, the mean curvature form of V with

respect to gρ is basic and V is nowhere homothetic on (M, gρ) ). Then, there ex-

ists a unique constant c ∈ R such that ρ− c σ is, at least locally, a basic function.

To see this note that because the induced foliation is nowhere homothetic

then we must have:

(i) M =
{
x ∈ M |V (V (ρ)) = 0

}
(otherwise on some open subset of M the

level hypersurfaces of V (ρ) would be integral submanifolds of the horizontal dis-

tribution);

(ii) the interior of the set
{
x ∈ M |V (ρ) = 0

}
is empty (otherwise the re-

striction of V to some open subset of M would be Riemannian).

Thus we have V (ρ) = c , for some constant c 6= 0 . Hence dρ = c θ +B .

Then B must be basic (because X(V (ρ)) = 0 for any horizontal X) and hence

0 = c dθ + dB which is equivalent to dB = −cΩ .

It follows that d(ρ− c σ) = dρ− c dσ = c θ +B − c θ − cA = B − cA .

Because B− cA is a closed basic one-form, at least locally, we can find a basic

function whose differential is equal to d(ρ − c σ) and hence ρ − c σ is, at least

locally, a basic function.

2.5 Homothetic actions and harmonic morphisms

Recall that a vector field V on a Riemannian manifold (M, g) is homothetic if

LV g = a g for some constant a ∈ R (see [67]).

The first thing to note about a foliation locally generated by homothetic vector

fields is the following.

Proposition 2.5.1. Let V be a foliation on (M, g) locally generated by homothetic

vector fields. Then either V is Riemannian and locally generated by Killing vector

fields or V is nowhere Riemannian.
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Proof. Let P =
{
x ∈M | V is Riemannian at x

}
.

It is obvious that P is closed. Also let
{
Vr
}

be a local frame of V , defined on

a connected open subset U and made up of homothetic vector fields. It is obvious

that if U ∩ P 6= ∅ then Vr are Killing fields and thus U ⊆ P . Hence P is also

open and, since M is connected, either P = M or P = ∅ .

From Proposition 2.4.2 we obtain the following.

Corollary 2.5.2. Let V be a foliation locally generated by homothetic vector fields

on the Riemannian manifold (M, g) .

Then V is a homothetic foliation if and only if g(trace(HB),HI ) = 0 .

In particular, a foliation locally generated by homothetic vector fields and with

integrable orthogonal complement is a homothetic foliation.

Proof. Let V be a homothetic vector field on (M, g) which is tangent to the

foliation. Then it is easy to see that LV g = −2V (log λ)g where λ is any local

dilation of the foliation. But V is homothetic and hence V (log λ) is a constant

function. The proof now follows from (i)⇐⇒ (iv) of Proposition 2.4.2 .

Remark 2.5.3. Let V be a conformal foliation on (M, g) and define the ver-

tical one-form µ by the relation (LV g)(X, Y ) = µ(V ) g(X, Y ) where V is ver-

tical and X, Y are horizontal [62] (see [9]). Then µ = −2V∗(d(log λ)) where

λ is a local dilation of V , and, because trace(HB) = nV(grad(log λ)), we have

µ = − 2
n

trace(HB)[ (see [9]).

By Corollary 2.5.2 , if V is locally generated by homothetic vector fields then

V is a homothetic foliation if and only if µ(HI ) = 0 .

Proposition 2.5.4. Let V be a one-dimensional foliation of codimV 6= 2 on

(Mm, g) , m ≥ 3 , which is not a Riemannian foliation and which is locally gen-

erated by homothetic vector fields. Then the following assertions are equivalent:

(i) V produces harmonic morphisms,

(ii) V is a homothetic foliation,

(iii) H is integrable.
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Proof. It is easy to see that because V is locally generated by homothetic vector

fields its mean curvature form is basic. The proof now follows from Theorem

2.2.6 and Corollary 2.5.2 .

Note that in Proposition 2.5.4 the equivalence (ii) ⇐⇒ (iii) holds also when

codimV = 2 .

Proposition 2.5.5 (cf. [62, Proposition 2.8]). Let V be a foliation on (Mm, g)

locally generated by homothetic vector fields. Then there exists a Riemannian foli-

ationW ⊆ V locally generated by Killing fields. Moreover, if V is not Riemannian

then dimV = dimW + 1.

Proof. Suppose that V is not Riemannian. Then by Proposition 2.5.1 the foliation

V is nowhere Riemannian. Since V is conformal we can find local dilations of it

in the neighbourhood of each point. Let λ be a local dilation of V defined on the

open subset U ⊆M . For x ∈ U let

Wx =
{
V ∈ Vx | V (log λ) = 0

}
= Vx ∩ (grad(log λ)x)

⊥ .

Since any two local dilations of V differ locally by a factor which is constant along

the leaves it follows thatWx does not depend on λ . Because V is nowhere Rieman-

nian,Wx 6= Vx . Also grad(log λ) is nonvanishing and hence dim
(
(grad(log λ)x)

⊥) =

m− 1 where m = dimM . We have

dimWx = dim
(
Vx ∩ (grad(log λ)x)

⊥)
= dimVx + dim

(
(grad(log λ)x)

⊥)− dim
(
Vx + (grad(log λ)x)

⊥) .
It follows that the minimum value of dimWx occurs precisely when Vx+(grad(log λ)x)

⊥ =

TxM . If this is the case, then dimWx = dimVx+(m−1)−m = dimVx−1 . Since

Wx ⊂ Vx , Wx 6= Vx it follows that dimWx = dimVx − 1 . Thus W = (Wx)x∈M

defines a distribution on M . Then W is integrable because it is the intersection

of two transversal foliations.

Let V ∈ Γ(V) be a homothetic vector field. It is easy to see that if Vx ∈ Wx

then V ∈ Γ(W) . Since V is locally generated by homothetic vector fields it fol-

lows that W is locally generated by Killing fields. (This also implies that W is
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integrable since any Killing field which is tangent to V must be tangent to W
and the bracket of any two Killing fields is a Killing field.)

We can now characterise geometrically the homothetic (infinitesimal) actions

which induce homothetic foliations and their relations with harmonic morphisms.

Theorem 2.5.6. Let V be a foliation locally generated by homothetic vector fields

and let H be its orthogonal complement.

Then the following assertions are equivalent:

(a) V is a homothetic foliation;

(b) either V is Riemannian and locally generated by Killing fields or there

exists a Riemannian foliation W ⊆ V locally generated by Killing fields such that

dimV = dimW + 1 and the distribution F =W ⊕H is integrable.

Moreover, if (a) or (b) hold and dimV ≥ 2 , codimV ≥ 3 then the following

assertions are equivalent:

(i) V produces harmonic morphisms,

(ii) The restriction of W to any leaf of F produces harmonic morphisms.

Proof. The equivalence (a)⇐⇒ (b) follows from Corollary 2.5.2 and Proposition

2.5.5 .

Suppose that (a) or (b) hold and V is not Riemannian. Let V ∈ Γ(V) be a

homothetic vector field which is not Killing. (Such a vector field can be found

in the neighbourhood of each point of M because V is locally generated by ho-

mothetic vector fields and W 6= V .) Note that, for any Killing field W ∈ Γ(W)

we have that [V,W ] is also Killing and hence [V,W ] ∈ Γ(W) . Using this fact

together with Theorem 2.2.6 and Corollary 2.5.2 it is not difficult to see that the

assertions (i) and (ii) are equivalent.

Remark 2.5.7. 1) If V is homothetic then the leaves of F are level hypersurfaces

of the local dilations of V which are constant along horizontal curves.

2) In Theorem 2.5.6 if (a) or (b) hold and codimV = 1 then (i)⇐⇒ (ii) .

Let G be a Lie group which acts to the right by homotheties on (M, g) and for

a ∈ G let ρ(a) ∈ (0,∞) be the conformal factor of the homothetic transformation
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induced by a ∈ G on (M, g) . Then it is easy to see that ρ : G → (0,∞) is a

morphism of Lie groups (hence, if ρ is nonconstant, G is isomorphic to a semi-

direct product of kerρ and
(
(0,∞), ·)

)
. In particular, if G is compact then ρ is

constant. Nevertheless, if G is compact, then there might exist local morphisms

of Lie groups G → (0,∞) (see Example 2.5.8(3) , below) which can be used to

construct homothetic local actions.

Here are a few well-known examples of morphisms of Lie groups ρ : G →
(0,∞) .

Example 2.5.8. 1) For K = R ,C ,H define ρ : Gln(K) → (0,∞) by ρ(a) =

|det a| .
2) For K = R ,C ,H define ρ : COn(K)→ (0,∞) by |Au| = ρ(A)|u| for u ∈ Kn

and A ∈ COn(K) .

3) The canonical morphisms det : Un → S1 and Spinc
n = Spinn ×Z2 S

1 → S1,

[a, z] 7→ z2, when composed with the exponential of arg : S1 \ {−1} → (−π, π)

induce local morphisms of Lie groups Un → (0,∞) and Spinc
n → (0,∞) , respec-

tively.

From now on we shall suppose that G acts freely on M . In this case there

exists a natural isomorphism of vector bundles V = M × g where g is the Lie

algebra of G .

Hence HI can be viewed as a g-valued two form on M which has properties

similar to the properties of the curvature form of a principal connection (in par-

ticular, R∗a(
HI ) = Ad a−1 · HI where Ra is the transformation induced by a ∈ G

on M).

Also ρ∗ can be viewed as a vertical one form on M . Moreover, we have that

ρ∗ = µ (see Remark 2.5.3 for the definition of µ).

It follows from Corollary 2.5.2 that the foliation induced by the free action of

G on (M, g) is homothetic if and only if ρ∗(
HI ) = 0 .

By identifying G with an orbit we can induce on it a metric which we shall

denote by γ . Then it is easy to see that ρ−2γ is right invariant.

Suppose that ρ is nonconstant and let V be the foliation on G formed by the

components of the fibres of ρ . This is generated by the action of the normal
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subgroup H = ker ρ . Then it is obvious that H acts by isometries on (G, γ) and

hence V is a Riemannian foliation on it.

Also, H (= V⊥) is a (one-dimensional) homothetic foliation with geodesic

leaves for which ρ−1 is a global dilation.

Thus both V and H produce harmonic morphisms and, in particular, ρ in-

duces a harmonic function on (G, γ) (which gives another argument for the fact

that if G is compact then ρ cannot be globally defined unless it is constant).

Example 2.5.9. Let G and ρ be as in Example 2.5.8(1) or (2) and define

h = | dx · x−1|2 . Then g = ρ2 h has all the above properties.

Next we show that the results of Theorem 2.5.6 takes a more concrete form

in the case of homothetic free actions.

Proposition 2.5.10. Let G be a connected Lie group which acts freely to the right

by homotheties on (M, g) and let VG be the induced foliation. Let ρ : G→ (0,∞)

be the corresponding morphism of Lie groups and let H = ker ρ .

Then the following assertions are equivalent:

(i) VG is a homothetic foliation;

(ii) there exists a hypersurface N of M such that H acts by isometries on

(N, g|N) to generate a Riemannian foliation VH and such that M = N ×H G.

Further, if (i) or (ii) hold and 2 ≤ dimG ≤ dimM − 3, then VG produces

harmonic morphisms if and only if VH produces harmonic morphisms.

Proof. Let H be the orthogonal complement of VG and let W be the foliation

induced by the isometric (free) action ofH onM . Then, assertion (i) is equivalent

to the fact that ρ∗(
HI ) = 0 which, since HI is the integrability tensor of H , is

equivalent to the fact that the distribution F =W ⊕H is integrable .

Suppose that (i) holds and let N be a leaf of F . Then VH = W|N and the

implication (i)⇒(ii) follows.

The implication (i)⇐(ii) is now obvious.

The last assertion follows from the fact that if (i) holds then HI is h-valued

and R∗a(
HI ) = Ad a−1 · HI .
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Remark 2.5.11. In Proposition 2.5.10 we also have that if (i) , or (ii) , holds

then g is determined by ρ and the induced metric h on N .

To see this recall that we have considered the metric γ induced on G by

identifying it with an orbit. Suppose that this identification and N were chosen

such that the identity element of G is contained in N . Then H acts by isometries

on
(
N × G, π∗N(h) + π∗G(γ)

)
(where πN : N × G → N and πG : N × G → G are

the canonical projections) and (M, g) is the induced isometric quotient.

Example 2.5.12. Let ρ : G→ (0,∞) be as in Example 2.5.8 and let H = ker ρ .

Then trace(ad h) = 0 (here, as above, h is the Lie algebra of H).

Let (Q,M,H) be a principal bundle whose total space is endowed with a

Riemannian metric h such that H acts by isometries on (Q, h) . (Obviously, any

such h corresponds to a triple (γ,H, k) where γ is a Riemannian metric on the

vector bundle AdQ → M , H is a principal connection on (Q,M,H) and k is a

Riemannian metric on M .)

From Remark 2.5.11 it follows that a metric (and just a local metric, for ρ

from Example 2.5.8(3) ) can be found on P = Q ×H G with respect to which

the foliation induced by G is homothetic (but not Riemannian) and produces

harmonic morphisms.

2.6 Conformal actions and harmonic morphisms

on Einstein manifolds

In this section we study foliations which are locally generated by conformal vector

fields and produce harmonic morphisms on Einstein manifolds. Note that, as

before, no compactness or completeness assumptions are made. The main results

of this section are the following:

Theorem 2.6.1. Let (Mm, g) , m ≥ 3 be an Einstein manifold (MRicci = c g , c ∈
R). Let V be a foliation with codimV 6= 2 which is locally generated by conformal

vector fields.

Suppose that V produces harmonic morphisms on (Mm, g) . Then either V is
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Riemannian and locally generated by Killing fields or the set of points where V is

Riemannian has empty interior. Moreover, we have the following:

(i) If c > 0 then either V is Riemannian and locally generated by Killing vector

fields or any harmonic morphism produced by V can be locally decomposed into

a harmonic morphism with geodesic fibres and integrable horizontal distribution

followed by another harmonic morphism.

(ii) If c < 0 then, at least outside the points where V is Riemannian, any

harmonic morphism produced by V can be locally decomposed into a harmonic

morphism with geodesic fibres and integrable horizontal distribution followed by

another harmonic morphism.

(iii) If c = 0 then either V is locally generated by homothetic vector fields

or any harmonic morphism produced by V can be locally decomposed into a har-

monic morphism with geodesic fibres, constant dilation and integrable horizontal

distribution followed by another harmonic morphism.

Corollary 2.6.2. Let (Mm, g) , m ≥ 3 be an Einstein manifold (MRicci = c g)

and let V be a foliation on it with codimV 6= 2 which is locally generated by con-

formal vector fields.

Suppose that V produces harmonic morphisms on (Mm, g) .

(i) If c > 0 then any harmonic morphism produced by V can be locally de-

composed into two harmonic morphisms in which the first one either has geodesic

fibres and integrable horizontal distribution or is induced by an isometric quotient.

(ii) If c < 0 then at least outside a set with empty interior any harmonic mor-

phism produced by V can be locally decomposed into two harmonic morphisms in

which the first one either has geodesic fibres and integrable horizontal distribution

or is induced by an isometric quotient.

Remark 2.6.3. We shall see (Corollary 3.2.6) that when dimV = 1 the assertion

(i) above holds for c ∈ R.

Theorem 2.6.4. Let (Mm, g) be a Ricci-flat Riemannian manifold and let V be a

homothetic foliation on it with dimV ≥ 2 , codimV ≥ 3 which is locally generated

by conformal vector fields.

Suppose that V produces harmonic morphisms on (Mm, g) . Then one of the
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following assertions holds.

(a) V is Riemannian and locally generated by Killing fields;

(b) there exists a Riemannian foliation W ⊆ V , dimW = dimV − 1 , locally

generated by Killing fields such that F =W ⊕H is integrable and the restriction

of W to any leaf of F produces harmonic morphisms;

(c) any harmonic morphism produced by V can be locally decomposed into two

harmonic morphisms in which the first one has geodesic fibres, constant dilation

and integrable horizontal distribution.

Corollary 2.6.5. Let (Mm, g) be a Ricci-flat Riemannian manifold and let V
be a foliation on it with dimV ≥ 2 , codimV ≥ 3 which is locally generated by

conformal vector fields and with integrable orthogonal complement, dimV ≥ 2 ,

codimV ≥ 3 .

Suppose that V produces harmonic morphisms on (Mm, g) . Then one of the

following assertions holds.

(a) V is Riemannian and locally generated by Killing fields;

(b) there exists a Riemannian foliation W ⊆ V , dimW = dimV − 1 , locally

generated by Killing fields such that F =W ⊕H is integrable and the restriction

of W to any leaf of F produces harmonic morphisms;

(c) any harmonic morphism produced by V can be locally decomposed into two

harmonic morphisms in which the first one has geodesic fibres, constant dilation

and integrable horizontal distribution.

The proofs of the above results are based on results obtained in the previous

sections. We also need a few lemmas some of which are well-known.

In the proof of the next simple lemma we use a result (Proposition 3.1.5)

which we shall prove in Chapter 3. Also, note that Lemma 2.6.6 reformulates, in

terms of homothetic foliations, a well-known fact.

Lemma 2.6.6 (cf. [38]). Let V be a one-dimensional foliation on a Riemannian

manifold (M, g) . Then the following assertions are equivalent.

(i) V is a homothetic foliation with geodesic leaves and integrable orthogonal

complement;
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(ii) V is locally generated by (nowhere zero) conformal vector fields V ∈ Γ(V)

such that dV [ = 0 .

Proof. A vector field V ∈ Γ(TM) is conformal if and only if LV g = 2µ g for some

function µ ; then dV [ = 0 if and only if ∇V = µ IdTM . Now it is obvious that

any such V which is nowhere zero generates a conformal foliation with geodesic

leaves and integrable orthogonal complement. Moreover, |V |−1 is a local dilation

for it whose gradient is tangent to the leaves and thus V generates a homothetic

foliation.

Conversely, if V satisfies (i) then it produces harmonic morphisms. But V
is homothetic and hence V is locally generated by conformal vector fields (see

Proposition 3.1.5, below). Now, if V ∈ Γ(V) is conformal and nowhere zero and

X ∈ Γ(H) is basic then by applying Lemma 2.1.1 we obtain

(dV [)(V,X) = 2g(X,∇V V ) = 2g(X,∇UU)g(V, V ) = 0 (2.6.1)

where U = 1
|V | V . Also, from Proposition 2.1.4 we obtain

(dV [)(X, Y ) = g(trace(HB),HI (X, Y )) = 0 . (2.6.2)

From (2.6.1) and (2.6.2) it follows that dV [ = 0 and the lemma is proved.

The following lemma is well-known.

Lemma 2.6.7 (see [67]). Let V be a conformal vector field on an Einstein man-

ifold (Mm, g) ; write LV g = 2σg , MRicci = c g . Then

∇dσ = − c

m− 1
σg . (2.6.3)

Hence

∆σ =
cm

m− 1
σ . (2.6.4)

Proof. Formula (2.6.3) follows after a straightforward but tedious computation

(see [67]).

The following simple lemma is well-known.
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Lemma 2.6.8. Let f be a smooth function on a Riemannian manifold (M, g)

such that ∇df = −kf g for some constant k ∈ R . Then

kf 2 + | df |2 = constant .

Proof. Simply compute the differential d(kf 2 + | df |2) .

The following simple lemma seems to be less well-known.

Lemma 2.6.9. Let V be a foliation (codimV > 0) on a Riemannian manifold

(M, g) and let V ∈ Γ(V) be such that ∇V [ = µ g for some smooth function µ on

M .

If for some x ∈M we have that Vx = 0 then µ(x) = 0 .

Proof. Let X ∈ Γ(V⊥) be a basic vector field. Then [V,X] ∈ Γ(V) . But

[V,X] = ∇VX −∇XV = ∇VX − µX .

Thus if Vx = 0 then [V,X]x = −µ(x)Xx ∈ Vx and hence µ(x) = 0 .

The following simple lemma is an immediate consequence of Lemma 2.6.8 and

Lemma 2.6.9.

Lemma 2.6.10. Let V be a foliation on a Riemannian manifold (M, g) and let

grad f ∈ Γ(V) be such that ∇df = −kf g for some nonnegative constant k ≥ 0 .

If for some x ∈ M we have that (grad f)x = 0 then grad f = 0 . Moreover, if

k > 0 then f = 0 .

Proof. If k = 0 then | grad f | = constant .

If k > 0 and for some x ∈M we have that (grad f)x = 0 then by Lemma 2.6.9

we have f(x) = 0 . The proof now follows from Lemma 2.6.8 .

Proof of Theorem 2.6.1. Let H be the orthogonal complement of V . Let V ∈
Γ(V) be a conformal vector field. Then at least locally we can write LV g =

−2V(log λ)g for some local dilation λ of V . By Lemma 2.1.1 we have that V is

an infinitesimal automorphism of H .

Because V produces harmonic morphisms from Theorem 2.2.6 it follows that
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the mean curvature form of V is basic. Applying Proposition 2.1.16 with the roles

of V and H reversed we obtain that, for any basic vector field X ∈ Γ(H), we have

that X(V (log λ)) = 0 . It follows that grad(V(log λ)) ∈ Γ(V) .

