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This paper addresses new developments in the ongoing proof mining programme, i.e.
the use of tools from proof theory to extract effective quantitative information from
prima facie ineffective proofs in analysis. Very recently, the current authors developed a
method of extracting rates of metastability (as defined by Tao) from convergence proofs
in nonlinear analysis that are based on Banach limits and so (for all that is known) rely
on the axiom of choice. In this paper, we apply this method to a proof due to Shioji and
Takahashi on the convergence of Halpern iterations in spaces X with a uniformly Gâteaux
differentiable norm. We design a logical metatheorem guaranteeing the extractability
of highly uniform rates of metastability under the stronger condition of the uniform
smoothness of X . Combined with our method of eliminating Banach limits, this yields a
full quantitative analysis of the proof by Shioji and Takahashi. We also give a sufficient
condition for the computability of the rate of convergence of Halpern iterations.
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1. Introduction

The topic of computable analysis started with Alan Turing’s seminal paper [1]
in which he defined the notion of a computable real number as one which has
a computable binary (or decimal) expansion. While being the right notion for
single real numbers, it does not lead to the proper notion of computable functions
on reals as even the function x , y �→ x + y would not be computable. This was
corrected by Turing [2] by giving up the uniqueness of the representation allowing
(following Brouwer) overlapping intervals, which is equivalent to the currently
used definition in terms of computable Cauchy sequences of rational numbers
with computable Cauchy rate (see [3], for much more detailed information). As
this definition has already highlighted, the issue of effective rates of convergence
and other effective bounds plays an important role in computable analysis. Often,
however, the use of ineffective reasoning in analysis (both via the use of classical
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logic as well as by introducing non-computable objects) provides an obstacle
for obtaining effective information. This is particularly ubiquitous in the area of
abstract nonlinear analysis.

Starting in Kohlenbach [4] and continued in Gerhardy & Kohlenbach [5],
Leuştean [6] and Kohlenbach [7], general logical metatheorems have been
developed that guarantee the extractability of highly uniform effective (and
actually subrecursive) bounds (whose complexity reflects that of the proof
principles used) from large classes of (prima facie highly ineffective proofs)
nonlinear functional analysis (‘proof mining’). Here by ‘uniform’ we refer to
the fact that the bounds are independent from metrically majorizable input
data (without any compactness condition). For this to hold, it is crucial that
no separability conditions on the underlying structures must be imposed as the
uniform version of separability is total boundedness and so (modulo completeness)
compactness. Because structures such as complete metric or Banach spaces
usually are represented (in proof theory as well as in reverse mathematics
and computable analysis) as completions of countable dense substructures, this
requires a novel treatment of these structures. The approach is to ‘hardwire’
such an abstract space X as a kind of atom to the formal system (a suitable
system T u of arithmetic or analysis formulated in the language of functionals of
all finite types over N) by adding a new base type X and all finite types over
the two base types N, X (of course, also several spaces X1, . . . , Xn can be treated
simultaneously; see [7]). Then appropriate constants and axioms for the respective
structure treated have to be added. The crucial conditions are:

— that the constants added can be majorized by functionals already definable
in T u or that they have a type N

n → N, in which case they can be
essentially majorized by themselves; and

— that the new axioms have a monotone functional interpretation [7] (in
the set-theoretic model or—if bar recursion is needed, which is not the
case here though—in the model of majorizable functionals) by the same
functionals that suffice for the interpretation of T u and the majorization
of the new constants.

The second point is automatically satisfied if the additional axioms are all purely
universal (and the quantified variables have sufficiently low types), which will be
the case in this paper.

Structures treated so far are:

— bounded metric, hyperbolic and CAT(0)-spaces, (real) normed, uniformly
convex and inner product spaces also with abstract bounded convex
subsets C ⊆ X in the normed case [4];

— unbounded metric, hyperbolic and CAT(0)-spaces and (real) normed
spaces also with unbounded convex subsets [5];

— Gromov d-hyperbolic spaces, R-trees and uniformly convex hyperbolic
spaces [6]; and

— complete metric and normed spaces [7].

Some obvious classes of spaces are missing in this list as they do not have
the right uniformity built in to have a monotone functional interpretation. As
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mentioned already, this is the case for separable spaces as the monotone functional
interpretation of separability upgrades the latter to the total boundedness of
metrically bounded subsets and hence (in the presence of completeness and
closedness) to compactness. Compact metric spaces, however, are much easier to
treat via their representation as a continuous image of the Cantor space (which
is explicitly given in our formal framework). Another badly behaved class are the
strictly convex Banach spaces that (under monotone functional interpretation)
get upgraded to uniformly convex Banach spaces.

Because our systems are based on full classical logic, the theorems to be proved
essentially have to be of the form of ∀∃-sentences in order to allow for the existence
of effective bounds.

