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Abstract. In this paper we give a new compactness criterion in the Lebesgue spaces
Lp((0, T ) × Ω) and use it to obtain the first term in the asymptotic behaviour of the
solutions of a nonlocal convection diffusion equation. We use previous results of Bourgain,
Brezis and Mironescu to give a new criterion in the spirit of the Aubin-Lions-Simon
Lemma.

1. Introduction

The aim of this paper is to give a new version of the classical compactness arguments in
the space Lp((0, T )× Ω), [29], one which can be adapted to nonlocal evolution equations.
We will apply this new criterion for the analysis of the long time behavior of the solutions
of the following system

(1.1)

{
ut = J ∗ u− u+G ∗ |u|q−1u− |u|q−1u, x ∈ Rd, t > 0,

u(0) = ϕ,

where J and G are smooth positive functions with mass one, J being radially symmetric.
Let us now recall a classical compactness result in the spaces Lp((0, T ), B), with B a

Banach space. Aubin-Lions-Simon Lemma [29, Th. 5] assumes that we have three Banach
spaces X ↪→ B ↪→ Y where the embedding X ↪→ B is compact. A sequence {fn}n≥1 is
relatively compact in Lp((0, T ), B) (and in C(0, T, B) if p = ∞) if we can guarantee that
{fn}n≥1 is bounded in Lp((0, T ), X) and ‖τhfn − fn‖Lp((0,T−h),Y ) → 0 as h → 0 uniformly
in n.

There are situations where we cannot bound uniformly a sequence {gn}n≥1 in a space
that is compactly embedded in Lp(Ω). Instead of that we have estimates on some quadratic
forms that vary with n, estimates that allow us to obtain the compactness of the sequence
{gn}n≥1 (see for example [4], [3] and [24, Th. 6.11, p. 126]). Let us now be more precise. We
choose 1 ≤ p <∞ and Ω ⊂ Rd a smooth domain. Function ρ : Rd → Rd is a nonnegative
smooth radial function with compact support, non identically zero, satisfying ρ(x) ≥ ρ(y)
if |x| ≤ |y|. Set ρn(x) = ndρ(nx). Let {gn}n≥1 be a bounded sequence in Lp(Ω) such that

np
∫

Ω

∫
Ω

ρn(x− y)|gn(x)− gn(y)|pdxdy ≤M.
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Then as proved in [4], [3], [24, Th. 6.11, p. 126], sequence {gn}n≥1 is relatively compact in
Lp(Ω). Our main contribution is to use this compactness argument instead of the compact
embedding X ↪→ B in the Aubin-Lions-Simon Lemma and to obtain a new compactness
criterion in Lp((0, T )× Ω).

The main compactness tool that we prove in this paper is the following one.

Theorem 1.1. Let 1 ≤ p <∞ and Ω ⊂ Rd be an open set. Let ρ : Rd → R be a nonnegative
smooth radial function with compact support, non identically zero, and ρn(x) = ndρ(nx).
Let {fn}n≥1 be a sequence of functions in Lp((0, T )× Ω) such that

(1.2)

∫ T

0

∫
Ω

|fn(t, x)|pdxdt ≤ M

and

(1.3) np
∫ T

0

∫
Ω

∫
Ω

ρn(x− y)|fn(t, x)− fn(t, y)|pdxdydt ≤M.

1. If {fn}n≥1 is weakly convergent in Lp((0, T ) × Ω) to f then f ∈ Lp((0, T ),W 1,p(Ω))
for p > 1 and f ∈ L1((0, T ), BV (Ω)) for p = 1.

2. Let p > 1. Assuming that Ω is a smooth bounded domain in Rd, ρ(x) ≥ ρ(y) if
|x| ≤ |y| and that

(1.4) ‖∂tfn‖Lp((0,T ),W−1,p(Ω)) ≤M

then {fn}n≥1 is relatively compact in Lp((0, T )× Ω).

Remark 1. Extensions to mixed type space norms of the type Lp((0, T ), Lq(Ω)) could also
be obtained by adapting the estimates in this paper. The possibility of obtaining more
general nonlocal compactness tools as in Aubin-Lions-Simon Lemma (see Theorem 2.2
below) remains to be analyzed. In (1.4) for technical reasons we considered the space
W−1,p(Ω) but we believe that the results still hold by replacing W−1,p(Ω) with any space Y
such that Lp(Ω) ↪→ Y continuously.

Once we prove Theorem 1.1 we apply it in the analysis of the asymptotic behaviour of
system (1.1). The well-posedness of this model has been analyzed in [13, Th. 1.1]. For any
q > 1 and ϕ ∈ L1(Rd)∩L∞(Rd) there exists a unique global solution u ∈ C([0,∞), L1(Rd)∩
L∞(Rd)) satisfying

‖u(t)‖L1(Rd) ≤ ‖ϕ‖L1(Rd) and ‖u(t)‖L∞(Rd) ≤ ‖ϕ‖L∞(Rd).

Since J and G have mass one the mass conservation property holds∫
Rd
u(t, x)dx =

∫
Rd
ϕ(x)dx.

Moreover as proved in [13, Th. 1.4] the solutions decay similar to the classical heat equation:
for any 1 ≤ p <∞ the following holds:

(1.5) ‖u(t)‖Lp(Rd) ≤ C(p, d, ‖ϕ‖L1(Rd), ‖ϕ‖L∞(Rd))(t+ 1)−
d
2

(1− 1
p

).
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This decay property has been obtained in [13] by the so-called Fourier Splitting method
[25, 26, 27] and in a more general setting in [15]. When p = 2 a similar argument has been
also used in [28]. As far as the authors know, the case p =∞ in (1.5) is open.

In the case when the nonlinear term is supercritical, i.e. q > 1 + 1/d, the first term
in the asymptotic behavior has been analyzed in [13]. There the main idea was that the
nonlinear part decays faster than the linear semigroup and then the first term in the long
time behavior is given by the linear semigroup. This has been already observed in [9] in
the case of the classical convection-diffusion system.

The aim of this paper is to give an answer to the critical case q = 1 + 1/N even though
we give a proof that both treats the critical and super-critical case. The subcritical case
1 < q < 1 + 1/N is still open. The method we employ is the so-called four step method
that consists in the analysis of some rescaled orbits {uλ(t)}. We refer to [32] for a review
of the method in the case of the porous medium equation.

We consider two important quantities

A =
1

2

∫
Rd
J(z)|z|2dz and B = (B1, . . . , Bd), Bj =

∫
Rd
G(z)zjdz, j = 1, . . . , d.

The main result concerning system (1.1) is the following one.

Theorem 1.2. Let 1 ≤ p < ∞. For any ϕ ∈ L1(Rd) ∩ L∞(Rd) the solution u of system
(1.1) satisfies

(1.6) lim
t→∞

t
d
2

(1− 1
p

)
∥∥∥u(t)− t−d/2fm

( x√
t

)∥∥∥
Lp(Rd)

= 0

where the profile fm is the smooth solution of the equation

−∆fm −
1

2
x · ∇fm =

d

2
fm − αB · ∇(|fm|q−1fm) in Rd,

with
∫
Rd fm = m where m is the mass of the initial data ϕ and

α =

{
1, q = 1 + 1

d
,

0, q > 1 + 1
d
.

Next, we say a few words about the above asymptotic profile

U(t, x) = t−d/2fm

( x√
t

)
.

When q > 1 + 1/d or B = 01,d the asymptotic profile is given by the heat kernel. When
q = 1 + 1

d
and B 6= 01,d, U is the unique solution of the following equation

(1.7)

{
Ut = A∆U −B · ∇(|U |q−1U), x ∈ Rd, t > 0,

U(0) = mδ0.

The well-posedness of this system has been analyzed in [10] in the one-dimensional case
and in [11] the multi-dimensional case. It has been proved in [1] that the profile fm is of
constant sign and decays exponentially to zero as |x| → ∞.
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We remark that in the case of the symmetric function G, i.e. G(z) = G(−z), the solution
of (1.1) converges to the heat kernel since in this case B vanishes. When B 6= 0 we obtain
in the limit the solutions of the viscous convection-diffusion equation. Along the paper
we will consider the case of nonnegative initial data, so nonnegative solutions of system
(1.1). The case of sign-change solutions could also be analyzed with small modifications of
the proof (see [10] for a rigorous treatment of the critical case for the convection-diffusion
equation).