Now recall that (M, g) is an Einstein manifold and thus it is an analytic man-

ifold (see [11]). From the regularity of solutions for elliptic operators and (2.6.4)

it follows that V(log λ) is an analytic function. Hence either V is Riemannian or

the interior of the set where V is Riemannian is empty.

From Lemma 2.6.6 and Lemma 2.6.7 it follows that if grad(V(log λ)) is nowhere

zero then it generates a one-dimensional homothetic foliation F with geodesic

leaves and integrable orthogonal complement. Moreover F ⊆ V . Also, note that,

if c = 0, then grad(V(log λ)) is a parallel vector field.

Let x ∈M and suppose that for any conformal vector field V ∈ Γ(V) we have

grad(V(log λ))x = 0.

If c 6= 0, then from Lemma 2.6.9 it follows that V is Riemannian at x . This

establishes assertion (ii) .

If c > 0 then from Lemma 2.6.10 it follows that V is Riemannian in a neigh-

bourhood of x and this establishes assertion (i) .

If c = 0, let U be a locally finite open covering of M such that each U ∈ U is

connected and there exists a local frame {V U
r }r=1,...,dimV for V , over U , made up

of conformal vector fields: LV Ur g = σUr g , r = 1, . . . , dimV . Let F be the set of

points x ∈M at which (dσUr )x = 0 , r = 1, . . . , dimV , for all U ∈ U with x ∈ U .

From Lemma 2.6.10 it follows that if U ∈ U is such that F ∩ U 6= ∅ then V U
r are

homothetic vector fields. Since U is locally finite, this implies that F is open and

closed which, because M is connected, establishes assertion (iii) .

Proof of Corollary 2.6.2. This follows from assertions (i) and (ii) of Theorem

2.6.1 .

Proof of Theorem 2.6.4. This follows from Theorem 2.5.6 and Theorem 2.6.1 .

Proof of Corollary 2.6.5. This follows from Proposition 2.4.2 and Theorem 2.6.4 .
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Chapter 3

Harmonic morphisms with

one-dimensional fibres

3.1 Some basic facts on harmonic morphisms

with one-dimensional fibres

In this section we present, for later use, a few facts about one-dimensional foli-

ations which produce harmonic morphisms. Here, V will always denote a one-

dimensional foliation.

The following lemma will be used several times in this chapter. The case

n = 2 was used by P. Baird and J.C. Wood in [8, §3] .

Lemma 3.1.1. Let V be a conformal one-dimensional foliation on (Mn+1, g).

Then, the following assertions are equivalent.

(i) V produces harmonic morphisms;

(ii) each point has a neighbourhood on which a local dilation λ of V can be

found such that, if V is a vertical field with g(V, V ) = λ2n−4 , then [V,X] = 0 for

any basic field X .

Proof. From (1.1.5) it follows that assertion (i) is equivalent to the possibility of

finding in the neighbourhood of each point a local dilation λ of V such that

V∗(LX(λ2−n ω)) = 0 (3.1.1)
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for any basic vector field X and where ω is a local volume of V .

If V is as in (ii) and θ is its dual vertical one-form (i.e. θ is the unique vertical

one-form such that θ(V ) = 1 ) then λn−2 θ is a local volume form of V . Hence

(3.1.1) is equivalent to (LX θ)(V ) = 0 which is equivalent to [V,X] = 0 .

Remark 3.1.2. 1) From the proof above we see that (ii) is a characterisation of

those local dilations which restrict to give dilations of harmonic morphisms which

locally define the foliation.

2) If V is as above, let θ be its dual vertical one-form. Using the fact that

[V,X] = 0 for any basic vector field X , it follows that the two-form Ω = d θ

is basic. (In fact, θ and Ω = d θ are, respectively, the connection form and the

curvature form of a principal (local) connection, see Theorem 3.1.9).

The equivalence (iii)⇐⇒ (i) from the following proposition is due to R.L. Bryant

[13] .

Proposition 3.1.3. For n 6= 2 , let V be a one-dimensional Riemannian folia-

tion on (Mn+1, g) and let H be its orthogonal complement. Then, the following

assertions are equivalent:

(i) V produces harmonic morphisms,

(ii) H is a homothetic distribution,

(iii) V is locally generated by Killing fields.

Furthermore, if V is orientable and the first Betti number of M is zero then

(iii) above can be replaced by

(iii′) V is globally generated by a Killing field.

Proof. (i)⇐⇒ (ii) This follows from Proposition 1.4.7 , since, being Riemannian,

V is homothetic and, being of codimension one, H is conformal.

(ii)⇒(iii) Let ρ be a local dilation of H which is constant along the leaves of

V and let V be a local vertical field such that g(V, V ) = ρ−2 .

Because ρ is constant along the leaves of V we have

(LV g)(V, V ) = 0 . (3.1.2)

Because ρ is a local dilation of H we have

(LX(ρ2 g))(V, V ) = 0 (3.1.3)
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for any horizontal vector field X . It is easy to see that (3.1.3) is equivalent to

g([X, V ], V ) = 0 . This implies that for any horizontal vector field we have

(LV g)(V,X) = 0 . (3.1.4)

Since V is Riemannian we have

(LV g)(X, Y ) = 0 , (3.1.5)

for any horizontal vector fields X and Y .

Equations (3.1.2),(3.1.4) and (3.1.5) show that V is a Killing field.

(iii)⇒(ii) Since dimV = 1 , the orthogonal complement H of V is a conformal

distribution.

If V is a (local) nonvanishing Killing field, which (locally) generates V , and

|V | its norm then |V |−1 is a local dilation for the horizontal distribution H .

Moreover, H is homothetic, since |V | is constant along the leaves of V .

The last assertion follows from the fact that when the first Betti number of

M is zero and V is orientable we can find a global density λ2−n of V (which is

also a local dilation for H) and a vertical vector field V defined on M , such that

g(V, V ) = λ2n−4 .

Remark 3.1.4. 1) Note that if n = 2 then (i)⇒(ii) ⇐⇒ (iii). In fact, in this

case, a one-dimensional foliation V produces harmonic morphisms on (M3, g) if

and only if its leaves are geodesics (see [8]). Thus, being of codimension one, H
is a Riemannian distribution. However, if n = 2 then (ii)⇒(i) fails, as simple

examples show.

2) If in the above proposition we further assume that H is integrable then V
induces, locally, a warped product structure on (M, g).

One might guess that a similar proposition to the one above holds in general

for any conformal one-dimensional foliation, just by replacing ‘Killing fields’, with

‘conformal fields’. It is not difficult to see that this is not true, the actual situation

being described by the following:

Proposition 3.1.5. For n ≥ 3, let V be a one-dimensional foliation on (Mn+1, g).

Then any two of the following assertions imply the remaining assertion.

67



(i) V produces harmonic morphisms,

(ii) V (or H) is homothetic,

(iii) V is locally generated by conformal vector fields.

Furthermore, if V is orientable and the first Betti number of M is zero then

(iii) above can be replaced by

(iii′) V is (globally) generated by a conformal field.

Proof. (i),(ii)⇒(iii) Let λ2−n be a local density for V . By Proposition 1.4.2 , we

can suppose that λ = a b , where a is constant along leaves and b is constant along

horizontal curves.

Let W be a local vertical vector field such that g(W,W ) = a2n−4 b−2 . It is a

straightforward calculation to check that W is a local conformal vector field on

(M, g) .

(ii),(iii)⇒(i) Since V is homothetic, by Proposition 1.4.2 , we can find a local

dilation b of V which is constant along horizontal curves.

Let W be a local conformal vector field which (locally) generates V . We can

suppose that b and W are defined on the same open subset of M . It is easy to

see that, since W is conformal, we have that b2 g(W,W ) is constant along leaves.

We can choose a smooth positive local function a on M such that g(W,W ) =

a2n−4 b−2. Hence a is constant along the leaves and thus λ = a b is a local dilation

of V .

If V is a local field, tangent to the leaves and such that g(V, V ) = λ2n−4 then,

from the fact that W is conformal it follows that [V,X] = 0 for any basic X.

Hence, by Lemma 3.1.1 , V is a foliation which produces harmonic morphisms.

(iii),(i)⇒(ii) Let λ2−n be a local density for V . Let V be a local vector

field, tangent to the leaves and such that g(V, V ) = λ2n−4 , and let W be a local

conformal vector field tangent to the leaves. We can suppose that V and W are

defined on the same open set.

Since W is conformal, for any basic X we have (LW g)(W,X) = 0 , and hence,

[W,X] = 0 . But, by Lemma 3.1.1 we also have [V,X] = 0 for any basic X .

Hence if b is such that W = bV , then b is constant on horizontal curves.

Since λ is a local dilation of the conformal foliation V , from Remark 1.1.9 ,
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we see that

(LW g)(V, V ) = W (log(λ−2))g(V, V ) . (3.1.6)

Relation (3.1.6) together with W = bV implies after a straightforward calcu-

lation that λn−1 b is constant along leaves. Thus, we can write λ = r s where r , s

are positive smooth functions on M such that r is constant along the leaves and

s is constant along horizontal curves. From Proposition 1.4.2 , we get that V is a

homothetic foliation.

Remark 3.1.6. Note that, if in Proposition 3.1.5 we have n = 2 , the implication

(ii),(iii)⇒(i) fails, the other implications still holding.

If n = 1 , then (i)⇐⇒ (iii) but they do not imply (ii).

Lemma 3.1.7 (cf. [8, Remark 5.3]). Let V be a one-dimensional homothetic

foliation on (M, g). Then, at least away of the points where V is Riemannian, its

orthogonal complement is integrable.

Proof. By Proposition 1.4.2 , V admits a local dilation λ whose gradient is vertical.

The points x ∈M , where V is not Riemannian are characterised by (gradλ)x 6=
0 . Hence, in a neighbourhood of such a point, the level hypersurfaces of λ are

integral submanifolds of the horizontal distribution.

Lemma 3.1.8. Let ϕ : (Mn+1, g)→ (Nn, h) be a harmonic morphism with one-

dimensional fibres. Let λ denote the dilation of ϕ and let V be a (local) vertical

vector field on M such that g(V, V ) = λ2n−4.

Then, the following assertions are equivalent:

(i) the fibres of ϕ form a homothetic foliation at least on the complement of

the interior of the set {x ∈M | d(V (log λ))(x) = 0 6= (V (log λ))(x)} ;

(ii) for any basic field X , we have V (X(log λ)) = 0 .

Proof. Let µ be the vertical one-form on M such that for any horizontal fields

X, Y we have (LV g)(X, Y ) = µ(V )g(X, Y ) . Hence, by the definition of λ we

have µ(V ) = −2V (log λ) .

Let H be the horizontal distribution and HB its second fundamental form.

Using (1.1.3) we obtain the following relation:

µ = − 2

n
(trace(HB))[ .
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Hence, V is homothetic if and only if µ is closed.

By Lemma 3.1.1 , for any basic X we have [V,X] = 0 , and hence:

(dµ)(V,X) = −V (µ(X))−X(µ(V ))− µ[V,X] = −X(µ(V ))

= 2X(V (log λ)) = 2V (X(log λ)) .

The lemma follows.

In [8, Proposition 3.5] , P. Baird and J.C. Wood gave a global description of

the metric of a Riemannian manifold of dimension three, on which a harmonic

morphism can be defined. In [13, Theorem 1] , R.L. Bryant gave a local description

of the metric of the total space of a submersive harmonic morphism with one-

dimensional fibres (with no restriction on the dimension of the total space). The

following theorem explains how the latter result can be globalized, giving also a

simpler proof of Bryant’s local result.

Theorem 3.1.9 (cf. [13, Theorem 1]). Let ϕ : (Mn+1, g) → (Nn, h) , n ≥ 1 , be

a submersive harmonic morphism with connected one-dimensional fibres of the

same homotopy type. Let λ be the dilation of ϕ and suppose that V (= kerϕ∗) is

orientable.

Then, there exists:

(i) a principal bundle π : P → N with group G = (R,+) or G = (S1, ·) ,

(ii) a principal connection θ ∈ Γ(T ∗P ) on π ,

(iii) a diffeomorphic embedding ι : M → P

such that:

1) π ◦ ι = ϕ ,

2) g = λ−2(ϕ∗h) + λ2n−4(ι∗θ)2 .

Furthermore, if the fibres are all diffeomorphic to circles, or are all complete

with respect to the metric induced by λg , then ι is onto, and hence, ϕ itself is a

principal bundle and the horizontal distribution is a principal connection on it.

Note that, by the result of P. Baird [13], we know that ϕ is automatically

submersive except when n ≤ 3 .
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Proof. Let V be a vertical field such that g(V, V ) = λ2n−4. By Lemma 3.1.1 ,

the horizontal distribution H is invariant under the local flow of V . Thus, the

integral curves of V are the fibres of a local principal bundle, and H is a principal

connection on it. If θ is the vertical one-form dual to V then, it is obvious that
λg = ϕ∗h+ θ2 . (This establishes [13, Theorem 1] .)

To end the proof we shall prove the following assertions:

(a) if the fibres are diffeomorphic to circles then ϕ is a principal bundle with

group (S1, ·) ;

(b) if the fibres are diffeomorphic to R then, there exists a diffeomorphic embed-

ding ι : M → N × R , such that π1 ◦ ι = ϕ , and a principal connection on the

trivial principal bundle π1 : N × R→ N , with group (R,+) , such that H is the

restriction to M of it.

From now on, all the considerations which will be made in this proof will be

done with respect to the metric λg on M .

For x ∈M , let Ix ⊆ R be the open interval which is the domain of the (max-

imal) geodesic with velocity Vx. Let Q =
{

(x, r) ∈ M × R | r ∈ Ix
}

, and define

Ψ : Q→M , by Ψ(x, r) = exp rVx .

If the fibres are all circles then Q = M × R . Since d θ(V,X) = 0 for any

horizontal vector field X, by applying the Stokes theorem we obtain that the

fibres have the same length. Hence Ψ descends to a map M × S1 →M which is

a free action of (S1, ·) on M . Thus assertion (a) is proved.

Suppose now that the fibres are diffeomorphic to R . If they are all complete

with respect to the metric induced from λg then, Q = M ×R and Ψ represents a

free action of (R,+) on M , and thus the proof of the theorem is finished. Other-

wise, since ϕ is a submersion, we can find local sections of it in the neighbourhood

of each point of N . Let S be a family of such sections whose domains form an

open covering {Os}s∈S of N .

Let s , t ∈ S . For x ∈ Os ∩ Ot , let as t(x) be the (unique) real number such

that t(x) = Ψ
(
s(x), as t(x)

)
.

It is obvious that {as t}s,t∈S is a cocycle with values in (R,+) , which induces

a principal bundle. This bundle is trivial because R is contractible.

Moreover, set As = s∗θ ; then the family of one-forms {As}s∈S , defines a prin-
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cipal connection on this bundle.

The total space N ×R of this bundle, can be retrieved, as usual from the co-

cycle {as t}s,t∈S as the space of equivalence classes [x, r] , under the identifications

[x, r] ≡ [x, as t(x)r] , x ∈ Os ∩Ot .

For x ∈ M , let s ∈ S be such that ϕ(x) ∈ Os and, rx ∈ Is(ϕ(x)) be the real

number which satisfies x = Ψ(s(ϕ(x)), rx) . (Note that rx depends just on x and

s.) We can define ι : M → N × R by ι(x) = [ϕ(x), rx] , x ∈ M and the theorem

follows.

Remark 3.1.10. The proof of above theorem, can be simplified considerably

when H is an Ehresmann connection (see [12] for the definition of Ehresmann

connection). It is not difficult to prove that a sufficient condition for H to be an

Ehresmann connection is that V be a complete vector field.

3.2 Some local and global results for one-dimensional

foliations which produce harmonic morphisms

All of the main results of this section hold for Riemannian manifolds of dimension

at least four. None of the results of this section requires the compactness or the

completeness of the manifold.

If the manifold has dimension at least four then by Proposition 3.1.3 a one-

dimensional Riemannian foliation produces harmonic morphisms on it if and only

if it is locally generated by Killing fields, and from Corollary 1.4.8 it follows that

a foliation by geodesics produces harmonic morphisms if and only if it is homo-

thetic.

The first main result of this section concerns a one-dimensional foliation V
which has integrable orthogonal complement and which produces harmonic mor-

phisms on an Einstein manifold. We prove that V is one of these two types. Also,

we prove that this still holds if we replace the integrability assumption on the

orthogonal complement by the condition that the foliation be homothetic.

In [13, Theorem 3] R.L. Bryant considered a submersive harmonic morphism

ϕ with connected one-dimensional fibres defined on a simply-connected Rieman-
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nian manifold of dimension at least four and with constant sectional curvature.

Bryant’s result is that ϕ is one of the following two types: either there exists a

nowhere zero Killing field tangent to the fibres of ϕ or the fibres are geodesics

orthogonal to an umbilical foliation by hypersurfaces. We improve this result

by showing that, on a Riemannian manifold with constant sectional curvature

any orientable one-dimensional foliation which produces harmonic morphisms

and admits a global density is either Riemannian and has leaves generated by

a nonvanishing Killing field or is homothetic and has leaves which are geodesics

orthogonal to an umbilical foliation by hypersurfaces. In this way an entirely new

proof for Bryant’s result is obtained.

In this section V will always denote a one-dimensional foliation which pro-

duces harmonic morphisms on (Mn+1, g) (n ≥ 1) and ρ = e(2−n)σ will denote a

local density of it. As before, h = eσg will denote the associated (local) metric

on M with respect to which V is Riemannian and has geodesic leaves and H will

denote the orthogonal complement of V .

Proposition 3.2.1 (cf. [11, Chapter 9, §J]). For n ≥ 3 , let ϕ : (Mn+1, g) →
(Nn, h̄) be a harmonic morphism with one-dimensional geodesic fibres.

(a) If H is integrable then the following assertions are equivalent:

(i) (M, g) is Einstein,

(ii) (N, h̄) is Einstein and the following relation holds

cM

n
λ2 − cN

n− 1
λ4 +

(
U(λ)

)2
+

3

4
λ2n+2

∣∣Ω∣∣2
h

= 0 (3.2.1)

where cN is the Einstein constant of (Nn, h̄) , U is a vertical local vector field such

that g(U,U) = 1 and cM = MRicci(U,U) .

Moreover, if (i) or (ii) holds then

KM
X∧Y −

cM

n
= λ2

(
KN
ϕ∗X∧ϕ∗Y −

cN

n− 1

)
(3.2.2)

where KM and KN are the sectional curvature of (M, g) and (N, h) , respectively,

and X , Y are horizontal.
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(b) When n = 4 and M and N are oriented consider also the following asser-

tion:

(iii) Ω is the pull back of a (anti-)self-dual form on (N, h̄).

Then, any two of the assertions (i), (ii) and (iii) imply the remaining assertion.

Proof. (a) By Proposition 1.1.10, we have that X(σ) = 0 for any horizontal X .

Lemma 3.1.1 implies that [V,X] = 0 and hence X(V (σ)) = V (X(σ)) = 0 . By

hypothesis, Ω = 0 so, from (B.1.24) for any horizontal X we have Ricci(X, V ) = 0.

Similarly, from (B.1.23) we get:

MRicci(X, Y ) = (NRicci)(ϕ∗X,ϕ∗Y )− e−2σ (∆Mσ)h(X, Y ) . (3.2.3)

It follows that (M, g) is Einstein if and only if (N, h̄) is Einstein and (3.2.1)

holds.

If (i) or (ii) holds then (3.2.2) follows from (3.2.1) and the following formula

λ2KM
X∧Y − λ4KN

ϕ∗X∧ϕ∗Y +
(
U(λ)

)2
= 0

which can be obtained directly or as a consequence of a formula of S. Gudmundsson

[29] .

(b) Let Ω̄ be the two-form on N such that ϕ∗(Ω̄) = Ω . Note that (hd∗Ω)|H = 0

if and only if Ω̄ is coclosed on (N, h̄) .

If (iii) holds the equivalence (i) ⇐⇒ (ii) can be proved in a similar way to

(a) , using the fact that any closed (anti-)self-dual form is coclosed and that, for

any two-form ω on a four-dimensional oriented Euclidean space (E4, <,>) and

u, v ∈ E, we have (see [14]):

< iuω, ivω >=
1

2
|ω|2 < u, v > +2 < iuω+, ivω− > (3.2.4)

where, ω+ and ω− are, respectively, the self-dual and the anti-self-dual compo-

nents of ω.

The prove (i),(ii)⇒(iii) we adapt a method of [14].

First note that, by (B.1.24) , Ω̄ is coclosed.

Now, recall from [14], that (3.2.4) gives the decomposition of the symmetric

bilinear map (u, v) 7→< iuω, ivω > into its ‘spherical’ part and its ‘trace-free’
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part. Also, the bilinear map (u, v) 7→< iuα, ivβ > induces a natural isomorphism

between the space of ‘trace-free’ symmetric bilinear maps and Λ2
+(E) ⊗ Λ2

−(E)

(see [14]). Using these facts it is easy to see that at each point Ω̄ is either self-dual

or anti-self-dual.

