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Abstract

In this paper we obtain a quadratic bound on the rate of asymptotic regularity for the Krasnoselski–Mann
iterations of nonexpansive mappings in CAT(0)-spaces, whereas previous results guarantee only exponential
bounds. The method we use is to extend to the more general setting of uniformly convex hyperbolic spaces a
quantitative version of a strengthening of Groetsch’s theorem obtained by Kohlenbach using methods from
mathematical logic (so-called “proof mining”).
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper we present another case study in the general project of proof mining in functional
analysis, developed by Kohlenbach (see [20] for details). By “proof mining” we mean the logical
analysis of mathematical proofs with the aim of extracting new numerically relevant information
hidden in the proofs.

Thus, we obtain a quadratic bound on the rate of asymptotic regularity for the Krasnoselski–
Mann iterations of nonexpansive self-mappings of nonempty convex, bounded sets C in CAT(0)-
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spaces in the sense of Gromov (see [3] for a detailed treatment). Moreover, the bound we get is
uniform in the sense that does not depend on the nonexpansive mapping T or on the starting
point x ∈ C, and depends on C only via its diameter.

The method we use to get this bound is to find explicit uniform bounds on the rate of as-
ymptotic regularity in the general setting of uniformly convex hyperbolic spaces, and then to
specialize them to CAT(0)-spaces.

The notion of nonexpansive mapping can be introduced in the very general setting of met-
ric spaces. Thus, if (X,ρ) is a metric space, and C ⊆ X a nonempty subset, than a mapping
T :C → C is called nonexpansive if for all x, y ∈ C,

ρ(T x,T y) � ρ(x, y).

Different notions of “hyperbolic space” [10,11,14,26] can be found in the literature. We work
in the setting of hyperbolic spaces as introduced by Kohlenbach [19], which are slightly more
restrictive than the spaces of hyperbolic type [10] by (W4), but more general then the concept of
hyperbolic space from [26]. See [19,22] for detailed discussion of this and related notions.

A hyperbolic space is a triple (X,ρ,W) where (X,ρ) is a metric space and W :X × X ×
[0,1] → X is such that

(W1) ρ(z,W(x, y,λ)) � (1 − λ)ρ(z, x) + λρ(z, y);
(W2) ρ(W(x, y,λ),W(x, y, λ̃)) = |λ − λ̃| · ρ(x, y);
(W3) W(x,y,λ) = W(y,x,1 − λ);
(W4) ρ(W(x, z,λ),W(y,w,λ)) � (1 − λ)ρ(x, y) + λρ(z,w)

for all x, y, z,w ∈ X, λ, λ̃ ∈ [0,1].
If x, y ∈ X, and λ ∈ [0,1] then we use the notation (1 − λ)x ⊕ λy for W(x,y,λ). It is easy to

see that for any x, y ∈ X, and λ ∈ [0,1],
ρ
(
x, (1 − λ)x ⊕ λy

) = λρ(x, y) and ρ
(
y, (1 − λ)x ⊕ λy

) = (1 − λ)ρ(x, y). (1)

We shall denote by [x, y] the set {(1−λ)x ⊕λy: λ ∈ [0,1]}. A nonempty subset C ⊆ X is convex
if [x, y] ∈ C for all x, y ∈ C.

We remark that any normed space (X,‖ · ‖) is a hyperbolic space, with (1 − λ)x ⊕ λy :=
(1 − λ)x + λy.

The notion of uniformly convex hyperbolic space (X,ρ,W) with a modulus of uniform con-
vexity η is defined in Section 2 following the normed space case.

A very important class of hyperbolic spaces are the CAT(0)-spaces. Thus, a hyperbolic space
is a CAT(0)-space if and only if it satisfies the so-called CN-inequality of Bruhat–Tits [7]: For
all x, y, z ∈ X,

ρ

(
z,

1

2
x ⊕ 1

2
y

)2

� 1

2
ρ(z, x)2 + 1

2
ρ(z, y)2 − 1

4
ρ(x, y)2 (2)

(see [3, p. 163] and [19, p. 98] for details).
Moreover, it will turn out that CAT(0)-spaces are uniformly convex hyperbolic spaces with a

quadratic modulus of uniform convexity.
In the sequel, (X,ρ,W) is a hyperbolic space, C ⊆ X a nonempty convex subset of X, and

T :C → C a nonexpansive mapping.
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As in the case of normed spaces [23,24], we can define the Krasnoselski–Mann iteration
starting from x ∈ C by:

x0 := x, xn+1 := (1 − λn)xn ⊕ λnT xn, (3)

where (λn) is a sequence in [0,1].
Asymptotic regularity was already implicit in [8,23,27], but only in 1966 Browder and

Petryshyn [4] defined it for normed spaces (X,‖ · ‖). In our setting, the mapping T :C → C

is called asymptotically regular if for all x ∈ C,

lim
n→∞ρ

(
T n(x), T n+1(x)

) = 0.