In the linear case, i.e. ut = J ∗ u − u, the asymptotic behavior has been obtained in
[6] by means of Fourier analysis techniques and in [17] by scaling methods. In [17] the
scaling argument works since it is applied to the smooth part of the solution. Refined
asymptotics have been obtained in [14, 16]. We also recall here [30, 31] where a scaling
method is used for equations of the type ut = J ∗ u − u − up. There the authors obtain
barriers for W and its derivatives, W being the smooth part of the solution of the linear
equation ut = J ∗ u − u. Once these barriers are obtained the authors split the solution
of the nonlinear problem in a way that permits to obtain uniform Hölder estimates and
then compactness. The method developed here is more flexible in the sense that it uses
only energy estimates that involve the linear part of the equation and the good sign of the
nonlinearity.

In the local case, i.e. ut = ∆u + a · ∇(|u|q−1u), the same analysis has been performed
in a series of papers. In [9] the case q ≥ 1 + 1/d is treated and the results in the critical
case have been obtained by a careful space-time change of variables and using weighted
Sobolev spaces. The sub-critical case is more difficult and the one-dimensional case has
been considered in [10]. The extension to higher dimensions has been obtained in [11] and
[5].

In contrast with the analysis in [9] here we assume that the initial data belong to the space
L1(Rd)∩L∞(Rd). This assumption is necessary since even in the linear case ut = J ∗u−u
a lack of smoothing effect is present. More precisely the solutions of the linear model are
as regular as the initial data. In the case of the heat equation with initial data in L1(Rd)
the solution at any positive time belongs to any Lp(Rd) space and this type of gain of
integrability can also be proved for the nonlinear convection-diffusion [9].

We recall some similar models to those analyzed here. In [21] the author considers a
one-dimensional model that is nonlocal in the diffusive part ut = J ∗ u − u + uux with
J = e−|x| and he proves that its solutions converge to the ones of Bourger’s equation with
Dirac delta initial data. However the key tool used there, an Oleinik estimate ∂xu(t) ≤ 1/t
in D′(R) is not available in our model. The methods used here can be adapted to analyze
similar models but with nonlinearities of the type (uq)x, q ≥ 2, [23]. In these cases, entropy
conditions in the sense of Kružkov [20] should be imposed on weak solutions in order to
have a well-posed problem. This does not appear in our model since the nonlinearity does
not involve derivatives.

The models considered here could be related with the ones considered in [8] where a
scalar conservation law with a diffusion-type source of the type ut + ∇ · f(u) = ∆Psu is

analyzed. There Ps is essentially given by P̂su(ξ) ' (1 + |ξ|2)−sû(ξ) and even more general
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models are considered. However, in order to obtain the long time behavior of the solutions,
the authors assume that the initial data belong to some HN(Rd) spaces where N is large
enough. The analysis of these models by our methods remains to be considered in future
papers.

Similar nonlocal models have been introduced recently in [7] where the nonlocal convec-
tive term takes the form ∫

R
φ0(y − x)

(u(t, y) + u(t, x)

2

)2

dy

where φ0 is an odd function. The possible application of the methods introduced here
remains to be analyzed. The main difficulty in these models is even from the beginning the
global existence of the solutions. Some models when the convection is nonlocal has been
considered previously in [18], ut = uxx+G∗uq−uq, q ≥ 2 and [19] , ut = uxx+(uq−1(K∗u))x,
q = 2. The main difficulty in obtaining the asymptotic behavior for similar models where
the convection is dominant, i.e. 1 < q < 2, is to obtain an entropy estimate. If the entropy
inequality can be avoided in the critical case it seems to be crucial for the uniqueness of
the solutions of the limit equation in the sub-critical case. However, we refer to [5] where
the asymptotic behavior of systems of the type ut = ∆u − ∂y(|u|q−1u) with q subcritical
is obtained without entropy estimates but rather with a kinetic formulation that allows
to use some compactness arguments previously employed in the case of multidimensional
scalar conservation laws [22]. The possible application of these kinetic methods to the case
on nonlocal diffusion and/or convection remains to be analyzed in the future.

The paper is organized as follows. In Section 2 we review a few compactness arguments
known to be useful in the analysis of time evolution problems and prove Theorem 1.1.
Once the compactness tool is obtained, in Section 3 we prove Theorem 1.2.

2. Compactness Tools

In this section we review a few classical compactness tools and give some results that
will allow us to prove the main result of this paper.

Now we recall some results given in [29] about the characterization of compact sets in
Lp(0, T, B) where B is a Banach space and 1 ≤ p ≤ ∞.

Theorem 2.1 ([29], Th. 1). Let F ⊂ Lp(0, T, B). F is relatively compact in Lp(0, T, B)
for 1 ≤ p <∞, or C(0, T, B) for p =∞ if and only if

(1)
{∫ t2

t1

f(t)dt, f ∈ F
}

is relatively compact in B for all 0 < t1 < t2 < T .

(2) ‖τhf − f‖Lp(0,T−h,B) → 0 as h→ 0 uniformly for f ∈ F .

The following criterion is also given.

Theorem 2.2 ([29], Th. 5). Let us consider three Banach spaces X ↪→ B ↪→ Y where
X ↪→ B is compact. Assume 1 ≤ p ≤ ∞ and

i) F is bounded in Lp(0, T,X),
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ii) ‖τhf − f‖Lp(0,T−h,Y ) → 0 as h→ 0 uniformly for f ∈ F .
Then F is relatively compact in Lp(0, T, B) (and in C(0, T, B) if p =∞).

The last criterion is obtained mainly by using Theorem 2.1 and the following inequality
that follows from the fact that X is compactly embedded in B: for any ε > 0 there exists
η(ε) > 0 such that

(2.1) ‖u‖B ≤ ε‖u‖X + η(ε)‖u‖Y , ∀u ∈ X.

In the nonlocal setting we will obtain a similar inequality in Lemma 2.2.

Now we recall some compactness results that have been proved in the nonlocal context
[4], [3] and in a more general setting in [24].

Theorem 2.3 ([3], Th. 6.11, p. 126). Let 1 ≤ p < ∞ and Ω ⊂ R be an open set. Let
ρ : Rd → Rd be a nonnegative smooth radial function with compact support, non identically
zero, and ρn(x) = ndρ(nx). Let {fn}n≥1 be a bounded sequence in Lp(Ω) such that

(2.2) np
∫

Ω

∫
Ω

ρn(x− y)|fn(x)− fn(y)|pdxdy ≤M.

The following hold:
1. If {fn}n≥1 is weakly convergent in Lp(Ω) to f then f ∈ W 1,p(Ω) for p > 1 and

f ∈ BV (Ω) for p = 1. Moreover

‖∇f‖Lp(Ω) ≤ C(Ω, ρ)M.

2. Assuming that Ω is a smooth bounded domain in Rd and ρ(x) ≥ ρ(y) if |x| ≤ |y| then
{fn}n≥1 is relatively compact in Lp(Ω).

We point out that the assumption on the compact support of function ρ could be re-
moved. In fact once we have estimate (2.2) for ρ we also have this estimate for any other
compactly supported function ρ̃ with ρ̃ ≤ ρ.

The above results hold under more general assumptions on the weights {ρn}n≥1 and on
a bounded domain Ω in Rd with Lipshitz boundary. As proved in [24, Th. 1.2] we can
assume that {ρ̃n}n≥1 is a sequence of radially symmetric functions in L1(Rd) satisfying

(2.3)


ρ̃n ≥ 0, a.e. in Rd,∫
Rd ρ̃n(x) = 1, ∀ n ≥ 1,

limn→∞
∫
|x|>δ ρ̃n(x)dx = 0, ∀δ > 0

and that ∫
Ω

∫
Ω

ρ̃n(x− y)

|x− y|p
|fn(x)− fn(y)|pdxdy ≤M.