If N± = { y ∈ N | (Ω̄±)y = 0 } then by the Baire category theorem at least one

of the two sets N+ and N− has nonempty interior. If N+ has nonempty interior

then, following [14], we apply Aronszajn’s unique continuation theorem (see [18]

noting that Ω̄ , and hence also Ω̄+ , is closed and coclosed) to obtain Ω̄+ = 0.

Hence Ω̄ is anti-self-dual.

Remark 3.2.2. 1) From Lemma 3.1.7 we see that if the foliation given by the

fibres of ϕ is nowhere Riemannian then H is automatically integrable.

2) Since the decomposition of two-forms into self-dual and anti-self-dual parts

is conformally invariant, the condition that Ω be the pull back of a (anti-)self-dual

form is equivalent to the condition that Ω restricted to the horizontal distribution

be (anti-)self-dual.

The following elementary algebraic lemma will be used several times in this

section.

Lemma 3.2.3. Let E be an Euclidean linear space of dimension at least two and

α a linear function on it such that, for any pair of orthogonal vectors {u, v} we

have α(u)α(v) = 0.

Then α = 0.

Proof. Let u, v ∈ E be orthogonal and such that |u| = |v|. Since u + v , u − v
are also orthogonal we get that 0 = α(u+ v)α(u− v) = α(u)2 − α(v)2.

Thus α(u) = ±α(v) and since by hypothesis at least one of must be zero they

are both zero. The lemma is proven.

Recall that on a Riemannian manifold of dimension at least four a Riemannian

foliation with one-dimensional leaves produces harmonic morphisms if and only

if it is locally generated by Killing fields (Proposition 3.1.3) and a foliation by
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geodesics produces harmonic morphisms if and only if it is homothetic (Corollary

1.4.8). The next few results give conditions under which these are the only

possible types of one-dimensional foliations which produces harmonic morphisms.

They require a technical lemma which will be proved at the end of the section

(Lemma 3.2.14).

Theorem 3.2.4. Let (Mn+1, g) be an Einstein manifold of dimension n+ 1 ≥ 4,

and let V be a one-dimensional foliation with integrable orthogonal complement.

Then V produces harmonic morphisms if and only if either

(i) V is Riemannian and locally generated by Killing fields or

(ii) V is homothetic and its leaves are geodesics.

Moreover, if both (i) and (ii) occur then (Mn+1, g) is Ricci-flat.

Proof. By passing to a Riemannian covering if necessary, we can suppose that V
admits a global density.

By the remarks above we need to prove just the ‘only if’ part.

If H is integrable, then from (B.1.23) of Appendix B, for any orthogonal pair

{X, Y } formed of basic vector fields we have:

N Ricci(ϕ∗X,ϕ∗Y ) = (n− 1)(n− 2)X(σ)Y (σ) . (3.2.5)

Since n ≥ 3 and the left-hand side of (3.2.5) is a basic function we get that

X(σ)Y (σ) is a basic function.

Also, from (B.1.24) we obtain that V (X(σ)) = X(V (σ)) = (n− 2)V (σ)X(σ) .

Hence:

0 =V (X(σ)Y (σ)) = V (X(σ))Y (σ) +X(σ)V (Y (σ))

=2(n− 2)V (σ)X(σ)Y (σ) .

If, at a point x we have that V (σ)(x) 6= 0 , then this holds in an open neigh-

bourhood O of x. It follows that X(σ)Y (σ) = 0 on O .

Using Lemma 3.2.3 we see that gradσ restricted to O is vertical and hence,

from Proposition 1.1.10 , it follows that V restricted to O has geodesic leaves.

Thus, we have proved that at each point V is either Riemannian or geodesic.

Using Lemma 3.2.14 we get that locally either (i) or (ii) holds.
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To prove that this alternative holds globally first recall that, being Einstein,

(M, g) is analytic (see [11, 5.26]).

On an open subset where V has geodesic leaves, by (A.1.1), σ satisfies the

equation

−n∆σ + n(n− 1)| gradg σ|2 = c (3.2.6)

where c is the Einstein constant of (M, g) and ∆ is the Laplacian of (M, g) .

Hence, by the regularity of solutions of elliptic equations (see [11, page 467]) we

get that σ is analytic on any open set where V has geodesic leaves.

Also, σ is analytic on an open set where V is Riemannian since, by (A.1.1),

on such open sets σ satisfies the equation

∆σ =
1

n− 2
c . (3.2.7)

Because the alternative (i) or (ii) holds locally, σ is analytic on M .

Now suppose that locally both (i) and (ii) occur. In this case, being analytic,

σ satisfies both (3.2.6) and (3.2.7) on M . It is easy to see that this implies that

| gradg σ|2 = 2c/n(n−2) is constant on M . Also, if locally both (i) and (ii) occur,

there must be at least one point x ∈ M where (grad σ)x = 0 . Thus, if locally

both situations (i) and (ii) occur then σ is constant on M and (M, g) is Ricci

flat.

Remark 3.2.5. In the above proof the fact that σ is analytic on an open subset

of M where V has geodesic leaves also follows from the fact that if (M, g) is Ein-

stein and ϕ a local harmonic morphism with geodesic fibres produced by V then

by Proposition 3.2.1 the codomain of ϕ is also Einstein and hence is analytic in

harmonic coordinates (see [11, 5.26]). Thus, ϕ is an analytic horizontally confor-

mal (actually, homothetic) submersion between analytic Riemannian manifolds.

Hence, the dilation of ϕ is analytic.

Next we prove that Theorem 3.2.4 still holds if we replace the integrability

assumption on H with the condition that V be a homothetic foliation.

Corollary 3.2.6. Let (M, g) be an Einstein manifold of dimension at least four

endowed with a one-dimensional homothetic foliation V .
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Then V produces harmonic morphisms if and only if either

(i) V is Riemannian and locally generated by Killing fields or

(ii) V has geodesic leaves and integrable orthogonal complement.

Moreover, if both (i) and (ii) occur then (M, g) is Ricci flat.

Proof. Again we need to prove just the ‘only if’ part.

Let

F1 =
{
x ∈M | V is Riemannian at x

}
,

F2 =
{
x ∈M | V is geodesic at x

}
.

By Lemma 3.1.7 we have that H , the orthogonal complement of V , is inte-

grable at least on M \ F1 . From Theorem 3.2.4 it follows that on M \ F1 either

V is Riemannian or geodesic. Using Lemma 3.2.14 we get that locally either V
is Riemannian or geodesic, i.e. M =

◦
F1 ∪

◦
F2 , where

◦
F means the interior of F .

If
◦
F1 ∩

◦
F2 6= ∅ then, by the proof of Theorem 3.2.4 ,

◦
F2 ⊆

◦
F1 . Hence, V is either

Riemannian or geodesic, on M . If V is not Riemannian then H is integrable, by

Lemma 3.1.7 .

The last assertion follows from Theorem 3.2.4 .

Remark 3.2.7. For the alternative (i) or (ii) from the above corollary to hold

locally it is enough to suppose that the Ricci tensor takes the value zero when

evaluated on any pair formed by a horizontal and a vertical vector.

In the next two propositions we shall assume curvature conditions which are

automatically satisfied when (M, g) has constant sectional curvature.

Proposition 3.2.8. For n ≥ 3 , let V be a one-dimensional foliation on (Mn+1, g).

Suppose that the orthogonal complement of V is integrable, that for any horizontal

vector X we have MRicci(X, V ) = 0 and that for any pair {X, Y } of orthogonal

basic vector fields the function e(−2n+4)σ MR(X, V, Y, V ) is basic.

Then V produces harmonic morphisms if and only if locally either

(i) V is Riemannian and generated by a Killing field or

(ii) V is homothetic and its leaves are geodesic.
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Proof. Again we need to prove just the ‘only if’ part.

By Lemma 3.2.14 and Proposition 3.1.3 , it is sufficient to prove that at each

point V is either Riemannian or geodesic.

Let {X, Y } be a pair of basic vector fields orthonormal with respect to h.

Then the hypothesis together with (B.1.1) implies that

e(−2n+4)σ MR(X, V, Y, V ) = −1

2
(n− 2)(LH(gradh σ) h)(X, Y )− n(n− 2)X(σ)Y (σ).

(3.2.8)

Also, with the given hypotheses, from (B.1.24) we see that

V (X(σ)) = X(V (σ)) = (n− 2)X(σ)V (σ) . (3.2.9)

Since the left-hand side of (3.2.8) is basic by hypothesis, we can write

0 =
1

2
V ((LH(gradh σ) h)(X, Y )) + nV (X(σ)Y (σ)) .

Hence, using the properties of the Lie derivative together with (3.2.9) we get

0 =
1

2
(LV (LH(gradh σ) h))(X, Y ) +

1

2
(LH(gradh σ) h)([V,X], Y )

+
1

2
(LH(gradh σ) h)(X, [V, Y ]) + 2n(n− 2)V (σ)X(σ)Y (σ) .

Since [LA,LB] = L[A,B] , for any vector fields A,B , and [V,X] = 0 for any

basic field X , we get

0 =
1

2
(L[V,H(gradh σ)] h)(X, Y ) +

1

2
(LH(gradh σ)(LV h))(X, Y )

+2n(n− 2)V (σ)X(σ)Y (σ) .

Since V is a Riemannian foliation with respect to h , the last relation becomes

0 =
1

2
(L[V,H(gradh σ)] h)(X, Y ) + 2n(n− 2)V (σ)X(σ)Y (σ) .

Now, from (3.2.9) one can easily obtain

[V,H(gradh σ)] = (n− 2)V (σ)H(gradh σ) .

From the last two relations we obtain

0 =
1

2
(n− 2)V (σ)(LH(gradhσ) h)(X, Y ) +

1

2
(n− 2)X(V (σ))Y (σ)

+
1

2
(n− 2)Y (V (σ))X(σ) + 2n(n− 2)V (σ)X(σ)Y (σ) .
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The last relation together with (3.2.8) and (3.2.9) gives

e(−2n+4)σ V (σ) MR(X, V, Y, V ) = 2(n− 1)(n− 2)V (σ)X(σ)Y (σ) . (3.2.10)

If at a point x we have that V is not Riemannian (i.e. V (σ)(x) 6= 0) then

(3.2.10) together with the fact that e(−2n+4)σ MR(X, V, Y, V ) is basic gives us

that in a neighbourhood O of x we have V (X(σ)Y (σ)) = 0 . Using (3.2.9) , this

implies that X(σ)Y (σ) = 0 . Using Lemma 3.2.3 , we get that in O , gradh σ is

vertical. Now apply Lemma 3.2.14 .

Proposition 3.2.9. Let V be a one-dimensional foliation on a Riemannian man-

ifold (Mn+1, g) and let R denote the Riemannian curvature tensor of (Mn+1, g).

Suppose that V produces harmonic morphisms and that, for any triple {X, Y, Z}
of orthogonal basic vector fields, the function e(−2n+4)σ MR(X, Y, Z, V ) is basic.

(i) If n ≥ 4, then, except possibly at the points where the orthogonal comple-

ment of V is integrable, V has basic mean curvature form.

(ii) If n = 3, and MRicci(X, Y ) is basic for any pair of orthogonal basic vector

fields {X, Y }, then V has basic mean curvature form.

Proof. Let {X, Y, Z} be orthogonal basic fields. Put them into (B.1.2) and mul-

tiply by e(−2n+4)σ. Then, the first term on the right hand side is basic by a simple

calculation. The terms in the last three lines are zero and we conclude that the

second term on the right hand side of (B.1.2) is basic.

Hence, for any triple {X, Y, Z} of orthogonal basic fields the following relation

holds:

V (X(σ))Ω(Y, Z) + V (Y (σ))Ω(Z,X) = 2V (Z(σ))Ω(X, Y ) .

Rewriting this after a circular permutation of the vectors in the frame and

then subtracting the second relation from the first gives the following:

V (X(σ))Ω(Y, Z) = V (Z(σ))Ω(X, Y ) . (3.2.11)

Hence, if {T,X, Y, Z} are orthogonal basic fields we have the following:

V (T (σ))V (X(σ))Ω(Y, Z) = V (T (σ))V (Z(σ))Ω(X, Y )

= −V (Z(σ))V (T (σ))Ω(Y,X) = −V (Z(σ))V (X(σ))Ω(T, Y )

= −V (X(σ))V (Z(σ))Ω(T, Y ) = −V (X(σ))V (T (σ))Ω(Y, Z) ,

80



so that

V (T (σ))V (X(σ))Ω(Y, Z) = 0 .

It follows that on S =
{
x ∈ M |Ωx 6= 0

}
, for any pair {X, Y } of orthogonal

basic fields we have V (X(σ))V (Y (σ)) = 0 . By Lemma 3.2.3 this implies that on

S we have V (X(σ)) = 0 for any basic vector field X .

Suppose now that dimM = 4 and let S be defined as above. Then, it suffices

to prove that V has basic mean curvature form on S and on the interior of M \S .

Let {X, Y } be a pair of orthogonal basic vector fields defined on the interior

of M \S . Then from (B.1.23) we obtain that X(σ)Y (σ) is a basic function. If X

and Y have the same length with respect to h then this applies also to the pair

{X + Y,X − Y } and hence X(σ)2 − Y (σ)2 is a basic function. Hence X(σ)2 and

Y (σ)2 are basic and thus X(σ) and Y (σ) are basic.

Since dimM = 4 and iV Ω = 0 (where, as usual, i denotes the interior product)

each point of S has an open neighbourhood on which a unique basic vector field

Z can be defined such that iZΩ = 0 and h(Z,Z) = 1 .

We can choose basic vector fields X and Y such that {X, Y, Z} is an or-

thonormal local frame for H with respect to h . Since, on S , Ω 6= 0 we have that

Ω(X, Y ) 6= 0 . By (3.2.11) and the way Z was chosen we have:

V (Z(σ))Ω(X, Y ) = V (X(σ))Ω(Y, Z) = 0 .

Hence V (Z(σ)) = 0 .

Now, a simple calculation gives the following relations:

h(iXΩ, iY Ω) = 0 ,

h(iXΩ, iXΩ) = h(iY Ω, iY Ω) .

The first of the above relations together with (B.1.23) applied to {X, Y } gives

that the function X(σ)Y (σ) is basic. The second of the above relations together

with (B.1.23) applied to {X + Y,X − Y } gives that the function X(σ)2 − Y (σ)2

is basic. Hence X(σ) and Y (σ) are basic.

Proposition 3.2.10. Let V be a one-dimensional foliation which produces har-

monic morphisms on (Mn+1, g) . Suppose that the following conditions are satis-

fied, for any horizontal X :
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(i) X(V (σ)) = 0 ,

(ii) MRicci(X, V ) = 0 .

Then V is homothetic.

Proof. By Lemma 3.1.8 it is sufficient to prove that V is homothetic on the interior

S of the set {x ∈M | d(V (σ))(x) = 0 6= (V (σ))(x)} .

By (B.1.24) on S we have

e(2n−2)σ
{1

2
(hd∗Ω)(X) + (n− 1)Ω(X, gradh σ)

}
= (n− 1)(n− 2)X(σ)V (σ) ,

(3.2.12)

for any basic vector field X .

By hypothesis the right hand side above is a basic function on S . Also, the

second factor from the left hand side of (3.2.12) is basic and thus, if this second

factor is nonzero, then e(2n−2)σ is a basic function. This implies that V is Rie-

mannian and, in particular, homothetic.

If the second factor from the left hand side of (3.2.12) is zero on an open

subset S0 of S then the right hand is also zero and hence V has geodesic fibres

on S0 . From Corollary 1.4.8 it follows that V is homothetic on S0 .

It is obvious that a space with constant sectional curvature satisfies the cur-

vature assumptions of all of the previous theorems of this section. In fact, in this

case, we have the following:

Theorem 3.2.11. For n ≥ 3 let (Mn+1, g) be a Riemannian manifold with con-

stant sectional curvature and V a one-dimensional foliation on (Mn+1, g).

Then, V produces harmonic morphisms if and only if either

(i) V is Riemannian and locally generated by Killing fields or

(ii) V is a homothetic foliation by geodesics with integrable orthogonal com-

plement.

Moreover, both (i) and (ii) can occur only if (Mn+1, g) is flat.

Furthermore, if V is orientable and admits a global density then (i) can be

replaced by

(i′) V is (globally) generated by a nonvanishing Killing field.
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Proof. Again we need to prove just the ‘only if’ part.

From Theorem 3.2.4 , Proposition 3.2.9 and Proposition 3.2.10 we obtain that

at each point either V is Riemannian or geodesic.

Using Lemma 3.2.14 we get that, locally, either V is Riemannian or geodesic.

In particular, V is homothetic. Now the proof of the alternative (i) or (ii) follows

from Corollary 3.2.6 .

If both (i) and (ii) hold then, from formula (B.1.1) , it follows that (M, g) is

flat.

The fact that (i) can be replaced by (i′) when V is orientable and admits a

global density follows from the proof of Proposition 3.1.3 .

Corollary 3.2.12. For n ≥ 3 let (Mn+1, g) be a Riemannian manifold with

constant sectional curvature and let ϕ : (Mn+1, g) → (Nn, h) be a submersive

harmonic morphism with orientable vertical distribution.

Then, either

(i) the fibres of ϕ form a Riemannian foliation generated by a Killing field or

(ii) ϕ is horizontally homothetic and has geodesic fibres orthogonal to an um-

bilical foliation by hypersurfaces.

Lemma 3.2.13. Let Mm be a manifold and F1, F2 ⊆M , closed subsets such that

M = F1 ∪ F2.

Then, M = cl(
◦
F1) ∪ cl(

◦
F2) .

Proof. Suppose that there exists x /∈ cl(
◦
F1) ∪ cl(

◦
F2) . Then there exists an

open neighbourhood O of x , which is homeomorphic with Rm and such that

O ∩ cl(
◦
Fj) = ∅ , j = 1, 2 .

For j = 1, 2 , let Gj = O ∩ Fj . Since Fj is closed, Gj is closed in O . Also,

since O is open we have that the interior of Gj in O is the same as its interior in

M , which is empty by the way O was chosen.

Hence, Gj is nowhere dense in O . From M = F1 ∪ F2 we get that Rm ≈ O =

G1 ∪G2 . But this is impossible, by the Baire category theorem.

Lemma 3.2.14. Let V be a one-dimensional foliation with geodesic leaves on

(M, g) and let H be its orthogonal complement. Let f : M → R be a smooth
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function such that at each point x ∈M either V(grad f)x = 0 or H(grad f)x = 0.

Then each point of M has an open neighbourhood O such that either V(grad f) =

0 on O or H(grad f) = 0 on O .

Proof. Let

F1 =
{
x ∈M | V(grad f)x = 0

}
,

F2 =
{
x ∈M |H(grad f)x = 0

}
.

By hypothesis, M = F1 ∪ F2 and hence, by Lemma 3.2.13 , we have that

M = cl(
◦
F1) ∪ cl(

◦
F2) . (3.2.13)

Let V be a local unit vertical vector field, then, by Lemma 3.1.1, [V,X] = 0

for any basic vector field X . Also, using (3.2.13) we see that for any basic vector

field X , we have:

V (X(f)) = X(V (f)) = 0 . (3.2.14)

Note thatH is integrable on M\F1 , because on this set the level hypersurfaces

of f are integral manifolds for H . Using this fact together with (3.2.14) and the

hypothesis it is easy to see that H(grad f) and V(grad f) are, locally, gradient

vector fields. Thus, we can find local smooth functions a and b such that:

f = a+ b and,

V(grad a) = 0 = H(grad b)

It follows that F1 is the set of critical points of b , and F2 is the set of critical

points of a . Since locally, M is diffeomorphic to the product between an open

subset of a leaf and a local base, the lemma quickly follows.

3.3 Some constructions of one-dimensional foli-

ations which produce harmonic morphisms

on Einstein manifolds

In this section we use well-known results on warped-products and conformal vec-

tor fields (see [38], [11, Chapter 9, §J]) to obtain one-dimensional foliations with
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integrable orthogonal complement and which produce harmonic morphisms on

Einstein manifolds which are not of constant curvature (thus answering to a

question formulated by S. Gudmundsson).

3.3.1 Homothetic foliations with geodesic leaves

Proposition 3.3.1 (cf. [38, Lemma 13(iv)]). Let ϕ : (Mn+1, g) → (Nn, h) ,

n ≥ 3 , be a nonconstant harmonic morphism with geodesic leaves and integrable

horizontal distribution.

(i) If (Mn+1, g) has constant curvature then (Nn, h) has constant curvature.

(ii) If (Mn+1, g) is Einstein and (Nn, h) has constant curvature then (Mn+1, g)

has constant curvature.

Proof. Assertion (i) is an immediate consequence of (3.2.2) .

If (Mn+1, g) is Einstein then from (3.2.1) and from (B.1.1) we obtain

KM
X∧U =

cM

n
(3.3.1)

where X is any horizontal vector.

The proof of (ii) follows from (3.2.2) and (3.3.1) .

Corollary 3.3.2 (cf. [38, Corollary 15]). Let ϕ : (M4, g) → (N3, h) be a har-

monic morphism with one-dimensional geodesic leaves and integrable horizontal

distribution.

