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Abstract

In this thesis we present our recent works on the analysis of qualitative properties of some partial
differential equations or integral equations as well as their numerical approximations with emphasis
on their well-posedness, asymptotic behaviour, inverse problems and numerical approximation.

The subjects we analyze are grouped in three main thematic parts which are detailed below.
The first one, contained in Chapters 1 and 2, is the study of some properties for the heat and
Schrödinger equations on trees. The second one is the analysis of dispersive properties for dis-
crete Schrödinger equations and of obtaining convergence rates for some numerical schemes for the
nonlinear model. It contains Chapters 3, 4 and 5. The third part is the study of the asymptotic
behaviour of some integral equations. It contains Chapter 6 and Chapter 7.

We resume now the main subjects that we address in the three parts of this thesis.

1. Equations on networks. In Chapter 1 we consider the linear Schrödinger (LSE) equation
on a network formed by a tree with the last generation of edges formed by infinite strips. We
prove dispersive estimates for the linear problem, which in turn are useful for solving the nonlinear
Schrödinger equation (NSE). We first consider the case of a regular tree. By using totally different
techniques, in a joint work with Valeria Banica, we extend the results to the general case.

In Chapter 2 we establish global Carleman estimates for the heat and Schrödinger equations
on a network. The heat equation is considered on a general tree and the Schrödinger equation
on a star-shaped tree. The Carleman inequalities are used to prove the Lipschitz stability for
an inverse problem consisting in retrieving a stationary potential in the heat (resp. Schrödinger)
equation from boundary measurements.

Chapter 1 is based on [55] and [8]. Chapter 2 is based on [57].

2. Discrete equations and numerical approximation. The second part of this thesis
contains three works. The first one is a joint work with my former master student Diana Stan
(currently doing her PhD thesis in Madrid). The second one is a recent work with Enrique Zuazua.
The third one presents a splitting method for the nonlinear Schrödinger equation.

In Chapter 3 we prove dispersive estimates for the system formed by two coupled discrete
Schrödinger equations. We obtain estimates for the resolvent of the discrete operator and prove
that it satisfies the limiting absorption principle. The decay of the solutions is proved by using
classical and new results on oscillatory integrals. The results in this Chapter are contained in [61].

Chapter 4 contains the results in [66] and is devoted to the analysis of the convergence rates
of several numerical approximation schemes for linear and nonlinear Schrödinger equations on the
real line. Recently, in [65] we introduced viscous and two-grid numerical approximation schemes
that mimic at the discrete level the so-called Strichartz dispersive estimates of the continuous
Schrödinger equation. This allows one to guarantee the convergence of numerical approximations
for initial data in L2(R), a fact that can not be proved in the nonlinear setting for standard
conservative schemes unless more regularity of the initial data is assumed. We obtain explicit
convergence rates and prove that dispersive schemes fulfilling the Strichartz estimates are better
behaved for Hs(R) data if 0 < s < 1/2. Indeed, while dispersive schemes ensure a polynomial
convergence rate, non-dispersive ones only yield logarithmic ones.
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In Chapter 5 we introduce a splitting method for the semilinear Schrödinger equation and
prove its convergence for those nonlinearities which can be handled by the classical well-posedness
L2(Rd)-theory. More precisely, we prove that the scheme is of first order in the L2(Rd)-norm for
H2(Rd)-initial data. The results of this chapter are included in [56].

3. Nonlocal evolution equations In the last part of this thesis we describe two works in
collaboration with Julio D. Rossi. It mainly contains the results from [58] and [60].

In Chapter 6 we study a nonlocal equation that takes into account convective and diffusive
effects, ut = J ∗ u − u + G ∗ (f(u)) − f(u) in Rd, with J radially symmetric. First, we prove
existence, uniqueness and continuous dependence with respect to the initial condition of solutions.
This problem is the nonlocal analogous to the usual local convection-diffusion equation ut =
∆u + b · ∇(f(u)). In fact, we prove that solutions of the nonlocal equation converge to the
solution of the usual convection-diffusion equation when we rescale the convolution kernels J
and G appropriately. Finally we study the asymptotic behaviour of solutions as t → ∞ when
f(u) = |u|q−1u with q > 1. We find the decay rate and the first order term in the asymptotic
regime.

In Chapter 7 we study the applicability of energy methods to obtain bounds for the asymptotic
decay of solutions to nonlocal diffusion problems. With these energy methods we can deal with
nonlocal problems that do not necessarily involve a convolution. For example, we will consider
equations like,

ut(x, t) =

∫
Rd
J(x, y)(u(y, t)− u(x, t)) dy + f(u)(x, t),

and a nonlocal analogous to the p−Laplacian,

ut(x, t) =

∫
Rd
J(x, y)|u(y, t)− u(x, t)|p−2(u(y, t)− u(x, t)) dy.

The energy method developed here allows us to obtain decay rates of the form

‖u(·, t)‖Lq(Rd) ≤ C t−α

for some explicit exponent α that depends on parameters, d, q and p, according to the problem
under consideration.

The last chapter of the thesis presents some ideas regarding the study of some open problems
starting from the research presented in this thesis. Some further plans regarding the evolution of
the professional and scientific career of the candidate will also be presented.
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Rezumat

În această teză prezentăm o analiză recentă a anumitor proprietaţi calitative ale unor ecuaţii
integrale şi cu derivate parţiale. Ne concentrăm pe rezultate de existenţă şi unicitate, comporta-
ment asimptotic, probleme inverse şi aproximări numerice.

Subiectele analizate se grupează ı̂n trei mari teme ce le vom detalia ı̂n continuare. Prima temă
este prezentată ı̂n Capitolul 1 şi Capitolul 2 şi se referă la studiul anumitor proprietăţi ale ecuaţiei
căldurii şi ale ecuaţiei Schrödinger pe reţele. A doua temă analizează proprietăţile dispersive ale
unor ecuaţii discrete de tip Schrödinger şi analizează ratele de convergenţă ale anumitor scheme
numerice pentru modele neliniare. Rezultatele sunt conţinute ı̂n Capitolele 3, 4 şi 5. A treia temă
este studiul proprietăţilor asimptotice pentru anumite ecuaţii integrale. Această temă conţine
Capitolul 6 şi Capitolul 7.

Vom rezuma subiectele tratate ı̂n fiecare din cele trei părţi ale acestei teze.