Then the results in Theorem 2.3 remain true in dimension d ≥ 2. In dimension d = 1 some
technical assumptions have to be assumed [24, Th. 1.3]. Choosing ρ̃n(x) = n(n|x|)pρ(nx)
with ρ radial and decreasing, these technical assumptions hold and we obtain the results
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in the second part of Theorem 2.3. We also recall that under the above conditions on ρ̃n
a Poincare inequality holds [24, Th. 1.1]∥∥∥fn − 1

|Ω|

∫
Ω

fn

∥∥∥
Lp(Ω)

≤ C(p,Ω, {ρn})
∫

Ω

∫
Ω

ρ̃n(x− y)

|x− y|p
|fn(x)− fn(y)|pdxdy.

In view of this inequality the boundedness of {fn}n≥1 in Lp(Ω) is guaranteed by (2.2) if we
assume that {fn}n≥1 is bounded in L1(Ω) and Ω has finite measure.

Proof of Theorem 1.1. Using the same arguments an in the proof of Theorem 2.3 (see [3,
Ch. 6, p. 128]) we obtain the results in the first part.

We now prove the second part of the theorem by following the ideas in [29] but taking into
account the particular estimate (1.3). From now on, in order to simplify the presentation,
we assume that ρ is a smooth radially symmetric function supported in the unit ball,
non-identically zero and satisfying ρ(x) ≥ ρ(y) if |x| ≥ |y|.

Step. I. Compactness in Lp((0, T ),W−1,p(Ω)). We now check the hypotheses in
Theorem 2.1. Let us choose 0 ≤ t1 < t2 ≤ T and set

gn(x) =

∫ t2

t1

fn(s, x)ds.

Estimate (1.3) gives us that

np
∫

Ω

∫
Ω

ρn(x− y)|gn(x)− gn(y)|pdxdy ≤MT p−1.

Theorem 2.3 applied to sequence {gn}n≥1 shows that there exists g ∈ W 1,p(Ω) such that,
up to a subsequence, gn → g in Lp(Ω) so in W−1,p(Ω). Estimate (1.4) shows that the
second requirement in Theorem 2.1 is also satisfied. Hence {fn}n≥1 is relatively compact
in Lp((0, T ),W−1,p(Ω)).

Step. II. Compactness in Lp((0, T ), Lploc(Ω)). Since {fn}n≥1 is bounded in Lp((0, T )×
Ω) then up to a subsequence {fn}n≥1 weakly converges to some function f in Lp((0, T )×Ω).
The first part of Theorem 1.1 guarantees that f ∈ Lp((0, T ),W 1,p(Ω)).

We now use the strong convergence in Lp((0, T ),W−1,p(Ω)) obtained in Step I, estimate
(1.3) and the fact that f ∈ Lp((0, T ),W 1,p(Ω)) to prove that up to a subsequence, {fn}n≥1

strongly convergences to f in Lp((0, T )× Ω).
To simplify the presentation we will always denote the subsequence by {fn}. Also, when

possible, we will not write all the constants in inequalities of the type f ≤ Cg using instead
f . g.

In the following we prove that for any Ω′ ⊂ Ω such that d(Ω′, ∂Ω) > 0, {fn}n≥1 is
relatively compact in Lp((0, T )× Ω′). From now on for a set O we will denote

Oρ = O + supp(ρ) = {x+ θ, x ∈ Ω, θ ∈ supp ρ}.

The following two Lemmas will be very useful in our analysis. Their proof will be given
later.
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Lemma 2.1. Let Ω be and open set of Rd. For any 1 < p < ∞ there exists a positive
constant C(ρ,Ω, p) such that the following inequality

(2.4) np
∫

Ω

∫
Ω

ρn(x− y)|u(x)− u(y)|pdxdy ≤ C(ρ,Ω, p)

∫
Ω

|∇u|p

holds for all n > 0 and u ∈ W 1,p(Ω).

Lemma 2.2. Let Ω be a bounded domain and χ ∈ C1
c (Ω). There exists a positive constant

C = C(Ω, χ, ρ, p) such that for every ε ∈ (0, 1) the following inequality

(2.5) C

∫
Ω

|χu|p ≤ εnp
∫

Ωρn

∫
Ωρn

ρn(x− y)|u(x)− u(y)|pdxdy + ε

∫
Ωρn

|u|p +
1

ε
‖u‖pW−1,p(Ω)

holds for all nε1/p & 1 and for all u ∈ Lp(Rd).

Remark 2. In the right hand side of inequality (2.5) we have ε−1 and the W−1,p(Ω)-norm.
We believe that some improvement in (2.5) can be done by allowing the norm of the last
term to be in some space Y with Lp(Ω) ↪→ Y and replacing ε−1 correspondingly. The
extension of Lemma 2.2 to general spaces Y will enlarge the class of nonlocal problems
where the scaling arguments used in this paper can be applied.

Let us fix Ω′ ⊂ Ω and choose a smooth function χ compactly supported in Ω such that
χ ≡ 1 in Ω′. We choose N0 large enough such that Ω′ρn ⊂ Ω for all n ≥ N0.

Applying Lemma 2.2 with g = fn − f and to the set Ω′ we have for any ε > 0 and
n & ε−1/p that

(2.6) ‖χg‖pLp(Ω′) . εnp
∫

Ω′ρn

∫
Ω′ρn

ρn(x− y)|g(x)− g(y)|pdxdy + ε

∫
Ω′ρn

|g|p +
1

ε
‖g‖pW−1,p(Ω).

We integrate the above inequality on the time interval [0, T ] and obtain that∫ T

0

∫
Ω′
χp|fn − f |pdxdt .εnp

∫ T

0

∫
Ω′ρn

∫
Ω′ρn

ρn(x− y)|(fn − f)(x)− (fn − f)(y)|pdxdy

+ ε

∫ T

0

∫
Ω′ρn

|fn − f |p +
1

ε

∫ T

0

‖fn − f‖pW−1,p(Ω)dt

.εnp
∫ T

0

∫
Ω′ρn

∫
Ω′ρn

ρn(x− y)|fn(x)− fn(y)|pdxdy

+ εnp
∫ T

0

∫
Ω′ρn

∫
Ω′ρn

ρn(x− y)|f(x)− f(y)|pdxdy

+ ε
(
‖fn‖pLp((0,T )×Ω′ρn ) + ‖f‖pLp((0,T )×Ω′ρn )

)
+

1

ε

∫ T

0

‖fn − f‖pW−1,p(Ω)dt.
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Since for n & max{N0, ε
−1/p} we have that Ω′ρn ⊂ Ω we use estimates (1.2), (1.3), Lemma

2.1 and the fact that f ∈ Lp((0, T ),W 1,p(Ω)) to obtain that∫ T

0

∫
Ω′
χp|fn − f |pdxdt . ε(2MT + ‖f‖pLp((0,T ),W 1,p(Ω))) +

1

ε

∫ T

0

‖fn − f‖pW−1,p(Ω)dt.

Using Step I, up to a subsequence, we obtain that for any ε ∈ (0, 1)

lim sup
n→∞

∫ T

0

∫
Ω′
|fn − f |pdxdt . ε(2MT + ‖f‖pLp((0,T ),W 1,p(Ω))).

Then fn strongly converges to f in Lp((0, T ) × Ω′). Applying a standard diagonalisation
procedure we can extract a subsequence, denoted again by {fn}n≥1, such that fn → f in
Lp((0, T ), Lploc(Ω)).

Step. III. Compactness in Lp((0, T ), Lp(Ω)). We now use the following result in [24,
Lemma 5.1, Lemma 7.2]. For a positive number r > 0 we set

Ωr := {x ∈ Ω : d(x, ∂Ω) > r}.

Lemma 2.3. Let Ω be a bounded Lipschitz domain of Rd. There exist constants r0 > 0
depending on Ω and on ρ and C1, C2 (depending on p,Ω and d) so that the following holds:
given 0 < r < r0 we can find N0 ≥ 1 such that

(2.7)

∫
Ω

|g|p ≤ C1

∫
Ωr

|g|p + C2r
pnp
∫

Ω

∫
Ω

ρn(x− y)|g(x)− g(y)|pdxdy

for every g ∈ Lp(Ω) and n ≥ N0.