If (M4, g) is Einstein then both (M4, g) and (N3, h) have constant curvature.

Proof. If (M4, g) is Einstein then by Proposition 3.2.1 , (N3, h) is Einstein. But

N3 is three-dimensional and thus (N3, h) has constant curvature. The proof

follows from Proposition 3.3.1(ii) .

Corollary 3.3.3 (cf. [38],[11, Chapter 9, §J]). Given any Einstein manifold

(Nn, h) of dimension n there exists an Einstein manifold (Mn+1, g) of dimen-

sion n + 1 and a harmonic morphism ϕ : (Mn+1, g) → (Nn, h) with geodesic

fibres and integrable horizontal distribution.

If n ≥ 4 and (Nn, h) does not have constant curvature then (Mn+1, g) does

not have constant curvature.
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Proof. Let (Nn, h) be Einstein and let λ be a (local) solution of (3.2.1) (see [11,

9.109]).

Let Mn+1 = R × Nn and g = dt2 + λ−2 h . It is obvious that the canonical

projection (Mn+1, g) → (Nn, h) is a harmonic morphism with geodesic leaves

and integrable horizontal distribution. Also (Mn+1, g) is an Einstein manifold by

Proposition 3.2.1 . Moreover, if (Nn, h) does not have constant curvature then,

by Proposition 3.3.1 , (Mn+1, g) does not have constant curvature.

3.3.2 Riemannian foliations locally generated by Killing

fields

The following results are consequences of [11, Corollary 9.107, 9.108, 9.109].

Proposition 3.3.4 ([11]). Let (Nn, h) be a Riemannian manifold and ρ : Nn →
(0,∞) a smooth positive function.

Let Mn+1 = R × Nn and g = ρ2 dt2 + h . Then, the following assertions are

equivalent.

(i) (Mn+1, g) is Einstein (MRicci = cM g) .

(ii) (Nn, h) has constant scalar curvature sN = (n − 1) cM and the following

relation holds
N

∇ dρ = − cM

n
ρ h+ ρZN (3.3.2)

where
N

∇ is the Levi-Civita connection on (Nn, h) and ZN = NRicci−(sN/n)h is

the trace-free part of NRicci .

Proof. From [11, 9.106a,9.106c] or, by a straightforward calculation the following

equations can be obtained:

(MRicci)|TN = NRicci−ρ−1
N

∇ dρ

(MRicci)|TR =ρ−1(∆Nρ) g|TR.
(3.3.3)

Also, [11, 9.106b] gives that MRicci(X, ∂/∂t) = 0 for any X ∈ Γ(TN). From this

and (3.3.3) the proof easily follows.
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Corollary 3.3.5. For each n ≥ 5 there exists Einstein manifolds (Mn+1, g) not of

constant curvature, endowed with a nowhere zero Killing field which has integrable

orthogonal complement. Moreover, the construction can be done in such a way

that the (locally) induced isometric quotients are also Einstein.

Proof. If the equation
N

∇ dρ = a ρ h , where a ∈ R , has solutions then there

exists a homothetic one-dimensional foliation with geodesic leaves and integrable

orthogonal complement (see Lemma 2.6.6). Recall that ZN = 0 if and only if

(Nn, h) is Einstein (see [11, 1.118]). Hence, [11, 9.109] and Corollary 3.3.3 implies

that there exists an Einstein manifold (Nn, h) , n ≥ 5 , not of constant curvature,

on which (3.3.2) has a (local) solution ρ which is positive. Then, by Proposition

3.3.4 , (Mn+1, g) (where Mn+1 = R×Nn and g = ρ2 dt2 +h) is Einstein. Clearly

V = ∂/∂t is a nowhere zero Killing field on (Mn+1, g) .

3.4 Foliations of dimension one which produce

harmonic morphisms on four-dimensional Ein-

stein manifolds

To state the main result of this section we need a definition which is a trivial

generalization to foliations of the well-known notion of principal connection on a

principal bundle. For simplicity, we give this definition just for one-dimensional

foliations.

Definition 3.4.1. Let V be a one-dimensional foliation and let V ∈ Γ(V) be a

nowhere zero vector field tangent to V .

A principal connection for V (with respect to V ) is a complementary distri-

bution H ⊆ TM , H⊕V = TM such that V is an infinitesimal automorphism of

H (i.e. H is invariant under the local flow of V ).

The connection form θ of H is the ‘vertical’ dual of V (i.e. θ(V ) = 1 and

θ|H = 0) and the curvature form of H is Ω = dθ . Note that Ω is basic and it can

be interpreted as the integrability tensor of H (indeed Ω(X, Y )V = −V([X, Y ])

for any horizontal vector fields X and Y ).
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It is obvious that a one form θ defines a principal connection for V with respect

to V if and only if θ(V ) = 1 and LV θ = 0 .

Example 3.4.2. Let V be an orientable one-dimensional geodesic foliation on

(M, g) . Then H(= V⊥) is a principal connection for V with respect to U ∈ Γ(V)

where g(U,U) = 1 . The connection form is U [ .

An orientable one-dimensional foliation V on M admits a principal connection

if and only if it is geodesible (i.e. there exists a Riemannian metric h on M

such that the leaves of V are geodesics on (M,h) ). Indeed, given the principal

connection H (with respect to some V ∈ Γ(V)), if we choose any metric h such

that h(V, V ) = 1 and h(V,X) = 0 for X ∈ H then the leaves of V are geodesics of

(M,h) . Also the set of principal connections of V (if nonempty) with respect to

a given nowhere zero vector field V ∈ Γ(V) is an affine space over the linear space

of basic one-forms: if θj , j = 1, 2 are connection forms then θ1− θ2 is locally the

pull back by ϕ : U → N of a one-form A ∈ Γ(T ∗N) where U is an open subset of

M and the fibres of ϕ are open subsets of leaves of V . Fix V ∈ Γ(V) . Then, in

a neighbourhood of each point of N , a local section s of ϕ can be found which,

in a neighbourhood of its image, defines a principal connection θs which is flat

(i.e. dθs = 0). If θ defines a principal connection then the one-form A such that

θ = θs + ϕ∗(A) is the local connection form of θ with respect to s . Because V is

one-dimensional we can define the local connection form of a principal connection

with respect to a (local) flat principal connection by using any parallel section

of the flat connection. Also note that the existence of a global flat principal

connection imposes, severe restrictions on the topology of the foliation and of

the manifold. For example, as is well known, if the leaves of V are the fibres

of a principal bundle ξ = (M,N, S1) over a simply-conected N and ξ admits a

flat principal connection then ξ is trivial and, in particular, M and N × S1 are

diffeomorphic.

The orthogonal complement of a one-dimensional foliation which produces

harmonic morphisms is a principal connection of it.

Proposition 3.4.3. Let V be a one-dimensional foliation which produces har-

monic morphisms on (Mn+1, g) where dimM = n+ 1 . Let ρ = e(2−n)σ be a local
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density of V . Suppose that V restricted to the domain of σ is orientable and let

V ∈ Γ(V) be such that g(V, V ) = e(2n−4)σ(= ρ−2) .

Then the horizontal distribution H(= V⊥) is a principal connection for V with

respect to V .

Proof. This follows from Lemma 3.1.1.

We now state the main result of this section.

Theorem 3.4.4. Let (M4, g) be an Einstein manifold of dimension four and V
a one-dimensional foliation which produces harmonic morphisms on (M4, g) .

Then, one of the following assertions holds:

(i) V is Riemannian and locally generated by Killing fields;

(ii) V is a homothetic foliation by geodesics with integrable orthogonal com-

plement;

(iii) (M4, g) is Ricci-flat and, up to homotheties, any harmonic morphism

ϕ : (U, g|U)→ (N3, h) , with dilation λ , produced by V such that V|U and N3 are

orientable is (locally) described as follows:

(a) (N3, h) has constant sectional curvature kN = 1 ,

(b) 1
2

d(λ−2) is a (flat) principal connection for V with respect to suitably

chosen V ∈ Γ(V) such that g(V, V ) = λ2 ,

(c) the local connection form A of H with respect to 1
2

d(λ−2) satisfies the

equation dA+ 2 ∗A = 0 on (N3, h) where ∗ is the Hodge star-operator of (N3, h)

with respect to some orientation of N3 .

Moreover, only (i) and (ii) or (ii) and (iii) can occur simultaneously, in which

case (M4, g) must be Ricci-flat.

From Theorem 3.4.4 we obtain the following.

Corollary 3.4.5. Let (M4, g) be an orientable Einstein manifold of dimension

four, and (N3, h) an orientable Riemannian manifold of dimension three.

Let ϕ : (M4, g) → (N3, h) be a submersive harmonic morphism; denote its

dilation by λ and let V ∈ Γ(V) be such that g(V, V ) = λ2 .

Then, one of the following assertions (i) , (ii) , (iii) holds:
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(i) V is a Killing field;

(ii) ϕ is horizontally homothetic and has geodesic fibres orthogonal to an um-

bilical foliation by hypersurfaces;

(iii) (a) (M4, g) is Ricci-flat and (N3, h) has constant sectional curvature kN = c2

4

(c 6= 0) ,

(b) 1
c

d(λ−2) is a (flat) principal connection for kerϕ∗ with respect to V ,

(c) the local connection form A of (kerϕ∗)
⊥ with respect to 1

c
d(λ−2) sat-

isfies dA + c ∗ A = 0 on (N3, h) where ∗ is the Hodge star-operator of (N3, h)

defined by some orientation of N3 .

Remark 3.4.6. 1) If M4 is not orientable then we can replace (M4, g) by a

Riemannian double covering (M̃4, g̃) such that M̃4 is orientable. Then we replace

ϕ by ϕ̃ = ϕ ◦ ξ where ξ : (M̃4, g̃)→ (M4, g) is the projection of the covering.

2) If N3 is not orientable we can pull back ϕ to a Riemannian double-covering

(Ñ3, h̃) of (N3, h) such that Ñ3 is orientable.

Before proving Theorem 3.4.4 we need some further preparations.

Let V be a one-dimensional foliation which produces harmonic morphisms on

a Riemannian manifold (M4, g) , dimM = 4 and let ρ = e−σ be a positive smooth

function. We define the Riemannian metric h on M by

h = e2σ gH + e−2σ gV

where gH and gV are the horizontal and the vertical part of g , respectively. Then

from Proposition 1.2.4 it follows that V produces harmonic morphisms on (M,h)

as well. Furthermore if ρ = e−σ is a (local) density of V then V is Riemannian

and has geodesic leaves with respect to h .

Assuming that V restricted to the domain O of the local density ρ is orientable

let V ∈ Γ(V|O) be such that g(V, V ) = ρ−2 . Then, by Proposition 3.4.3, H is a

principal connection for V , with respect to V . We shall always denote by Ω the

curvature form of H .

Next we relate the Ricci tensors MRicci and NRicci of (M4, g) and (N3, h̄) , re-

spectively, where (N3, h̄) is the codomain of a harmonic morphism produced by V .
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Lemma 3.4.7. Let O be an open subset of M4 and let ϕ : (O, g|O) → (N, h̄) be

a harmonic morphism produced by V . Then,

MRicci(X, Y ) = NRicci(ϕ∗X,ϕ∗Y )− 1

2
e4σ h(iXΩ, iY Ω)

−e−2σ ∆Mσ h(X, Y )− 2X(σ)Y (σ) ,
(3.4.1)

MRicci(X, V ) =
1

2
e4σ (hd∗Ω)(X) + 2e4σ Ω(X, gradh σ)

+ 2X(V (σ))− 2X(σ)V (σ) ,
(3.4.2)

MRicci(V, V ) = e2σ∆Mσ +
1

4
e8σ
∣∣Ω∣∣2

h
+ 4V (V (σ))− 10V (σ)2 (3.4.3)

for any horizontal vectors X , Y , where eσ is the dilation of ϕ , ∆M is the Lapla-

cian on (M, g) and hd∗ denotes the codifferential on (M,h) .

Proof. These equations follow from Lemma B.1.5.

The following proposition, which will be used later on, holds for manifolds of

any dimension.

Proposition 3.4.8. Let (M, g) be an Einstein manifold and V a one-dimensional

foliation of codimension not equal to two which produces harmonic morphisms on

(M, g) .

Then the following assertions are equivalent:

(i) V has basic mean curvature form;

(ii) V is a homothetic foliation.

Proof. This follows from Proposition 3.2.10 .

As mentioned before, Theorem 3.4.4 extends Theorem 3.2.4 and Corollary

3.2.6 in the four-dimensional case. From Theorem 3.2.4 and Corollary 3.2.6 it

follows the following:

Theorem 3.4.9. Let (M, g) be an Einstein manifold of dimension at least four

endowed with a one-dimensional foliation V . Suppose that either V has integrable

orthogonal complement or V is homothetic.

Then V produces harmonic morphisms if and only if either
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(i) V is Riemannian and locally generated by Killing fields or

(ii) V is homothetic, has geodesic leaves and integrable orthogonal complement.

Moreover, if both (i) and (ii) hold then (M, g) is Ricci-flat.

Proof of Theorem 3.4.4. By passing to a two-fold covering, if necessary, we can

suppose that V is oriented. Also, by passing to a regular covering, if necessary, we

can suppose that V admits a global density ρ = e−σ . Thus there exists V ∈ Γ(V)

such that g(V, V ) = e2σ .

If Ω = 0 then we are done by Theorem 3.4.9 . So suppose that Ω 6= 0 . Then,

since Ω is basic, we can choose a local orthonormal frame
{
X , Y, Z

}
of H with

respect to h , made up of basic fields and such that

iZΩ = 0 and Ω(X, Y ) 6= 0 .

Then it is easy to see that

h(iXΩ, iY Ω) = h(iY Ω, iZΩ) = h(iZΩ, iXΩ) = 0 , (3.4.4)

h(iXΩ, iXΩ) = h(iY Ω, iY Ω) = Ω(X, Y )2 . (3.4.5)

Now recall that (M4, g) is Einstein and thus MRicci = cM g for some real

number cM ∈ R . Then from (3.4.1) and (3.4.4) it follows that

X(σ)Y (σ) , Y (σ)Z(σ) , Z(σ)X(σ)

are basic functions. Also, because MRicci(X,X) = MRicci(Y, Y ), it follows from

(3.4.1) and (3.4.5) that X(σ)2−Y (σ)2 is a basic function. Hence X(σ) , Y (σ) are

basic functions and, moreover, outside the set

S =
{
x ∈M |Xx(σ) = Yx(σ) = 0

}
,

we have that Z(σ) is also basic. It follows that, at least, outside the interior of

S , the foliation V is homothetic by Proposition 3.4.8 . From Theorem 3.4.9 we

obtain that the alternative (i) or (ii) of Theorem 3.4.4 holds locally at least on

M \ S (just locally because M \ S might be disconnected). If also Z(σ) = 0 on

S then we are done because then V is homothetic on M and we can again apply
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Theorem 3.4.9 .

From now on in this proof we shall work on
◦
S∩

{
x ∈M |Zx(σ) 6= 0

}
. There

we can write [X, Y ](σ) = X(Y (σ))− Y (X(σ)) = 0 and hence

−V [X, Y ](σ) = H[X, Y ](σ)

⇐⇒ Ω(X, Y )V (σ) = h(H[X, Y ], gradh σ) .

Since we are in the interior of S the last equality is equivalent to

Ω(X, Y )V (σ) = Z(σ)h([X, Y ], Z) . (3.4.6)

Next we compute (hd∗Ω)(Z) (note that by (3.4.2) the other components of

H∗(hd∗Ω) are zero):

(hd∗Ω)(Z) = −(h∇XΩ)(X,Z)− (h∇Y Ω)(Y, Z)− (h∇ZΩ)(Z,Z)− (h∇V Ω)(V, Z) .

Because iZΩ = 0 we have (h∇ZΩ)(Z,Z) = 0 and because Ω is basic and V is

geodesic with respect to h we have (h∇V Ω)(V, Z) = 0 . Also

(h∇XΩ)(X,Z) =X(Ω(X,Z))− Ω(h∇XX,Z)− Ω(X,h∇XZ)

=− Ω(X,h∇XZ) .

Since h(h∇XZ, Y ) = −h(Z,h∇XY ) we have

(h∇XΩ)(X,Z) = Ω(X, Y )h(Z,h∇XY ) .

Similarly (h∇Y Ω)(Y, Z) = Ω(Y,X)h(Z,h∇YX) and we obtain that

(hd∗Ω)(Z) = −Ω(X, Y )h(Z,h∇XY )− Ω(Y,X)h(Z,h∇YX)

= −Ω(X, Y )
{
h(Z,h∇XY )− h(Z,h∇YX)

}
.

We have proved that

(hd∗Ω)(Z) = −Ω(X, Y )h(Z, [X, Y ]) . (3.4.7)

Now by (3.4.2) (with X replaced by Z) we have

1

2
e4σ(hd∗Ω)(Z) + 2Z(V (σ))− 2Z(σ)V (σ) = 0 . (3.4.8)
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From (3.4.7) and (3.4.8) it follows that on
◦
S ∩

{
x ∈M |Zx(σ) 6= 0

}
we have

− 1

2
e4σ Ω(X, Y )h(Z, [X, Y ]) + 2Z(V (σ))− 2Z(σ)V (σ) = 0

which together with (3.4.6) gives

− 1

2
e4σ V (σ)

Z(σ)
Ω(X, Y )2 + 2Z(V (σ))− 2Z(σ)V (σ) = 0 . (3.4.9)

Because MRicci(X,X) = MRicci(Z,Z) from relation (3.4.1) we obtain that the

function− 1
2
e4σ h(iXΩ, iXΩ) + 2Z(σ)2 is basic, equivalently, − 1

2
e4σ Ω(X, Y )2 + 2Z(σ)2

is basic. This implies that

e4σ V (σ) Ω(X, Y )2 = 2V (Z(σ))Z(σ) . (3.4.10)

From (3.4.9) and (3.4.10) it follows that

V (Z(σ)) = 2V (σ)Z(σ) (3.4.11)

which is equivalent to the fact that e−2σ Z(σ) is basic. Hence Z(V (e−2σ)) =

V (Z(e−2σ)) = 0 . This implies that, if V (e−2σ) is nonconstant, then its level

hypersurfaces are horizontal and hence H is integrable; then the proof follows

from Theorem 3.4.9 . There remains to be considered the case when V (e−2σ) is a

constant, say c ∈ R . By replacing, if necessary, V with −V we can assume that

c ≥ 0 . Since V (e−2σ) is basic, V (V (e−2σ)) = 0 , equivalently,

V (V (σ)) = 2V (σ)2 . (3.4.12)

From (3.4.8) and (3.4.11) it follows that

(hd∗Ω)(Z) = −4 e−4σ Z(σ)V (σ) . (3.4.13)

From (3.4.10) and (3.4.11) it follows that either

(a) V (σ) = 0 or (b) Ω(X, Y )2 = 4 e−4σ Z(σ)2

which, after replacing, if necessary, one of the vector fields X , Y or Z with its

negative, is equivalent to

Ω(X, Y ) = Z(e−2σ) . (3.4.14)
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In case (a) , V is Riemannian and the proof follows from Theorem 3.4.9 . So

suppose from now on that (3.4.14) holds.

By (3.4.11) the horizontal component of d(e−2σ) is basic and thus we can

locally write

H∗
(
d(e−2σ)

)
= ϕ∗(B) (3.4.15)

where ϕ is as in Lemma 3.4.7 and B is a one-form on N . Hence ϕ∗(dB)+c dθ = 0

where θ is, as before, the vertical dual of V . But Ω is also basic and hence

Ω = ϕ∗(F ) for some two-form F on N . It follows that

dB = −c F . (3.4.16)

Because V is Riemannian and has geodesic leaves with respect to h we have that

ϕ∗(h̄d∗F ) = H∗(hd∗Ω) where h̄d∗ is the codifferential on (N, h̄) .

Now (3.4.13) can be written:

h̄d∗F = −cB . (3.4.17)

Also (3.4.14) can be written:

F = ∗B (equivalently, ∗F = B ) (3.4.18)

where ∗ is the Hodge star-operator (locally) induced on (N, h̄) by the (local) ori-

entation corresponding to
{
ϕ∗X , ϕ∗Y, ϕ∗Z

}
.

From (3.4.1) it easily follows that

NRicci(ϕ∗X,ϕ∗Y ) = NRicci(ϕ∗Y, ϕ∗Z) = NRicci(ϕ∗Z, ϕ∗X) = 0 ,

NRicci(ϕ∗X,ϕ∗X) = NRicci(ϕ∗Y, ϕ∗Y ) .

Also by (3.4.1), NRicci(ϕ∗X,ϕ∗X) = NRicci(ϕ∗Z, ϕ∗Z) if and only if (3.4.14)

holds. Thus (N3, h̄) is Einstein and, because it is three-dimensional, it is of

constant sectional curvature kN . Then NRicci = 2 kN h̄ .