1. Ecuaţii pe reţele. În Capitolul 1 considerăm ecuaţia Schrödinger pe o reţea formată dintr-
un arbore a cărui ultimă generaţie de laturi sunt semidrepte infinite. Demonstrăm proprietăţi
dispersive pentru problema liniară ce vor fi folosite pentru a rezolva ecuaţia Schrödinger neliniară.
Considerăm mai intâi cazul unui arbore regular. Folosind o tehnică total diferită, ı̂n colaborare
cu Valeria Bănică, extindem acest rezultat la cazul unui arbore general.

În Capitolul 2 stabilim estimări Carleman globale pentru ecuaţia căldurii şi ecuaţia Schrödinger
pe o reţea. Pentru ecuaţia căldurii considerăm un arbore general ı̂n timp ce pentru ecuaţia
Schrödinger un arbore stelar. Estimările obţinute sunt folosite apoi pentru a obţine stabilitatea
Lipschitz pentru o problemă inversă ce constă ı̂n determinarea unui potenţial din măsurători pe
frontieră.

Capitolul 1 se bazează pe rezultatele din [55] şi [8] iar Capitolul 2 se bazează pe [57].

2. Ecuaţii discrete şi aproximare numerică. A doua parte a acestei teze conţine trei
lucrări. Prima este o colaborare cu fosta mea studentă masterandă Diana Stan. A doua conţine
un articol recent cu Enrique Zuazua. Cea de-a treia parte prezintă o metodă de splitting pentru
ecuaţia Schrödinger neliniară.

În Capitolul 3 demonstrăm proprietăţi dispersive pentru un sistem format din două ecuaţii
Schrödinger discrete. Obţinem estimări pentru rezolventa operatorului discret şi demonstrăm că
satisface principiul absorbţiei limită. Descreşterea soluţiilor este obţinută folosind rezultate clasice
şi noi de integrale oscilatorii. Rezultatele sunt conţinute ı̂n [61].

Capitolul 4 conţine rezultatele din [66] şi este dedicat analizei ratelor de convergenţă pentru
câteva scheme de aproximare numerică pentru ecuaţia Schrödinger liniară şi neliniară. Recent, ı̂n
[65] au fost introduse două scheme numerice, una vâscoasă şi alta two-grid, ce simulează la nivel
discret proprietăţile Strichartz ale ecuaţiei continue. Acest lucru garantează convergenţa acestor
aproximări numerice pentru date iniţiale ı̂n L2(R) fără a presupune mai multă regularitate asupra
datelor iniţiale. Obţinem rate de convergenţă explicite şi demonstrăm că schemele ce satisfac
proprietăţi dispersive se comportă mai bine ı̂n cazul unor date iniţiale mai puţin regulate, de
exemplu ı̂n Hs(R) cu 0 < s < 1/2. Mai mult decât atât, aceste scheme garantează rate de
convergenţă polinomiale ı̂n timp ce schemele ne-dispersive pot da numai rate de tip logaritmic.
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În Capitolul 5 introducem o metodă de descopunere, splitting, pentru ecuaţia Schrödinger
semi-liniară şi demonstrăm convergenţa acesteia pentru acele neliniarităţi ce pot fi tratate folosind
teoria clasică de bine punere pentru date iniţiale ı̂n L2(Rd). Mai precis, demonstrăm că schema
este de ordin unu ı̂n norma L2(Rd) pentru date iniţiale ı̂n H2(Rd). Rezultatele acestui capitol
sunt conţinute ı̂n [56].

3. Ecuaţii de evoluţie nelocale. În această parte a tezei sunt descrise două rezultate ı̂n
colaborare cu Julio Rossi. Se prezintă ı̂n pricipal rezultatele din [58] şi [60].

În Capitolul 6 studiem o ecuaţie nelocală ce conţine efecte convective şi difuzive, ut = J ∗
u − u + G ∗ (f(u)) − f(u) ı̂n Rd, unde J are simetrie radială. Demonstrăm mai ı̂ntâi existenţa,
unicitatea şi dependenţa continuă a soluţiilor ı̂n raport cu datele iniţiale. Această problemă este
analogul nelocal a mai cunoscutei ecuaţii de convecţie-difuzie ut = ∆u+ b · ∇(f(u)). Mai precis,
demonstrăm că soluţiile problemei nelocale converg la soluţiile problemei clasice de convectie-
difuzie atunci când nucleele de convoluţie J şi G sunt rescalate corespunzător. În cele din urmă
studiem comportamentul asimptotic al soluţiilor atunci când t→∞ şi f(u) = |u|q−1u cu q > 1.

În Capitolul 7 studiem aplicabilitatea unor metode energetice pentru a obţine estimări ale
comportamentului asimptotic pentru probleme de difuzie nelocale. Cu aceste metode energetice
putem trata probleme nelocale ce nu conţin termeni ı̂n forma de convoluţie. Exemple de acest tip
ce le vom analiza sunt următoarele:

ut(x, t) =

∫
Rd
J(x, y)(u(y, t)− u(x, t)) dy + f(u)(x, t),

şi un analog nelocal al p-laplacianului

ut(x, t) =

∫
Rd
J(x, y)|u(y, t)− u(x, t)|p−2(u(y, t)− u(x, t)) dy.

Metodele energetice dezvoltate ı̂n acest capitol ne permit să obţinem rate de descreştere de forma

‖u(·, t)‖Lq(Rd) ≤ C t−α

pentru anumiţi exponenţi expliciţi α ce depind de parametrii d, q şi p, ce apar ı̂n problemele
analizate.

Ultimul capitol al tezei prezintă câteva idei cu privire la studiul unor probleme deschise for-
mulate plecând de la cercetările din această teză. Sunt prezentate de asemenea câteva planuri
privind evoluţia profesională a candidatului.

Ianuarie 2012
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Equations on networks
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Chapter 1

Dispersion for the Schrödinger
equation on networks

In this chapter we consider the Schrödinger equation on a network formed by a tree with the last
generation of edges formed by infinite strips. We first consider the case of regular trees and show
how it could be reduced to solving an equation with finitely many piecewise constant coefficients
on the whole real line. Next we consider the general case and use a totally different method.
We give an explicit description of the solution of the linear Schrödinger equation with constant
coefficients. This allows us to prove dispersive estimates, which in turn are useful for solving the
nonlinear Schrödinger equation. The last method also extends to the laminar case of positive
step-function coefficients having a finite number of discontinuities [8].

