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Calea Griviţei 21, PO Box 1-462, Bucharest, Romania

(e-mail: leustean@mathematik.tu-darmstadt.de)

(Received 14 April 2008 and accepted in revised form 21 October 2008)

Abstract. We provide an explicit uniform bound on the local stability of ergodic averages
in uniformly convex Banach spaces. Our result can also be viewed as a finitary version
in the sense of Tao of the mean ergodic theorem for such spaces and so generalizes
similar results obtained for Hilbert spaces by Avigad et al [Local stability of ergodic
averages. Trans. Amer. Math. Soc. to appear] and Tao [Norm convergence of multiple
ergodic averages for commuting transformations. Ergod. Th. & Dynam. Sys. 28(2) (2008),
657–688].

1. Introduction
In the following N := {1, 2, 3, . . .}.

Let X be a Banach space and let T : X→ X be a self-mapping of X . The Cesaro mean
starting with x ∈ X is the sequence (xn)n≥1 defined by xn := (1/n)

∑n−1
i=0 T i x .

In 1939, Garrett Birkhoff proved the following generalization of von Neumann’s mean
ergodic theorem.

THEOREM 1.1. (Birkhoff [2]) Let X be a uniformly convex Banach space and T : X→ X
be a linear operator with ‖T x‖ ≤ ‖x‖ for all x ∈ X. Then for any x ∈ X, the Cesaro
mean (xn) is convergent.

In [1], Avigad et al address the issue of finding an effective rate of convergence for (xn)

in Hilbert spaces. They show that even for the separable Hilbert space L2 there are
simple computable such operators T and computable points x ∈ L2 such that there is no
computable rate of convergence of (xn). In such a situation, the best one can hope for is
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an effective bound on the following reformulation of the Cauchy property of (xn) which in
logic is called the Herbrand normal form of the latter:

∀ε > 0 ∀g : N→ N ∃n ∈ N
∀i, j ∈ [n, n + g(n)] (‖xi − x j‖< ε). (1)

It is trivial to see that (1) is implied by the Cauchy property. However, ineffectively, the
converse implication also holds.

The mathematical relevance of this reformulation of convergence was recently pointed
out by Tao [10, 11], who also uses the term ‘metastability’. In [6] a general logical
metatheorem is proved (and refined in [4]) that guarantees (given a proof of (1)) the
extractability of an effective bound 8(ε, g, b) on ‘∃n’ in (1) that is highly uniform in
the sense that it only depends on g, ε and an upper bound N 3 b ≥ ‖x‖ but otherwise is
independent of x , X and T . In fact, by a simple renorming argument one can always
make the bound dependent on b, ε only via b/ε. The proof of this metatheorem, which is
based on a recent extension and refinement of a technique from logic called (monotone)
Gödel functional interpretation, provides an algorithm for extracting an explicit such 8
from a given proof (for a book treatment of all of this see [8]). Moreover, the proof of
the metatheorem (more precisely the ‘soundness theorem’ for the monotone functional
interpretation) implies that in analyzing any other proof of some theorem that uses the
mean ergodic theorem as a lemma, one will only need to know this effective uniform bound
about the mean ergodic theorem in extracting a corresponding bound for the theorem in
question and so does not have to reanalyze some proof of the mean ergodic theorem in
such applications of the latter bound (‘modularity of functional interpretation’). For this it
is crucial that the bound on (1) holds for all functions g : N→ N.

In the context of metric fixed point theory, this feature of functional interpretation has
been used already in many applications (see [7] for a survey) and can also be seen in a
simple form internally in the proof of the main result of this paper: the proof of the mean
ergodic theorem uses the convergence of monotone bounded sequences of reals as a lemma.
In order to extract a bound on the Herbrand normal form (1) of the mean ergodic theorem
we only need from the latter a corresponding quantitative form (Lemma 3.1); however, in
order to yield a bound on (1) for g, this form needs to be applied to the more complicated
function h in Theorem 2.1.

Guided by the proof-theoretic approach sketched above, Avigad et al [1] extract such
a bound from a standard textbook proof of von Neumann’s mean ergodic theorem. A less
direct proof for the existence of a bound with the above-mentioned uniformity features
was also given by Tao [11], for a particular finitary dynamical system, as part of his proof
of a generalization of the von Neumann mean ergodic theorem to commuting families of
invertible measure-preserving transformations T1, . . . , Tl .