For constant λn = λ ∈ [0,1], the fact that limn→∞ ρ(xn,T xn) = 0 for all x ∈ C is equivalent
to the asymptotic regularity of the averaged mapping

Tλ := (1 − λ)I ⊕ λT .

Therefore, for general λn ∈ [0,1], following [2], we say that the nonexpansive mapping T is
λn-asymptotically regular if for all x ∈ C,

lim
n→∞ρ(xn,T xn) = 0.

The most general assumptions on the sequence (λn) for which asymptotic regularity has been
proved for arbitrary normed spaces and bounded sets C are the following:

∞∑
n=0

λn = +∞, and (4)

lim sup
n→∞

λn < 1. (5)

Thus, Ishikawa proved in his seminal paper [13] one of the most important results in the fixed
point theory of nonexpansive mappings.

Theorem 1. Let (X,‖ · ‖) be a normed space, C ⊆ X a nonempty convex bounded subset, and
T :C → C a nonexpansive mapping. Assume that (λn) satisfies (4), (5).

Then T is λn-asymptotically regular.

Independently, Edelstein and O’Brien [9] also proved the asymptotic regularity for constant
λn = λ ∈ [0,1], and noted that it is uniform in x.

By a logical analysis of the proof of a theorem due to Borwein, Reich and Shafrir [2] (which
generalizes Ishikawa’s result to unbounded C), Kohlenbach [17] obtained for the first time ex-
plicit bounds on the asymptotic regularity when general sequences (λn) satisfying (4), (5) are
considered.

Subsequently, Kohlenbach and the author [21] extended these results to the very general
setting of hyperbolic spaces (and even to the more general class of directional nonexpansive
mappings as introduced in [15]).

The following result (which is a corollary of the main theorem in [21]) is proved there for
hyperbolic spaces in the sense of [26], but the proof goes through for the setting used in the
present paper.
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Theorem 2. Let (X,ρ,W) be a hyperbolic space, C ⊆ X a nonempty convex bounded subset
with diameter dC , and T :C → C a nonexpansive mapping. Assume that K ∈ N, K � 2 and (λn)

is a sequence in [ 1
K

,1 − 1
K

].
Then T is λn-asymptotically regular, and the following holds for all x ∈ C:

∀ε > 0 ∀n � h(ε, d,K)
(
ρ(xn,T xn) � ε

)
,

where

h(ε, d,K) := K · M · ⌈2d · exp
(
K(M + 1)

)⌉
, with

d ∈ R, d � dC, and

M ∈ N, M � 1 + 2d

ε
.

For normed spaces and the special case of constant λn = λ ∈ (0,1) the exponential bound
in the above theorem is not optimal. In this case, a uniform and optimal quadratic bound was
obtained by Baillon and Bruck [1] using an extremely complicated computer aided proof, and
only for λn = 1/2 a classical proof of a result of this type was given [6]. However, the questions
whether the methods of proof used by them hold for nonconstant sequences λn or for hyper-
bolic spaces are left as open problems in [1], and as far as we know they received no positive
answer until now. Hence, the bound from Theorem 2 is the only effective bound known at all for
nonconstant sequences λn (even for normed spaces).

Our result guarantees only an exponential bound for the asymptotic regularity in the case of
CAT(0)-spaces, and as we have already remarked, it seems that Baillon and Bruck’s approach
does not extend to the more general setting of hyperbolic spaces.

In this paper we show that we can still get a quadratic rate of asymptotic regularity for CAT(0)-
spaces, but following a completely different approach, inspired by the results on asymptotic
regularity obtained before Ishikawa, and Edelstein and O’Brien theorems, in the setting of uni-
formly convex normed spaces.

More specifically, our point of departure is the following result, proved by Groetsch [12] (see
also [25]):

Theorem 3. Let (X,‖·‖) be a uniformly convex normed space, C ⊆ X a nonempty convex subset,
and T :C → C a nonexpansive mapping such that T has at least one fixed point.