1.1 Generalities on networks

In this section we present some generalities about metric graphs and introduce the Laplace operator
on such structure. Let Γ = (V,E) be a graph where V is a set of vertices and E the set of edges.
For each v ∈ V we denote Ev = {e ∈ E : v ∈ e}. We assume that Γ is a connected finite graph, i.e.
the degree of each vertex v of Γ is finite: d(v) = |Ev| < ∞ and |V | < ∞. The edges could be of
finite length and then their ends are vertices of V or they have infinite length and then we assume
that each infinite edge is a ray with a single vertex belonging to V (see [82] for more details on
graphs with infinite edges).

We fix an orientation of Γ and for each oriented edge e, we denote by I(e) the initial vertex
and by T (e) the terminal one. Of course in the case of infinite edges we have only initial vertices.

We identify every edge e of Γ with an interval Ie, where Ie = [0, le] if the edge is finite and
Ie = [0,∞) if the edge is infinite. This identification introduces a coordinate xe along the edge e.
In this way Γ is a metric space and is often named metric graph [82].

Let v be a vertex of V and e be an edge in Ev. We set for finite edges e

j(v, e) =

 0 if v = I(e),

le if v = T (e)

and

j(v, e) = 0, if v = I(e)

for infinite edges.

We identify any function u on Γ with a collection {ue}e∈E of functions ue defined on the edges
e of Γ. Each ue can be considered as a function on the interval Ie. In fact, we use the same
notation ue for both the function on the edge e and the function on the interval Ie identified with

3



4 CHAPTER 1. DISPERSION FOR THE LSE ON NETWORKS

e. For a function u : Γ → C, u = {ue}e∈E , we denote by f(u) : Γ → C the family {f(ue)}e∈E ,
where f(ue) : e→ C.

A function u = {ue}e∈E it is continuous if and only if ue is continuous on Ie for every e ∈ E,
and moreover, is continuous at the vertices of Γ:

ue(j(v, e)) = ue
′
(j(v, e′)), ∀ e, e′ ∈ Ev.

The space Lp(Γ), 1 ≤ p <∞ consists of all functions u = {ue}e∈E on Γ that belong to Lp(Ie)
for each edge e ∈ E and

‖u‖pLp(Γ) =
∑
e∈E
‖ue‖pLp(Ie)

<∞.

Similarly, the space L∞(Γ) consists of all functions that belong to L∞(Ie) for each edge e ∈ E and

‖u‖L∞(Γ) = sup
e∈E
‖ue‖L∞(Ie) <∞.

The Sobolev space Hm(Γ), m ≥ 1 an integer, consists in all continuous functions on Γ that
belong to Hm(Ie) for each e ∈ E and

‖u‖2Hm(Γ) =
∑
e∈E
‖ue‖2Hm(e) <∞.

The above spaces are Hilbert spaces with the inner products

(u,v)L2(Γ) =
∑
e∈E

(ue, ve)L2(Ie) =
∑
e∈E

∫
Ie

ue(x)ve(x)dx

and

(u,v)Hm(Γ) =
∑
e∈E

(ue, ve)Hm(Ie) =
∑
e∈E

m∑
k=0

∫
Ie

dkue

dxk
dkve

dxk
dx.

We now introduce the Laplace operator ∆Γ on the graph Γ. Even if it is a standard procedure
we prefer for the sake of completeness to follow [26]. Consider the sesquilinear continuous form ϕ
on H1(Γ) defined by

ϕ(u,v) = (ux,vx)L2(Γ) =
∑
e∈E

∫
Ie

uex(x)vex(x)dx.

We denote by D(∆Γ) the set of all the functions u ∈ H1(Γ) such that the linear map v ∈ H1(Γ)→
ϕu(v) = ϕ(u,v) satisfies

|ϕ(u,v)| ≤ C‖v‖L2(Γ) for all v ∈ H1(Γ).

For u ∈ D(∆Γ), we can extend ϕu to a linear continuous mapping on L2(Γ). There is a unique
element in L2(Γ) denoted by ∆Γu, such that,

ϕ(u,v) = −(∆Γu,v) for all v ∈ H1(Γ).

We now define the normal exterior derivative of a function u = {ue}e∈E at the endpoints of the
edges. For each e ∈ E and v an endpoint of e we consider the normal derivative of the restriction
of u to the edge e of Ev evaluated at i(v, e) to be defined by:

∂ue

∂ne
(j(v, e)) =

 −u
e
x(0+) if j(v, e) = 0,

uex(le−) if j(v, e) = le.
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With this notation it is easy to characterise D(∆Γ) (see [26]):

D(∆Γ) =
{

u = {ue}e∈E ∈ H2(Γ) :
∑
e∈Ev

∂ue

∂ne
(j(v, e)) = 0 for all v ∈ V

}
and

(∆Γu)e = (ue)xx for all e ∈ E,u ∈ D(∆Γ).

In other words D(∆Γ) is the space of all continuous functions on Γ, u = {ue}e∈E , such that for
every edge e ∈ E, ue ∈ H2(Ie), and satisfying the following Kirchhoff-type condition:∑

e∈E:T (e)=v

uex(le−)−
∑

e∈E:I(e)=v

uex(0+) = 0 for all v ∈ V.

It is easy to verify that (∆Γ, D(∆Γ)) is a linear, unbounded, self-adjoint, dissipative operator on
L2(Γ), i.e. <(∆Γu,u)L2(Γ) ≤ 0 for all u ∈ D(∆Γ).

1.2 LSE and NSE on networks

Let us first consider the linear Schrödinger equation (LSE) on R: iut + uxx = 0, x ∈ R, t ∈ R,

u(0, x) = u0(x), x ∈ R.

The linear semigroup eit∆ has two important properties, that can be easily seen via the Fourier
transform. First, the conservation of the L2-norm:

‖eit∆u0‖L2(R) = ‖u0‖L2(R) (1.1)

and a dispersive estimate of the form:

‖eit∆u0‖L∞(R) ≤
C√
|t|
‖u0‖L1(R), t 6= 0. (1.2)

From these two inequalities, by using the classical TT ∗ argument, space-time estimates follow,
known as Strichartz estimates ([102],[49]):

‖eit∆u0‖Lqt (R, Lrx(R)) ≤ C‖u0‖L2(R),

where (q, r) are so-called admissible pairs:

2

q
+

1

r
=

1

2
, 2 ≤ q, r ≤ ∞.