We apply the above Lemma with g = fn − f and integrate the resulted inequality on
the time interval (0, T ). Thus∫ T

0

∫
Ω

|fn − f |p .
∫ T

0

∫
Ωr

|fn − f |p + rpnp
∫ T

0

∫
Ω

∫
Ω

ρn(x− y)|(fn − f)(x)− (fn − f)(y)|pdxdy

.
∫ T

0

∫
Ωr

|fn − f |p + rpnp
∫ T

0

∫
Ω

∫
Ω

ρn(x− y)|fn(x)− fn(y)|pdxdy

+ rpnp
∫ T

0

∫
Ω

∫
Ω

ρn(x− y)|f(x)− f(y)|pdxdy.

Using estimate (1.3) and Lemma 2.1 we get∫ T

0

∫
Ω

|fn − f |p .
∫ T

0

∫
Ωr

|fn − f |p + rpM + rp
∫ T

0

∫
Ω

|∇f |p.

Since fn → f in Lp((0, T ), Lploc(Ω)) we can let n→∞ and then for any r ∈ (0, r0) we have

lim sup
n→∞

∫ T

0

∫
Ω

|fn − f |pdx . rp
(
M +

∫ T

0

∫
Ω

|∇f |p
)
.

This implies that, up to a subsequence, fn → f in Lp((0, T ), Lp(Ω)) and the proof of
Theorem 1.1 is now finished. �
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Proof of Lemma 2.1. We first consider the case when Ω = Rd. By scaling, it is sufficient
to consider the case λ = 1. Since

(2.8) u(x)− u(y) =

∫ 1

0

(x− y) · ∇u(y + s(x− y))ds

we get that∫∫
R2d

ρ(x− y)|u(x)− u(y)|pdxdy ≤
∫∫

R2d

ρ(x− y)|x− y|p
∫ 1

0

|∇u(y + s(x− y))|pdsdxdy

=

∫
Rd
ρ(z)|z|p

∫
Rd
|∇u|p.

In the case of a bounded domain Ω we first extend u to Rd such that ‖∇u‖Lp(Rd) ≤
C(Ω)‖∇u‖Lp(Ω). Then we have

np
∫∫

Ω×Ω

ρn(x− y)|u(x)− u(y)|pdxdy ≤ np
∫∫

R2d

ρn(x− y)|u(x)− u(y)|pdxdy

≤ C(ρ, p)

∫
Rd
|∇u|p ≤ C(ρ,Ω, p)

∫
Ω

|∇u|p.

The proof of Lemma 2.1 is now complete. �

The rest of this subsection is devoted to the proof of Lemma 2.2. In order to give its
proof we need some auxiliary Lemmas.

Lemma 2.4. Let 1 < p <∞. There exists a positive constant C = C(ρ, p, d) such that for
every ε ∈ (0, 1) the following inequality

(2.9) C‖u‖p
Lp(Rd)

≤ ε
[
np
∫
Rd

∫
Rd
ρn(x−y)|u(x)−u(y)|pdxdy+‖u‖p

Lp(Rd)

]
+ε−1‖u‖p

W−1,p(Rd)

holds for all nε1/p & 1 and for all u ∈ Lp(Rd).

Before starting the proof of this Lemma a few comments are needed. The case p = 2 is
reduced after applying the Fourier transform to the following inequality

(2.10) C(ρ) ≤ ε
[
n2
(

1− ρ̂(
ξ

n
)
)

+ 1
]

+
1

ε(1 + |ξ|2)
, ∀ ξ ∈ Rd.

Using that ρ is a smooth radially symmetric function we obtain that its Fourier transform
decays at infinity and moreover, 1− ρ̂(ξ) ' |ξ|2 for ξ ' 0. This shows the existence of two
positive constants c1 and c2 such that

(2.11)
c1|ξ|2

1 + |ξ|2
≤ 1− ρ̂(ξ) ≤ c2|ξ|2

1 + |ξ|2
, ∀ ξ ∈ Rd.

This property implies that inequality (2.10) holds for all n & ε−1/2.
The local version of inequality (2.9) is the following one

‖u‖Lp(Rd) . ε‖u‖W 1,p(Rd) + ε−1‖u‖W−1,p(Rd)(2.12)

= ε‖(I −∆)1/2u‖Lp(Rd) + ε−1‖(I −∆)−1/2u‖Lp(Rd).
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We remark that when p 6= 2 this inequality is not a consequence of a duality argument since
the dual of W 1,p(Rd) is W−1,p′(Rd). Inequality (2.12) holds by proving that, depending on
the Fourier localization of u, its Lp-norm is controlled by one of the two terms in the right
hand side of (2.12). In fact, using classical multiplier arguments (see [12, Ch. 5]) we have

‖u‖Lp(Rd) . ε‖(I −∆)1/2u‖Lp(Rd), supp û ⊂ {ξ : |ξ| & ε−1/2}

and

‖u‖Lp(Rd) . ε‖(I −∆)−1/2u‖Lp(Rd), supp û ⊂ {ξ : |ξ| . ε−1/2}.

Proof of Lemma 2.4. Let us first make a change of variable to avoid the presence of ρn(x) =
ndρ(nx). Estimate (2.9) is equivalent to the following one

C‖u‖pLp(R) ≤ ε
[
np
∫
Rd

∫
Rd
ρ(x− y)|u(x)− u(y)|pdxdy + ‖u‖p

Lp(Rd)

]
(2.13)

+ ε−1‖(I − n2∆)−1/2u‖p
Lp(Rd)

.

We use a decomposition of u that has already been used in [15]. Let us choose η ∈ C∞c (Rd)
with ∫

Rd
η = 1 and |∇η|+ |η| . ρ.

This choice of η can be always done if ρ is positive in some open set. We write

u = v + w, v = η ∗ u, w = u− v.

We now emphasize some important properties of v and w. First of all observe that both
of them have the Lp-norm controlled by the Lp-norm of u:

(2.14) ‖v‖Lp(Rd) ≤ C(η)‖u‖Lp(Rd), ‖w‖Lp(Rd) ≤ C(η)‖u‖Lp(Rd)

and moreover

‖u‖Lp(Rd) ≤ ‖v‖Lp(Rd) + ‖w‖Lp(Rd).

Since the mass of η is one we have the following representation for w:

w(x) =

∫
Rd
η(x− y)(u(x)− u(y))dy.

Hölder’s inequality gives us that∫
Rd
|w|p ≤

(∫
Rd
|η|
)p/p′ ∫

Rd

∫
Rd
|η(x− y)||u(x)− u(y)|pdxdy(2.15)

≤ C(η, ρ)

∫
Rd

∫
Rd
ρ(x− y)|u(x)− u(y)|pdxdy.

In the case of v, since
∫
Rd ∂xjη = 0, j = 1, . . . , d, we write its gradient as

∇v = ∇η ∗ u =

∫
Rd
∇η(x− y)(u(x)− u(y))dy.
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Thus the same argument as before gives us that∫
Rd
|∇v|p ≤ C(η)

∫
Rd

∫
Rd
|∇η(x− y)||u(x)− u(y)|pdxdy(2.16)

≤ C(η, ρ)

∫
Rd

∫
Rd
ρ(x− y)|u(x)− u(y)|pdxdy.

We now prove estimate (2.13). In view of (2.15) for εnp & 1 we have that

(2.17)

∫
Rd
|w|p . εnp

∫
Rd

∫
Rd
ρ(x− y)|u(x)− u(y)|pdxdy.

We claim that v satisfies the following inequality for all ε ∈ (0, 1) and εnp & 1

‖v‖Lp(Rd) . ε‖(I − n2∆)1/2v‖Lp(Rd) + ε−1‖(I − n2∆)−1/2v‖Lp(Rd).(2.18)

Estimates (2.14), (2.16) and (2.18) imply that

‖v‖Lp(Rd) . ε
[ ∫

Rd
|v|p + np

∫
Rd
|∇v|p

]
+ ε−1‖(I − n2∆)−1/2v‖Lp(Rd)

. ε
[ ∫

Rd
|u|p + np

∫
Rd

∫
Rd
J(x− y)|u(x)− u(y)|pdxdy

]
+ ε−1‖(I − n2∆)−1/2(η ∗ u)‖Lp(Rd)

. ε
[ ∫

Rd
|u|p + np

∫
Rd

∫
Rd
J(x− y)|u(x)− u(y)|pdxdy

]
+ ε−1‖(I − n2∆)−1/2u‖Lp(Rd).