Now from (3.4.3) we obtain

e2σ cM = e2σ ∆Mσ +
1

2
e8σ Ω(X, Y )2 + 4V (V (σ))− 10V (σ)2
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which together with (3.4.12) gives

e−2σ cM = e−2σ ∆Mσ +
1

2
e4σ Ω(X, Y )2 − 2 e−4σ V (σ)2 . (3.4.19)

It is easy to see by using (3.4.14) that (3.4.19) implies

1

2
∆M(e−2σ) + e−2σ cM + c2 = 0 . (3.4.20)

Also by (3.4.1) we have

e−2σ cM = NRicci(ϕ∗X,ϕ∗X)− 1

2
e4σ Ω(X, Y )2 − e−2σ ∆Mσ . (3.4.21)

From formulae (3.4.19) and (3.4.21) it follows that

NRicci(ϕ∗X,ϕ∗X) =e−2σ cM +
1

2
e4σ Ω(X, Y )2 + e−2σ ∆Mσ

=e−2σ cM +
(
e−2σ cM + 2 e−4σ V (σ)2

)
and thus

NRicci(ϕ∗X,ϕ∗X) = 2 e−2σ cM + 2 e−4σ V (σ)2 . (3.4.22)

Recall also that (N, h̄) is of constant sectional curvature kN and thus (3.4.22)

is equivalent to

kN = e−2σ cM + e−4σ V (σ)2 . (3.4.23)

Now recall that V (e−2σ) = c = constant and thus (3.4.23) reads

kN = e−2σ cM +
c2

4
. (3.4.24)

Now, if V is not Riemannian (i.e. c > 0), then e−2σ cannot be constant, and

hence cM = 0 and kN = c2

4
> 0 . After a homothetic transformation if necessary,

we can suppose that kN = 1 and hence c = 2 . Then 1
2

d(e−2σ) is a flat principal

connection for V with respect to V . Put A = −1
2
B . From equation (3.4.15) and

the fact that V (e−2σ) = 2 it follows that

θ =
1

2
d(e−2σ) + ϕ∗(A)

and hence A is a local connection form of θ with respect to 1
2

d(e−2σ) . Also

dA = F and this together with (3.4.18) implies that

dA+ 2 ∗ A = 0 . (3.4.25)
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We have proved that, at each point of M , one of the situations (i) , (ii) or (iii)

occurs.

Now by (3.4.20) it is obvious that there cannot exist any point where both (i)

and (iii) occur.

Suppose that in an open connected subset O ⊆M which is the domain of the

harmonic morphism ϕ : (O, g|O) → (N, h̄) both situations (ii) and (iii) occurs.

Then on the image (by ϕ) of the set where (iii) occurs from (3.4.25) it follows

that

∆A = 4A . (3.4.26)

But, on the image of the interior of the set where (ii) holds, the equation (3.4.26)

is trivially satisfied. Thus (3.4.26) is satisfied on N ; this is an analytic manifold

because (N, h̄) has constant curvature. By the regularity of solutions of elliptic

equations (see [11, p. 467]) we have that A is analytic and hence, if O contains

interior points of the set where (ii) occurs, we have that A = 0 on N . Hence, if

the set where (iii) occurs is nonempty and the interior of the set where (ii) occurs

is nonempty, then the set where (iii) occurs is contained by the set of points where

(ii) occurs.

Since by Theorem 3.4.9 on each connected component of the complement of

the set where (iii) occurs the alternative (i) or (ii) holds globally the theorem is

proved.

Remark 3.4.10. 1) Note that if A satifies (3.4.25) then F = dA satifies

h̄ d∗ F + 2 ∗ F = 0 .

2) The codomain of a harmonic morphism of type (iii) of Theorem 3.4.4 al-

ways has constant positive sectional curvature. In the limit, when this tends to

zero, we obtain a harmonic morphism of type (i) . This follows from (3.4.24) .

3) Harmonic morphisms of type (iii) are also of type (ii) if and only if A = 0 .

4) The result of Theorem 3.4.4 shows that, on an Einstein manifold of dimen-

sion four, the nonlinear system of partial differential equations whose solutions

are harmonic morphisms with fibres of dimension one can be reduced to one of

three types of systems of linear partial differential equations of the first order.
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For type (i) this is Killing’s equation, and for type (iii) it is (3.4.25) . Finally,

the one-dimensional foliation V on (M, g) is of type (ii) if and only if it is locally

generated by vector fields W ∈ Γ(V) which satisfies 4∇W = divW Id TM where

∇ is the Levi-Civita connection of (M, g) (see [49, Lemma 6.5]).

See [66] for other situations in which the nonlinear system of partial differ-

ential equations whose solutions are harmonic morphisms can be reduced to a

linear system of partial differential equations of the first order.

3.5 The third type

We shall say that a harmonic morphism ϕ : (M4, g) → (N3, h) is of type (iii)

( (i), (ii) ) if its regular fibres form a foliation of type (iii) ( (i), (ii) ) of Theorem

3.4.4 . In this section the harmonic morphisms of type (iii) will be the main object

of study.

The first thing to note about the harmonic morphisms of type (iii) is that

they are always submersive.

Proposition 3.5.1. Let ϕ : (M4, g) → (N3, h) be a harmonic morphism of

type (iii).

Then ϕ is submersive.

Proof. By passing, if necessary, to a two-fold covering, we can suppose that the

vertical distribution V (which is well-defined outside the set of critical points) is

orientable. Then, as before, let V ∈ Γ(V) be such that g(V, V ) = λ2 where λ is the

dilation of ϕ . Since, up to a multiplicative constant, d(λ−2) is a (flat) principal

connection with respect to V , we have that V (λ−2) is a nonzero constant. This

implies that the connected components of any regular fibre of ϕ are noncompact.

Suppose that ϕ is not submersive and let x0 ∈ M be a critical point of it.

Recall that, by a result of P. Baird [5, Proposition 5.1] , the set of critical points

of ϕ must be discrete. Then from the main result of [17] it follows that ϕ is

topologically locally equivalent at x0 to the cone on the Hopf fibration S3 → S2 .

Hence, in a neighbourhood of x0 , the components of the regular fibres of ϕ are
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diffeomorphic to S1 . But we have seen that all the regular fibres of ϕ have

noncompact components and hence ϕ cannot have critical points.

Remark 3.5.2. Let ϕ : (M4, g)→ (N3, h) be a harmonic morphism of type (iii);

denote its dilation by λ . Then H∗(d(λ−2)) is a basic one-form; let A ∈ Γ(T ∗N)

be such that −1
2
H∗(d(λ−2)) = ϕ∗(A) . Because (N3, h) is of constant curvature

it is an analytic manifold. But A satisfies (3.4.26) and so is analytic. Using this

fact it is easy to see that, if N3 is orientable, then there exists an orientation of

it such that dA+ 2 ∗ A = 0 on N3 .

From the proof of Theorem 3.4.4 it follows that any harmonic morphism of

type (iii) is locally determined by the local connection form A . This is also

illustrated by the following example.

Example 3.5.3. Let h be the canonical metric on the three-dimensional sphere

S3 . Let A = i∗
(
−x2 dx1 + x1 dx2 − x4 dx3 + x3 dx4

)
where i : S3 ↪→ R4 is the

canonical inclusion.

Let ∗ be the Hodge star-operator on (S3, h) considered with the usual orien-

tation of S3 . Then

dA− 2 ∗ A = 0 .

To show this, first note that A is the canonical connection form on the Hopf bundle

(S3, S2, S1) . Also |A| = 1 and thus it suffices to verify that A ∧ dA = 2 vS3 where

vS3 is the usual volume form on S3 .

For a ∈ R let ga be the Riemannian metric on R4 \{0} = (0,∞)× S3 defined

by

ga = ρ2 h+ ρ−2 (ρ dρ+ aA)2 .

Then, for any a 6= 0, the canonical projection ϕa :
(
R4 \{0}, ga

)
→ (S3, h) is

a harmonic morphism of type (iii) whilst g0 is the restriction to R4 \{0} of the

canonical metric on R4 and thus ϕ0 : R4 \{0} → S3 is the usual radial projection;

note that this is also of type (ii) .

Note that (R4 \{0}, ga) is the Eguchi-Hanson II metric [21] and thus is Ricci-

flat and anti-self-dual.

Let ψa = π ◦ ϕa where π : S3 → S2 is the Hopf fibration. Then ψa is a
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harmonic morphism with totally geodesic fibres. Any fibre of it is isometric with

(R2 \{0}, γa) where γa is given in polar coordinates (ρ, θ) by

γa = ρ2 dθ2 + ρ−2 (ρ dρ+ a dθ)2 .

It is easy to see that any point of R2 \{0} is at finite distance from 0 with respect

to γa . Hence (R2 \{0}, γa) is not complete. Because the fibres of ψa are closed

and totally geodesic we obtain that ga is not complete for any a ∈ R .

We shall prove that the ϕa of Example 3.5.3 are, essentially, the only surjective

harmonic morphisms of type (iii) with connected fibres and complete simply-

connected codomain. For this we need the following:

Proposition 3.5.4. Let S3
(
= Sp(1)

)
be the three-dimensional sphere endowed

with its canonical metric and orientation and let ∗ be the Hodge star-operator on

it.

(i) The space of solutions of the equation

dA+ 2 ∗ A = 0 , A ∈ Γ(T ∗S3) (3.5.1)

is the space of left-invariant one-forms on S3 .

(ii) The space of solutions of the equation

dA− 2 ∗ A = 0 , A ∈ Γ(T ∗S3) (3.5.2)

is the space of right-invariant one-forms on S3 .

Proof. (i) Let S3 × Sp(1) → S3 be the unique spin structure on S3 and let

S3 ×H → S3 be the spinor bundle induced by the action of the Clifford algebra

Cl3 = H ⊕H on H given by (x, y) · q = x · q .

Consider the trivialization TS3 = S3 × Im H induced by the canonical left

action of S3
(
= Sp(1)

)
on itself. Thus any one-form A on S3 can be viewed as a

spinor field A : S3 → Im H ⊆ H which is constant if and only if the corresponding

one-form is left-invariant.

Consider the Dirac operator D obtained by using the trivial flat connection

on S3×H → S3 . Then it is easy to see that A ∈ Γ(T ∗S3) satisfies (3.5.1) if and
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only if DA = 0 . Also a straightforward calculation gives D2 = ∆ + 2D where ∆

is the usual Laplacian acting on H -valued functions on S3 . Thus, any solution A

of (3.5.1) induces a harmonic H -valued function on S3 which must be constant

if A is globally defined on S3 .

(ii) Since the isometry x 7→ x−1 of S3 reverses the orientation, it pulls back

solutions of (3.5.1) to solutions of (3.5.2) . Thus the proof of (ii) follows from

(i) .

Remark 3.5.5. There are other ways to describe the solutions of the equa-

tions (3.5.1) and (3.5.2) . For example, since any orthogonal complex structure

on R4(= H ) compatible with the canonical orientation can be described as left

multiplication by imaginary quaternions of length one (see [15]) any solution of

(3.5.2) is, up to a multiplicative constant, of the form

A = i∗
(∑
a,b

Jab x
b dxa

)
where J is any orthogonal complex structure which induces the canonical orien-

tation on R4 (i.e. if {u1, u2} is a complex basis of (R4, J) then {u1, Ju1, u2, Ju2}
is positively oriented) and i : S3 ↪→ R4 is the canonical inclusion. This can also

be checked directly.

Also, any solution A of (3.5.2) can be written A = ∗ i∗(F ) where F ∈ Λ2
+(R4)

is a self-dual two-form.

In fact, by using these characterisations an alternative proof for Proposition

3.5.4 can be obtained. First, note that, for each one of the equations (3.5.1) and

(3.5.2) we have a three dimensional space of solutions. Then, it is easy to see

that if A satisfies (3.5.1) or (3.5.2) then A is coclosed and ∆A = 4A where ∆ is

the Hodge Laplacian on S3 . Thus A is in the eigenspace corresponding to the

first eigenvalue of ∆ acting on coclosed one-forms of S3 and it is well-known that

this space is of dimension six (see [25, 7.2] or apply one of the results from [42,

page 148] and [36, Chapter II, Theorem 2.3] ).

Proposition 3.5.6. Let ϕ : (M4, g) → (N3, h) be a surjective harmonic mor-

phism of type (iii) such that (N3, h) is complete, simply-connected and ϕ has
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connected fibres and orientable vertical distribution.

Then there exists a ∈ R such that, up to homotheties, ϕ is a restriction of

ϕa :
(
R4 \{0}, ga

)
→ (S3, h) from Example 3.5.3 .

Proof. Up to a homothety, we can identify (N3, h) with S3 considered with its

canonical metric and orientation. Let λ be the dilation of ϕ . Then, by Proposition

3.5.4 , there exists a ∈ R such that, up to an isometry of S3 , −1
2
H∗(d(λ−2)) =

aϕ∗(A) where A ∈ Γ(T ∗S3) is as in Example 3.5.3 . By Proposition 3.5.1 , ϕ is

submersive and let V = kerϕ∗ . Because V is orientable we can find V ∈ Γ(V)

such that g(V, V ) = λ2 .

Because ϕ is of type (iii) we have that V (λ−2) is a nonzero constant. This

implies that the restriction of λ to any fibre of ϕ is a diffeomorphism onto some

open subinterval of (0,∞) . Hence the map Φ : M4 → S3 × (0,∞) defined by

Φ(x) = (ϕ(x), λ(x)−1) , x ∈M4 , is a diffeomorphic embedding.

Then from the proof of Theorem 3.4.4 it follows that Φ : (M4, g) → (S3 ×
(0,∞), ga) is a local isometry and hence an isometric embedding. Also, it is

obvious that ϕa ◦ Φ = ϕ .

Corollary 3.5.7. Let ϕ : (M4, g)→ (N3, h) be a surjective harmonic morphism

of type (iii) such that (N3, h) is complete.

Then (M4, g) is not complete.

Proof. By passing, if necessary, to a two-fold covering of M4 we can suppose that

V is orientable.

Up to homotheties, the universal covering of (N3, h) is S3 with its canonical

metric and orientation. Then, ϕ can be pulled back via S3 → N3 to a harmonic

morphism whose total space is complete if and only if (M4, g) is complete. Define

Φ as in the proof of Proposition 3.5.6 . Then Φ is a local isometry and because

(R4 \ {0}, ga) is not complete (M4, g) is not complete.

3.6 A few applications

From Theorem 3.4.4 and Corollary 3.5.7 we can exclude the third type in the

complete case as follows:
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Theorem 3.6.1. Let (M4, g) be a complete Einstein manifold of dimension four

and let (N3, h) be a complete Riemannian manifold of dimension three.

Let ϕ : (M4, g)→ (N3, h) be a surjective harmonic morphism.

Then, either:

(i) the regular fibres of ϕ form a Riemannian foliation locally generated by

Killing fields or

(ii) ϕ is horizontally homothetic and has geodesic fibres orthogonal to an um-

bilical foliation by hypersurfaces.

Recall that for a horizontally weakly conformal map the vertical distribution

is well-defined outside the set of critical points. We analyse the behaviour of ϕ

at a critical point. The model is the cone on the Hopf fibration S3 → S2 which,

as is well-known, can be written as a quadratic polynomial:

Definition 3.6.2 (see [9]). The Hopf polynomial is the harmonic morphism

ϕ : R4 → R3 defined by

ϕ(z1, z2) =
(
|z1|2 − |z2|2 , 2 z1 z2

)
via the standard identifications R4 = C 2 , R3 = R× C .

Note that the Hopf polynomial has an isolated critical point at the origin of

R4 .

Corollary 3.6.3. Let (M4, g) be an Einstein manifold of dimension four.

Let ϕ : (M4, g) → (N3, h) be a nonconstant harmonic morphism which has

critical points and orientable vertical distribution.

Then there exists a Killing field V ∈ Γ(TM) tangent to the fibres of ϕ which

vanishes precisely at the critical points of ϕ . Moreover, in a neighbourhood of

each critical point, ϕ is smoothly equivalent to the Hopf polynomial.

Proof. Because ϕ has critical points and (M4, g) is Einstein, ϕ must be of type

(i) . (By Proposition 3.5.1 it cannot be of type (iii) and from the main result of

[24] it follows that ϕ cannot be of type (ii).)
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Let λ be the dilation of ϕ and let V be the vertical distribution of ϕ . Let

V ∈ Γ(V) be such that g(V, V ) = λ2 .

Obviously, V can be extended to a continuous vector field on M whose zero

set is equal to Cϕ , the set of critical points of ϕ .

Then V is a Killing field on (M \ Cϕ, g|M\Cϕ) [13] (cf. [9] , [47]). Hence it

satisfies the equation

∇∗∇V = MRicci(V ) (3.6.1)

(see, for example, [36, page 44]), where MRicci ∈ Γ(TM ⊗ T ∗M) denotes the

(1,1) tensor field associated to the Ricci tensor of (M4, g) . From the regularity

of solutions of elliptic equations (see [11, page 467]) it follows that V is a smooth

(in fact, analytic) vector field on M .

By Baird’s result ([5, Proposition 5.1]) ϕ has isolated critical points. Then in

a neighbourhood of the critical point x ∈M the local flow of V is equivalent, via

the exponential map at x , with the flow (ξt) on TxM given by the vector field

with value ∇wV at w ∈ TxM . Recall that (∇V )x : TxM → TxM induces an

orthogonal complex structure on (TxM, gx) (see [36]) . Hence (ξt) induces an S1

action on TxM which must be free outside zero since its quotient is equivalent to

ϕ in a neighbourhood of x . From this fact the last assertion of the proposition

easily follows.

Remark 3.6.4. Since (3.6.1) holds in general, the conclusion of the above corol-

lary holds for any harmonic morphism ϕ : (M4, g)→ (N3, h) of type (i) and with

orientable vertical distribution.

Corollary 3.6.5. Let (M4, g) be a complete Einstein manifold of dimension four

and let (N3, h) be a complete Riemannian manifold of dimension three.

Let ϕ : (M4, g) → (N3, h) be a surjective submersive harmonic morphism

with orientable vertical distribution; denote its dilation by λ . Let W be a vertical

vector field such that g(W,W ) = λ−2 and suppose that W is complete.

Then ϕ is of type (i) and there exists a globally defined nowhere zero Killing

field tangent to the fibres of ϕ .

Proof. Suppose that (ii) of Theorem 3.6.1 occurs. Then, either directly or by

using [47, Lemma 4.3] , it can be shown that ∇W = µ IdTM where µ is a smooth
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function on M4 . In particular, W is conformal. By a result of K. Yano and

T. Nagano (see [36]), either W is Killing or (M4, g) is S4 with its canonical

metric. But in the latter case W would have two zeroes. The proof follows from

Theorem 3.6.1 .

Proposition 3.6.6. Let (M4, g) be a compact Einstein manifold (MRicci = cM g)

of dimension four and let ϕ : (M4, g) → (N3, h) be a nonconstant harmonic

morphism with orientable vertical distribution.

Then there exists a Killing field tangent to the fibres of ϕ and nowhere zero

on the set of regular points. In particular, the Euler number of M4 is equal to the

number of critical points of ϕ .

If ϕ has critical points, then cM > 0 and Nb1 = Nb2 = 0 , where Nb1 and Nb2

denote the Betti numbers of N3 .

Proof. Because ϕ has compact fibres it cannot be of the third type.

From Corollary 3.6.3 and Corollary 3.6.5 it follows that there exists a Killing

vector field tangent to the fibres of ϕ . Then the fact that cM > 0 follows from

Corollary 3.6.3 and equation (3.6.1) . Also by a well-known result of S. Bochner

we have Mb1 = 0 . From [18, 7.14] it follows that Nb1 = 0 and by Poincaré duality
Nb2 = Nb1 = 0 .

Remark 3.6.7. More generally, if M4 is an arbitrary compact manifold then

the number of critical points of ϕ : M4 → N3 is equal to the Euler number of

M4 provided that the smooth map ϕ has isolated critical points [58, Proposition

4.2(iii)].

Recall that by the well-known result of M. Berger the Euler number of a

compact Einstein manifold (M4, g) is nonnegative and is zero if and only if (M4, g)

is flat (see [11, 6.32]) .

We can now completely describe submersive harmonic morphisms with one-

dimensional fibres defined on a compact Einstein four-manifold as follows.

Theorem 3.6.8. Let (M4, g) be a compact Einstein manifold of dimension four.

Let ϕ : (M4, g)→ (N3, h) be a submersive harmonic morphism.
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Then (M4, g) and (N3, h) are flat and the fibres of ϕ are locally generated by

parallel vector fields. In particular, up to homotheties and Riemannian coverings,

ϕ is the canonical projection between flat tori T 4 → T 3 .

Proof. By passing, to a two-fold covering if necessary, we can suppose that the

vertical distribution of ϕ is orientable. Then, from Proposition 3.6.6 it follows

that there exists a Killing vector field V on (M4, g) tangent to the fibres of ϕ and

the Euler number of M4 is zero. Hence (M4, g) is flat by the above mentioned

result of Berger. From a result of Bochner (see [11, 1.84]) V is parallel.

The fact that (N3, h) is flat follows from Lemma B.1.5 .