These dispersive estimates have been successfully applied to obtain well-posedness results for the
nonlinear Schrödinger equation (see [28], [105] and the reference therein).

In this chapter we prove the dispersion inequality for the linear Schrödinger operator defined
on a tree (bounded, connected graph without closed paths) with the external edges infinite. We
assume that the tree does not contain vertices of multiplicity two, since they are irrelevant for our
model. Let us notice that in this context we cannot use Fourier analysis as done on R for getting
the dispersion inequality.

The presentation of the Laplace operator will be given in full details in the next section. Let us
just say here that the Laplacian operator ∆Γ acts as the usual Laplacian on R on each edge, and
that at vertices the Kirchhoff conditions must be fulfilled: continuity condition for the functions
on the graph and transmission condition at the level of their first derivative. So our analysis will
be a 1-D ramified analysis. More general coupling conditions are discussed in Section 1.5.
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In Section 1.3, following [55] we consider the case of regular trees. This means some restrictions
on the shape of the trees: all the vertices of the same generation have the same number of
descendants and all the edges of the same generation are of the same length. These restrictions
allow to define some average functions on the edges of the same generation and to analyze some
1-D laminar Schrödinger equation (depending on the shape of the tree), where dispersion estimates
were available from Banica’s paper [7]. The strategy used in [55] cannot be applied in the case
of a general tree. In [8] the dispersion has been proved in the general case. The results of [8] are
presented in Section 1.4. In the case of a graph with a closed path, in general there exist compact
supported eigenfunctions for the considered Laplace operator and then the dispersion estimate
fails.

The motivation for studying thin structures comes from mesoscopic physics and nanotechnol-
ogy. Mesoscopic systems are those that have some dimensions which are too small to be treated
using classical physics while they are too large to be considered on the quantum level only. The
quantum wires are physical systems with two dimensions reduced to a few nanometers. We refer
to [81] and references therein for more details on such type of structures.

The simplest model describing conduction in quantum wires is a Hamiltonian on a planar
graph, i.e. a one-dimensional object. Throughtout the paper we consider a class of idealized
quantum wires, where the configuration space is a planar graph and the Hamiltonian is minus the
Laplacian with Kirchhoff’s boundary conditions at the vertices of the graph. This condition makes
the Hamiltonian to be a self-adjoint operator. More general coupling conditions that guarantee
the self-adjointness are given in [77].

The problems addressed here enter in the framework of metric graphs or networks. Those are
metric spaces which can be written as the union of finitely many intervals, which are compact or
[0,∞) and any two of these intervals are either disjoint or intersect only in one or both of their
endpoints. Differential operators on metric graphs arise in a variety of applications. We mention
some of them: carbon nano-structures [84], photonic crystals [43], high-temperature granular
superconductors [1], quantum waveguides [23], free-electron theory of conjugated molecules in
chemistry, quantum chaos, etc. For more details we refer the reader to review papers [81], [83],
[51] and [40].

The linear and cubic Schrödinger equation on simple networks with Kirchhoff connection condi-
tions and particular type of data has been analyzed in [25]. The symmetry imposed on the initial
data and the shape of the networks allow to reduce the problem to a Schrödinger equation on
the half-line with appropriate boundary conditions, for which a detailed study is done by inverse
scattering. Some numerical experiments are also presented in [25]. The propagation of solitons
for the cubic Schrödinger equation on simple networks but with connection conditions in link with
the mass and energy conservation is analyzed in [97].

Let us consider the LSE on Γ: iut(t, x) + ∆Γu(t, x) = 0, x ∈ Γ, t 6= 0,

u(0) = u0, x ∈ Γ.
(1.3)

Using the properties of the operator i∆Γ we obtain as a consequence of the Hille-Yosida theorem
the following well-posedness result.

Theorem 1.1. For any u0 ∈ D(∆Γ) there exists a unique solution u(t) of system (1.3) that
satisfies

u ∈ C(R, D(∆Γ)) ∩ C1(R, L2(Γ)).

Moreover, for any u0 ∈ L2(Γ), there exists a unique solution u ∈ C(R, L2(Γ)) that satisfies

‖u(t)‖L2(Γ) = ‖u0‖L2(Γ) for all t ∈ R.

The L2(Γ)-isometry property is a consequence of the fact that the operator i∆Γ satisfies
<(i∆Γu,u)L2(Γ) = 0 for all u ∈ D(∆Γ).
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The main result is the following, where by {Ie}e∈E we shall denote the edges of the tree.

Theorem 1.2. The solution of the linear Schrödinger equation on a tree is of the form

eit∆Γu0(x) =
∑
λ∈R

aλ√
|t|

∫
Iλ

ei
φλ(x,y)

t u0(y) dy. (1.4)

with φλ(x, y) ∈ R, Iλ ∈ {Ie}e∈E,
∑
λ∈R |aλ| <∞, and it satisfies the dispersion inequality

‖eit∆Γu0‖L∞(Γ) ≤
C√
|t|
‖u0‖L1(Γ), t 6= 0. (1.5)

The proof uses the method in [7] in an appropriate way related to the ramified analysis on
the tree, by recursion on the number of vertices. It consists in writing the solution in terms of
the resolvent of the Laplacian, which in turn is computed in the framework of almost-periodic
functions. With the method used in the proof of Theorem 1.2 we can obtain the same results in
the case of the Laplacian on the graph with laminar coefficients (piecewise constants, bounded
between two positive constants. This might be of physical interest when the wire on a edge is
composed of different pieces. Equations with variable coefficients on networks have been previously
analyzed in [109] for the heat equation and in [2] for the wave equations.

Let us recall that Strichartz estimates can be derived from the dispersion inequality and have
been used intensively to obtain well-posedness results for the nonlinear Schrödinger equation
(NSE). The arguments used in the context of NSE on R can also be used here to obtain the
following as a typical result.

Theorem 1.3. Let p ∈ (0, 4). For any u0 ∈ L2(Γ) there exists a unique solution

u ∈ C(R, L2(Γ)) ∩
⋂

(q,r)admissible

Lqloc(R, L
r(Γ)),

of the nonlinear Schrödinger equation iut + ∆Γu± |u|pu = 0, t 6= 0,

u(0) = u0, t = 0.
(1.6)

Moreover, the L2(Γ)-norm of u is conserved along the time

‖u(t)‖L2(Γ) = ‖u0‖L2(Γ).