Taking into account the above estimate and estimate (2.17) for w, we obtain that (2.13)
holds. It remains to prove that (2.18) holds. Writing explicitly the terms in the right hand
side of (2.18) we reduce it to the case n = 1. In this case inequality (2.18) is exactly
estimate (2.12) in the local setting. �

Lemma 2.5. Let Ω be a smooth bounded domain of Rd and p ∈ (1,∞). For any smooth
function χ supported in Ω there exists a positive constant C(χ) such that

(2.19) ‖χu‖W−1,p(Rd) ≤ C(χ)‖u‖W−1,p(Ω).

Proof. We consider the case of the smooth function u. The general case follows by density.
By the definition of the space W−1,p(Rd) there exists a sequence ϕn ∈ W 1,p′(Rd) with
‖ϕn‖W 1,p′ (Rd) ≤ 1 such that

< χu, ϕn >W−1,p(Rd),W 1,p′ (Rd)=

∫
Rd
χuϕn → ‖χu‖W−1,p(Rd).

Since χ has the support included in Ω, we have χϕn ∈ W 1,p′

0 (Ω) and

‖χϕn‖W 1,p′
0 (Ω)

≤ ‖χ‖W 1,∞(Ω)‖ϕn‖W 1,p′ (Rd) ≤ C(χ).

Hence ∫
Rd
χuϕn =

∫
Ω

uχϕn ≤ ‖u‖W−1,p(Ω)‖χϕn‖W 1,p′
0 (Ω)

≤ C(χ)‖u‖W−1,p(Ω).

Letting n→∞ we obtain the desired estimate. �
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Lemma 2.6. Let ρ be a radial function with compact support, ρ(0) 6= 0, Ω be a domain
in Rd and 1 < p <∞. For any χ ∈ C1

c (Ω) there exists a positive constant C = C(χ, p,Ω)
such that the following inequality

Cnp
∫
Rd

∫
Rd
ρn(x− y)|(χu)(x)− (χu)(y)|pdxdy(2.20)

≤ np
∫

Ωρn

∫
Ωρn

ρn(x− y)|u(x)− u(y)|pdxdy +
(∫

Rd
ρ(z)|z|p

)∫
Ωρn

|u|p.

holds for any n > 0 and any u ∈ Lp(Rd).

Proof. Let us first observe that since ρ is radially symmetric and ρ(0) 6= 0 we have

supp ρn =
1

n
supp ρ.

For x /∈ Ωρn and y ∈ Ω we have that |y − x| > 1/n and then ρn(x− y) = 0. If y /∈ Ω then
χ(x) = χ(y) = 0. Similar things hold if we interchange x and y. Hence

np
∫
Rd

∫
Rd
ρn(x− y)|(χu)(x)− (χu)(y)|pdxdy(2.21)

= np
∫

Ωρn

∫
Ωρn

ρn(x− y)|(χu)(x)− (χu)(y)|pdxdy.

Using the following identity

(χu)(x)− (χu)(y) = χ(x)(u(x)− u(y)) + u(y)(χ(x)− χ(y))

we obtain that

np
∫

Ωρn

∫
Ωρn

ρn(x− y)|(χu)(x)− (χu)(y)|pdxdy(2.22)

. np‖χ‖pL∞(Ω)

∫
Ωρn

∫
Ωρn

ρn(x− y)|u(x)− u(y)|pdxdy

+ np
∫

Ωρn

∫
Ωρn

ρn(x− y)|u(y)|p|χ(x)− χ(y)|pdxdy.

Using identity (2.8) for χ it follows that

np
∫

Ωρn

∫
Ωρn

ρn(x− y)|u(y)|p|χ(x)− χ(y)|pdxdy(2.23)

≤ np
∫

Ωρn

∫
Ωρn

ρn(x− y)|u(y)|p|x− y|p
∫ 1

0

|(∇χ)(y + s(x− y))|pdsdxdy

≤ ‖χ‖W 1,∞(Rd)

∫
Rd
ρ(z)|z|pdz

∫
Ωρn

|u(y)|pdy.

Putting together estimates (2.21), (2.22) and (2.23) we infer the desired estimate (2.20). �
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Proof of Lemma 2.2. From Lemma 2.4 we know that for any ε ∈ (0, 1) and nε1/p & 1 the
following inequality holds for all v ∈ Lp(Rd) :

‖v‖p
Lp(Rd)

. εnp
∫
Rd

∫
Rd
ρn(x− y)|v(x)− v(y)|pdxdy +

1

ε
‖v‖p

W−1,p(Rd)
+ ε‖v‖p

Lp(Rd)
.

We now localize the above inequality by applying it to v = χu. Thus∫
Ω

|χu|p . εnp
∫
Rd

∫
Rd
ρn(x− y)|(χu)(x)− (χu)(y)|pdxdy +

1

ε
‖χu‖p

W−1,p(Rd)
+ ε‖χu‖p

Lp(Rd)
.

By Lemma 2.5 and Lemma 2.6 we deduce that∫
Ω

|χu|p ≤ εnp
∫

Ωρn

∫
Ωρn

ρn(x− y)|u(x)− u(y)|pdxdy + ε

∫
Ωρn

|u|p +
1

ε
‖u‖pW−1,p(Ω)

and the proof is finished. �

3. Proof of Theorem 1.2

Before starting the proof of Theorem 1.2 we need some preliminary results that will be
used along the proof.

3.1. Preliminaries. In the following we denote

Jλ(x) = λdJ(λx), Gλ(x) = λdG(λx), G̃(z) = G(−z), G̃λ(x) = λdG̃(λx).

In our nonlocal context the key compactness result is given by the following proposition.

Proposition 3.1. Let {fn}n≥1 be a sequence in L2((0, T ), L2(Rd)) such that

(3.1) ‖fn‖L2((0,T )×Rd) ≤M,

(3.2) n2

∫ T

0

∫
Rd

∫
Rd
Jn(x− y)(fn(x)− fn(y))2dxdy ≤M

and

(3.3) ‖∂tfn‖L2((0,T ),H−1(Rd)) ≤M.

Then there exists a function f ∈ L2((0, T ), H1(Rd)) such that, up to a subsequence,

(3.4) fn → f in L2
loc((0, T )× Rd).

Proof. We apply the first step in Theorem 1.1 to sequence {fn}n≥1 and to Ω = Rd. As-
sumptions (3.1) and (3.2) guarantee the existence of a function f ∈ L2((0, T ), H1(Rd))
such that fn weakly converges to f in L2((0, T ) × Rd). The strong convergence in (3.4)
follows from the second step of Theorem 1.1. �

The following Lemmas will be used along the proof of Theorem 1.2.
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Lemma 3.1. The following integration by parts identities hold∫
Rd

(J ∗ Φ− Φ)(x)Ψ(x)dx =

∫
Rd

Φ(x)(J ∗Ψ−Ψ)(x)dx(3.5)

= −1

2

∫
Rd

∫
Rd
J(x− y)(Φ(x)− Φ(y))(Ψ(x)−Ψ(y))dxdy

and

(3.6)

∫
Rd

(G ∗ Φ− Φ)(x)Ψ(x)dx =

∫
Rd

Φ(x)(G̃ ∗Ψ−Ψ)(x)dx.

Proof. Use Fubini’s theorem and in the first case the fact that J(−z) = J(z). �

Lemma 3.2. For any p ∈ [1,∞] there exist two positive constants C(p, J) and C(p,G)
such that

(3.7) ‖λ2(Jλ ∗ ψ − ψ)‖Lp(Rd) ≤ C(p, J)‖D2ψ‖Lp(Rd)

and

(3.8) ‖λ(G̃λ ∗ ψ − ψ)‖Lp(Rd) ≤ C(p,G)‖∇ψ‖Lp(Rd)

hold for all λ > 0 and ψ ∈ C2
c (Rd).

Proof. We treat the cases p = 1 and p = ∞ since the other cases follow by interpolation.
Taylor expansion up to the second order gives us that for any x, y ∈ Rd the following holds

ψ(y)− ψ(x) = ∇ψ(x)(y − x) +

∫ 1

0

(1− s)(y − x)D2ψ(x+ s(y − x))(y − x)tds.