Many theorems in nonlinear analysis are of the form that certain iterations (xn)
built up using some operator T : X → X and a starting point x ∈ X (perhaps
further involving some sequence of scalars (ln) typically in [0, 1]) are strongly
convergent. Because the Cauchy property is ∀∃∀ rather than ∀∃, one has to express
this in the (ineffectively equivalent) Herbrand normal form from logic

∀k ∈ N ∀g : N → N ∃n ∈ N ∀i, j ∈ [n, n + g(n)] (|xi − xj | < 2−k)

which—in the context of Cauchy statements—has been called metastability by
Tao [8,9].1 The aforementioned metatheorems now guarantee the extractability
of effective bounds F(k, g) on ‘∃n’ (in logic referred to as the Kreisel ‘no-
counterexample interpretation’; see [12,13]), which are highly uniform in the sense
that they—in addition to k, g—depend only on norm bounds for x and majorants
T ∗ : N → N for T

n ≥ ‖y‖ → T ∗(n) ≥ ‖Ty‖, n ∈ N, y ∈ X ,

as well as certain moduli that make some assumptions on (ln) explicit. For large
classes of maps T (e.g. for non-expansive ones, which are the only ones needed in
this paper), the computation of T ∗ is trivial. This is also the case when T : C →
C , where C is a bounded (convex) subset (as will be the case throughout this
paper). Thus the bound is (essentially) independent from x and T as well as the
underlying space X (except for data such as a modulus of uniform convexity, etc.).

Kohlenbach [14] extracted such a ‘rate of metastability’ F(k, g) for Halpern
iterations

xn+1 := 1
n + 2

x +
(

1 − 1
n + 2

)
Txn , x0 := x ∈ C ,

for non-expansive self-mappings T : C → C of a convex subset of a Hilbert space
from a proof due to Wittmann [15] of the strong convergence of (xn) (provided
that C is bounded or—weaker—T has a fixed point). Wittmann’s result has
received considerable attention as it is an important nonlinear generalization of
the well-known von Neumann mean ergodic theorem (see [16,17] for effective
metastable versions) as (xn) coincides with the Cesàro mean for linear T .

Recently [18], the current authors extracted an explicit rate of metastability
from a proof of a generalization of Wittmann’s theorem to CAT(0)-spaces by
Saejung [19]. This result constitutes a significant extension of the hitherto context
1There are, however, important situations in which even ineffective proofs guarantee effective rates
of convergence, e.g. in the presence of uniqueness conditions [7,10,11] or in cases of monotone
convergence [7].
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of proof mining as Saejung’s proof makes use of Banach limits whose existence
(for all that is known) requires some substantial use of the axiom of choice.
Nevertheless, we developed a method to convert such proofs into more elementary
proofs that no longer rely on Banach limits and can be analysed by the existing
logical machinery. Banach limits were introduced in the subject of Halpern
iterations by Bruck & Reich [20] (in this connection, see also [21, §§ 12 and 14]).

In this paper, we extract a rate of metastability for another generalization
(owing to [22]) of Wittmann’s theorem, namely to Banach spaces with a uniformly
Gâteaux differentiable norm. The significance of this is twofold:

— As the proof again uses Banach limits, we further substantiate our claim
that the machinery developed in Kohlenbach & Leuştean [18] to eliminate
arguments based on Banach limits is indeed a general method. In fact,
we can literally re-use most of the technical lemmas from Kohlenbach &
Leuştean [18], showing the striking modularity of this proof-theoretic
approach based on (monotone) functional interpretation.

— The proof is based on the existence of a uniformly continuous (in a suitable
sense) so-called duality mapping J , which also plays an important role in
numerous other proofs in the nonlinear analysis. In §2, we indicate how
this structure can be nicely incorporated into the framework of the logical
metatheorems referred to earlier.

In our paper, all Banach spaces are real Banach spaces.

2. A logical metatheorem for real Banach spaces with a norm-to-norm
uniformly continuous duality selection map

In this paper, we study a proof that uses a smoothness property of Banach spaces,
namely that the norm is uniformly Gâteaux differentiable. It turns out that
this notion is not uniform enough to have a monotone functional interpretation
or rather that the latter requires that the space even has a uniformly Fréchet
differentiable norm, i.e. it is uniformly smooth.

The uniform smoothness of a space X can be universally axiomatized, once
a constant tX : N → N representing (a suitable notion of) a modulus of uniform
smoothness is given. Then the corresponding metatheorem will guarantee the
extractability of an effective uniform bound that (in addition to its usual
input data) will depend only on tX . In the concrete application given in this
paper, it indeed will be the uniform smoothness (rather than uniform Gâteaux
differentiability of the norm) that we need for this. This is via the norm-to-norm
uniform continuity on bounded sets of the normalized duality map J of X which
holds in uniformly smooth spaces, whereas uniform Gâteaux differentiability
implies only the norm-to-weak∗ uniform continuity of J .

Definition 2.1. Let X be a Banach space and X ∗ its dual space. Then
the mapping

J : X → 2X∗
, Jx := {y ∈ X ∗ : 〈x , y〉 = ‖x‖2 = ‖y‖2}

is called the (normalized) duality mapping of X . Here 〈x , y〉 denotes y(x).
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By the Hahn–Banach theorem, it follows that Jx is always non-empty. If
X is smooth (i.e. has a Gâteaux differentiable norm), then Jx is always
single-valued and also the converse holds (see [23, theorems 4.3.1 and 4.3.2]).
This single-valued mapping is norm-to-norm uniformly continuous on bounded
subsets, provided that X is uniformly smooth and a modulus of uniform continuity
can be obtained from a modulus of uniform smoothness for X (see proposition 2.5
below; for more general information on the duality map and its background, see
[24,25]). In our application, we need only a function J : X → X ∗, which selects in
a uniformly continuous way a point from the duality set and will not insist on
the latter being single-valued.