Assume that (λn) satisfies the following condition:
∞∑

k=0

λk(1 − λk) = ∞. (6)

Then T is λn-asymptotically regular.

Assumption (6) is equivalent with the existence of a witness θ : N → N such that for all n ∈ N,

θ(n)∑
k=0

λk(1 − λk) � n. (7)

By “proof mining,” Kohlenbach [18] obtained a quantitative version of a strengthening of
Groetsch’s theorem which only assumes the existence of approximate fixed points in some neigh-
borhood of x, and generalizing previous results obtained by Kirk and Martinez-Yanez [16] for
constant λn = λ ∈ (0,1).
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Table 1

λn = λ Nonconstant λn

Hilbert Quadratic: [5] θ
( 1
ε2

)
: [18]

�p , 2 � p < ∞ Quadratic: [16,18] θ
( 1
εp

)
: [18]

UC normed [16,18] [18]
Normed Quadratic: [1] [17]

CAT(0) Quadratic: present paper θ
( 1
ε2

)
: present paper

UC hyperbolic Present paper Present paper
Hyperbolic [21] [21]

In this paper, we extend Kohlenbach’s results to the more general setting of uniformly convex
hyperbolic spaces. In this way, for bounded C, we get λn-asymptotic regularity for general λn

satisfying (6), and we also obtain explicit bounds on the rate of asymptotic regularity, which are
uniform in x,T , and depend on the uniformly convex hyperbolic space (X,ρ,W) only via a
modulus η, on C only weakly via its diameter dC , and on λn only via the witness θ .

The most important consequence of our results is that for CAT(0)-spaces, which are uniformly
convex hyperbolic spaces with a nice quadratic modulus η, we obtain a quadratic rate of asymp-
totic regularity (see Corollary 20).

Table 1 presents a general picture of the cases where effective bounds for asymptotic regularity
were obtained (UC means uniformly convex).

2. Uniformly convex hyperbolic spaces

In the following, (X,ρ,W) is a hyperbolic space.
Following [28], (X,ρ,W) is called strictly convex if for any x, y ∈ X, and λ ∈ [0,1] there

exists a unique element z ∈ X such that

ρ(z, x) = λρ(x, y) and ρ(z, y) = (1 − λ)ρ(x, y).

We define uniform convexity following [11, p. 105].

Definition 4. The hyperbolic space (X,ρ,W) is called uniformly convex if for any r > 0, and
ε ∈ (0,2] there exists a δ ∈ (0,1] such that for all a, x, y ∈ X,

ρ(x, a) � r

ρ(y, a) � r

ρ(x, y) � εr

⎫⎪⎬
⎪⎭ ⇒ ρ

(
1

2
x ⊕ 1

2
y, a

)
� (1 − δ)r. (8)

A mapping η : (0,∞)×(0,2] → (0,1] providing such a δ := η(r, ε) for given r > 0 and ε ∈ (0,2]
is called a modulus of uniform convexity.

Proposition 5. Any uniformly convex hyperbolic space is strictly convex.

Proof. Let (X,ρ,W) be uniformly convex with modulus of uniform convexity η. We proof that
(X,ρ,W) is strictly convex by contradiction. Thus, assume that there are x, y ∈ X, and λ ∈ [0,1]
such that there exist two distinct points z,w ∈ X with

ρ(z, x) = ρ(w,x) = λρ(x, y), ρ(z, y) = ρ(w,y) = (1 − λ)ρ(x, y).
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It follows immediately that x �= y and λ ∈ (0,1). Let r1 := λρ(x, y) > 0, r2 :=
(1 − λ)ρ(x, y) > 0, ε1 := ρ(z,w)

r1
, and ε2 := ρ(z,w)

r2
. It is easy to see that ε1, ε2 ∈ (0,2], so we

can apply (8) to get

ρ

(
1

2
z ⊕ 1

2
w,x

)
�

(
1 − η(r1, ε1)

)
r1, ρ

(
1

2
z ⊕ 1

2
w,y

)
�

(
1 − η(r2, ε2)

)
r2.