Because ϕ has compact regular fibres, from a well-known result of C. Ehres-

mann [22] , it follows that the leaf space of the foliation whose leaves are the

components of the regular fibres of ϕ is smooth. Thus by factorising ϕ , if nec-

essary, into a harmonic morphism followed by a Riemannian covering we can

suppose that ϕ has connected fibres. Thus, ϕ is, up to homotheties, the quotient

induced by V . Hence, ϕ is the projection of a S1-principal bundle and the hor-

izontal distribution H is a flat principal connection on it. Then, each holonomy

bundle P of it is a regular covering over N3 with group the holonomy group

H(⊆ S1) of H . Moreover, because (M4, g) is flat, P considered with the metric

induced by g is flat (actually, up to homotheties, this is the unique metric with

respect to which P → N becomes a Riemannian covering; in particular, P with

the considered metric is complete.) Hence M = P ×H S1 and the pull back of ϕ

by P → N is the projection P ×S1 → P . To end the proof, recall ( [37, Chapter

V, Theorem 4.2] ) that P is covered by an Euclidean cylinder or by a torus.

Remark 3.6.9. 1) The condition that ϕ be submersive, in Theorem 3.6.8 , can be

removed if we assume that (N3, h) is of constant curvature (see Theorem 3.7.11).

2) Recall that K3 surfaces and the tori cannot carry any metric of positive

scalar curvature (see [11, 4.34]). Hence, from Proposition 3.6.6 and Theorem

3.6.8 we obtain the following:

• There exists no K3 surface endowed with an Einstein metric which is the

domain of a harmonic morphism whose regular fibres are of dimension one.

• Let g be an Einstein metric on the torus T 4 and let ϕ : (T 4, g) → (N3, h)
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be a nonconstant harmonic morphism. Then g and h are flat, ϕ is submersive

and, up to homotheties and Riemannian coverings, ϕ is the canonical projection

T 4 → T 3 .

Corollary 3.6.10. Let (M4, g) be a compact Einstein manifold of dimension

four.

Then there exists no submersive harmonic morphism ϕ : (M4, g)→ (N3, h) if

either Nb1 = 0 or Mb1 = 0 .

3.7 Harmonic morphisms ϕ : (M 4, g) → (N 3, h)

between Einstein manifolds

In this section (M4, g) and (N3, h) will be Einstein manifolds of dimension four

and three, respectively, (since N3 is three-dimensional this means that (N3, h) is

of constant curvature) and ϕ : (M4, g) → (N3, h) will be a harmonic morphism.

Recall that, by a result of P. Baird [5, Proposition 5.1] , the set of critical points of

ϕ is discrete and hence, by the second axiom of countability, at most countable.

We now state one of the main results of this section enumerating all surjec-

tive submersive harmonic morphisms between complete simply-connected Ein-

stein manifolds of dimension four and three, respectively.

Theorem 3.7.1. Let (M4, g) be a complete simply-connected Einstein manifold

and let (N3, h) be complete, simply-connected and with constant curvature.

Let ϕ : (M4, g)→ (N3, h) be a surjective submersive harmonic morphism.

Then, up to homotheties, ϕ is one of the following projections: R4 → R3 ,

H4 → R3 , H4 → H3 induced by the following canonical warped-product decom-

positions R4 = R1 ×R3 , H4 = H1 ×r R3 , H4 = H1 ×s H3 where Hk denotes the

hyperbolic space of dimension k .

Proof. First we prove that (M4, g) has constant curvature and that ϕ has geodesic

fibres and integrable horizontal distribution.

By Theorem 3.6.1 , either (i) the vertical distribution of ϕ is Riemannian and

locally generated by Killing fields or (ii) ϕ has geodesic fibres and integrable
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horizontal distribution. Suppose that case (i) holds and let V = kerϕ∗ be the

vertical distribution. We can choose a local orthonormal frame
{
X , Y, Z

}
for

H (= V⊥) with respect to h made up of basic fields and such that iZΩ = 0 .

Because (M4, g) and (N3, h) are both Einstein, from (3.4.1) we obtain

X(σ)Y (σ) = 0 and X(σ)2 = Y (σ)2 . (3.7.1)

Thus X(σ) = Y (σ) = 0 .

From (3.4.1) it follows that (3.4.14) holds after, replacing, if necessary, one of

the vector fields X , Y , Z or V by its negative. Choose the (local) orientation on

N3 such that
{
ϕ∗X , ϕ∗Y, ϕ∗Z

}
is positively oriented.

Let λ̌ be the function on N3 such that eσ = ϕ∗(λ̌) and let F be the two-form

on N3 such that Ω = ϕ∗(F ) . Then (3.4.14) implies that

F = ∗ dλ̌−2 . (3.7.2)

where ∗ is the Hodge star-operator on (N3, h) .

But dF = 0 and thus (3.7.2) implies that λ̌−2 is a positive harmonic function

on (N3, h) .

From (3.4.1) and (3.4.3) we obtain

kN = λ̌−2 cM (3.7.3)

where kN is the constant sectional curvature of (N3, h) and cM is the Einstein

constant of (M4, g) . Thus either λ̌ is constant or kN = cM = 0 . But in the latter

case, by Liouville’s theorem, λ̌−2 must be constant. Hence λ̌ is constant and, by

[6, Theorem 5.2] , ϕ has geodesic fibres. Moreover, by (3.7.2) , F = 0 and thus H
is integrable.

Thus, we always have case (ii). The fact that (M4, g) has constant curvature

now follows from Corollary 3.3.2 .

Next we prove that the horizontal distribution H is an Ehresmann connection

for ϕ (see [11, 9.39] for the definition). Let γ̌ : [0, 1] → N3 be a curve in N3

and let x ∈ ϕ−1(γ(0)) . Recall that locally horizontal lifts exist and are unique.

Thus there is a maximal interval [0, b) ⊆ [0, 1] on which there can be defined a
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horizontal lift γ : [0, b) → M4 of γ̌|[0,b) such that γ(0) = x . Obviously, γ̌([0, 1])

is a bounded subset of (N3, h) . Because ϕ is horizontally homothetic this im-

plies that γ([0, b)) is bounded in (M4, g) . But (M4, g) is complete and hence the

closure of γ([0, b)) is compact. Hence the closure of γ([0, b)) (which is obviously

connected) is contained in an integral manifold of H with the property that its

intersection with any fibre of ϕ is discrete. This implies that γ can be extended

to a continuous curve defined on [0, b] which we shall denote again by γ . Now, ϕ

restricted to a neighbourhood of γ(b) is the projection of a warped-product. Us-

ing this, it is easy to see that γ : [0, b]→M4 is a (smooth) horizontal lift of γ̌|[0,b] .

If we had b < 1 then γ could be extended to a horizontal lift [0, b + ε) → M4 of

γ̌|[0,b+ε) which would contradict the maximality of [0, b) ⊆ [0, 1] . Thus b = 1 and

hence H is an Ehresmann connection for ϕ .

Because H is a flat (i.e. integrable) Ehresmann connection, any maximal in-

tegral submanifold of it is a covering space of N3 . But N3 is simply-connected

and hence ϕ admits a (global) horizontal section. The proof of the theorem

follows.

Corollary 3.7.2. Let (M4, g) be a complete simply-connected Einstein manifold

and let (N3, h) be complete, simply-connected and of constant curvature.

Let ϕ : (M4, g) → (N3, h) be a surjective submersive harmonic morphism;

denote its dilation by λ . Let W be the vertical vector field such that g(W,W ) =

λ−2 . Suppose that W is complete.

Then, up to homotheties, ϕ is the orthogonal projection R4 → R3 .

Proof. This follows from Corollary 3.6.5 and Theorem 3.7.1 .

Proposition 3.7.3. Let ϕ : (M4, g)→ (N3, h) be a harmonic morphism between

Einstein manifolds and let λ be its dilation . Suppose that the regular fibres of ϕ

form a Riemannian foliation.

Then, up to homotheties, ϕ can be (locally) characterised as follows:

• (M4, g) is Ricci-flat and (N3, h) is flat;

• λ−2 is the pull back of a local positive harmonic function u on (N3, h) (in

particular, λ−2 is a harmonic function on (M4, g) );
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• Any local connection form A (= s∗θ) of the horizontal distribution satisfies

dA = ∗ du

where ∗ is the Hodge star-operator of (N3, h) with respect to some (local) orien-

tation (equivalently, the curvature form F = dA satisfies the monopole equation

F = ∗ du);

• In a neighbourhood of the local section s of ϕ where ϕ is equivalent to a

projection we have

g = uh+ u−1(dt+ A)2 .

Proof. This follows from the proof of Theorem 3.7.1 .

Remark 3.7.4. 1) Note that the metric g of Proposition 3.7.3 is constructed by

applying S.W. Hawking’s ansatz [34] (cf. [41]).

2) Let ϕ : (M4, g)→ (N3, h) be a harmonic morphism between Einstein man-

ifolds. If (M4, g) does not have constant curvature or the horizontal distribution

is nonintegrable then (M4, g) is Ricci-flat and ϕ is of type (i) (and hence locally

given as in Proposition 3.7.3) or type (iii) of Theorem 3.4.4 . This follows from

Theorem 3.4.4 and Corollary 3.3.2 .

Let a ≥ 0 . If we apply the Hawking’s ansatz (with the convention dA = − ∗
du) to the harmonic function ua : R3\{0} → (0,∞) defined by ua(y) = 1

4

(
1
|y|+a

)
,

y ∈ R3 \ {0} , then the following metric is obtained [34] (see [41]).

Definition 3.7.5. Let a > 0 . The Hawking Taub-NUT metric is the Riemannian

metric on R4 defined by

ga = (a|x|2 + 1) g0 −
a(a|x|2 + 2)

a|x|2 + 1

(
−x2 dx1 + x1 dx2 − x4 dx3 + x3 dx4

)2
.

For a = 0 this gives the canonical metric g0 on R4 .

Note that g1 is discussed in [41] .

Remark 3.7.6. 1) For any a ≥ 0 the Hopf polynomial ϕ : (R4, ga) → (R3, h0)

(see Definition 3.6.2) can be thought of as the harmonic morphism induced by
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the isometric action (see Example 2.3.22(1) ) of S1 on (R4, ga) where h0 is the

canonical metric on R3 . In particular, (R4, ga) is Ricci-flat for any a ≥ 0 .

2) Moreover, we can consider a = ϕ∗(ǎ) to be the pull back of a nonnegative

harmonic function ǎ defined in the neighbourhood of 0 ∈ R3 . Then, the resulting

metric ga is still Ricci-flat and with respect to it the Hopf polynomial, suitably

restricted, is a harmonic morphism.

For the next construction we follow C. LeBrun’s discussion [41] of Hawking’s

ansatz [34].

Example 3.7.7. Let u : R3 \Cu → (0,∞) be a positive harmonic function whose

set of singularities Cu = {yj}j∈I is discrete. Hence I is finite or countable. Thus

by applying Bôcher’s theorem, the ‘minimum’ and Harnack’s principles (see [3])

we obtain

u(y) = a+
∑
j∈I

bj
|y − yj|

(y ∈ R3) (3.7.4)

where a ≥ 0 and bj ≥ 0 are nonnegative constants. Suppose that u has the same

residue b (> 0) at each singular point, i.e. bj = b for each j ∈ I .

Let Fu ∈ Γ(Λ2(T ∗(R3 \Cu))) be defined by Fu = −∗ du where ∗ is the Hodge

star-operator on R3 . Because u is harmonic we have dFu = 0 . Then, taking

S1 = R/4πbZ , the cohomology class

1

4πb
[Fu] ∈ H2(R3 \Cu,Z) = H1(R3 \Cu, S1)

is the first Chern class of a principal bundle ξu = (Pu, R3 \Cu , S1) with projection

ψu : Pu → R3 \Cu . It is not difficult to see, by using the homotopy sequence of

ξu , that Pu is simply-connected.

As is well-known, Fu is the curvature form of a principal connection given by

θu ∈ Γ(T ∗Pu) . Note that if A is a local connection form of θu with respect to

some local section of ξu , then dA = − ∗ du .

Let h0 be the canonical metric on R3 and define γu = ψ∗u(uh0) + ψ∗u(u
−1)θ2

u .

Then ψu : (Pu, γu)→ (R3 \Cu, h0|R3\Cu) is a harmonic morphism.

The key point of the construction is the fact that ψu can be extended to a

harmonic morphism whose codomain is R3 .
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To prove this, first note that if Cu = {0} then ξu is the cylinder on the Hopf

bundle (S3, S2, S1) and hence ψu is the restriction of the Hopf polynomial to

R4 \ {0} . Moreover, one can easily verify that γu is homothetic to the restriction

of the Hawking Taub-NUT metric g4a to R4\{0} where, from now on, we consider,

for simplicity, that b = 1
4

.

Let v(y) = b
|y−y1| and w = u− v . Then

ξu = ξv+w = ξv|R3\Cu · ξw|R3\Cu

where ‘ · ’ denotes the group operation in H1(R3 \Cu, S1) . There exists a neigh-

bourhood U of y1 such that U ∩ Cu = {y1} and hence w|U is a well-defined posi-

tive harmonic function. By taking U to be contractible we get that ξw|U is trivial

(equivalently, it is the neutral element of H1(U, S1) ). Then ξu|U\{y1} = ξv|U\{y1}
and hence ψu can be extended so that its image contains y1 . More precisely, we

can add a point x1 to ψ−1
u (U) such that the extended map is smoothly equivalent

in a neighbourhood of x1 to the cone on the Hopf fibration S3 → S2 . Moreover,

because w has no singularities in U the metric γu extends over x1 to a metric

which is homothetic, in the neighbourhood of x1 , to the metric g4w of Remark

3.7.6(2) .

In this way (Pu, γu) can be extended to a Riemannian manifold (Mu, gu) and

ψu can be extended to a surjective harmonic morphism ϕu : (Mu, gu)→ (R3, h0)

where h0 is the canonical metric on R3 . Note that (Mu, gu) is Ricci-flat, simply-

connected and that ϕu is induced by an isometric action.

We can now state the next main result of this section enumerating all the

surjective harmonic morphisms with critical points between complete, simply-

connected Einstein manifolds of dimension four and three.

Theorem 3.7.8. Let (M4, g) be a complete Einstein manifold and let (N3, h) be

complete, simply-connected and with constant curvature.

Let ϕ : (M4, g) → (N3, h) be a surjective harmonic morphism; denote its di-

lation by λ . Suppose that ϕ has critical points.

Then, up to homotheties, (N3, h) = (R3, h0) where h0 is the canonical metric

on R3 . Moreover, λ−2 = ϕ∗(u) for a positive harmonic function u : R3 \ Cu → (0,∞)
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having the same (positive) residue at each (fundamental) pole y ∈ Cu, (M4, g) =

(M4
u , gu) and ϕ = ϕu .

Proof. By Corollary 3.6.3 there exists a Killing field V on (M, g) tangent to the

fibres of ϕ .

Although ϕ has critical points, an argument due to R. Hermann (see [11,

9.45]) can be adapted to prove that the horizontal distribution H (which is well-

defined outside the set of critical points) is an Ehresmann connection [12] for ϕ

restricted to the set of regular points. By applying [11, 9.40] , it is easy to see that

ϕ can be factorised into a harmonic morphism with connected fibres followed by

a Riemannian covering over (N3, h) . But the latter must be trivial because N3

is simply-connected and hence ϕ has connected fibres.

Now, as in the proof of Theorem 3.7.1 we obtain (3.7.3) and the monopole

equation (3.7.2) and hence λ̌−2 is a harmonic function where λ = ϕ∗(λ̌) .

Because ϕ has critical points its dilation cannot be constant. This, together

with (3.7.3) , implies that (M4, g) is Ricci-flat and (N3, h) is flat. Hence, up to

homotheties, (N3, h) = (R3, h0) where h0 is the canonical metric on R3 .

Using the completeness of (M4, g) and the fact that V is Killing it is not

difficult to prove (directly or by using Theorem 3.1.9) that the restriction of ϕ to

the set of regular points is the projection of a principal bundle ξ with group (R,+)

or (S1, ·) and the horizontal distribution is a principal connection on it. But ϕ

extends the projection of ξ over the critical points. Hence in the neighbourhood of

each critical point ξ is a restriction of the cylinder on the Hopf bundle (S3, S2, S1)

or its dual. Hence the structural group of ξ is S1 = R/LZ where L (> 0) is the

period of the orbits of V .

Let {yj}j∈I be the set of critical values of ϕ . Using the Chern-Weil morphism

(see [37]) and (3.7.2) it is easy to see that the first Chern number of ξ suitably

restricted to a sphere about any yj is given by c1 = −4πbj/L where bj(> 0) is

the residue of λ̌−2 at yj . But we must have c1 = ±1 and hence bj = bk for any

j, k ∈ I and the proof follows.

Remark 3.7.9. Note that the period L of V is the mass of the regular fibres, i.e.

L =
∫

fibre
ρ where ρ (= λ−1) is the density of ϕ . Because ρ is constant along the
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fibres we have that L is equal to ρ|fibre multiplied by the length of the considered

fibre (see Definition 4.2.1).

We end with two other classification results:

Theorem 3.7.10. Let (M4, g) be a complete Einstein manifold and let (N3, h)

be complete, simply-connected and with constant curvature.

Let ϕ : (M4, g) → (N3, h) be a surjective harmonic morphism. Suppose that

ϕ has exactly one critical point.

Then there exists a ≥ 0 such that, up to homotheties, ϕ : (R4, ga) → (R3, h0)

is the Hopf polynomial with ga the Hawking Taub-NUT metric (a > 0) and g0 ,

h0 the canonical metrics on R4 , R3 , respectively.

Proof. This follows from Theorem 3.7.8 .

Theorem 3.7.11. Let (M4, g) be a compact Einstein manifold of dimension four.

Let (N3, h) be a Riemannian manifold of dimension three with constant curva-

ture. Let ϕ : (M4, g)→ (N3, h) be a nonconstant harmonic morphism.

Then (M4, g) and (N3, h) are flat, ϕ is submersive and its fibres are locally

generated by parallel vector fields. In particular, up to homotheties and Rieman-

nian coverings, ϕ is the canonical projection T 4 → T 3 between flat tori.

In particular there exists no harmonic morphism with one-dimensional fibres

from a compact Einstein manifold of dimension four to S3 .

Proof. Suppose that ϕ has critical points. Then by Proposition 3.6.6 we have

that cM > 0 . From (3.7.3) it follows that the dilation of ϕ is constant and hence

ϕ cannot have critical points.

Hence ϕ is submersive and the proof follows from Theorem 3.6.8 .

Remark 3.7.12. We do not know any example of a harmonic morphism with

critical points and one-dimensional regular fibres which is defined on a compact

four-dimensional Einstein manifold.
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Chapter 4

Harmonic morphisms on compact

Riemannian manifolds

4.1 Mixed curvature and harmonic morphisms

In this section we give some applications of (A.1.1) of Appendix A to harmonic

morphisms.

The following Proposition is a generalization to conformal one-dimensional

foliations of the corresponding results for Riemannian one-dimensional foliations

from [54] .

Proposition 4.1.1. Let (M, g) be compact.

(i) If (M, g) has nonpositive Ricci curvature, then any conformal one-dimensional

foliation is Riemannian and its orthogonal complement is a totally geodesic foli-

ation. Further, Ricci(U,U) = 0 for any U tangent to the foliation.

(ii) If (M, g) has negative Ricci curvature then there exists no one-dimensional

conformal foliation on it.

Proof. By passing to a finite covering, if necessary, we can suppose that both the

foliation V and the manifold M are oriented.

Since V is conformal we have HB 0 = 0 where HB 0 is the trace-free part of HB .

But, as for any codimension one foliation, H is also conformal. Hence VB 0 = 0.

Next, note that, because V is one-dimensional, the mixed curvature is equal
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to the Ricci curvature restricted to V .

Thus integrating (A.1.1) gives∫
M

Ricci(U,U) vg =

∫
M

{p− 1

p
| trace(HB)|2 +

1

4
|HI|2

}
vg

where U is a unit vector field tangent to V and vg is the volume element of (M, g).

The proposition follows.

By a well-known result of S. Bochner (see [36, Ch.II, Theorem 4.3]) any Killing

field on a compact Riemannian manifold with nonpositive Ricci tensor is parallel.

The following theorem can be viewed as an extension of that result.

Theorem 4.1.2. On a compact Riemannian manifold with nonpositive Ricci cur-

vature any one-dimensional foliation which produces harmonic morphisms and

admits a global density is locally generated by parallel vector fields. In partic-

ular, it is Riemannian, has geodesic leaves and its orthogonal complement is a

totally geodesic Riemannian foliation. Hence the foliation corresponds to a local

Riemannian product structure of the manifold. In particular, the universal cover

of (M, g) is a Riemannian product. If M is simply-connected, or the foliation is

simple and the base space is simply-connected, then the foliation corresponds to a

Riemannian product structure on (M, g) .

Proof. If the dimension of the manifold is three then the leaves are geodesics.

This together with Proposition 4.1.1 , gives the result.

Assume that the manifold has dimension greater than three. As before, by

passing to a finite covering if necessary, we can suppose that both the foliation V
and the manifold M are oriented.

By Proposition 4.1.1 the foliation is Riemannian; hence, by the proof of Propo-

sition 3.1.3 , it is globally generated by a Killing field, namely ρ−1U where ρ is a

global density for V and U is a unit vertical vector field. Now, Bochner’s result

mentioned above implies that the foliation is generated by parallel vector fields.