Let us define a space with a uniformly continuous duality selection map (X , J )
to be a real Banach space X together with a mapping J : X → X ∗ satisfying

(i) 〈x , Jx〉 = ‖x‖2 = ‖Jx‖2 for all x ∈ X , and
(ii) J is norm-to-norm uniformly continuous on any bounded subsets of X .

Obviously, it suffices to require that J is norm-to-norm uniformly continuous
on any open ball Bd(0) (respectively, closed ball B̄d(0)), d > 0. By a modulus
for the space with a uniformly continuous duality selection map (X , J ), we shall
understand a mapping u : (0, ∞) × (0, ∞) → (0, ∞) such that, for all d > 0, u(d, ·)
is a modulus of uniform continuity for the restriction of J to B̄d(0), that is, for
all 3 > 0 and x , y ∈ B̄d(0),

‖x − y‖ ≤ u(d, 3) implies ‖Jx − Jy‖ ≤ 3. (2.1)

One can easily see that the existence of a modulus u satisfying (2.1) is
equivalent to the existence of u : N × N → N such that, for any d, k ∈ N and
x , y ∈ Bd(0),

‖x − y‖ < 2−u(d,k) implies ‖Jx − Jy‖ ≤ 2−k . (2.2)

Rather than having to formalize the proof of the existence of J and its
continuity property, we directly add constants JX , uX and axioms (JX ) and
(JX , uX ) to the formal framework expressing that, for x ∈ X , JXx represents
a linear operator X → R with ‖JXx‖ ≤ ‖x‖ and JXxx = ‖x‖2, which—taken
together—yields ‖JXx‖ = ‖x‖, i.e. JXxx = ‖x‖2 = ‖JXx‖2, and that JX is norm-
to-norm uniformly continuous on any bounded ball Bd(0) with modulus of
uniform continuity uX (d, ·). Instead of using the operator norm and stating
‖JXx − JXy‖ ≤ 2−k , we express things equivalently in the language of X as
∀z ∈ X(|JXxz − JXyz | ≤ 2−k · ‖z‖).

In formulating (JX ) and (JX , uX ), we rely on the formal framework from
Kohlenbach [7] and the representation of real numbers, ≤R, etc., in terms of
number-theoretic functions. JX then is an object of type X → X → 1 (where
1 denotes the type N → N, that is, the type of objects used to represent real
numbers) and uX has type N

2 → N,

(JX ) :≡ ∀xX , yX (JXxx =R ‖x‖2
X ∧ |JXxy|R ≤R ‖x‖X ·R ‖y‖X

∧ ∀a1, b1, uX , vX (JXx(a ·X u +X b ·X v) =R a ·R JXxu +R b ·R JXxv))
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(JX , uX ) :≡ ∀xX , yX , zX , kN, dN(‖x‖X , ‖y‖X <R (d)R ∧ ‖x − y‖X <R 2−uX (k,d)

→ |JXxz −R JXyz |R ≤R 2−k ·R ‖z‖X ).

It is easy to see that (JX ) and (JX , uX ) (but not (JX ) alone) imply the
extensionality of JX

x =X x ′ ∧ y =X y ′ → JXxy =R JXx ′y ′,

so that we can safely use JX in the usual set-theoretic way (whereas with (JX )
extensionality holds only for provably equal arguments; see [7]).

Let T u be, for example, the finite type system for classical analysis WE-
PAu+DCu+QF-AC and let T u[X , ‖ · ‖, JX , uX , C , C] be its extension by an
abstract real normed space with the constants JX , uX , together with their
above mentioned axioms, an abstract non-empty convex subset C ⊆ X and a
completeness axiom stating the completeness of X/closedness of C (see [7] for
details). Then the logical metatheorems for Banach spaces from Kohlenbach [7]
hold if the extracted bound is allowed to depend on uX . We formulate here only
a special instance of these theorems sufficient for our main application:

Theorem 2.2. Let A∃(kN, gN→N, xX , TX→X , nN) be a purely existential formula
containing only k, g, x , T , n free. Then the following rule holds: from a proof in
T u[X , ‖ · ‖, JX , uX , C , C] of

∀k ∈ N ∀g : N → N ∀x ∈ C ∀ T : C → C (T non-expansive → ∃n ∈ N A∃)

one can extract a computable F : N × N × N
N × N

N2 → N bound such that

∀k ∈ N ∀g : N → N ∀x ∈ C ∀ T : C → C (T non-expansive → ∃n ≤ F(k, b, g, u) A∃)

holds in any (real) Banach space X with a duality selection map J (used to
interpret JX ) that has u as modulus of uniform norm-to-norm continuity (used
to interpret uX ) and any closed b-bounded convex subset C ⊆ X. If C is not
bounded, then one has to choose b such that b ≥ ‖x‖, ‖x − Tx‖.

Note that F does not depend on x , T and depends on X , C only via u resp. b.