In this note we apply the same methodology to Birkhoff’s proof of Theorem 1.1 and
extract a bound that is even easier to state for the more general case of uniformly convex
Banach spaces. In this setting, the bound additionally depends on a given modulus of
uniform convexity for X . Despite our result being significantly more general than the
Hilbert space case treated in [1], the extraction of our bound is considerably easier and
even numerically better.
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Notation. Let h : N→ N be a number-theoretic function. Then for K ∈ N ∪ {0} =: N0 the
function hK denotes the K th iterative of h, i.e.

h0(n) := n and hK+1(n) := h(hK (n)).

2. Main results
Uniformly convex Banach spaces were introduced in 1936 by Clarkson in his seminal
paper [3].

A Banach space X is called uniformly convex if for all ε ∈ (0, 2] there exists δ ∈ (0, 1]
such that for all x, y ∈ X ,

‖x‖ ≤ 1, ‖y‖ ≤ 1 and ‖x − y‖ ≥ ε imply ‖ 1
2 (x + y)‖ ≤ 1− δ. (2)

A mapping η : (0, 2] → (0, 1] providing such a δ := η(ε) for given ε ∈ (0, 2] is called a
modulus of uniform convexity.

Since the condition (2) is empty for ε > 2 we can simply extend any such η to all strictly
positive real numbers by stipulating η′(ε) := η(min(2, ε)) if η is not already defined for
ε > 2. We make free use of this without further mention.

An example of a modulus of uniform convexity is Clarkson’s modulus of convexity [3],
defined for any Banach space X as the function δX : [0, 2] → [0, 1] given by

δX (ε)= inf
{

1−

∥∥∥∥ x + y

2

∥∥∥∥ : ‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x − y‖ ≥ ε

}
. (3)

It is easy to see that δX (0)= 0 and that δX is non-decreasing. A well-known result is the
fact that a Banach space X is uniformly convex if and only if δX (ε) > 0 for ε ∈ (0, 2]. Note
that for uniformly convex spaces X , δX is the largest modulus of uniform convexity.

The main result of our paper is a quantitative version of Birkhoff’s generalization to
uniformly convex Banach spaces of von Neumann’s mean ergodic theorem.

THEOREM 2.1. Assume that X is a uniformly convex Banach space, η is a modulus of
uniform convexity and T : X→ X is a linear operator with ‖T x‖ ≤ ‖x‖ for all x ∈ X. Let
b > 0. Then, for all x ∈ X with ‖x‖ ≤ b,

∀ε > 0 ∀g : N→ N ∃P ≤8(ε, g, b, η)

∀i, j ∈ [P, P + g(P)] (‖xi − x j‖< ε), (4)

where (xn) is the Cesaro means starting with x and

8(ε, g, b, η) := M · h̃K h(1), (5)

with

M :=

⌈
16b

ε

⌉
, γ :=

ε

16
η

(
ε

8b

)
, K :=

⌈
b

γ

⌉
,

h, h̃ : N→ N, h(n) := 2(Mn + g(Mn)), h̃(n) :=max
i≤n

h(i).

If η(ε) can be written as ε · η̃(ε) with 0< ε1 ≤ ε2→ η̃(ε1)≤ η̃(ε2), then we can replace η
by η̃ and the constant ‘16’ by ‘8’ in the definition of γ in the bound above.
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Remark 2.2. Note that our bound 8 is independent of T and depends on the space X and
the starting point x ∈ X only via the modulus of uniform convexity η and the norm upper
bound b ≥ ‖x‖. Moreover, it is easy to see that the bound depends on b and ε only via b/ε.

As an immediate consequence of our theorem we obtain a quantitative version of
von Neumann’s mean ergodic theorem.

COROLLARY 2.3. Assume that X is a Hilbert space and T : X→ X is a linear operator
with ‖T x‖ ≤ ‖x‖ for all x ∈ X. Let b > 0. Then, for all x ∈ X with ‖x‖ ≤ b,

∀ε > 0 ∀g : N→ N ∃P ≤8(ε, g, b)

∀i, j ∈ [P, P + g(P)] (‖xi − x j‖< ε), (6)

where (xn), 8 are defined as above, but with K := d512b2/ε2
e.

Proof. It is well known that as a modulus of uniform convexity of a Hilbert space X we
can take η(ε) := ε2/8 with η̃(ε) := ε/8 satisfying the requirements in the last claim of the
theorem. 2

We obtain a similar result for L p-spaces (2< p <∞), using the fact that η(ε)=
ε p/p2p is a modulus of uniform convexity for L p (see, e.g., [5]). Note that ε p/p2p

=

ε · η̃p(ε) with η̃p(ε)= ε
p−1/p2p satisfying the monotonicity condition in the theorem

above.