Hence V is a Riemannian foliation by geodesics and its orthogonal complement

is a totally geodesic Riemannian foliation.

The fact that V induces on the universal cover of (M, g) a Riemannian prod-

uct structure follows from the de Rham decomposition theorem. If the foliation
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is simple then the leaves are compact and, hence, any curve in the base space

admits (global) horizontal lifts, these induce an isometry between the fibres over

the endpoints of the curve. Since the horizontal distribution is integrable, this

isometry depends only on the homotopy class of the curve. It follows that, when

the base space is simply-connected, this isometry depends only on the two fibres

and the theorem is proved.

Remark 4.1.3. 1) In Proposition 4.1.1(i) and Theorem 4.1.2 we can replace the

condition on the Ricci curvature by the condition:
∫
M

Ricci(U,U) vg ≤ 0 for any

vector field U tangent to the foliation.

2) The above mentioned result of S. Bochner can be proved by using (A.1.1) .

In fact, if V is a Killing field on (M, g) which generates the (possibly singular) foli-

ation V , and σ = |V | then σ−1 is a dilation for the homothetic distribution H (see

the proof of Proposition 3.1.3). By (1.4.1) we have trace(VB) = grad(log(σ−1)) .

It is easy to see that, in this case, (A.1.1) gives (sign convention for the Laplacian

as in [11])

σ∆σ + | gradσ|2 +
1

4
σ2
∣∣HI∣∣2 = Ricci(V, V ) . (4.1.1)

If σ attains a maximum at a point where V is not zero then the left hand side

of (4.1.1) is nonnegative from which the result follows.

3) Recall that, by another well-known result of S. Bochner, on a compact

Riemannian manifold with positive Ricci curvature there exists no harmonic one-

forms (in particular, the first Betti number of such a manifold is zero). As is

well-known (see [11]) this can be proved by using the Weitzenböck formula for the

Hodge Laplacian acting on exterior forms. Also formula (A.1.1) can be obtained

from the Weitzenböck formula applied to a local volume form of one of the two

distributions.

By Corollary 1.1.14 , any foliation which produces harmonic morphisms on a

simply-connected manifold admits a global density and hence, in this case, the

hypotheses of the above theorem can be weakened. Also, we have the following:

Corollary 4.1.4. Any nonconstant submersive harmonic morphism with fibres

of dimension one which is defined on a compact Riemannian manifold such that
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the Ricci curvature Ricci(U,U) is nonpositive when U is tangent to the fibres is

totally geodesic (or up to a conformal transformation of the codomain if this is

two-dimensional). Hence, if the total space or the base space is simply-connected,

up to a homothety of the codomain (up to a conformal transformation of the

codomain if this is two-dimensional), it is a projection of a Riemannian product.

In order to apply it to nonnegative curvature, note that formula (A.1.1) can

also be written

div(trace(HB)) + div(trace(VB)) +
∣∣ trace(HB)

∣∣2 +
∣∣ trace(VB)

∣∣2
+

1

4

∣∣HI∣∣2 +
1

4

∣∣VI∣∣2 =
∣∣HB∣∣2 +

∣∣VB∣∣2 + smix . (4.1.2)

The next result applies to arbitrary foliations, not necessary conformal.

Proposition 4.1.5. Let (M, g) be a compact Riemannian manifold.

(i) Let V and H be two complementary orthogonal foliations whose mean cur-

vatures are (globally) gradient vector fields. If the mixed curvature is nonnegative

then V and H are totally geodesic and hence they induce on (M, g) a local Rie-

mannian product structure. Thus, the universal cover of (M, g) is globally a

Riemannian product.

(ii) If the mixed curvature is positive then there exists no pair of complemen-

tary orthogonal foliations on (M, g) for which the mean curvatures are gradient

vector fields.

Proof. If trace(HB) = grad(log u) and trace(VB) = grad(log v) for some smooth

positive functions u and v on M , then, (4.1.2) gives the following:

−∆(log u)−∆(log v) + | grad(log u)|2 + | grad(log u)|2 = |HB|2 + |VB|2 + smix .

(4.1.3)

Equation (4.1.3) can be written as follows:

−u−1∆u− v−1∆v = |HB|2 + |VB|2 + smix . (4.1.4)

Since gradu and grad v are orthogonal (the former being vertical whilst the

latter is horizontal) relation (4.1.4) can be written as follows:

−u−1v−1∆(uv) = |HB|2 + |VB|2 + smix .
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The proof follows by multiplying by u v and integrating over M .

Corollary 4.1.6. Let (M, g) be compact and with zero first Betti number. Let V
be a homothetic foliation with codimV 6= 2 which produces harmonic morphisms

on (M, g) and has integrable orthogonal complement. Then

(i) the total mixed curvature
∫
M
smix vg is nonpositive.

(ii) if the mixed curvature is nonnegative then it is identically zero and V and

H are totally geodesic. Hence, the universal cover of (M, g) is globally a Rieman-

nian product.

On a compact Riemannian manifold with positive sectional curvature there

exists no homothetic foliation which produces harmonic morphisms and has inte-

grable orthogonal complement.

In Theorem 4.2.11(i) we shall prove that for one-dimensional foliations the last

assertion from above proposition is true without the integrability assumption on

H , when dimM is even and greater than two.

Proof. Since V is homothetic the mean curvature form of H is closed. But V
produces harmonic morphisms and hence, by Corollary 1.4.1 , the mean curvature

form of V is also closed. Since the first Betti number of M is zero both mean

curvatures are globally gradient vector fields. The proof follows from Proposition

4.1.5.

Remark 4.1.7. 1) Recall (Remark 1.4.9) that Riemannian foliations are homo-

thetic, as are the foliations with minimal leaves of codimension not equal to two

and which produce harmonic morphisms.

2) If codimV = 1 then the integrability assumption on the orthogonal comple-

ment of V , made above, can be removed. Further, the mixed curvature is equal

to the restriction of the Ricci curvature to its orthogonal complement.

3) Corollary 4.1.6 admits further consequences in a similar way to Corollary

4.1.4.

Theorem 4.1.8. Let (M, g) be a compact Riemannian manifold of dimension at

least four, with zero first Betti number and with Ricci curvature of constant sign.
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Then, there exists no orientable one-dimensional homothetic foliation which

produces harmonic morphisms on (M, g) and which has integrable orthogonal com-

plement.

Note that, by Lemma 3.1.7 , the integrability of the orthogonal complement

above is automatic except on the set where V is Riemannian.

Proof. Suppose that there exists a foliation V with the stated properties. By

Corollary 4.1.6 the Ricci curvature of (M, g) is nonpositive. Since M has zero

Betti number, V admits a global density. From Theorem 4.1.2 it follows that

V is locally generated by parallel vector fields. Moreover, being orientable and

admiting a global density, as in the proof of Theorem 4.1.2 , V must be globally

generated by a parallel vector field. Hence, the first Betti number of M is nonzero.

This is a contradiction!

Corollary 4.1.9. On a compact Riemannian manifold with positive Ricci cur-

vature, there exists no nonvanishing Killing field with integrable orthogonal com-

plement.

The following immediate consequence of Proposition A.1.1 slightly improves

Proposition 5.9 and Proposition 5.10 from [61] .

Corollary 4.1.10. If V is a Riemannian foliation on (M, g) , and smix < 0 at

least at one point of M , then V cannot be totally geodesic.

4.2 Two integral formulae for harmonic mor-

phisms with one-dimensional fibres

Throughout this section ϕ : (Mn+1, g) → (Nn, h) , n ≥ 1, will denote a non-

constant harmonic morphism defined on a compact Riemannian manifold. Recall

that, by a result of P. Baird [5] , ϕ is automatically submersive if n ≥ 4 . Since

closed, all the fibres of ϕ are compact. As is well known [23] if ϕ is nonconstant

then it is open, hence it is surjective and N is also compact. Let λ denote the

dilation of ϕ ; we shall denote by the same letter h the metric on N and the metric
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λg on M of Definition 1.2.3 . This metric should be seen just as an auxiliary tool

and thus, whenever we denote a geometric object on the total space of ϕ without

mentioning a metric then it should be understood that the metric considered is

g.

Definition 4.2.1. We define the mass of a (regular) fibre of ϕ to be the positive

number

m =

∫
fibre

λ2−n vfibre .

Where vfibre is the volume measure of the fibre induced by the metric (see

[40]).

By Proposition 1.1.11 the mass is independent of the (regular) fibre and it

can be defined without any restriction on the dimensions.

Theorem 4.2.2. Let ϕ : (Mn+1, g)→ (Nn, h) , (n ≥ 1) be a submersive harmonic

morphism and let SM =
∫
M
sM vg , SN =

∫
N
sN vh be the total scalar curvature

of (M, g) and (N, h), respectively. Then

SM −mSN = n(n− 1)‖V(gradg(log λ))‖2

−(n− 1)(n− 2)‖H(gradg(log λ))‖2 − 1

4
‖I‖2 .

(4.2.1)

Let n 6= 2 . Then∫
M

λ2(sM−λ2 sN) vg = n(n− 5)

∫
M

λ2|V(gradg(log λ))|2 vg

−(n2 − 3n+ 6)

∫
M

λ2|H(gradg(log λ))|2 vg −
1

4

∫
M

λ2|I|2 vg .
(4.2.2)

Here, I = HI is the integrability tensor of the horizontal distribution H.

In what follows we shall use the horizontal Laplacian of the associated Rie-

mannian submersion with geodesic fibres. This was introduced in [10] and it can

be defined as follows:

Definition 4.2.3. If ϕ : M → (N, h) is a submersion endowed with a distribution

H which is complementary to kerϕ∗ , then the horizontal Laplacian ϕ∗∆N is the
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second-order differential operator which acts on a local function f defined in the

neighbourhood of the point x ∈M as follows:

(ϕ∗∆N)(f) = −
∑
j

{
Xj(Xj(f))− ((ϕ∗∇N)XjXj)(f)

}
.

Here, {Xj} is a local orthonormal frame of H (endowed with the metric induced

by h ) formed of basic vector fields (i.e. sections of H which are projectable by ϕ

to vector fields on N ) , and ∇N is the Levi-Civita connection of (N, h) .

Remark 4.2.4. Note that (ϕ∗∆N)(f ◦ ϕ) = (∆Nf) ◦ ϕ for any local smooth

function f on N .

Lemma 4.2.5. Let ϕ : (Mn+1, g)→ (Nn, h) be a submersive harmonic morphism

and let ∆M and ∆N be the Laplace operators on (M, g) and (N, h) , respectively.

Then

∆Mf = e2σ (ϕ∗∆N)(f)− e(−2n+4)σ
{
V (V (f))− 2(n− 1)V (f)V (σ)

}
.

Remark 4.2.6. Note that V (V (f)) is just minus the ‘vertical’ Laplacian [10]

applied to f of the Riemannian submersion with geodesic fibres associated to

ϕ : (M, g) → (N, h). More generally, the ‘vertical’ Laplacian of ϕ : (M, g) →
(N, h) is defined by (∆fibref)(x) = (∆ϕ−1(ϕ(x))(f |ϕ−1(ϕ(x))))(x) where ∆ϕ−1(ϕ(x)) is

the Laplacian of the fibre through x endowed with the metric induced by g . If

ϕ is a Riemannian submersion with totally geodesic fibres, then the sum of the

horizontal and the vertical Laplacians is equal to the Laplacian of the total space.

Proof of Theorem 4.2.2. Recall from the previous section that smix is the sum of

the sectional curvatures of all planes on (M, g) spanned by a horizontal and a

vertical vector from an orthonormal frame adapted to the decomposition TM =

H⊕ V . Let sH denote twice the sum of the sectional curvatures of all planes on

(M, g) spanned by the horizontal vectors of a frame as above.

Using the previous two lemmas and the fact that I = V ⊗Ω , after a straight-

forward computation the following relation can be obtained. (Another way to

obtain it is to use the previous two lemmas together with Corollary 2.2.4 , from
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[29] .)

sH−e2σ sN = −2(n− 1)∆Mσ − (n− 1)(n− 2)e2σ|H(gradh σ)|2

−2(n− 1)e(−2n+4)σ V (V (σ)) + (3n− 4)(n− 1)e(−2n+4)σ V (σ)2 − 3

4
|I|2 .

(4.2.3)

Using (1.1.3) , (1.1.4) together with Lemma 4.2.5 and (A.1.1) , we obtain:

smix = (n− 2)∆Mσ + 2(n− 1)e(−2n+4)σ V (V (σ))

−(3n− 4)(n− 1)e(−2n+4)σ V (σ)2 +
1

4
|I|2 .

(4.2.4)

But it is obvious that sM = sH + 2smix and hence from (4.2.3) and (4.2.4) we

obtain

sM−e2σ sN = −2∆Mσ +
2(n− 1)

n
enσ∆fibre(e−nσ)

+n(n− 1)|V(gradg σ)|2 − (n− 1)(n− 2)|H(gradg σ)|2 − 1

4
|I|2 .

(4.2.5)

Integrating (4.2.5) gives (4.2.1) . Relation (4.2.5) can also be written as fol-

lows:

e2σ sM − e4σ sN = −∆M(e2σ) +
2(n− 1)

n− 2
enσ∆fibre(e(−n+2)σ)

+n(n− 5)e2σ|V(gradg σ)|2 − (n2 − 3n+ 6)e2σ|H(gradg σ)|2 − 1

4
e2σ|I|2 .

(4.2.6)

Integrating (4.2.6) gives (4.2.2), since∫
M

enσ∆fibre(e(−n+2)σ) vg =

∫
N

vh

∫
fibre

∆fibre(e(−n+2)σ) vfibre = 0

Remark 4.2.7. 1) Suppose that n = 1 , i.e. ϕ : (M2, g) → R is a harmonic

function defined on the surface (M2, g) . Then, equation (4.2.4) above reads:

K = −∆(log | dϕ|) ,

where K is the Gauss curvature of (M, g) . As is well-known this can also be

proved by using the local isothermal coordinates induced by ϕ .
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2) Computing λ2(sH + smix) , by adding (4.2.3) and (4.2.4) from the above

proof, we can obtain formula (2.2) from [45] applied to harmonic morphisms with

fibres of dimension one.

Proposition 4.2.8. Let ϕ : (Mn+1, g) → (Nn, h) , n ≥ 2 be a submersive har-

monic morphism. If U is a unit vector field tangent to the fibres of ϕ then

SM ≤ mSN +

∫
M

Ricci(U,U) vg

and equality holds if and only if ϕ has geodesic fibres and H is integrable.

Note that since, Ricci(U,U) is quadratic in U , we do not need V to be ori-

entable.

Proof. First recall that Ricci(U,U) = smix , then take the sum of (4.2.3) and

(4.2.4) and use the definition of m.

Corollary 4.2.9. Let ϕ : (Mn+1, g)→ (Nn, h) , n ≥ 2 , be a submersive harmonic

morphism.

(i) If ϕ induces a Riemannian foliation on (M, g) then SM ≤ mSN and equal-

ity holds if and only if ϕ is totally geodesic (up to a conformal transformation of

the codomain if n = 2).

(ii) If ϕ has geodesic fibres and H is integrable then SM ≥ mSN and equality

holds if and only if ϕ is totally geodesic (up to a conformal transformation of the

codomain if n = 2).

From Lemma 3.1.7 it follows that when the set of the points where V is

Riemannian has measure zero then the integrability assumption on H in (ii) is

superfluous.

Proof. (i) This is a trivial consequence of formula (4.2.1) from Theorem 4.2.2.

(ii) If n = 2 , then (4.2.1) from Theorem 4.2.2 gives the result. If n 6= 2 , by

Proposition 1.1.10(b) we have H(gradg λ) = 0 . Now apply formula (4.2.1) .

The next corollary improves [45, Theorem 2.5] for the dimensions considered

(see also [29, Corollary 2.2.6]).

124



Corollary 4.2.10. If n ∈ {3, 4, 5} then
∫
M
λ2(sM−λ2 sN) vg ≤ 0. For n ∈ {3, 4},

equality holds if and only if ϕ is totally geodesic and, for n = 5, equality holds if

and only if ϕ has geodesic fibres and H is integrable.

Therefore, for n ∈ {3, 4, 5}, if (Mn+1, g) , (Nn, h) are compact with sM ≥ 0,

sN ≤ 0 and at least one of these inequalities is strict then there exists no noncon-

stant submersive harmonic morphism ϕ : (Mn+1, g)→ (Nn, h) .

Proof. This is an immediate consequence of formula (4.2.2) from Theorem 4.2.2.

To end this section we prove two results on homothetic one-dimensional fo-

liations which produce harmonic morphisms on compact manifolds, the first of

them being a generalization (refered to in Section 3) of a well-known result of

M. Berger (see [36, Ch.II, Corollary 5.7]) concerning Killing fields. To prove the

first of these two results we shall use Lemma B.1.3.

Theorem 4.2.11. Let M be compact with dimension at least four.

(i) If dimM is even and (M, g) has positive sectional curvature then there ex-

ists no homothetic one-dimensional foliation which produces harmonic morphisms

on (M, g).

(ii) If (M, g, J) is Kähler and has zero first Betti number then any homoth-

etic one-dimensional foliation which produces harmonic morphisms on (M, g) is

Riemannian and locally generated by Killing fields.

Proof. (i) Since (M, g) has positive sectional curvature it has positive Ricci cur-

vature. Thus from Bochner’s result (see Remark 4.1.3(3) ) it follows that the first

Betti number of M is zero .

Suppose that there exists a homothetic foliation V which produces harmonic

morphisms on (M, g) . Because the first Betti number of M is zero, it follows

from Corollary 1.1.14 that V admits a global density λ2−n where n+ 1 = dimM .

We shall denote by h = λg the associated Riemannian metric on M which makes

V a Riemannian foliation with geodesic leaves.

Since V is homothetic, by Proposition 1.4.2 we see that λ is of the form ea+b
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with (d a)V = (d b)H = 0. At a point x ∈ M where a− b attains a minimum we

have

0 ≤ (h∇ d a)(V, V )− (h∇ d b)(V, V ) = −(h∇ d b)(V, V ) ,

0 ≤ (h∇ d a)(X,X)− (h∇ d b)(X,X) = (h∇ d a)(X,X) ,
(4.2.7)

where, V is as in Lemma 3.1.1 and X is any horizontal vector at x .

Now, evaluated at x , the first formula from Lemma B.1.3 gives

R(X, V,X, V ) = −(n− 2)e(2n−4)(a+b) (h∇ d a)(X,X)

+e−2(a+b) (h∇ d b)(V, V )h(X,X) +
1

4
e(4n−6)(a+b) h(iXΩ, iXΩ) ,

(4.2.8)

for any horizontal vector X.

Since Ω is skew-symmetric it must have even rank at each point. But dimM

is even and iV Ω = 0 and hence there must be a horizontal vector X at x such that

iXΩ = 0. By (4.2.7) and (4.2.8) , the sectional curvature of the plane spanned by

X and V would be nonpositive, contradicting the hypothesis.

(ii) Since the first Betti number of M is zero, the foliation V must admit a global

density. By passing to a two-fold covering if necessary, we can suppose that V
is oriented. Hence, by Proposition 3.1.5 , it must be generated by a conformal

vector field. But by a well-known result of A. Lichnerowicz (see [11, 2.125(ii)])

any conformal vector field is Killing on a compact Kähler manifold of complex

dimension greater than two.

The theorem is proved.

Remark 4.2.12. 1) Note that statement (i) from Theorem 4.2.11 fails if dimM

is odd , for example the Hopf maps S2n+1 → CP n are harmonic Riemannian

submersions.

2) In Theorem 4.2.11(i) , if the sectional curvature K of (Mn+1, g) satisfies

K ≥ a2 > 0 on M for some positive constant a , then the compactness assumption

on M can be replaced by the weaker condition that (M, g) be complete. This

follows from a well-known result of S. B. Myers (see [11, 6.51]) noting that the

Ricci curvature is ≥ na2 g . (A similar remark can be made for Corollary 4.1.9 .)
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Corollary 4.2.13. Let (M, g) be a compact Riemannian manifold of even di-

mension at least four with zero first Betti number and with sectional curvature of

constant sign.

Then, there exists no orientable one-dimensional homothetic foliation which

produces harmonic morphisms on (M, g) .

Proof. This follows from Theorem 4.1.2 and Theorem 4.2.11(i) .
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Appendix A

A formula related to a pair of

complementary orthogonal

distributions

In this appendix we recall a formula of P. Walczak [64] which relates the curvature

of a Riemannian manifold to the geometric properties of a pair of complementary

orthogonal distributions on it. This formula is used in Chapter 4.

Let (M, g) be a Riemannian manifold and H, V a pair of complementary

orthogonal distributions on it, with dimH = p and dimV = q . As before, H and

V will be called the horizontal and the vertical distribution, respectively, and, the

corresponding projections will be denoted with the same letters H and V . We

shall denote by X, Y horizontal vector fields and by U, V vertical vector fields.