The proof is standard once the dispersion property is obtained and it follows as in [28], p. 109,
Theorem 4.6.1.

1.3 The case of regular trees

In this section we consider the Schrödinger equation on a network formed by the edges of a tree,
Γ, as in Fig. 1.1. All the vortices, except the root O that has multiplicity two, have multiplicity
three, i.e. the number of edges that branch out from each vortex is three (see Fig. 1.1). Also the
edges of the same generation have the same length (infinite in the case of the last generation of
edges). We prove dispersive properties for the Schrödeinger equation in the case of this special
tree.

The main idea behind our result is that solving the linear Schrödinger equation on such a
structure could be reduced to solving an equation with finitely many piecewise constant coefficients
on the whole real line. Using the same method the result obtained here can be extended to regular
trees Γ, i.e. trees having the property that all the vertices of the same generation have the same
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O

O1 O2

O11 O12 O21 O22

e1 e2

e11 e12 e21 e22

e111 e112 e121 e122 e211 e212 e221 e222

Figure 1.1: A tree with the third generation formed by infinite edges

number of descendants and all the edges of the same generation are of the same length (see [98]
for more details on regular trees), assuming that the last generation of edges is formed by infinite
strips.

In this section we obtain Strichartz estimates for the solutions of the LSE on the network
formed by the edges of the tree Γ. Following the same arguments we can extend the results
presented here to the case of a regular tree.

In the following theorem we state the dispersive property of the linear semigroup eit∆Γ .

Theorem 1.4. For p ∈ [2,∞] and t 6= 0, S∆Γ
(t) maps Lp

′
(Γ) continuously to Lp(Γ) and

‖eit∆Γu0‖Lp(Γ) ≤ C(Γ)|t|−( 1
2−

1
p )‖u0‖Lp′ (Γ), for all u0 ∈ Lp

′
(Γ). (1.7)

Remark 1.1. The constant in Theorem 1.4 depends on the number of the generations of the tree
Γ and not on the length of the edges. In the case of a regular tree with all the vertices at the
generation k having each one dk+1 descendants, 0 ≤ k ≤ n, the constants will also depend on the
sequence {dk}n+1

k=1 . In the considered case dk = 2 for all 1 ≤ k ≤ n+ 1. At the end of the proof of
Theorem 1.4 we will sketch how our argument can be adapted to the case of a regular tree.

In order to proceed to the proof of Theorem 1.4 we now describe the procedure of indexing
the edges and vertices of the tree (see Fig. 1.5). For each index α = (α1, α2, . . . , αk) ∈ {1, 2}k we
denote by |α| the number of its components: |α| = k.

The root of the tree is denoted by O. The remaining vortices and edges will be denoted by Oα,
|α| ≤ n and eα, |α| ≤ n + 1, respectively. Here n and n + 1 represent the number of generations
of vortices, respectively of edges.

The vortices and edges are defined by recurrence in the following way. For each vertex Oα
with the index |α| ≤ n (possibly empty in the case of the root O) there are two edges that branch
out from it eαβ where αβ = (α1, α2, . . . , αk, β) and β ∈ {1, 2}. If |α| ≤ n − 1 the other endpoint
of eαβ will be denoted by Oαβ . In the case when |α| = n the edges that branch out from these
vertices are infinite strips.

With our notations E = {eα : α ∈ {1, 2}k, 1 ≤ k ≤ n+ 1}. A function u : Γ→ C is a collection
of functions {uα}eα∈E where each component uα is a function defined on the corresponding edge
eα, uα : eα → C. Each edge eα will be identified with the interval [0, l|α|] if |α| ≤ n and with
[0,∞) if |α| = n+ 1.

Before starting the proof, since it is quite technical, let us point out its main steps. Equation
(1.3) gives us a system of LSE on intervals of the type (0, lk) or (0,∞) coupled by Kirchhoff’s
law. Using a translation in the space variable we transform our problem to a system of coupled
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linear Schrödinger equations on some intervals (a|α|−1, a|α|) or (an,∞) where the sequence {ak}nk=0

depends on the length of the edges. We then define the functions Zα that equal the average of
the functions defined on the edges emanating from the vertex O|α| and its descendants. Using an
inductive argument on |α| we prove dispersive estimates for Zα which give us the same ones for
u.

Proof of Theorem 1.4. We recall that Theorem 1.1 shows that S∆Γ(t) in an L2(Γ)-isometry. Thus
it is sufficient to prove that for any t 6= 0, S∆Γ(t) maps continuously L1(Γ) to L∞(Γ) with a norm
less than C(Γ)|t|−1/2. By density we can consider u0 ∈ D(∆Γ) and prove the following estimate:

‖S∆Γ(t)u0‖L∞(Γ) ≤ C(Γ)|t|− 1
2 ‖u0‖L1(Γ) for all t 6= 0.

In the following we prove that the above estimate holds with a constant C(Γ) = C(n).

Using Theorem 1.1 in the particular case of the tree considered here we have that the solution
of system (1.3) satisfies

S∆Γ(t)u0 = (uα(t))|α|≤n+1 ∈ C(R, D(∆Γ)) ∩ C1(R, L2(Γ)).

It means that for all t ∈ R the functions uα, |α| ≤ n+ 1, satisfy

uα(t) ∈

 H2(0, l|α|), |α| ≤ n,

H2(0,∞), |α| = n+ 1.

Moreover, the family {uα}1≤|α|≤n+1 solves the following system:

iuαt (t, x) + uαxx(t, x) = 0, x ∈ (0, l|α|), 1 ≤ |α| ≤ n,

iuαt (t, x) + uαxx(t, x) = 0, x ∈ (0,∞), |α| = n+ 1, uα(t, l|α|) = uαβ(t, 0), β ∈ {1, 2}, 1 ≤ |α| ≤ n,

u1(0, t) = u2(0, t),
uαx(t, l|α|) =

2∑
β=1

uαβx (t, 0), 1 ≤ |α| ≤ n,

u1
x(0, t) + u2

x(0, t) = 0,

uα(0, x) = uα0 (x).

(1.8)

The first two equations represent the LSE satisfied by each uα. The second type of properties
gives the continuity at the ends of the vertices and the third one is the Kirchhoff type condition
on the normal derivatives.