After a change of variables we have

λ2(Jλ ∗ ψ − ψ)(x) = λd+2

∫
Rd
J(λ(x− y))[ψ(y)− ψ(x)]dy = λ2

∫
Rd
J(z)

(
ψ(x− z

λ
)− ψ(x)

)
dz

= λ2

∫
Rd
J(z)

[
− z

λ
· ∇ψ(x) +

1

λ2

∫ 1

0

(1− s)zD2ψ(x− sz

λ
)ztds

]
dz.

Since J is radially symmetric we have

(3.9)

∫
Rd
J(z)zj = 0 for all j = 1, . . . , d

and

(3.10)

∫
Rd
J(z)zjzk = 0 for all 1 ≤ j 6= k ≤ d.

Those identities give us that

(3.11) λ2(Jλ ∗ ψ − ψ)(x) =
d∑

j,k=1

∫ 1

0

(1− s)
∫
Rd
J(z)zjzk

∂2ψ

∂xj∂xk
(x− sz

λ
)dz ds

and then for p ∈ {1,∞} inequality (3.7) holds with C(J) = 1
2

∫
Rd J(z)|z|2dz.
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In the case of the second estimate (3.8) we use the identity:

ψ(y)− ψ(x) =

∫ 1

0

(y − x) · ∇ψ(x+ s(y − x))ds

and apply the same arguments as in the first case. �

3.2. Proof of Theorem 1.2. We consider the family {uλ(t)}λ>0 defined by

uλ(t, x) = λdu(λ2t, λx).

It follows that uλ is a solution of the following rescaled equation

(3.12)

{
(uλ)t = λ2(Jλ ∗ uλ − uλ) + λd(1−q)+2(Gλ ∗ uqλ − u

q
λ), x ∈ Rd, t > 0,

uλ(0, x) = ϕλ(x),

where ϕλ(x) = λdϕ(λx).
The proof of Theorem 1.2 is divided into four steps.

Step I. Estimates on the rescaled solutions uλ. We recall [13, Theorem 1.4] that
solution u of system (1.1) satisfies for any p ∈ [1,∞) and t > 0 the following estimate

(3.13) ‖u(t)‖Lp(Rd) ≤ C(p, ‖ϕ‖L1(Rd), ‖ϕ‖L∞(Rd))(t+ 1)−
d
2(1− 1

p).

In the sequel we will denote by C a constant that may change from line to line, may
depend on ‖ϕ‖L1(Rd) and ‖ϕ‖L∞(Rd) but it is independent of the scaling parameter λ. In
the following lemmas the constant M will depend on ‖ϕ‖L1(Rd) and ‖ϕ‖L∞(Rd). We will not
make explicit this dependence unless this is necessary.

Lemma 3.3. For any 0 < t1 < t2 < ∞ and p ∈ [1,∞) there exists a positive constant
M = M(t1, p) such that

‖uλ‖L∞((t1,t2), Lp(Rd)) ≤M

holds for all λ > 0.

Proof. Using estimate (3.13) and the fact that the rescaled solutions satisfy

‖uλ(t)‖Lp(Rd) = λd(1− 1
p)‖u(λ2t)‖Lp(Rd),

we deduce that for any p ∈ [1,∞) and t > 0 the following inequality holds for all λ > 0:

(3.14) ‖uλ(t)‖Lp(Rd) ≤ C

(
λ2

λ2t+ 1

) d
2(1− 1

p)
≤ Ct−

d
2(1− 1

p).

�

Lemma 3.4. For any 0 < t1 < t2 < ∞ there exists a positive constant M = M(t1) such
that the following inequality

λ2

∫ t2

t1

∫
Rd

∫
Rd
Jλ(x− y)(uλ(t, x)− uλ(t, y))2 dx dy dt ≤M

holds for all λ > 0.
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Proof. Multiplying (3.12) by uλ and integrating over Rd we get

1

2

d

dt
‖uλ(t)‖2

L2(Rd) =

∫
Rd
λ2(Jλ ∗ uλ − uλ)uλ(t) dx+

∫
Rd
λd(1−q)+2(Gλ ∗ uqλ − u

q
λ) uλ(t) dx.

(3.15)

Using that Gλ has mass one the last term in the above identity is negative. Indeed,∫
Rd

(Gλ∗uqλ)(t, x)uλ(t, x) dx =

∫
Rd

∫
Rd
Gλ(x− y)uqλ(t, y)uλ(t, x)dxdy

≤
∫
Rd

∫
Rd
Gλ(x− y)

( q

q + 1
uq+1
λ (t, y) +

1

q + 1
uq+1
λ (t, x)

)
dxdy =

∫
Rd
uq+1
λ (t, x)dx.

Next, integrating (3.15) over the interval (t1, t2) and using identity (3.5) we obtain

‖uλ(t2)‖2
L2(Rd) + λ2

∫ t2

t1

∫
Rd

∫
Rd
Jλ(x− y)(uλ(t, x)− uλ(t, y))2 dx dy dt ≤ ‖uλ(t1)‖2

L2(Rd).

Using inequality (3.14) in the case p = 2 we conclude that

λ2

∫ t2

t1

∫
Rd

∫
Rd
Jλ(x− y)(uλ(t, x)− uλ(t, y))2 dx dy dt ≤ Ct

− d
2

1

and the proof finishes. �

Lemma 3.5. For any 0 < t1 < t2 < ∞ there exists a positive constant M = M(t1) such
that

‖uλ,t‖L2((t1,t2), H−1(Rd)) ≤M

holds for all λ > 1.

Proof. Multiplying (3.12) by ψ ∈ C2
c (Rd), integrating over Rd and using Lemma 3.1 we get∫

Rd
uλ,t(t, x)ψ(x) dx =

∫
Rd
λ2(Jλ ∗ uλ − uλ)ψ(x) dx+

∫
Rd
λd(1−q)+2(Gλ ∗ uqλ − u

q
λ) ψ(x) dx

= −λ
2

2

∫
Rd

∫
Rd
Jλ(x− y)(ψ(x)− ψ(y))(uλ(t, x)− uλ(t, y)) dxdy

+

∫
Rd
λd(1−q)+2(G̃λ ∗ ψ − ψ) uqλ(t, x) dx,

where G̃λ(x) = Gλ(−x). Using Cauchy’s inequality, the fact that λ > 1 and q ≥ 1 + 1/d
we get∣∣∣ ∫

Rd
uλ,t(t, x)ψ(x) dx

∣∣∣ ≤ (λ2

2

∫
Rd

∫
Rd
Jλ(x− y)(ψ(x)− ψ(y))2dxdy

)1/2

×
(λ2

2

∫
Rd

∫
Rd
Jλ(x− y)(uλ(t, x)− uλ(t, y))2 dxdy

)1/2

+ ‖λ(G̃λ ∗ ψ − ψ)‖L2(Rd)

(∫
Rd
|uλ(t, x)|2q dx

)1/2

.
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Applying Lemma 2.1 to Jλ and ψ, Lemma 3.2 to G̃λ and estimate (3.14) to uλ we deduce
that

∣∣∣ ∫
Rd
uλ,t(t, x)ψ(x) dx

∣∣∣
(3.16)

. ‖ψ‖H1(Rd)

[(
λ2

∫
Rd

∫
Rd
Jλ(x− y)(uλ(t, x)− uλ(t, y))2 dxdy

)1/2
+ t−

d
4

(2q−1)
]
.

Thus

‖uλ,t(t)‖2
H−1(Rd) . λ2

∫
Rd

∫
Rd
Jλ(x− y)(uλ(t, x)− uλ(t, y))2 dxdy + t−

d
2

(2q−1).

Integrating this inequality on the time interval (t1, t2) and then applying Lemma 3.4 we
obtain the desired result. �

Step II. Compactness in L1
loc((0,∞), L1(Rd)). We first establish the compactness in

L1
loc((0,∞) × Rd). Using estimates on the tail of {uλ} we will obtain strong convergence

in L1
loc((0,∞), L1(Rd)).