Since x �= y, we must have η(r1, ε1) < 1 or η(r2, ε2) < 1. It follows that

ρ(x, y) � ρ

(
1

2
z ⊕ 1

2
w,x

)
+ ρ

(
1

2
z ⊕ 1

2
w,y

)

�
(
1 − η(r1, ε1)

)
r1 + (

1 − η(r2, ε2)
)
r2 < r1 + r2 = ρ(x, y),

that is a contradiction. �
The proof of the following proposition is similar to the one of the corresponding result for

uniformly convex Banach spaces.

Proposition 6. Let η : (0,∞) × (0,2] → (0,1]. The following are equivalent:

(1) (X,ρ,W) is uniformly convex with modulus of uniform convexity η;
(2) for any r > 0, ε ∈ (0,2], λ ∈ [0,1], and a, x, y ∈ X,

ρ(x, a) � r

ρ(y, a) � r

ρ(x, y) � εr

⎫⎪⎬
⎪⎭ ⇒ ρ

(
(1 − λ)x ⊕ λy,a

)
�

(
1 − γ (r, ε, λ)

)
r, (9)

where

γ (r, ε, λ) =
{

2λη(r, ε), if λ � 1
2 ,

2(1 − λ)η(r, ε), otherwise.

Lemma 7. Let (X,ρ,W) be a uniformly convex hyperbolic space with modulus of uniform con-
vexity η. For any r > 0, ε ∈ (0,2], λ ∈ [0,1], and a, x, y ∈ X,

ρ(x, a) � r

ρ(y, a) � r

ρ(x, y) � εr

⎫⎪⎬
⎪⎭ ⇒ ρ

(
(1 − λ)x ⊕ λy,a

)
�

(
1 − 2λ(1 − λ)η(r, ε)

)
r. (10)

Proof. Apply (9) and the fact that 2λ,2(1 − λ) � 2λ(1 − λ). �
Proposition 8. Assume that X is a CAT(0)-space. Then X is uniformly convex, and

η(r, ε) := ε2

8
(11)

is a modulus of uniform convexity.
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Proof. Let r > 0, ε ∈ (0,2], a, x, y ∈ X be such that ρ(x, a) � r , ρ(y, a) � r , ρ(x, y) � εr .
Applying (2) we get that

ρ

(
1

2
x ⊕ 1

2
y, a

)
�

√
1

2
ρ(x, a)2 + 1

2
ρ(y, a)2 − 1

4
ρ(x, y)2

�
√

1

2
r2 + 1

2
r2 − 1

4
ε2r2 =

√
1 − ε2

4
· r �

(
1 − ε2

8

)
r.

Hence, X is uniformly convex, and η(r, ε) defined by (11) is a modulus of uniform convexity
for X. �
3. Technical results

In the sequel, (X,ρ,W) is a uniformly convex hyperbolic space with modulus of uniform
convexity η, C ⊆ X a nonempty convex subset, and T :C → C nonexpansive.

Lemma 9. Let x, y ∈ X, and (xn) be the Krasnoselski–Mann iteration starting with x. Then

(1) (ρ(xn, T xn)) is nonincreasing;
(2) for any n ∈ N,

ρ(xn+1, y) � ρ(xn, y) + λnρ(y,T y); (12)

(3) for any n ∈ N,

ρ(xn, y) � ρ(x, y) +
(

n−1∑
i=0

λi

)
ρ(y,T y). (13)

Proof.

(1) See [21, Proposition 3.4], whose proof immediately generalizes to the notion of hyperbolic
space used in this paper.

(2)

ρ(xn+1, y) � (1 − λn)ρ(xn, y) + λnρ(T xn, y)

� (1 − λn)ρ(xn, y) + λnρ(T xn,T y) + λnρ(T y, y)

� ρ(xn, y) + λnρ(T y, y).

(3) (13) follows from (12) by an easy induction. �
For any x, y ∈ X, n ∈ N, let us denote

α(x,n, y) := ρ(xn, y) + ρ(y,T y). (14)

Lemma 10 (Main technical lemma). Assume that η decreases with r (for a fixed ε).
Let x, y ∈ X, n ∈ N, and γ,β, β̃, a > 0 be such that

γ � α(x,n, y) � β, β̃ and a � ρ(xn,T xn). (15)
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Then the following inequality is satisfied:

ρ(xn+1, y) � ρ(xn, y) + ρ(y,T y) − 2γ λn(1 − λn)η

(
β̃,

a

β

)
. (16)

Proof. First, let us remark that

ρ(T xn, y) � ρ(T xn,T y) + ρ(T y, y) � α(x,n, y) � β,

ρ(xn, y) � α(x,n, y) � β,

ρ(xn,T xn) � a =
(

a

β

)
· β.