However, the above system is not very useful in order to reduce it to a LSE with discontinuous
coefficients as we announced in the introduction. We will rewrite the above system in a convenient
manner that will allow us to apply previous results on the dispersive properties of the Schrödinger
equation iut + (σux)x = 0 (see [7]), where σ is a step function taking a finite number of values.

We consider the intervals

Ik =

 (ak−1, ak) if 1 ≤ k ≤ n,

(an,∞) if k = n+ 1,

where a0 = 0 and ak+1 = ak + lk+1 for k = 0, . . . , n− 1.
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Figure 1.2: The functions situated above each interval are defined on that interval, for example
u1 and u2 are defined on I1, etc.

0 a1 a2I1 I2 I3

Z1 Z2

Z11 Z12 Z21 Z22

Figure 1.3: The domain where the functions Zα are defined

With the new notations, by applying translations in the space variable, system (1.8) can be
written in an equivalent form:

iuαt (t, x) + uαxx(t, x) = 0, x ∈ I|α|, 1 ≤ |α| ≤ n+ 1, uα(t, a|α|) = uαβ(t, a|α|), β ∈ {1, 2}, 1 ≤ |α| ≤ n,

u1(t, 0) = u2(t, 0), uαx(t, a|α|) =

2∑
β=1

uαβx (t, a|α|), 1 ≤ |α| ≤ n,

u1
x(t, 0) + u2

x(t, 0) = 0,

uα(0, x) = uα0 (x), x ∈ I|α|, 1 ≤ |α| ≤ n.

(1.9)

In Fig. 1.2 we can visualise where each function uα is defined after the translation. We point
out that once the dispersive properties are obtained for the second system (1.9) they also hold for
the first one (1.8). In the sequel we will concentrate on system (1.9) and prove that for each index
α with |α| = k, 1 ≤ k ≤ n+ 1, the following holds for all t 6= 0:

max
|α|=k

‖uα(t)‖L∞(Ik) ≤ C(n)|t|−1/2
∑

1≤|β|≤n+1

‖uβ0‖L1(I|β|)
. (1.10)

For any α with 1 ≤ |α| ≤ n+ 1 we define the functions

Zα : J|α| =

n+1−|α|⋃
k=0

I|α|+k → C
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as follows: for each 0 ≤ k ≤ n+ 1− |α| and x ∈ I|α|+k we set

Zα(t, x) =

∑
|β|=k u

αβ(t, x)

2|β|
. (1.11)

The domain where each function Zα is defined can be viewed in Fig. 1.3.
The definition of the functions Zα shows that it coincides with uα on the interval I|α|. Thus

it is sufficient to prove that

‖Zα(t)‖L∞(Jα) ≤ c(n)|t|−1/2
∑

1≤|β|≤n+1

‖uβ0‖L1(Iβ). (1.12)

In what follows it will be convenient to write Zα, 1 ≤ |α| ≤ n+ 1, in a compact form:

Zα(t, x) =

n+1−|α|∑
k=0

χ{I|α|+k}(x)
1

2k

∑
|β|=k

uαβ(t, x). (1.13)

Moreover, the above identity shows that for each index α with 1 ≤ |α| ≤ n + 1 we have the
following inequality:

‖Zα(0)‖L1(J|α|) ≤
∑

|α|≤|β|≤n+1

‖uβ0‖L1(I|β|)
. (1.14)

To prove inequality (1.12) we recall the following result of Banica [7].

Theorem 1.5. ([7]) Consider a partition of the real axis −∞ = x0 < x1 < · · · < xn+1 =∞ and
a step function

σ(x) = σi for x ∈ (xi, xi+1),

where σi are positive numbers.
The solution u of the Schrödinger equation iut(t, x) + (σ(x)ux)x(t, x) = 0, for x ∈ R, t 6= 0,

u(0, x) = u0(x), x ∈ R,

satisfies the dispersion inequality

‖u(t, ·)‖L∞(R) ≤ C|t|−1/2‖u0‖L1(R), t 6= 0,

where the constant C depends on n and on the sequence {σi}ni=0.

As a consequence we obtain the following result.

Lemma 1.1. Let n ≥ 0, −∞ ≤ a0 < a1 < · · · < an < an+1 =∞ and the function

v ∈ C(R, H2((ak, ak+1))) ∩ C1(R, L2((ak, ak+1))), k = 0, . . . , n

which solves the following system

ivt(t, x) + vxx(t, x) = 0, x ∈ (ak, ak+1), 0 ≤ k ≤ n, t 6= 0,

v(t, ak−) = v(t, ak+), 1 ≤ k ≤ n,

vx(t, ak−) = ckvx(t, ak+), t 6= 0, 1 ≤ k ≤ n,

v(t, a0) = 0, if a0 > −∞, t 6= 0,

v(0, x) = v0(x), x ∈ (ak, ak+1), 0 ≤ k ≤ n,

(1.15)
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for some positive constants {ck}nk=1.

If v0 ∈ L1(a0,∞) then there exists a positive constant c(n, {ck}nk=1) such that

‖v(t)‖L∞((a0,∞)) ≤ c(n, {ck}nk=1)|t|−1/2‖v0‖L1((a0,∞)) for all t 6= 0. (1.16)

Remark 1.2. The constant in the right hand side of (1.16) does not depend on the sequence
{ak}n+1

k=0 .

We now prove inequality (1.12) by using an inductive argument following the length of the
index α. We first consider the case when |α| = 1.

Step 1. The first generation of Z’s, |α| = 1. We consider the functions

Z(t, x) =
Z1(t, x) + Z2(t, x)

2
, x ∈ (0,∞), t ∈ R

and

Z̃1 = Z − Z1, Z̃2 = Z − Z2.

We claim that

‖Z(t)‖L∞((0,∞)) ≤ C(n)|t|−1/2‖Z1(0) + Z2(0)‖L1((0,∞)) (1.17)

and

‖Z̃1(t)‖L∞((0,∞)) ≤ C(n)|t|−1/2‖Z1(0)− Z2(0)‖L1((0,∞)). (1.18)

A similar estimate will also hold for Z̃2(t).

In view of the definition of the functions Z and Z̃1 estimates (1.17) and (1.18) imply that

‖Z1(t)‖L∞((0,∞)) ≤ C(n)|t|−1/2(‖Z1(0)‖L1((0,∞)) + ‖Z2(0)‖L1((0,∞))).