Lemma 3.3 and Lemma 3.5 give us that {uλ} is uniformly bounded in L∞loc((0,∞), L2
loc(Rd))

and {∂tuλ} is uniformly bounded in L2
loc((0,∞), H−1(Ω)) for any bounded domain Ω of

Rd. Taking into account that L2(Ω) is compactly embedded in H−ε(Ω) for any ε > 0,
and H−ε(Ω) is continuously embedded in H−1(Ω) for 0 < ε < 1, by classical compact-
ness arguments ([29], Corollary 4, p. 85) we deduce that {uλ} is relatively compact in
C([t1, t2], H−ε(Ω)) for all 0 < t1 < t2 and 0 < ε < 1. Extracting a subsequence we get

uλn → U in C([t1, t2], H−ε(Ω)).

Using estimate (3.14) we obtain that for each fixed t > 0, the family {uλn(t)}n≥1 is
uniformly bounded in Lploc(Rd). Then any subsequence {uλkn (t)}n≥1 weakly convergent
should converge to U(t). Indeed, if uλkn (t) ⇀ v in Lp(Ω) then uλkn (t) ⇀ v in D′(Ω) and
hence v = U(t). This fact shows that for every t > 0 and p ∈ [1,∞) we have

uλn(t) ⇀ U(t) in Lploc(R
d).

The uniform bound in (3.14) of {uλ(t)} transfers to U(t). Hence, the limit point U
belongs to L∞loc((0,∞), Lp(Rd)) for all 1 ≤ p <∞ and moreover we get that

(3.17) ‖U(t)‖Lp(Rd) ≤ lim inf
λ→∞

‖uλ(t)‖Lp(Rd) ≤
C

t
d
2

(1− 1
p

)
, ∀ t > 0.

In the particular case p = 1, for any t > 0 we obtain that ‖U(t)‖L1(Rd) ≤ m, m being the
mass of the initial data ϕ.

Let us now prove the strong convergence in L1
loc((0,∞)×Rd). Lemma 3.3, Lemma 3.4 and

Lemma 3.5 show that for any 0 < t1 < t2 <∞ there existsM = M(t1, ‖ϕ‖L1(Rd), ‖ϕ‖L∞(Rd))
such that

(3.18) ‖uλ‖L2((t1,t2)×Rd) ≤M,
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(3.19) λ2

∫ t2

t1

∫
Rd

∫
Rd
Jλ(x− y)(uλ(t, x)− uλ(t, y))2dxdydt ≤M

and

(3.20) ‖uλ,t‖L2((t1,t2),H−1(Rd)) ≤M.

We apply Proposition 3.1 to family {uλ}λ>0 and time interval (t1, t2). We obtain that
there exists a function v ∈ L2((t1, t2), H1(Rd)) such that, up to a subsequence,

uλ → v in L2((t1, t2);L2
loc(Rd)).

The previous analysis shows that v = U . Thus U ∈ L2
loc((0,∞), H1(Rd))∩L1

loc((0,∞)×Rd)
and

uλ → U in L1
loc((0,∞)× Rd).

We now prove that in fact uλ strongly converges to U in L1
loc((0,∞), L1(Rd)). Using a

standard diagonal argument the compactness in L1
loc((0,∞), L1(Rd)) is reduced to the fact

that for any 0 < t1 < t2 <∞ the following holds

(3.21)

∫ t2

t1

‖uλ(t)‖L1(|x|>R)dt→ 0 as R→∞, uniformly in λ ≥ 1.

This follows from the Lemma below since the initial data ϕ belongs to L1(Rd).

Lemma 3.6. There exists a constant C = C(J, ‖ϕ‖L1(Rd), ‖ϕ‖L∞(Rd)) such that the follow-
ing inequality

(3.22)

∫
|x|>2R

uλ(t, x)dx ≤
∫
|x|>R

ϕ(x)dx+ C(
t

R2
+
t1/2

R
)

holds for any t > 0 and R > 0, uniformly on λ ≥ 1.

Proof. Let ψ ∈ C∞(Rd) be such that 0 ≤ ψ ≤ 1 and satisfies ψ(x) ≡ 0 for |x| < 1 and
ψ(x) ≡ 1 for |x| > 2. We put ψR(x) = ψ(x/R). We multiply equation (3.12) by ψR and
integrating by parts we obtain∫
Rd
uλ(t, x)ψR(x)dx−

∫
Rd
ϕλ(x)ψR(x)dx =λ2

∫ t

0

∫
Rd
uλ(s, x)(Jλ ∗ ψR − ψR)dxds

+ λd(1−q)+2

∫ t

0

∫
Rd
uqλ(s, x)(G̃λ ∗ ψR − ψR)(x)dxds.

We now use Lemma 3.2 with p =∞, the fact that

‖D2(ψR)‖L∞(Rd) = R−2‖D2ψ‖L∞(Rd) and ‖∇ψR‖L∞(Rd) = R−1‖∇ψ‖L∞(Rd)
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and the conservation of the L1(Rd)-norm of uλ to find that

∫
Rd
uλ(t, x)ψR(x)dx ≤

∫
Rd
ϕλ(x)ψR(x)dx+ C(J)R−2‖D2ψ‖L∞(Rd)

∫ t

0

∫
Rd
uλ(s, x)dxds

(3.23)

+ λd(1−q)+1R−1‖∇ψ‖L∞(Rd)

∫ t

0

∫
Rd
uqλ(s, x)dxds

≤
∫
|x|>R

ϕλ(x)dx+ C(J)R−2‖D2ψ‖L∞(Rd)t‖ϕ‖L1(Rd)

+ λd(1−q)+1R−1‖∇ψ‖L∞(Rd)

∫ t

0

∫
Rd
uqλ(s, x)dxds.

To estimate the last term in the above inequality we use the decay of uλ as given by (3.14)
and obtain that

λd(1−q)+1

∫ t

0

∫
Rd
uqλ(s, x)dxds . λd(1−q)+1

∫ t

0

λd(q−1)ds

(1 + λ2s)
d(q−1)

2

= λ−1

∫ tλ2

0

ds

(1 + s)
d(q−1)

2

.

Since for any q ≥ 1 + 1
d

lim
x→0

x−1

∫ x2

0

ds

(1 + s)
d(q−1)

2

= 0

and

lim
x→∞

x−1

∫ x2

0

ds

(1 + s)
d(q−1)

2

= lim
x→∞

2x

(1 + x2)
d(q−1)

2

=

{
0, q > 1 + 1

d
,

<∞, q = 1 + 1
d
,

we find that

λd(1−q)+1

∫ t

0

∫
Rd
uqλ(s, x)dxds . Ct1/2.

Going back to (3.23), using that λ > 1 and ψ(x) ≡ 1 for |x| > 2 we get∫
|x|>2R

uλ(t, x)dx ≤
∫
|x|>λR

ϕ(x)dx+ C(
t

R2
+
t1/2

R
) ≤

∫
|x|>R

ϕ(x)dx+ C(
t

R2
+
t1/2

R
)

and the proof of the Lemma is finished. �

Lemma 3.6 shows that uλ → U in L1
loc((0,∞), L1(Rd)). This result also shows that for

a.e. t > 0 we have

(3.24) ‖uλ(t)− U(t)‖L1(Rd) → 0 as λ→∞.

This fact will be used in Step IV to obtain the main convergence result of this paper.

Step III. Passing to the limit. Using the results obtained in the previous step we
can pass to the weak limit in the equation involving uλ. Let us choose 0 < τ < t. For any
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test function ψ ∈ C∞c (Rd) we multiply equation (3.12) by ψ and we integrate on (τ, t)×Rd.
We get∫

Rd
uλ(t, x)ψ(x)dx−

∫
Rd
uλ(τ, x)ψ(x)dx

=

∫ t

τ

∫
Rd
λ2(Jλ ∗ uλ − uλ)ψ(x)dxds+ λd(1−q)+2

∫ t

τ

∫
Rd

(Gλ ∗ uqλ − u
q
λ)ψ(x)dxds

=

∫ t

τ

∫
Rd
λ2(Jλ ∗ ψ − ψ)uλ(s, x)dxds+ λd(1−q)+2

∫ t

τ

∫
Rd

(G̃λ ∗ ψ − ψ)uqλ(s, x)dxds.