Moreover,

0 < a � ρ(xn,T xn) � ρ(xn, y) + ρ(y,T y) + ρ(T y,T xn)

� 2ρ(xn, y) + ρ(y,T y) � 2α(x,n, y) � 2β,

so a
β

∈ (0,2]. Thus, we can apply (10) to obtain

ρ(xn+1, y) = ρ
(
(1 − λn)xn ⊕ λnT xn, y

)
�

(
1 − 2λn(1 − λn)η

(
α(x,n, y),

a

β

))
α(x,n, y)

= ρ(xn, y) + ρ(y,T y) − 2λn(1 − λn)η

(
α(x,n, y),

a

β

)
α(x,n, y).

Since α(x,n, y) � β̃ , and η decreases with r , we get that

η

(
α(x,n, y),

a

β

)
� η

(
β̃,

a

β

)
,

hence

ρ(xn+1, y) � ρ(xn, y) + ρ(y,T y) − 2λn(1 − λn)η

(
β̃,

a

β

)
α(x,n, y)

� ρ(xn, y) + ρ(y,T y) − 2γ λn(1 − λn)η

(
β̃,

a

β

)
,

since α(x,n, y) � γ by the hypothesis. �
Corollary 11. Assume that η decreases with r (for a fixed ε), and moreover that η can be written
as η(r, ε) = ε · η̃(r, ε) such that η̃ increases with ε (for a fixed r).

Let x, y ∈ X, n ∈ N, and δ, a > 0 be such that

α(x,n, y) � δ and a � ρ(xn,T xn). (17)

Then

ρ(xn+1, y) � ρ(xn, y) + ρ(y,T y) − 2aλn(1 − λn)η̃

(
δ,

a

δ

)
. (18)
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Proof. Applying Lemma 10 with γ := β := α(x,n, y), β̃ := δ, we get that

ρ(xn+1, y) � ρ(xn, y) + ρ(y,T y) − 2α(x,n, y)λn(1 − λn)η

(
δ,

a

α(x,n, y)

)

= ρ(xn, y) + ρ(y,T y) − 2aλn(1 − λn)η̃

(
δ,

a

α(x,n, y)

)

� ρ(xn, y) + ρ(y,T y) − 2aλn(1 − λn)η̃

(
δ,

a

δ

)
,

since a
δ

� a
α(x,n,y)

, and η̃ increases with ε. �
Corollary 12. Assume that η decreases with r (for a fixed ε).

Let x, y ∈ X, N ∈ N, and b, c, γ, a > 0 be such that

ρ(x, y) � b and ρ(y,T y) � c, (19)

and for all n = 0,N ,

γ � α(x,n, y) and a � ρ(xn,T xn). (20)

Let d � (N + 1)c. Then

ρ(xN+1, y) � b + (N + 1)c − 2γ η

(
b + d,

a

b + d

) N∑
n=0

λn(1 − λn). (21)

Proof. Using (13), we get for n = 0,N ,

α(x,n, y) = ρ(xn, y) + ρ(y,T y) � ρ(x, y) +
(

n−1∑
i=0

λi

)
ρ(y,T y) + ρ(y,T y)

� b + (n + 1)ρ(y,T y) � b + (N + 1)c � b + d.

Applying Lemma 10 with β := β̃ := b + d , we get

ρ(xn+1, y) � ρ(xn, y) + ρ(y,T y) − 2γ λn(1 − λn)η

(
b + d,

a

b + d

)
. (22)

Adding (22) for n = 0,N , it follows that

ρ(xN+1, y) � ρ(x, y) + (N + 1)ρ(y,T y) − 2γ η

(
b + d,

a

b + d

) N∑
n=0

λn(1 − λn)

� b + (N + 1)c − 2γ η

(
b + d,

a

b + d

) N∑
n=0

λn(1 − λn). �

Corollary 13. In the hypothesis of Corollary 12, assume moreover that η(r, ε) can be written as
η(r, ε) = ε · η̃(r, ε) such that η̃ increases with ε (for a fixed r). Then

ρ(xN+1, y) � b + (N + 1)c − 2aη̃

(
b + d,

a

b + d

) N∑
n=0

λn(1 − λn). (23)

Proof. Follow the proof of Corollary 12, using this time Corollary 11 instead of Lemma 10. �
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4. Main theorem

Theorem 14. Let (X,ρ,W) be a uniformly convex hyperbolic space with modulus of uniform
convexity η such that η decreases with r (for a fixed ε).