Proof. The proofs in Kohlenbach [4, theorem 3.30] for bounded C and in
Gerhardy & Kohlenbach [5, corollary 6.6] for unbounded C easily extend
to our situation (see also [5, remark 4.13]) as both (JX ) and (JX , uX ) are
purely universal (here we use that =R, ≤R are purely universal while <R is
purely existential; see [7]) with quantified variables of low types, uX is trivially
majorized by u∗

X (n, m) := max{uX (i, j) : i ≤ n, j ≤ m} and JX is majorized by
JX (n, m) := M (n · m) := lk ∈ N · j(n · m · 2k+2, 2k+1 − 1) (see [4, definition 2.9])
with the Cantor pairing function j and using the obvious extension of ◦ from
Kohlenbach [4, definition 2.9] from R+ to R because n ≥ ‖x‖ ∧ m ≥ ‖y‖ → n · m ≥
‖x‖ · ‖y‖ ≥ |Jxy|, where JX is interpreted via (Jxy)◦ ∈ N

N. The completion axiom
is incorporated as in Kohlenbach [7, pp. 433–434] and the closedness of C can
also be easily expressed in a purely universal way similar to (C). �

Remark 2.3. The extraction of the bound proceeds by monotone functional
interpretation [7] from the proof and its complexity faithfully reflects the
complexity of the principles used in the proof. In our case in this paper, this
will yield a F of very restricted complexity.
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The strong convergence result for Halpern iterations in Shioji & Takahashi [22]
is proved under the hypothesis that the sequence (zn) of the fixed points of
the contractions Tn(y) := (1/(n + 1))x + (1 − 1/(n + 1))Ty strongly converges
(towards a fixed point of T ), which is known in many cases such as for Hilbert
spaces [26,27], the (complex) Hilbert ball ([21, §§ 24 and 27] and [28]), general
CAT(0)-spaces [29] and also uniformly smooth Banach spaces [30] for bounded,
closed and convex C (which covers our context). Under this assumption (in
fact already under the assumption of the plain Cauchy property of (zn)), the
proof of the strong convergence of the Halpern iteration (xn) that results by our
elimination of the use of Banach limits from the proof of Shioji & Takahashi [22]
is basically constructive. Hence metatheorems for the constructive case [31]
guarantee (and our proof displays this; see theorem 3.4) a uniform effective
procedure to transform a rate of convergence for (zn) into one for (xn). The
problem, however, is that, even in very simple cases (X being an effective Hilbert
space and T a computable and linear non-expansive map), there is no computable
rate of the former as (see [16]) there is no computable rate for the latter. In
fact, to show that there is no effective operator that would effectively in a
computable sequence of operators (T (l))l produce a rate of convergence for (zn)
is almost trivial and holds already for X := R and C := [0, 1] (similarly to [7,
theorem 18.4]). Only in certain cases, e.g. when, in particular, the norm ‖z‖ of
the limit z := limn→∞ zn is known, does one get computable rates of (zn) (but not
uniform ones and without any complexity information as the argument is based
on unbounded search): see theorem 3.4.

What, however, can be obtained in many cases (not only computably but
with low complexity) is a (fully uniform) rate of metastability for (zn). Since
the latter only ineffectively implies the convergence of (zn), it is this feature
that makes the proof of the convergence of (xn) non-constructive and forces
us to also weaken the conclusion to the metastability of (xn) (in logical terms,
this corresponds to applying a so-called negative translation prior to the actual
functional interpretation).2 So we actually use the above-mentioned metatheorem
in the form where we have as an additional input a (majorant of a) rate K (3, g) of
metastability for (zn) (or—equivalently—a self-majorizing such rate) and extract
a bound on the metastability of (xn) that depends in addition to 3, g, b, u also on
K (in the case at hand, it turns out that K does not even need to be majorizable
as it is applied to only a single function f ∗ that is defined in terms of g and the
other input data). For the Hilbert case (as well as the CAT(0)-case; see [18]),
a simple primitive recursive such K has been extracted in Kohlenbach [14]. For
the case of uniformly smooth Banach spaces [30] (i.e. the context of the present
paper), this is to be left for future research.

(a) Some examples

Let us recall that a Banach space X is

(i) uniformly convex if for all 3 ∈ (0, 2] there exists d ∈ (0, 1] such that, for all
x , y ∈ X ,

‖x‖ ≤ 1, ‖y‖ ≤ 1 and ‖x − y‖ ≥ 3 imply
∥∥∥∥1
2
(x + y)

∥∥∥∥ ≤ 1 − d; (2.3)

2That this can improve things even when applied to constructive proofs is discussed in
Kohlenbach [7, p. 171].
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(ii) uniformly smooth whenever given 3 > 0 there exists d > 0 such that, for all
x , y ∈ X ,

‖x‖ = 1 and ‖y‖ ≤ d imply ‖x + y‖ + ‖x − y‖ < 2 + 3‖y‖. (2.4)

A mapping h : (0, 2] → (0, 1] providing a d := h(3) satisfying (2.3) for given
3 ∈ (0, 2] will be called a modulus of uniform convexity. Similarly, a function
t : (0, ∞) → (0, ∞) providing such a d := t(3) satisfying (2.4) is said to be a
modulus of uniform smoothness.

Remark 2.4. The property of X being a uniformly smooth Banach space with a
modulus tX : N → N (formulated with 2−k instead of 3/d) can be axiomatized by a
universal axiom over our framework (so that the logical metatheorems guarantee
effective bounds depending additionally only on tX ) as follows (using again that
≤R is universal while <R is existential):

∀xX , yX∀k ∈ N(‖x‖X >R 1 ∧ ‖y‖X <R 2−tX (k) → ‖x̃ +X y‖ +R ‖x̃ −X y‖
≤R 2 +R 2−k ·R ‖y‖X ),

where x̃ := (1/maxR{1, ‖x‖X }) ·X x . Note that for x with ‖x‖ > 1 one has x̃ ∈ S1.
Conversely, for x ∈ S1 and x ′ := 2 · x one has ‖x ′‖ = 2 > 1 and x̃ ′ =X x . So in the
axiom above we indeed quantify over all vectors x ∈ S1.