Remark 2.4. The bound extracted in [1] for Hilbert spaces is as follows

8(ε, g, b)= hK (1) where h(n)= n + 213ρ4g̃((n + 1)g̃(2nρ)ρ2) with

ρ =

⌈
b

ε

⌉
, K = 512ρ2 and g̃(n)=max

i≤n
(i + g(i)).

Note that the number of iterations K in both this bound and in our bound in Corollary 2.3
coincide (disregarding the different placement of ‘d·e’) whereas the function h being
iterated in our bound is much simper than that occurring in the above bound from [1].

The latter paper has an improved bound (roughly corresponding to our bound for T
being linear and nonexpansive) only in the special case where the linear operator T is an
isometry. For this case, Avigad et al [1] show that one can take h as

h(n)= n + 213ρ4g̃((n + 1)g̃(1)ρ2)

which still is somewhat more complicated than the function h in our bound for the general
case of T being nonexpansive.

From this, Avigad et al [1] obtain in the isometric case that 8(ε, g, b)= 2O(ρ2 log ρ)

(with ρ := db/εe) for linear functions g, i.e. g = O(n).

Our bound in Corollary 2.3 generalizes this complexity upper bound on 8 to T being
nonexpansive rather than being an isometry.
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3. Technical lemmas
LEMMA 3.1. Let (an)n≥0 be a sequence of non-negative real numbers. Then:
(i) ∀ε > 0 ∀g : N→ N ∃ N ≤2(b, ε, g)(aN ≤ ag(N ) + ε), where 2(b, ε, g) :=maxi≤K

gi (1), b ≥ a0, K := db/εe. Moreover, N = gi (1) for some i < K ;
(ii) ∀ε > 0 ∀g : N→ N ∃ N ≤ hK (1) for all m ≤ g(N )(aN ≤ am + ε), where h(n) :=

maxi≤n g(i) and b, K are as above.

Proof. (i) See, e.g., [9, Lemma 6.3].

(ii) Let ε > 0, g : N→ N and define

g̃ : N→ N, g̃(n) := the smallest i ≤ g(n) satisfying ai =min{a j | j ≤ g(n)}.

Then, for all n ∈ N and for all m ≤ g(n), we have that am ≥ ag̃(n). Now applying
(i) for ε and g̃, we obtain that there exists N ≤2(b, ε, g̃) such that aN ≤ ag̃(N )

+ ε ≤ am + ε for all m ≤ g(N ). Let us now define h : N→ N, h(n)=maxi≤n g(i). Then
h is non-decreasing and h(n)≥ g(n)≥ g̃(n) for all n ∈ N. It is easy to see hi (n)≥ g̃i (n)
and hi (1)≥ hi−1(1) for all i, n ∈ N. Hence, hK (1)=maxi≤K hi (1)≥maxi≤K g̃i (1)=
2(b, ε, g̃)≥ N . 2

LEMMA 3.2. Let X be a uniformly convex Banach space and η be a modulus of uniform
convexity. Define uη : (0, 2] → (0, 1], uη(ε)= ε/2 · η(ε). Then, for all ε > 0 and for all
x, y ∈ X,

‖x‖ ≤ ‖y‖ ≤ 1 and ‖x − y‖ ≥ ε imply ‖ 1
2 (x + y)‖ ≤ ‖y‖ − uη(ε). (7)

We use the notation u X for uδX , where δX is the modulus of convexity.

If η(ε) can be written as ε · η̃(ε) with 0< ε1 ≤ ε2→ η̃(ε1)≤ η̃(ε2), then we can
replace uη by ũη(ε) := ε · η̃(ε).

Proof. We have that ‖x‖/‖y‖ ≤ ‖y‖/‖y‖ = 1 and (1/‖y‖)‖x − y‖ ≥ ε/‖y‖ ≥ ε, since
‖y‖ ≤ 1. Applying the fact that η is a modulus of uniform convexity, we obtain that
(1/‖y‖)‖ 1

2 (x + y)‖ ≤ 1− η(ε), hence

‖
1
2 (x + y)‖ ≤ ‖y‖ − ‖y‖η(ε)≤ ‖y‖ − uη(ε),

since ‖y‖ ≥ 1
2 (‖x‖ + ‖y‖)≥

1
2‖x − y‖ ≥ ε/2.