Let C ⊆ X be a nonempty convex subset, and T :C → C nonexpansive.
Assume that (λn) is a sequence in [0,1] and θ : N → N is such that for all n ∈ N,

θ(n)∑
k=0

λk(1 − λk) � n. (24)

Let x ∈ C, b > 0 be such that for any δ > 0 there is y ∈ C with

ρ(x, y) � b and ρ(y,T y) < δ. (25)

Then

lim
n→∞ρ(xn,T xn) = 0,

and, moreover,

∀ε > 0 ∀n � h(ε, η, b, θ)
(
ρ(xn,T xn) � ε

)
, (26)

where

h(ε, η, b, θ) :=
{

θ
(⌈

b+1
ε·η(

b+1, ε
b+1

) ⌉)
for ε < 2b,

0 otherwise.

Proof. First, let us remark that for any n ∈ N, and δ > 0, by the fact that (ρ(xn, T xn)) is nonin-
creasing, and (25) we get

ρ(xn,T xn) � ρ(x,T x) � 2ρ(x, y) + ρ(y,T y) < 2b + δ.

It follows that ρ(xn,T xn) � 2b for any n ∈ N, hence the case ε � 2b is obvious. Let us consider
ε < 2b and denote

K :=
⌈

b + 1

ε · η(
b + 1, ε

b+1

)⌉
, N := θ(K) = h(ε, η, b, θ).

Assume that for all n � N we have that ρ(xn,T xn) > ε. Let δ > 0 be such that

δ <
1

2(N + 1)
, so (N + 1)δ <

1

2
< 1.

Let y ∈ C satisfying (25) for this δ. It follows that for all n = 0,N ,

α(x,n, y) � ρ(xn,T xn)

2
>

ε

2
.

Applying Corollary 12 with a := ε, c := δ, γ := ε
2 , d := 1, we get

ρ(xN+1, y) � b + (N + 1)δ − εη

(
b + 1,

ε

b + 1

) N∑
n=0

λn(1 − λn)

� b + 1

2
− εη

(
b + 1,

ε

b + 1

) θ(K)∑
λn(1 − λn)
n=0
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� b + 1

2
− εη

(
b + 1,

ε

b + 1

)
K, by (24)

� b + 1

2
− (b + 1) < 0,

that is a contradiction. Thus, there is n � h(ε, η, b, θ) such that ρ(xn,T xn) � ε. Since
(ρ(xn, T xn)) is nonincreasing, (26) follows. �
Remark 15. In the hypothesis of the above theorem, assume moreover that η(r, ε) can be written
as η(r, ε) = ε · η̃(r, ε) such that η̃ increases with ε (for a fixed r). Then the bound h(ε, η, b, θ)

can be replaced for ε < 2b by

h̃(ε, η, b, θ) := θ

(⌈
b + 1

2ε · η̃(
b + 1, ε

b+1

)⌉)
.

Proof. Define

K :=
⌈

b + 1

2ε · η̃(
b + 1, ε

b+1

)⌉
,

and follow the proof of the theorem using Corollary 13 instead of Corollary 12. �
As an immediate consequence of our main theorem, we obtain Groetsch’s theorem for hyper-

bolic spaces.

Corollary 16. Let (X,ρ,W) be a uniformly convex hyperbolic space with modulus of uniform
convexity η such that η decreases with r ( for a fixed ε), C ⊆ X be a nonempty convex subset, and
T :C → C nonexpansive such that T has at least one fixed point. Assume that (λn) is a sequence
in [0,1] such that

∞∑
n=0

λn(1 − λn) = ∞.

Then for any x ∈ C,

lim
n→∞ρ(xn,T xn) = 0.