Proposition 2.5.

(i) If X is uniformly smooth with modulus t, then X ∗ is uniformly convex with
modulus h(3) = 3/4 · t(3/2).

(ii) If X ∗ is uniformly convex with modulus h, then X is a space with a uniformly
continuous duality selection map with modulus u(d, 3) = 3/3 · h(3/d) for all
3 ∈ (0, 2] and d ≥ 1. For d < 1 one can trivially define u(d, 3) = u(1, 3) for
all 3 > 0, while, for 3 > 2, one defines u(d, 3) = u(d, 2) for all d > 0.

Proof. (i) A classical result states that X is uniformly smooth iff X ∗ is
uniformly convex and the following Lindenstrauss duality formula holds (e.g. [32,
proposition 1.e.2]): for all d > 0

rX (d) = sup
{

d3

2
− dX∗(3) : 0 ≤ 3 ≤ 2

}
, (2.5)

where

rX (d) := sup
{‖x + y‖ + ‖x − y‖

2
− 1 : x , y ∈ X , ‖x‖ = 1, ‖y‖ ≤ d

}
(2.6)

is the modulus of smoothness of X , while

dX∗(3) = inf
{
1 −

∥∥∥∥1
2
(x∗ + y∗)

∥∥∥∥ : x∗, y∗ ∈ X ∗, ‖x∗‖ ≤ 1, ‖y∗‖ ≤ 1, ‖x∗ − y∗‖ ≥ 3

}

(2.7)

is the modulus of convexity of X ∗. One can see easily that rX (d) ≤ d3/4 ≤
3/4 · t(3/2) for all d ≤ t(3/2). Apply now (2.5) with d := t(3/2) to get that
dX∗(3) ≥ (3/2)t(3/2) − rX (3/2) ≥ h(3).
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(ii) Let 3 ∈ (0, 2], d ≥ 1 and x , y ∈ Bd(0) with ‖x − y‖ ≤ u(d, 3). W.l.o.g. we
may assume that ‖y‖ ≥ ‖x‖ and also that ‖y‖ > 3/2 since otherwise ‖Jx − Jy‖ ≤
‖Jx‖ + ‖Jy‖ = ‖x‖ + ‖y‖ ≤ 3.

‖Jx + Jy‖ ≥ 1
‖y‖〈y, Jx + Jy〉 = 1

‖y‖(〈x , Jx〉 + 〈y, Jy〉 − 〈x − y, Jx〉)

≥ 1
‖y‖(‖x‖2 + ‖y‖2 − ‖x‖ · ‖x − y‖)

≥ 1
‖y‖((‖y‖ − u(d, 3))2 + ‖y‖2 − ‖x‖ · ‖x − y‖)

> 2‖y‖ − 2u(d, 3) − ‖x‖
‖y‖‖x − y‖ ≥ 2‖y‖ − 3u(d, 3).

Hence
∥∥∥∥1
2

(
1

‖y‖Jx + 1
‖y‖Jy

)∥∥∥∥ > 1 − 3u(d, 3)
2‖y‖ > 1 − 3u(d, 3)

3
= 1 − h

( 3

d

)
. By the

uniform convexity of X ∗, one gets that
∥∥∥∥ 1
‖y‖Jx − 1

‖y‖Jy
∥∥∥∥ <

3

d
and so ‖Jx − Jy‖ <

3‖y‖
d

≤ 3. �

Remark 2.6. If h(3) can be written as 3 · h̃(3), where 31 ≤ 32 → h̃(31) ≤ h̃(32),
then u can be improved to u(d, 3) := 2

3 · 3 · h̃(3/d) : observe that with this u

3u(d, 3)
2‖y‖ = 3 · h̃(3/d)

‖y‖ ≤ 3 · h̃(3/‖y‖)
‖y‖ = h

(
3

‖y‖
)

and so as before ‖(1/‖y‖)Jx − (1/‖y‖)Jy‖ < 3/‖y‖, i.e. ‖Jx − Jy‖ < 3.

It is well known that the Banach spaces Lp with 1 < p < ∞ are both uniformly
convex and uniformly smooth. A modulus of uniform convexity hp(3) is

hp(3) = 3 · h̃p(3) where h̃p(3) =

⎧⎪⎪⎨
⎪⎪⎩

(p − 1)
8

· 3, 1 < p < 2,

1
p · 2p

· 3p−1, 2 ≤ p < ∞.
(see [32, p. 63]).

Since L∗
p is isometrically isomorphic with Lp′ , where p′ = p/(p − 1) is the Hölder

conjugate of p, we get (using remark 2.6) that Lp is a space with a uniformly
continuous duality selection map with modulus u(d, 3) = (23/3) · h̃p′(3/d) for all
3 ∈ (0, 2] and d ≥ 1.