First of all observe that since for any t > 0, uλ(t) ⇀ U(t) in Lploc(Rd), 1 ≤ p <∞, we have∫
Rd
uλ(t, x)ψ(x)dx−

∫
Rd
uλ(τ, x)ψ(x)dx→

∫
Rd
U(t, x)ψ(x)dx−

∫
Rd
U(τ, x)ψ(x)dx.

Using identity (3.11) and the Lebesgue dominated convergence theorem we obtain that

λ2(Jλ ∗ ψ − ψ)(x)→ 1

2

n∑
i,j=1

∫
Rd
J(z)zizj

∂2ψ

∂xi∂xj
= A∆ψ(x),

where

A =
1

2

∫
Rd
J(z)|z|2dz.

Since uλ → U in L1((τ, t)× Rd) we obtain by using the Lebesgue theorem that

∫ t

τ

∫
Rd
λ2(Jλ ∗ ψ − ψ)uλ(s, x)dxds→ A

∫ t

τ

∫
Rd

∆ψU(s, x)dxds.

For the term involving G̃ we prove that
(3.25)

λd(1−q)+2

∫ t

τ

∫
Rd

(G̃λ ∗ψ−ψ)uqλ(s, x)dxds→

{
0, q > 1 + 1

d
,∫ t

τ

∫
Rd B · ∇ψ(x)U q(s, x)dxds, q = 1 + 1

d
,

where

B = (B1, . . . , Bd), Bj =

∫
Rd
G(z)zjdz.
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When q > 1 + 1/d we use Lemma 3.2 for G̃ and estimate (3.14) on the Lp-norms of uλ to
get

λd(1−q)+2

∫ t

τ

∫
Rd
|G̃λ ∗ ψ − ψ)(x)|uqλ(s, x)dxds

≤ λd(1−q)+1‖λ(G̃λ ∗ ψ − ψ)‖L∞(Rd)

∫ t

τ

∫
Rd
uqλ(s, x)dxds

. C(G)‖∇ψ‖L∞(Rd) λ

∫ t

τ

ds

(1 + λ2s)
d
2

(q−1)

. C(G)‖∇ψ‖L∞(Rd) λ
1−d(q−1) → 0 as λ→∞.

In the case q = 1 + 1/d we prove that

(3.26)

∫ t

τ

∫
Rd
λ(G̃λ ∗ ψ − ψ)(x)uqλ(s, x)dxds→

∫ t

τ

∫
Rd
B · ∇ψ(x)U q(s, x)dxds.

Observe that

λ(G̃λ ∗ ψ − ψ)(x) = λ

∫
Rd
G̃(z)

(
ψ(x− z

λ
)− ψ(x)

)
dz = λ

∫
Rd
G(z)

(
ψ(x+

z

λ
)− ψ(x)

)
dz

= λ

∫
Rd
G(z)

[z
λ
∇ψ(x) +

1

λ2

∫ 1

0

(1− s)zD2ψ(x+
sz

λ
)ztds

]
dz.

Hence

(3.27) |λ(G̃λ ∗ ψ − ψ)(x)−B · ∇ψ(x)| ≤ λ−1‖D2ψ‖L∞(Rd).

For any p ∈ [1,∞) we have that

‖uλ(s)‖Lp(Rd) ≤ C(p, τ), ∀ s ≥ τ.

Thus, up to a subsequence,

uqλ ⇀ χ in L∞((τ, t), Lp(Rd)).

Since uλ → U a.e. on (τ, t) × Rd we conclude that χ = U q. Using now (3.27) we obtain
that (3.26) holds.

All the above convergences show that U satisfies∫
Rd
U(t, x)ψ(x)dx−

∫
Rd
U(τ, x)ψ(x)dx

= A

∫ t

τ

∫
Rd
U(s, x)∆ψ(x)dxds+ α

∫ t

τ

∫
Rd
U q(s, x)B · ∇ψ(x)dxds,

where α = 1 if q = 1 + 1/d and α = 0 for q > 1 + 1/d. Thus, when q > 1 + 1/d or B 6= 01,d,
U is a distributional solution of the heat equation. When q = 1 + 1/d and B 6= 01,d, U is
a distributional solution of the equation: ut = A∆u−B · ∇(uq).
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Step IV. Identification of the initial data. Let us choose τ = 0 in the previous
step. Then for any ψ ∈ C2

c (Rd) we get∣∣∣ ∫
Rd
uλ(t, x)ψ(x)dx−

∫
Rd
uλ(0, x)ψ(x)dx

∣∣∣
≤ ‖D2ψ‖L∞(Rd)

∫ t

0

∫
Rd
uλ(s, x)dxds+ λd(1−q)+1‖Dψ‖L∞(Rd)

∫ t

0

∫
Rd
uqλ(s, x)dxds

. tm‖D2ψ‖L∞(Rd) + t1/2‖Dψ‖L∞(Rd)(tλ
2)−1/2

∫ tλ2

0

ds

(1 + s)
d(q−1)

2

. t‖D2ψ‖L∞(Rd) + t1/2‖Dψ‖L∞(Rd).

Letting λ→∞ we get∣∣∣ ∫
Rd
U(t, x)ψ(x)dx−mψ(0)

∣∣∣ . t‖D2ψ‖L∞(Rd) + t1/2‖Dψ‖L∞(Rd),

where m is the mass of the initial data ϕ. This show that for any ψ ∈ C2
c (Rd)

lim
t↓0

∫
Rd
U(t, x)ψ(x)dx = mψ(0).

We want to show that this is true for any smooth bounded function φ and then U(t)→ mδ0

in the weak sense of nonnegative measures in Rd.
Let us now choose ψ a bounded smooth function. For any ε > 0 we choose ψε ∈ C2

c (Rd)
such that ‖ψ − ψε‖L∞(Rd) ≤ ε. Then∣∣∣ ∫

Rd
U(t, x)ψ(x) dx−mψ(0)

∣∣∣
≤
∣∣∣ ∫

Rd
U(t, x)(ψ(x)− ψε(x))dx

∣∣∣+m|ψ(0)− ψε(0)|+
∣∣∣ ∫

Rd
U(t, x)ψε(x)dx−mψε(0)

∣∣∣
≤ 2εm+ ‖ψε‖W 2,∞(Rd)(t+ t1/2).

Thus there exists t0 = t0(ε) such that for all t ∈ (0, t0) the following holds∣∣∣ ∫
Rd
U(t, x)ψ(x) dx−mψ(0)

∣∣∣ ≤ 4εm.

This shows that U(t) goes to mδ0 as t→ 0 in the sense of measures.
In conclusion the limit point U satisfies U ∈ L∞loc((0,∞), L1(Rd))∩L2

loc((0,∞), H1(Rd)).
When q > 1 + 1/d or B = 01,d, U is a solution of the heat equation with mδ0 initial data.
When q = 1 + 1/d and B 6= 01,d, U is a solution of the equation:

(3.28)

{
ut = A∆u−B · ∇uq, x ∈ Rd, t > 0,

u(0) = mδ0.
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Since for any τ > 0 we have U(τ) ∈ L1(Rd) classical results on parabolic equations show
that for any τ > 0

U ∈ C((τ,∞), L1(Rd)) ∩ L∞((τ,∞)× Rd).

Using the fact that the heat system as well as system (3.28) have a unique solution (see [10],
[11] for complete details) then the full sequence {uλ}, not only a subsequence, converges
to U .

Step V. The asymptotic behavior. We recall that from Step II we have

‖uλ(1)− U(1)‖L1(Rd) → 0 as λ→∞.

After setting t = λ2 and using the self-similar form of U(t, x)

U(t, x) = t−d/2U(1, xt−1/2) = t−d/2fm(xt−1/2)

we obtain

lim
t→∞
‖u(t)− U(t)‖L1(Rd) = 0.

This is exactly (1.6) in the case p = 1. The general case, 1 ≤ p <∞, follows immediately
since

‖u(t)− U(t)‖Lp(Rd) . ‖u(t)− U(t)‖
1

2p−1

L1(Rd)

(
‖u(t)‖L2p(Rd) + ‖U(t)‖L2p(Rd)

) 2p−2
2p−1

≤ ‖u(t)− U(t)‖
1

2p−1

L1(Rd)
t−

d
2

(1− 1
p

) = o(t−
d
2

(1− 1
p

)).

The proof of Theorem 1.2 is now completed.
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