Thus, inequality (1.14) gives us that

‖Z1(t)‖L∞((0,∞)) ≤ C(n)|t|−1/2
∑

1≤|β|≤n+1

‖uβ0‖L1(I|β|)
,

which proves estimate (1.12) in the considered case |α| = 1.

We now prove estimates (1.17) and (1.18).

For the first one, we observe that Z satisfies the system

iZt(t, x) + Zxx(t, x) = 0, x ∈ R\{ak, 1 ≤ k ≤ n},

Z(t, ak−) = Z(t, ak+), 1 ≤ k ≤ n,

Zx(t, ak−) = 1
2Zx(t, ak+), 1 ≤ k ≤ n,

Zx(t, 0) = 0, t ∈ R,

Z(0, x) =
Z1(0, x) + Z2(0, x)

2
, x ∈ R\{ak, 1 ≤ k ≤ n}.

(1.19)

Making an even extension of the function Z to the whole real line we enter in the framework of
Lemma 1.1 which gives us the following estimates for the function Z:

‖Z(t)‖L∞((0,∞)) ≤ C(n)|t|−1/2‖Z(0)‖L1((0,∞)) ≤ C(n)|t|−1/2‖Z1(0) + Z2(0)‖L1((0,∞)).

This proves (1.17).
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We now prove (1.18). The function Z̃1 satisfies the following system:

iZ̃1
t (t, x) + Z̃1

xx(t, x) = 0 x ∈ R\{ak, 1 ≤ k ≤ n},

Z̃1(t, ak−) = Z̃1(t, ak+), 1 ≤ k ≤ n,

Z̃1(t, 0) = 0, t ∈ R,

Z̃1
x(t, ak−) = 1

2 Z̃
1
x(t, ak+), 1 ≤ k ≤ n,

Z̃1(0, x) =
Z2(0, x)− Z1(0, x)

2
, x ∈ R\{ak, 1 ≤ k ≤ n}.

(1.20)

We now apply Lemma 1.1 and we obtain that Z̃1 satisfies

‖Z̃1(t)‖L∞((0,∞)) ≤ C(n)|t|−1/2‖Z̃1(0)‖L1((0,∞)) ≤ C(n)|t|−1/2‖Z1(0)− Z2(0)‖L1((0,∞)).

The proof of (1.12) in the case |α| = 1 is now finished.

Step II. The next generations of Z’s. We assume that we previously proved (1.12) for all
indices α with its length satisfying |α| = k ≤ n. Let us choose an arbitrary index α with |α| = k.
We prove that (1.12) also holds for the index αβ with β ∈ {1, 2}.

We consider the function

Z̃αβ(t, x) = Zαβ(t, x)− Zα(t, x), x ∈ Jk+1 =

n+1⋃
m=k+1

Im.

In the case k ≤ n− 1 the new function Z̃αβ satisfies the following system:

iZ̃αβt (t, x) + Z̃αβxx (t, x) = 0, t 6= 0, x ∈
⋃n+1
m=k+1 Im,

Z̃αβ(t, ak) = 0, t 6= 0,

Z̃αβ(t, am−) = Z̃αβ(t, am+), k + 1 ≤ m ≤ n,

Z̃αβx (t, am−) = 1
2 Z̃

αβ
x (t, am+), k + 1 ≤ m ≤ n,

Z̃αβ(0, x) = Z̃αβ0 (x), x ∈
⋃n+1
m=k+1 Im.

(1.21)

In the other case, k = n, we are dealing with an equation on the last generation of edges of the
tree and we get the following system:

iZ̃αβt (t, x) + Z̃αβxx (t, x) = 0, t 6= 0, x ∈ In+1,

Z̃αβ(t, an) = 0, t 6= 0,

Z̃αβ(0, x) = Z̃αβ0 (x), x ∈ In+1.

(1.22)

In both systems the second property is a consequence of the fact that uα(t, ak) = uαβ(t, ak)

and thus Zα(t, ak) = Zαβ(t, ak). The third and fourth properties in system (1.21) are given by
the Kirchhoff type conditions imposed in system (1.9).

Systems (1.21) and (1.22) enter in the framework of Lemma 1.1. Thus, we have that

‖Z̃αβ(t)‖L∞(Jk+1) ≤ C(n)|t|−1/2‖Z̃αβ0 ‖L1(Jk+1).
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It follows that the same property holds for Zαβ since Zαβ = Z̃αβ + Zα. Indeed, for any t 6= 0 we
have

‖Zαβ(t)‖L∞(Jk+1) ≤ ‖Z̃αβ(t)‖L∞(Jk+1) + ‖Zα(t)‖L∞(Jk+1) ≤ ‖Z̃αβ(t)‖L∞(Jk+1) + ‖Zα(t)‖L∞(Jk)

and using the inductive assumption on Zα we obtain that

‖Zαβ(t)‖L∞(Ik) ≤ C(n)|t|−1/2(‖Zαβ0 − Zα0 ‖L1(Jk+1) + ‖Zα0 ‖L1(Jk)) (1.23)

≤ C(n)|t|−1/2
∑

|β|≤n+1

‖uβ0‖L1(Iβ).

This implies that (1.12) holds for all indices with length k + 1.
The proof of (1.12) is now finished.

Let us now comment about how the above proof can be adapted to obtain similar results in
the case of a regular tree. Assume that all the vortices at the generation k have dk+1 descendants,
0 ≤ k ≤ n, and all the edges of the same generation have the same length.

In this framework we have to modify the functions Zα in (1.11) in the following way:

Zα(t, x) =


uα x ∈ I|α|,∑
|β|=k u

αβ(t, x)

d|α|+1 · · · · · d|α|+k
, x ∈ I|α|+k, 1 ≤ k ≤ n+ 1− |α|.

In Step I, we replace Z by

Z =
Z1 + · · ·+ Zd1

d1
, Z̃j = Z − Zj , j = 1, . . . , d1,

the constant 1/2 in coupling the derivatives at the points ak in systems (1.19) and (1.20) by 1/dk+1

and the initial data in the two systems in agreement to the new definition of the functions Zα. In
Step II we replace in a similar manner the constant 1/2 in systems (1.21) and (1.22) with 1/dm+1

and the initial data.
The assumption on the geometry of the tree and the definition of the functions Zα as the

average of the functions defined on the edges emanating from the vertex O|α| and its descendants
allow us to obtain the continuity property at the points {ak}nk=1 in systems (1.19 - 1.22).