The last claim follows from

‖
1
2 (x + y)‖ ≤ ‖y‖ − ‖y‖η(ε/‖y‖)= ‖y‖ − ε · η̃(ε/‖y‖)≤ ‖y‖ − ε · η̃(ε). 2

The following lemma collects some facts already stated by Birkhoff in his paper [2].
For completeness, we give the proofs here.

LEMMA 3.3. [2] Let X be a Banach space, T : X→ X be linear and (xn) be the Cesaro
mean starting with x.
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(i) For all n, k ∈ N,

xn+k =
n

n + k
xn +

1
n + k

k−1∑
i=0

T n+i x, (8)

xkn =
1
k

k−1∑
i=0

T in xn, (9)

x2kn =
1
k

k−1∑
i=0

1
2

T in(xn + T kn xn). (10)

(ii) Assume, moreover, that T satisfies ‖T x‖ ≤ ‖x‖ for all x ∈ X. Then for all n, k ∈ N,

‖xn+k − xn‖ ≤
2k‖x‖

n + k
, (11)

‖xkn − xn‖ ≤ max
i=0,...,k−1

‖T in xn − xn‖. (12)

Proof. (i) The proof of (8) is obvious; (9) and (10) are obtained by grouping terms:

xkn =
1

kn

nk−1∑
j=0

T j x =
1

kn

k−1∑
i=0

(T in x + T in+1x + · · · + T in+(n−1)x)

=
1
k

k−1∑
i=0

T in
(

1
n
(x + · · · + T n−1x)

)
=

1
k

k−1∑
i=0

T in xn

x2kn =
1

2kn

2nk−1∑
j=0

T j x =
1

2kn

k−1∑
i=0

(n−1∑
j=0

T in+ j x +
n−1∑
j=0

T (k+i)n+ j x

)

=
1
k

k−1∑
i=0

1
2

T in
(

1
n

n−1∑
j=0

T j x + T kn
(

1
n

n−1∑
j=0

T j x

))

=
1
k

k−1∑
i=0

1
2

T in(xn + T kn xn).

(ii) By assumption we have that ‖T y‖ ≤ ‖y‖ for all y ∈ X , so ‖T n x‖ ≤ ‖x‖ for all
n ∈ N and, moreover, ‖xn‖ ≤ (1/n)

∑n−1
i=0 ‖T

i x‖ ≤ ‖x‖ for all n ∈ N. So we have

‖xn+k − xn‖
(8)
=

∥∥∥∥( n

n + k
xn +

1
n + k

k−1∑
i=0

T n+i x

)
− xn

∥∥∥∥
=

∥∥∥∥ −k

n + k
xn +

1
n + k

k−1∑
i=0

T n+i x

∥∥∥∥
≤

2k

n + k
‖x‖,

‖xkn − xn‖
(9)
=

∥∥∥∥1
k

k−1∑
i=0

T in xn − xn

∥∥∥∥= ∥∥∥∥1
k

k−1∑
i=0

(T in xn − xn)

∥∥∥∥
≤

1
k

k−1∑
i=0

‖T in xn − xn‖ ≤ max
i=0,...,k−1

‖T in xn − xn‖. 2
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4. Proof of Theorem 2.1
Let x ∈ X , ε > 0 and g : N→ N be arbitrary and8, b, M, γ, K , h, h̃ as in the hypotheses.
Then M ≥ 16b/ε, that is 2b/M ≤ ε/8.

Let N be obtained by applying Lemma 3.1(ii) for the sequence (‖xn‖)n≥1 and the
above γ and h. It follows that 0< N ≤ h̃K (1) exists satisfying

for all m ≤ h(N ) (‖xN‖ ≤ ‖xm‖ + γ ). (13)

Denote, for all k ∈ N,
yk := ‖T

k N xN − xN‖. (14)

CLAIM. For all k ≤ h(N )/(2N ), we have that yk ≤ ε/8.

Proof of the claim. If yk = 0, then it is obvious, so we can assume in the following that
yk 6= 0. We obtain that for all k ∈ N,∥∥∥∥1

b
T k N xN

∥∥∥∥≤ ∥∥∥∥1
b

xN

∥∥∥∥≤ ‖x‖b ≤ 1 and

yk

b
=

∥∥∥∥1
b
(T k N xN − xN )

∥∥∥∥≤ 1
b
(‖T k N xN‖ + ‖xN‖)≤ 2

‖x‖

b
≤ 2.