Let VB and VI denote the second fundamental form and integrability tensor of

V , respectively. Recall that they are the unique H-valued vertical tensor fields

which satisfy

VB(U, V ) =
1

2
H(∇UV +∇VU) ,

VI(U, V ) = −H[U, V ] .

Note the minus sign in the last formula.

Recall that trace(VB) is q times the mean curvature of V , i.e. if {Uα} is a

local orthonormal frame for V then trace(VB) =
∑

α
VB(Uα, Uα) . We shall also
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consider the trace free part VB 0 defined by

VB 0 = VB − 1

q
trace(VB)⊗ gV

where gV is the vertical component of g . Also, HB ,HI ,HB0 are defined similarly

by reversing the roles of V and H .

Recall that smix denotes the mixed scalar curvature which is the sum of the

sectional curvatures of all planes spanned by a horizontal and a vertical vector

from an orthonormal frame adapted to the decomposition TM = H ⊕ V . The

following result is due to P. Walczak.

Proposition A.1.1 ([64]). With the notations above we have

div(trace(HB)) + div(trace(VB)) +
p− 1

p

∣∣ trace(HB)
∣∣2 +

q − 1

q

∣∣ trace(VB)
∣∣2

+
1

4

∣∣HI∣∣2 +
1

4

∣∣VI∣∣2 =
∣∣HB 0

∣∣2 +
∣∣VB 0

∣∣2 + smix . (A.1.1)
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Appendix B

Curvature formulae for the total

space of a harmonic morphism

with 1-dim fibres

In this appendix we rewrite in a convenient way S. Gudmundsson’s fundamental

equations for horizontally conformal submersions. We do this only for submersive

harmonic morphisms with one-dimensional fibres.

In this appendix V will always denote a one-dimensional foliation which pro-

duces harmonic morphisms on (Mn+1, g) (n ≥ 1) and ρ = e(2−n)σ will denote

a local density of it. As before, h = eσg (see Definition 1.2.3) will denote the

associated (local) metric on M with respect to which V is Riemannian and has

geodesic leaves and H will denote the orthogonal complement of V .

The following lemma can be obtained by a straightforward computation.

Lemma B.1.1. Let σ = log λ, and let V be a local vertical field such that

g(V, V ) = e(2n−4)σ, and θ its dual vertical 1-form. Then, for any basic X and Y

we have:

H(g∇XY ) =H(h∇XY )−X(σ)Y − Y (σ)X +H(gradh σ)h(X, Y ) ,

V(g∇XY ) =
{
e(−2n+2)σ V (σ)h(X, Y )− 1

2
Ω(X, Y )

}
V ,
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H(g∇VX) =− V (σ)X +
1

2
e(2n−2)σ (iXΩ)#h ,

V(g∇VX) =(n− 2)X(σ)V ,

H(g∇V V ) =− (n− 2)e(2n−2)σH(gradh σ) ,

V(g∇V V ) =(n− 2)V (σ)V .

Here, g∇ and h∇ are, respectively, the Levi-Civita connections of (M, g) and

(M,h), Ω = d θ and #h denotes the musical isomorphism defined by the metric

h.

Remark B.1.2. Note that, if dimV = 0, Lemma B.1.1 becomes a well-known

formula (see [11, 1.159]).

Lemma B.1.3. Let X, Y, Z,H be horizontal and V vertical vectors on M , such

that g(V, V ) = e(2n−4)σ ; then the curvature tensor MR of (M, g) has the following

components

MR(X, V, Y, V ) =− 1

2
(n− 2)e(2n−4)σ(LH(gradh σ) h)(X, Y )

− (n− 2)e(2n−4)σ{nX(σ)Y (σ)− |H(gradh σ)|2h h(X, Y )}

+ e−2σ{V (V (σ))− (n− 1)V (σ)2}h(X, Y )

+
1

4
e(4n−6)σ h(iXΩ, iY Ω) ,

(B.1.1)

MR(X,Y, Z, V ) = −1

2
e(2n−4)σ(h∇Ω)(X, Y, Z)

+
1

2
(n− 1)e(2n−4)σ{X(σ)Ω(Y, Z) + Y (σ)Ω(Z,X)− 2Z(σ)Ω(X, Y )}

− e−2σ{X(V (σ))− (n− 2)X(σ)V (σ)}h(Y, Z)

+ e−2σ{Y (V (σ))− (n− 2)Y (σ)V (σ)}h(X,Z)

+
1

2
e(2n−4)σ{Ω(X, gradh σ)h(Y, Z)− Ω(Y, gradh σ)h(X,Z)} ,

(B.1.2)
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MR(X, Y, Z,H) = e−2σ NR(ϕ∗X,ϕ∗Y, ϕ∗Z, ϕ∗H)

− 1

4
e(2n−4)σ{Ω(H,X)Ω(Y, Z) + Ω(H,Y )Ω(Z,X)− 2Ω(H,Z)Ω(X, Y )}

− 1

2
e−2σV (σ) {−Ω(Y,H)h(X,Z) + Ω(X,H)h(Y, Z)− Ω(X,Z)h(Y,H) + Ω(Y, Z)h(X,H)}

− e−2σ{X(σ)H(σ)h(Y, Z)−X(σ)Z(σ)h(Y,H)− Y (σ)H(σ)h(X,Z) + Y (σ)Z(σ)h(X,H)}

+ e−2σ{h(X,Z)h(h∇Y (H(gradh σ)), H)− h(Y, Z)h(h∇X(H(gradh σ)), H)

+ h(Y,H)h(h∇X(H(gradh σ)), Z)− h(X,H)h(h∇Y (H(gradh σ)), Z)}

− e−2σ{h(X,Z)h(Y,H)− h(X,H)h(Y, Z)}{e(−2n+2)σ V (σ)2 + |H(gradh σ)|2h} .
(B.1.3)

Here NR is the Riemannian curvature tensor of the codomain of the harmonic

morphism ϕ : (O, g|O) → (N, h̄) produced by V and h∇ denotes the Levi-Civita

connection of (M,h).

Proof. Let {X1, . . . , Xn} be a local frame of H formed of basic vector fields and

let gjk = g(Xj, Xk) , hjk = h(Xj, Xk) , Ωjk = Ω(Xj, Xk). Then {X1, . . . , Xn, V }
is a local frame on M . We shall always denote by j, k, l, r, s ‘horizontal’ indices,

by α, β ‘vertical’ indices whilst a, b, c, d, a′ will be any kind of indices.

For {Ea} a local frame on M we denote, as usual, by {Γcab} the corresponding

Christoffel symbols of the Levi-Civita connection of (Mn+1, g), i.e.

g∇EaEb = ΓcbaEc .

Then, the local connection forms {Γba} are characterised by Γba(Ec) = Γbac. Recall

that the components MR
d
abc of the curvature form of the Levi-Civita connection

of (Mn+1, g) are given by

MR(Ea, Eb)Ec = MR
d

cab Ed

where
MR

d

abc = (dΓda)bc + (Γda′ ∧ Γa
′

a )bc . (B.1.4)

Also, let {hΓcab} be the Christoffel symbols of the Levi-Civita connection of (Mn+1, h).

Then, from Lemma B.1.1, it follows that the Christoffel symbols of (Mn+1, g),
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with respect to the local frame {X1, . . . , Xn, V }, are given by

Γlkj = hΓ
l

kj −Xj(σ) δlk −Xk(σ) δlj +X l(σ)hjk

Γαkj =e(−2n+2)σ V (σ)hjk −
1

2
Ωjk

Γkjα =− V (σ) δkj +
1

2
e(2n−2)σ Ωk

j

Γαjα =(n− 2)Xj(σ)

Γjαα =− (n− 2) e(2n−2)σXj(σ)

Γααα =(n− 2)V (σ)

(B.1.5)

where Xj(σ) = Xl(σ)hlj and Ωk
j = Ωjl h

lk.

Because [V,Xj] = 0, j = 1, . . . , n, from (B.1.4) we obtain

MR
k

αlα = Xl(Γ
k
αα)− V (Γkαl) + Γkjl Γ

j
αα + Γkαl Γ

α
αα − Γkjα Γjαl − Γkαα Γααl

which, by applying (B.1.5), becomes

MR
k

αlα =− (n− 2)e(2n−2)σXl(X
k(σ))− 2(n− 1)(n− 2)e(2n−2)σXl(σ)Xk(σ)

+ V (V (σ)) δkl − (n− 1)e(2n−2)σ V (σ)Ωk
l −

1

2
e(2n−2)σ V (Ωk

l )

+ {hΓkjl−Xl(σ) δkj −Xj(σ) δkl +Xk(σ)hjl}{−(n− 2)e(2n−2)σXj(σ)}

+ {−V (σ) δkl +
1

2
e(2n−2)σ Ωk

l } (n− 2)V (σ)

− {−V (σ) δkj +
1

2
e(2n−2)σ Ωk

j}{−V (σ) δjl +
1

2
e(2n−2)σ Ωj

l }

− {−(n− 2)e(2n−2)σXk(σ)} (n− 2)Xl(σ) .

(B.1.6)

Because Ω and Xj are basic we have that Ωk
l is basic and thus V (Ωk

l ) = 0.

Lines two, four and five of (B.1.6) contain the terms linear in Ω. These are

− (n− 1)e(2n−2)σ V (σ) Ωk
l +

1

2
(n− 2)e(2n−2)σ V (σ) Ωk

l + e(2n−2)σ V (σ) Ωk
l

=− 1

2
(n− 2)e(2n−2)σ V (σ) Ωk

l .

(B.1.7)
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The first terms of lines one and three of (B.1.6) give

− (n− 2)e(2n−2)σXl(X
k(σ))− (n− 2)e(2n−2)σ hΓ

k

jl X
j(σ)

=− (n− 2)e(2n−2)σ{Xl(X
k(σ)) + hΓ

k

jl X
j(σ)} .

(B.1.8)

Now, it is easy to see that
hΓ
k

αl =
1

2
Ωk
l

and hence, we can write

H
(h∇Xl(gradh σ)

)
= H

(h∇Xl(X
j(σ)Xj + V (σ)V )

)
= {Xl(X

k(σ)) +Xj(σ) hΓ
k

jl +V (σ) hΓ
k

αl}Xk

= {Xl(X
k(σ)) +Xj(σ) hΓ

k

jl +
1

2
V (σ) Ωk

l }Xk .

(B.1.9)

We use (B.1.7), (B.1.8) and (B.1.9) to simplify (B.1.6) thus obtaining

MR
k

αlα =− (n− 2)e(2n−2)σ hkr h(h∇Xl(gradh σ), Xr)

− 2(n− 1)(n− 2)e(2n−2)σXl(σ)Xk(σ) + (n− 2)2 e(2n−2)σXl(σ)Xk(σ)

+ (n− 2)e(2n−2)σXl(σ)Xk(σ)− (n− 2)e(2n−2)σXl(σ)Xk(σ)

+ (n− 2)e(2n−2)σ |H(gradh σ)|2h δkl
+ V (V (σ)) δkl − V (σ)2 δkl − (n− 2)V (σ)2 δkl

− 1

4
e(4n−4)σ Ωk

j Ωj
l .

(B.1.10)

Hence

MRsαlα =gsk
MR

k

αlα = e−2σ hsk
MR

k

αlα

=− (n− 2)e(2n−4)σ h(h∇Xl(gradh σ), Xs)

− (n− 2)e(2n−4)σ{nXs(σ)Xk(σ)− |H(gradh σ)|2h hsl}

+ e−2σ{V (V (σ))− (n− 1)V (σ)2}hsl

+
1

4
e(4n−6)σ Ωsj Ωj

l .

(B.1.11)

It is easy to see that (B.1.11) is equivalent to (B.1.1).

Next, we prove (B.1.2). Because [V,Xj] = 0, the equation (B.1.4) gives

MR
j

klα = Xl(Γ
j
kα)− V (Γjkl) + Γjrl Γ

r
kα + Γjαl Γ

α
kα − Γjrα Γrkl − Γjαα Γαkl (B.1.12)
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which by applying (B.1.5) becomes

MR
j

klα =−Xl(V (σ)) δjk + (n− 1)e(2n−2)σXl(σ) Ωj
k +

1

2
e(2n−2)σXl(Ω

j
k)

− V (hΓ
j

kl) + V (Xk(σ)) δjl + V (Xl(σ)) δjk − V (Xj(σ))hkl

+ {hΓjrl−Xr(σ) δjl −Xl(σ) δjr +Xj(σ)hrl}{−V (σ) δrk +
1

2
e(2n−2)σ Ωr

k}

+ {−V (σ) δjl +
1

2
e(2n−2)σ Ωj

l }(n− 2)Xk(σ)

− {−V (σ) δjr +
1

2
e(2n−2)σ Ωj

r}{hΓ
r

kl−Xk(σ) δrl −Xl(σ) δrk +Xr(σ)hkl}

+ (n− 2)e(2n−2)σXj(σ) {e(−2n+2)σ V (σ)hkl −
1

2
Ωlk} .

(B.1.13)

Because Xj are basic and V is a Riemannian foliation with respect to h, we

have V (hΓ
j
kl) = 0. Also, because [V,Xl] = 0, the first term of the right hand side

of (B.1.13) and the second term of the second line of (B.1.13) cancel. Hence,

(B.1.13) can be written as follows

MR
j

klα = (n− 1)e(2n−2)σXl(σ) Ωj
k +

1

2
e(2n−2)σXl(Ω

j
k)

+ V (Xk(σ)) δjl − V (Xj(σ))hkl

− V (σ) hΓ
j

kl +V (σ)Xk(σ) δjl + V (σ)Xl(σ) δjk − V (σ)Xj(σ)hkl

+
1

2
e(2n−2)σ hΓ

j

rl Ωr
k −

1

2
e(2n−2)σXr(σ) Ωr

k δ
j
l −

1

2
e(2n−2)σXl(σ) Ωj

k +
1

2
e(2n−2)σXj(σ) Ωr

k hrl

− (n− 2)V (σ)Xk(σ) δjl +
1

2
(n− 2)e(2n−2)σXk(s) Ωj

l

+ V (σ) hΓ
j

kl−
1

2
e(2n−2)σ Ωj

r
hΓ
r

kl

− V (σ)Xk(σ) δjl − V (σ)Xl(σ) δjk + V (σ)Xj(σ)hkl

+
1

2
e(2n−2)σ Ωj

l Xk(σ) +
1

2
e(2n−2)σ Ωj

kXl(σ)− 1

2
e(2n−2)σ Ωj

rX
r(σ)hkl

+ (n− 2)Xj(σ)V (σ)hkl +
1

2
(n− 2)e(2n−2)σXj(σ) Ωkl

(B.1.14)

where we have used that Ωlk = −Ωkl.
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After cancelling the corresponding terms, (B.1.14) becomes

MR
j

klα =
1

2
e(2n−2)σ{Xl(Ω

j
k) + hΓ

j

rl Ωr
k − hΓ

r

kl Ωj
r}

+
1

2
(n− 1)e(2n−2)σXk(σ) Ωj

l +
1

2
(n− 1)e(2n−2)σXj(σ) Ωkl + (n− 1)e(2n−2)σXl(σ) Ωj

k

− 1

2
e(2n−2)σ{Xr(σ) Ωr

k δ
j
l + Ωj

rX
r(σ)hkl}

+ V (Xk(σ)) δjl − V (Xj(σ))hkl − (n− 2)V (σ)Xk(σ) δjl + (n− 2)Xj(σ)V (σ)hkl .

(B.1.15)

Now, recall that

−(h∇Ω)(Xj, Xk, Xl) = −(h∇XlΩ)(Xj, Xk) = (h∇XlΩ)(Xk, Xj)

= (h∇XlΩ)kj = (h∇XlΩ)rk hrj

= hjr {Xl(Ω
r
k) + hΓ

r

sl Ωs
k − hΓ

s

kl Ωr
s} .

(B.1.16)

From (B.1.16), it easily follows that (B.1.2) is equivalent to (B.1.15).

To prove (B.1.3) we use the corresponding fundamental equation for horizon-

tally conformal submersions [29].

Firstly, from λ = eσ, it follows that

gradg(
1

λ2
) = −2e(−2n+2)σ V (σ)V − 2H(gradh σ) (B.1.17)

and hence ∣∣gradg(
1

λ2
)
∣∣2
g

= 4e−2nσ V (σ)2 + 4e−2σ|H(gradh σ)|2h . (B.1.18)

Next, a straightforward calculation using Lemma B.1.1 and (B.1.17) gives

H(g∇X(gradg(
1

λ2
))) =2e(−2n+2)σ V (σ)2X − V (σ)(iXΩ)#h

− 2H(h∇X(H(gradh σ))) + 2|H(gradh σ)|2hX
(B.1.19)

where X is any basic vector field. Hence, if Z is a basic vector field then

g(g∇X(gradg(
1

λ2
)), Z) =2e−2nσ V (σ)2 h(X,Z) + 2e−2σ|H(gradh σ)|2h h(X,Z)

− e−2σ V (σ) Ω(X,Z)− 2e−2σ h(h∇X(H(gradh σ)), Z) .

(B.1.20)
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Recall that Ω = d θ and thus Ω(X, Y ) = −θ([X, Y ]) which, because θ is the

vertical dual of V , is equivalent to

V([X, Y ]) = −Ω(X, Y )V . (B.1.21)

Now, let ϕ : (O, g|O)→ (N, h̄) be a harmonic morphism with dilation λ = eσ pro-

duced by V . If we put (B.1.20) and (B.1.21) into the corresponding fundamental

equation for horizontally conformal submersions [29] we obtain

−MR(X, Y, Z,H) =− e−2σ ϕ∗(NR)(X, Y, Z,H)

+
1

4
e(2n−4)σ{Ω(X,Z)Ω(Y,H)− Ω(Y, Z)Ω(X,H) + 2Ω(X, Y )Ω(Z,H)}

+
1

2
h(X,Z){h(Y,H) 2 e−2nσ V (σ)2 − e−2σ Ω(Y,H)V (σ)

+ 2e−2σ|H(gradh σ)|2h h(Y,H)− 2e−2σ h(h∇Y (H(gradh σ)), H)}

−1

2
h(Y, Z){h(X,H) 2 e−2nσ V (σ)2 − e−2σ Ω(X,H)V (σ)

+ 2e−2σ|H(gradh σ)|2h h(X,H)− 2e−2σ h(h∇X(H(gradh σ), H)}

+
1

2
h(Y,H){h(X,Z) 2 e−2nσ V (σ)2 − e−2σ Ω(X,Z)V (σ)

+ 2e−2σ|H(gradh σ)|2h h(X,Z)− 2e−2σ h(h∇X(H(gradh σ)), Z)}

−1

2
h(X,H){h(Y, Z) 2 e−2nσ V (σ)2 − e−2σ Ω(Y, Z)V (σ)

+ 2e−2σ|H(gradh σ)|2h h(Y, Z)− 2e−2σ h(h∇Y (H(gradh σ)), Z)}

+{h(X,H)h(Y, Z)− h(Y,H)h(X,Z)}{e−2nσ V (σ)2 + e−2σ|H(gradh σ)|2h}

+e−2σ h(X(σ)Y − Y (σ)X,H(σ)Z − Z(σ)H)

+{h(X,Z)h(Y,H)− h(X,H)h(Y, Z)}{e−2nσV (σ)2 + e−2σ|H(gradh σ)|2h}
(B.1.22)

where X, Y , Z, H are basic vector fields.

Now, (B.1.3) follows from (B.1.22) after cancelling the corresponding terms.

Remark B.1.4. The formula (B.1.3) can be also proved directly in a similar way

to (B.1.1) and (B.1.2).
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The first formula of the following lemma follows after a straightforward com-

putation using (B.1.1) and (B.1.3) whilst the second formula follows from (B.1.2) .

The third formula of the following lemma follows from (1.1.3) , (1.1.4) together

with Lemma 4.2.5 and (A.1.1) ,

Lemma B.1.5. Suppose that V restricted to the domain of the local density ρ =

e(2−n)σ is a simple foliation (i.e. the leaves are the fibres of a submersion) and let

ϕ : (O, g|O) → (N, h̄) be the induced harmonic morphism. If MRicci denotes the

Ricci tensor of (M, g) and NRicci denotes the Ricci tensor of (N, h̄) , then,

MRicci(X, Y ) = (NRicci)(ϕ∗X,ϕ∗Y )− 1

2
e(2n−2)σ h(iXΩ, iY Ω)

−e−2σ (∆Mσ)h(X, Y )− (n− 1)(n− 2)X(σ)Y (σ) ,
(B.1.23)

MRicci(X, V ) =
1

2
e(2n−2)σ (hd∗Ω)(X) + (n− 1)e(2n−2)σ Ω(X, gradh σ)

+ (n− 1)X(V (σ))− (n− 1)(n− 2)X(σ)V (σ) ,
(B.1.24)

MRicci(V, V ) = (n− 2)e(2n−4)σ∆Mσ + 2(n− 1)V (V (σ))

−(3n− 4)(n− 1)V (σ)2 +
1

4
e(4n−4)σ|Ω|2h .

(B.1.25)

where h d∗ is the codifferential on (M,h) .

Remark B.1.6. Putting n = 2 in the above formula we obtain particular cases

of formulae of P. Baird and J.C. Wood [8, Proposition 4.2] .
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