3. An application to Halpern iterations

Let X be a Banach space, C ⊆ X a convex closed subset and T : C → C be a
non-expansive mapping. The so-called Halpern iteration is defined as follows:

x0 := x , xn+1 := ln+1u + (1 − ln+1)Txn , (3.1)

where (ln)n≥1 is a sequence in [0, 1] and x , u ∈ C . We refer to Kohlenbach &
Leuştean [18] for a discussion.
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For t ∈ (0, 1) and u ∈ C , define Tu
t : C → C by Tu

t (y) = tu + (1 − t)Ty.
Because Tu

t is a contraction, we apply Banach’s contraction mapping principle
to get a unique fixed point zu

t ∈ C :

zu
t = tu + (1 − t)Tzu

t . (3.2)

The following extension of Wittmann’s result was obtained by Shioji &
Takahashi [22] (see also [33] for an earlier result in this direction).

Theorem 3.1. Let X be a Banach space whose norm is uniformly Gâteaux
differentiable, C ⊆ X be closed and convex and T : C → C be a non-expansive
mapping with Fix(T ) �= ∅. Assume that

(i) limn→∞ ln = 0,
∑∞

n=1 ln+1 diverges and
∑∞

n=1 |ln+1 − ln | converges; and
(ii) (zu

t ) converges strongly to a fixed point z of T as t ↓ 0.

Then the Halpern iteration converges strongly to z.

In this paper, we obtain an effective version of theorem 3.1 by applying proof
mining techniques to Shioji & Takahashi’s proof, which is highly ineffective.
Firstly, with the methods developed in Kohlenbach & Leuştean [18], we eliminate
the use of Banach limits from the proof. Secondly, we extract an effective
and highly uniform rate of metastability, which then is guaranteed to exist by
theorem 2.2.

Theorem 3.2. Let (X , J ) be a space with a uniformly continuous duality
selection map with modulus u, C ⊆ X be a bounded convex closed subset with
diameter dC , T : C → C a non-expansive mapping and x , u ∈ C. Let M ∈ Z+ be
such that M ≥ dC .

Assume that limn→∞ ln = 0 with rate of convergence a,
∑∞

n=1 ln+1 diverges with
rate of divergence q and

∑∞
n=1 |ln+1 − ln | converges with b being a Cauchy modulus

of sn := ∑n
i=1 |li+1 − li|.

Let tk := 1/(k + 1), k ≥ 1 and assume that (zu
tk ) is Cauchy with rate of

metastability K , i.e.

∀3 > 0 ∀g : N → N ∃K1 ≤ K (3, g) ∀i, j ∈ [K1, K1 + g(K1)](‖zu
ti − zu

tj ‖ ≤ 3). (3.3)

Then the Halpern iteration (xn) is Cauchy and, for all 3 ∈ (0, 2) and g : N → N,

∃N ≤ S(3, u, g, M , K , q, a, b) ∀m, n ∈ [N , N + g(N )] (‖xn − xm‖ ≤ 3), (3.4)

where

S(3, g, u, M , q, a, b, K ) := q+
(

G − 1 +
⌈
ln

(
12M

32

)⌉)
+ 1, with

G = max
{

c∗
k(3

2/12) |
⌈

1
30

⌉
≤ k ≤ K (30, f ∗) +

⌈
1
30

⌉}
, q+(n) = max{q(i) | i ≤ n},

d = 32

24M (4 + M )
, 30 = min{d, u(M , d)}, c∗

k(3, u) = ck

( 3

2
, u

)
,

Phil. Trans. R. Soc. A (2012)



Content of proofs via Banach limits 3459

ck(3, u) = F̃
(

u
(
M ,

3k

M

))
+ P̃k(3), 3k = 3

P̃k(3) + 1
,

P̃k(3) =
⌈

12M 2(k + 1)
3

· F

(
3

12M (k + 1)

)⌉
, f (k) = max

{⌈
2M 2

D∗
k(32/4, g)

⌉
, k

}
− k,

f ∗(k) = f
(

k +
⌈

1
30

⌉)
+

⌈
1
30

⌉
, g3,k(n) = n + g

(
n + c∗

k

( 3

3
, u

))
,

F̃(3) = q

(
b

( 3

4M

)
+ 1 +

⌈
ln

(
2M

3

)⌉)
+ 1, F(3) = max

{
F̃

( 3

2

)
, a

( 3

4M

)}
,

Qk(3) = q

(
c∗

k

( 3

3
, u

)
− 1+

⌈
ln

(
3M

3

)⌉)
+1, D∗

k(3, g) = 3

3g3,k(Qk(3)− c∗
k(3/3, u))

.

Remark 3.3. For the most important case ln := 1/(n + 1), the moduli q, a, b
are all easily computable. In fact, one can avoid the use of the exponential q by
using limn→∞

∏∞
n=1(1 − ln+1) = 0 instead of the divergence of

∑∞
n=1 ln+1 (see [18]

for details on this).

Theorem 3.4. Let ln := 1/(n + 1), n ≥ 1, tk := 1/(k + 1), k ≥ 1 and denote zu
tk

by zu
k .

(i) If K (3) is a rate of convergence of (zu
k ), then the bound in theorem 3.2 gives

a rate of convergence of (xn).
(ii) If X is an effective Hilbert space and T , u are computable, then (zu

k ) has
a computable rate of convergence iff ‖z − u‖ is computable, where z :=
limk→∞ zu

k .