Thus, applying Lemma 3.2, we obtain that∥∥∥∥ 1
2b
(T k N xN + xN )

∥∥∥∥≤ 1
b
‖xN‖ − u X

(
yk

b

)
, (15)

that is, ∥∥∥∥1
2
(T k N xN + xN )

∥∥∥∥≤ ‖xN‖ − bu X

(
yk

b

)
(16)

for all k ∈ N.
Using now (10) of Lemma 3.3, we obtain

‖x2k N‖ =

∥∥∥∥1
k

k−1∑
i=0

1
2

T i N (xN + T k N xN )

∥∥∥∥≤ 1
k

k−1∑
i=0

∥∥∥∥T i N
(

1
2
(xN + T k N xN )

)∥∥∥∥
≤

1
k

k−1∑
i=0

∥∥∥∥1
2
(xN + T k N xN )

∥∥∥∥= ∥∥∥∥1
2
(xN + T k N xN )

∥∥∥∥
≤ ‖xN‖ − bu X

(
yk

b

)
.

On the other hand, applying (13), we obtain for k ≤ h(N )/(2N )

‖x2k N‖ ≥ ‖xN‖ − γ.

Thus, we must have that

bu X

(
yk

b

)
≤ γ for all k ≤

h(N )

2N
. (17)

Assume that yk > ε/8. Then, since δX is non-decreasing and δX ≥ η, we obtain that

bu X

(
yk

b

)
= b ·

yk

2b
· δX

(
yk

b

)
>
ε

16
δX

(
ε

8b

)
≥
ε

16
η

(
ε

8b

)
= γ, (18)

which contradicts (17). Hence, we must have yk ≤ ε/8 for all k ≤ h(N )/(2N ). This
finishes the proof of the claim. 2
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Using the claim it follows that for all 0< m ≤ h(N )/(2N ) and 0≤ i < N , we obtain
that

‖xm N+i − xN‖ ≤
2b

m
+
ε

8
, (19)

since

‖xm N+i − xN‖ ≤ ‖xm N+i − xm N‖ + ‖xm N − xN‖

≤
2ib

m N + i
+ ‖xm N − xN‖ by (11) and the fact that ‖x‖ ≤ b

<
2b

m
+ ‖xm N − xN‖ since 0≤ i < N implies

2i

m N + i
<

2
m

≤
2b

m
+ max

j=0,...,m−1
y j by (12)

≤
2b

m
+
ε

8
by the above claim.

Let us define P := M N ≤8(ε, g, b, η) and take j ∈ [P, P + g(P)]. Then there are
q ∈ N0, 0≤ i < N such that j − P = Nq + i ; moreover, Nq ≤ j − P ≤ g(P)= g(M N ),
so q ≤ g(M N )/N . It follows that

‖x j − xP‖ = ‖xM N+Nq+i − xM N‖ = ‖xN (M+q)+i − xM N‖

≤ ‖xN (M+q)+i − xN‖ + ‖xM N − xN‖

<
2b

M + q
+
ε

8
+

2b

M
+
ε

8
≤
ε

4
+

4b

M
≤
ε

2
,

since M ≤ M + q ≤ M + g(M N )/N = h(N )/(2N ), so we can apply (19) with m := M
and m := M + q.

It follows immediately that for all j, l ∈ [P, P + g(P)], we have that

‖x j − xl‖ ≤ ‖x j − xP‖ + ‖xl − xP‖< ε.

The last claim of the theorem follows using the last claim in Lemma 3.2 with γ := (ε/8)
η̃(ε/8b) and ũη instead of u X . Then (18) needs to be replaced by

b · ũη

(
yk

b

)
= yk · η̃

(
yk

b

)
>
ε

8
η̃

(
ε

8b

)
= γ.

Final remark on the extraction of the bound. The only ineffective principle used in
Birkhoff’s original proof is the fact that any sequence (an) of positive real numbers has
an infimum (GLB). In our analysis we first replaced this analytical existential statement by
a purely arithmetical one, namely

(GLBar) : ∀ε > 0 ∃n ∈ N ∀m ∈ N (an ≤ am + ε).

This principle is still ineffective as there (in general) is no computable bound on ‘∃ n ∈ N’
(even for computable (an)). We then carried out (informally) a version of Gödel’s
functional interpretation by which (GLBar) is replaced in the proof by the quantitative
form provided in Lemma 3.1. For the general underlying facts from logic that guarantee
this to be possible see [8].
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