Proof. Since
∑∞

n=0 λn(1 − λn) diverges, for any n ∈ N there is N ∈ N such that
∑N

k=0 λk ×
(1 − λk) � n, so by defining θ(n) as the least N with this property, (24) is satisfied. Let p be
a fixed point of T . Then for any x ∈ C, if we take b := ρ(x,p), (25) is satisfied with y := p.
Hence, we can apply Theorem 14 to get limn→∞ ρ(xn,T xn) = 0. �
Corollary 17. Let (X,ρ,W), η, C, T , (λn), θ be as in the hypothesis of Theorem 14. Assume
moreover that C is bounded with finite diameter dC . Then T is λn-asymptotically regular, and
the following holds for all x ∈ C:

∀ε > 0 ∀n � h(ε, η, dC, θ)
(
ρ(xn,T xn) � ε

)
,

where h(ε, η, dC, θ) is defined as in Theorem 14 by replacing b with dC .
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Proof. If C is bounded, then C has approximate fixed point property, as a consequence of [10,
Theorem 1], which was proved for spaces of hyperbolic type, but, as we have already remarked,
any hyperbolic space in our sense is a space of hyperbolic type. It follows that condition (25)
holds for all x ∈ C with dC instead of b. Hence, we can apply Theorem 14 for all x ∈ C. �

Thus, for bounded C, we get asymptotic regularity for general (λn), and an explicit bound
h(ε, η, dc, θ) on the rate of asymptotic regularity, which depends only on the error ε, on the
modulus of uniform convexity η, on the diameter dC of C, and on (λn) only via θ , but not on the
nonexpansive mapping T , the starting point x ∈ C of the iteration or other data related with C

and X.
The bound h(ε, η, dC, θ) on the rate of asymptotic regularity can be further simplified in the

case of constant λn := λ ∈ (0,1).

Corollary 18. Let (X,ρ,W), η, C, dC , T be as in the hypothesis of Corollary 17. Assume
moreover that λn := λ ∈ (0,1) for all n ∈ N.

Then T is λ-asymptotically regular, and for all x ∈ C,

∀ε > 0 ∀n � h(ε, η, dC,λ)
(
ρ(xn,T xn) � ε

)
, (27)

where

h(ε, η, dC,λ) :=
{

1
λ(1−λ)

⌈
dC+1

ε·η(
dC+1, ε

dC+1
) ⌉ for ε < 2dC,

0 otherwise.

Moreover, if η(r, ε) can be written as η(r, ε) = ε · η̃(r, ε) such that η̃ increases with ε (for fixed r),
then the bound h(ε, η, dC,λ) can be replaced for ε < 2dC with

h̃(ε, η, dC,λ) = 1

λ(1 − λ)

⌈
dC + 1

2εη̃
(
dC + 1, ε

dC+1

)⌉
.

Proof. (24) is satisfied with

θ : N → N, θ(n) := n

λ(1 − λ)
.

Hence, we can apply Corollary 17, and Remark 15. In this case, for ε < 2dC , we get that

h(ε, η, dC, θ) = θ

(⌈
dC + 1

ε · η(
dC + 1, ε

dC+1

)⌉)

= 1

λ(1 − λ)

⌈
dC + 1

ε · η(
dC + 1, ε

dC+1

)⌉
. �

As we have proved in Section 2, CAT(0)-spaces are uniformly convex hyperbolic spaces with

a “nice” modulus of uniform convexity η(r, ε) := ε2

8 , which has the form required in Remark 15.
Thus, the above results can be applied to CAT(0)-spaces.

Corollary 19. Let X be a CAT(0)-space, and C, dC , T , (λn), θ be as in the hypothesis of Theo-
rem 14.

Then T is λn-asymptotically regular, and for all x ∈ C,

∀ε > 0 ∀n � g(ε, dC, θ)
(
ρ(xn,T xn) � ε

)
, (28)
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where

g(ε, dC, θ) :=
{

θ
(⌈ 4(dC+1)2

ε2

⌉)
for ε < 2dC,

0 otherwise.

Proof. Apply Corollaries 8, 17, and Remark 15. �
Corollary 20. Let X be a CAT(0)-space, and C, dC , T be as in the hypothesis of Corollary 19.
Assume that (λn) := λ ∈ (0,1). Then T is λ-asymptotically regular, and for all x ∈ C,

∀ε > 0 ∀n � g̃(ε, dC,λ)
(
ρ(xn,T xn) � ε

)
, (29)

where

g̃(ε, dC,λ) :=
{

1
λ(1−λ)

⌈ 4(dC+1)2

ε2

⌉
for ε < 2dC,

0 otherwise.

Proof. Apply Corollaries 8, 18, and Remark 15. �
Hence, in the case of CAT(0)-spaces, we get a quadratic (in 1/ε) rate of asymptotic regularity.
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