Proof. (i) K (3/2) is a witness (not only a bound) of metastability for any
function g (i.e. we can take K1 := K (3/2) in (3.3)). Hence we can replace in
the bound S from theorem 3.2 K (30, f ∗) by K (30/2), which makes the bound
independent of g because g enters only via the definition of f ∗. Also note that
the maximum in the definition of G can be replaced by just taking k := K (30/2).
Then (3.4) holds with N := S for all g where now S is independent of g.

(ii) From Kohlenbach [14, p. 2789], it follows that a rate of convergence for
(zu

k ) is given by a rate of convergence of the non-decreasing and M -bounded
sequence (‖zu

k − u‖2), which is computable provided that the limit ‖z − u‖2 =
limk→∞ ‖zu

k − u‖2 is computable. Conversely, if we have a computable rate of
convergence for (zu

k ), then z and hence ‖z − u‖ is computable. �

(a) Technical lemmas

In the following, (X , J ) is a space with a uniformly continuous duality selection
map with modulus u, C ⊆ X is a bounded convex closed subset with diameter dC
and T : C → C is a non-expansive mapping. We consider M ∈ Z+ with M ≥ dC .
Thus, M ≥ ‖x − y‖ for all x , y ∈ C .

Lemma 3.5.

‖x + y‖2 ≤ ‖x‖2 + 2〈y, J (x + y)〉, x , y ∈ X . (3.5)
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Proof. Remark that ‖x + y‖2 = 〈x , J (x + y)〉 + 〈y, J (x + y)〉 ≤ ‖x‖ · ‖x + y‖ +
〈y, J (x + y)〉 ≤ 1

2(‖x‖2 + ‖x + y‖2) + 〈y, J (x + y)〉. �
Given a sequence (an)n≥1 of real numbers, we shall consider for all m, p ≥ 1

the average Cm,p(an) = (1/p)
∑m+p−1

i=m ai . As in Kohlenbach & Leuştean [18], the
use of Banach limits in Shioji–Takahashi’s proof can be eliminated in favour of
elementary lemmas on the finitary objects Cm,p.

Let x , u ∈ C , t ∈ (0, 1), (ln) be a sequence in [0, 1], (xn) be the Halpern iteration
defined by (3.1) and zu

t given by (3.2). Define for all n ≥ 1

gt
n := 2〈u − zt , J (xn − zt)〉 − tM 2. (3.6)

Let us recall that (xn) is said to be asymptotically regular if limn→∞ ‖xn −
Txn‖ = 0. A rate of convergence of (‖xn − Txn‖) towards 0 will be called a rate
of asymptotic regularity.

Proposition 3.6.

(i) For all n ≥ 1, gt
n ≤ (3M/t)‖xn − Txn‖.

(ii) If (xn) is asymptotically regular with rate of asymptotic regularity 4, then
for all 3 ∈ (0, 2)

∀p ≥ P(3, t, M , 4) ∀m ≥ 1 (Cm,p(gt
n) ≤ 3), (3.7)

where P(3, t, M , 4) = �(6M 2/t3) 4(t3/6M )�.
(iii) Assume that (xn) is asymptotically regular with rate of asymptotic regularity

4 and that limn→∞ ‖xn − xn+1‖ = 0 with rate of convergence 4̃. Then for all
3 ∈ (0, 2)

∀n ≥ j(3, u, t, M , 4, 4̃) (gt
n ≤ 3), (3.8)

where j(3, u, t, M , 4, 4̃) = 4̃(u(M , 3′/M )) + P(3/2, t, M , 4), with P given
by (ii) and 3′ = 3/(P(3/2, t, M , 4) + 1).

Proof. For simplicity, we shall denote zu
t by zt .

(i) Firstly, let us remark that xn − zt = (1 − t)(xn − Tzt) + t(xn − u) so that,
by (3.5), we get ‖xn − zt‖2 ≤ (1 − t)2‖xn − Tzt‖2 + 2t〈xn − u, J (xn − zt)〉. On the
other hand,

〈xn − u, J (xn − zt)〉 = ‖xn − zt‖2 − 〈u − zt , J (xn − zt)〉.
It follows that

‖xn − zt‖2

≤ (1 − t)2‖xn − Tzt‖2 + 2t‖xn − zt‖2 − 2t〈u − zt , J (xn − zt)〉
≤ (1 − t)2(‖xn − Txn‖ + ‖xn − zt‖)2 + 2t‖xn − zt‖2 − 2t〈u − zt , J (xn − zt)〉
≤ 3M (1 − t)2‖xn − Txn‖ + (t2 + 1)‖xn − zt‖2 − 2t〈u − zt , J (xn − zt)〉,

so that 0 ≤ (3M (1 − t)2/t)‖xn − Txn‖ + tM 2 − 2〈u − zt , J (xn − zt)〉. We get
finally that

gt
n ≤ 3M (1 − t)2

t
‖xn − Txn‖ ≤ 3M

t
‖xn − Txn‖.
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(ii) Let 3 ∈ (0, 2) and denote an := (3M/t)‖xn − Txn‖. By (i) we get that
Cm,p(gt

n) ≤ Cm,p(an) for all m ≥ 1, p ≥ 1. Furthermore, limn→∞ an = 0 with rate
of convergence 4(t3/3M ) and L := 3M 2/t is an upper bound for (an). Apply now
[18, lemma 8.5] for (an).

(iii) We have that |gt
n+1 − gt

n | = |〈u − zt , J (xn+1 − zt)〉 − 〈u − zt , J (xn − zt)〉|.
Because ‖xn+1 − zt‖, ‖xn − zt‖, ‖u − zt‖ ≤ M for all n and limn→∞ ‖(xn+1 − zt) −
(xn − zt)‖ = limn→∞ ‖xn+1 − xn‖ = 0 with rate of convergence 4̃, we obtain from
the uniform continuity of J that limn→∞ |gt

n+1 − gt
n | = 0 with rate of convergence

q(3, u, M , 4̃) = 4̃(u(M , 3/M )). Apply now (ii) and [18, lemma 8.4]. �
Lemma 3.7.

‖xn+1 − zu
t ‖2

≤ (1 − ln+1)‖xn − zu
t ‖2 + ln+1gt

n+1 + 2tM 2,

for all u, x ∈ C , t ∈ (0, 1), n ≥ 0.

⎫⎪⎬
⎪⎭ (3.9)

Proof. For simplicity, we shall denote zu
t by zt . One has xn+1 −

zt = (1 − ln+1)(Txn − zt) + ln+1(u − zt) and Txn − zt = (Txn − Tzt) + t(Tzt − u).
Applying twice (3.5), we get that

‖xn+1 − zt‖2

≤ (1 − ln+1)2‖Txn − zt‖2 + 2ln+1〈u − zt , J (xn+1 − zt)〉
≤ (1 − ln+1)2(‖xn − zt‖2 + 2t〈Tzt − u, J (Txn − zt)〉) + ln+1gt

n+1 + ln+1tM 2

≤ (1 − ln+1)(‖xn − zt‖2 + 2tM 2) + ln+1gt
n+1 + ln+1tM 2

≤ (1 − ln+1)‖xn − zt‖2 + ln+1gt
n+1 + 2tM 2. �

(b) Proof of theorem 3.2

Let 3 ∈ (0, 2) and g : N → N be fixed. By Kohlenbach & Leuştean [18,
proposition 6.1], we have that (xn) is asymptotically regular with rate of
asymptotic regularity F and limn→∞ ‖xn − xn+1‖ = 0 with rate of convergence
F̃. To make the proof easier to read, we shall omit parameters M , F, F̃, q, a, b for
all the functionals that appear in the following. For tk := 1/(k + 1), let us denote
zu
tk simply by zu

k and gtk
n by gk

n . By proposition 3.6(iii), we obtain that gk
n ≤ 3 for

each k ≥ 0 and n ≥ ck(3, u).
We apply (3.3) for 30 and f ∗ to get the existence of K1 ≤ K (30, f ∗) such

that ‖zu
k − zu

l ‖ ≤ 30 for all k, l ∈ [K1, K1 + f ∗(K1)]. Let K0 := K1 + �1/30�. Then
�1/30� ≤ K0 ≤ K (30, f ∗) + �1/30� and it is easy to see that ‖zu

k − zu
l ‖ ≤ 30 for all

k, l ∈ [K0, K0 + f (K0)].
Let P := K0 + f (K0) = max{�2M 2/D∗

K0
(32/4, g)�, K0}. Then for all n ≥ 1,

gP
n − gK0

n = (2〈u − zu
P , J (xn − zu

P)〉 − 2〈u − zu
P , J (xn − zu

K0
)〉)

+ 2〈zu
K0

− zu
P , J (xn − zu

K0
)〉 +

(
1

K0 + 1
− 1

P + 1

)
M 2

≤ 2d‖u − zu
P‖ + 2〈zu

K0
− zu

P , J (xn − zu
K0

)〉 +
(

1
K0 + 1

− 1
P + 1

)
M 2
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as ‖(xn − zu
P) − (xn − zu

K0
)‖ = ‖zu

K0
− zu

P‖ ≤ 30 ≤ u(M , d),

so we can apply (2.1)

≤ 2dM + 2‖xn − zu
K0

‖ · ‖zu
K0

− zu
P‖ + 1

K0 + 1
M 2

≤ 2dM + 2M 30 + 30M 2 ≤ dM (4 + M ) = 32

24
as K0 ≥

⌈
1
30

⌉
.

It follows that gP
n ≤ gK0

n + 32/24 ≤ 32/12 for all n ≥ cK0(3
2/24, u) = c∗

K0
(32/12, u).

Applying lemma 3.7 with t := 1/(P + 1), we get that, for all n ≥ 1,

‖xn+1 − zu
P‖2 ≤ (1 − ln+1)‖xn − zu

P‖2 + ln+1gP
n+1 + 2M 2

P + 1

≤ (1 − ln+1)‖xn − zu
P‖2 + ln+1gP

n+1 + D∗
K0

(
32

4
, g

)

because P ≥ �2M 2/D∗
K0

(32/4, g)�, hence 1/(P + 1) ≤ D∗
K0

(32/4, g)/2M 2. It follows
that we can apply Kohlenbach & Leuştean [18, lemma 5.2] with 3 := 32/4
to conclude that ‖xn − zu

P‖2 ≤ 32/4 for all n ∈ [N , N + g(N )], where N :=
QK0(3

2/4) ≤ q+(G − 1 + �ln(12M/32)�) + 1 = S(3, g, u). We conclude that

‖xn − xm‖ ≤ ‖xn − zu
P‖ + ‖xm − zu

P‖ ≤ 3 for all n, m ∈ [N , N + g(N )]. �
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