With the above changes we can extend the results of Theorem 1.4 and Theorem 1.3 to regular
trees.

1.4 The general case

In the previous section we have considered the case of a tree such that each internal vertex has two
descendants and the results can be extended to the case of a regular tree as it was defined in [98].
Our proof does not cover the case when the edges of the tree have arbitrary lengths. The fact that
all the edges at the same generation have the same length allowed us to consider the averages of
the functions uα’s defined at the same generation of edges by introducing the functions Zα in the
proof of Theorem 1.4. In the case when the edges of a generation have different lengths we cannot
define the functions Zα and our argument cannot be applied. This is the case, for example, of the
tree in Fig. 1.4 where the functions uα, α ∈ {1, 2}2 are not defined on the same interval.

On the other hand the proof of Theorem 1.4 cannot be applied to the case when at some
generation we have two vortices with different number of descendants. The fact that at the same
generation the number of descendants is the same help us to obtain the continuity property at the
points {ak}nk=1 of the functions involved in systems (1.19 - 1.22) and then to use Lemma 1.1.

The objective of this section is to use a different approach. Using an inductive argument we
give a description of the solutions of the linear problem that allow us to obtain the dispersive
estimates.
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Figure 1.4: A tree where the infinite strips occur at different levels

For ω ≥ 0 let Rω be the resolvent of the Laplacian on a tree

Rωf = (−∆Γ + ω2I)−1f .

We shall prove in Lemma 1.2 that ωRωf(x) can be analytically continued in a region containing
the imaginary axis. Therefore we can use a spectral calculus argument to write the solution of the
Schrödinger equation with initial data u0 as

eit∆Γu0(x) =

∫ ∞
−∞

eitτ
2

τRiτu0(x)
dτ

π
. (1.24)

We shall also obtain in Lemma 1.3 that the following decomposition holds

τRiτu0(x) =
∑
λ∈R

bλe
iτψλ(x)

∫
Iλ

u0(y)eiτβλydy, (1.25)

with ψλ(x), βλ ∈ R, Iλ ∈ {Ie}e∈E and
∑
λ∈R |bλ| < ∞. Then decomposition (1.4) is implied by

(1.24), (1.25) and the fact that for t > 0 and r ∈ R∫ ∞
−∞

eitτ
2

eiτrdτ = ei
π
4
√
π
e−

r2

4t

√
t
.

From (1.4) the dispersion estimate (1.5) of Theorem 1.2 follows immediately since
∑
λ∈R |αλ| <∞.

Above and in what follows the integration of function f = (fe)e∈E on interval Ie means the
integral of fe on the considered interval.

Remark 1.3. As in [7] we notice that since we can express the solution of the wave equation
vtt −∆Γv = 0 with initial data (v0, 0) as

v(t, x) =

∫ ∞
−∞

eitτRiτv0(x)iτ
dτ

2π
,

the property

sup
x∈Γ

∫ ∞
−∞
|v(t, x)|dt ≤ C‖v0‖L1(Γ)

follows similarly.
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We now obtain the expression of the resolvent. The second-order equations

(Rωf)′′ = ω2Rωf − f

must be solved on each edge of the tree together with coupling conditions at each vertex. Then,
on each edge parametrized by Ie,

Rωf(x) = ceωx + c̃e−ωx +
1

2ω

∫
Ie

f(y) e−ω|x−y|dy, x ∈ Ie.

Since Rωf belongs to L2(Γ) the coefficients c’s are zero on the infinite edges e ∈ E , parametrized
by [0,∞). If we denote by I the set of internal edges, we have 2|I|+ |E| coefficients. The Kirchhoff
conditions of continuity of Rωf and of transmission of ∂xRωf at the vertices of the tree give the
system of equations on the coefficients. We have the same number of equations as the number of
unknowns. We denote DΓ the matrix of the system, whose elements are real powers of eω.

Therefore the resolvent Rωf(x) is a finite sum of terms :

Rωf(x) =
1

ω detDΓ(ω)

N(Γ)∑
λ=1

cλe
±ωΦλ(x)

∫
Iλ

f(y) e±ωydy +
1

2ω

∫
Ie

f(y) e−ω|x−y|dy, (1.26)

where x ∈ Ie, Φλ(x) ∈ R, Iλ ∈ {Ie}e∈E and |N(Γ)| <∞. We shall prove the following proposition
that will imply Lemma 1.2 and 1.3 needed for obtaining Theorem 1.2.

Proposition 1.1. Function detDΓ(ω) is lower bounded by a positive constant on a strip containing
the imaginary axis:

∃cΓ, εΓ > 0, |detDΓ(ω)| > cΓ,∀ω ∈ C, |<ω| < εΓ.

Lemma 1.2. Function ωRωf(x) can be analytically continued in a region containing the imaginary
axis.

Proof. The proof is an immediate consequence of decomposition (1.26) and of Proposition 1.1.

Lemma 1.3. The following decomposition holds

τRiτu0(x) =
∑
λ∈R

bλe
iτψλ(x)

∫
Iλ

u0(y)eiτβλydy,

with ψλ(x), βλ ∈ R, Iλ ∈ {Ie}e∈E and
∑
β∈R |bλ| <∞.

Proof. We notice that for τ ∈ R, detDΓ(iτ) is a finite sum of powers of eiτ . Then, by Proposition
1.1 we are in the framework of a classical theorem in representation theory (S29, Cor.1 of [46])
that asserts that the inverse of detDΓ(iτ) is

∑
λ∈R dλe

iτλ with
∑
λ∈R |dλ| < ∞, and from (1.26)

the Lemma follows.

Let sketch the proof of Proposition 1.1. We shall show by recursion on the number of vertices
the following stronger “double” property:

P (n) : If Γ has n vertices, we have the property P,

P : ∃cΓ, εΓ > 0,∃0 < rΓ < 1, |detDΓ(ω)| > cΓ,

∣∣∣∣∣det D̃Γ(ω)

detDΓ(ω)

∣∣∣∣∣ < rΓ, ∀ω ∈ C, |<ω| < εΓ.

We have denoted by D̃Γ(ω) the matrix of the system verified by the coefficients, if we impose that
on one of the last infinite edges l ∈ E we replace in the expression of the resolvent c̃e−ωx by ceωx.

In the case of P (1) we have a star-shaped tree with m ≥ 3 of edges. All the edges are
parametrized by [0,∞). In particular DΓ(ω) = DΓ. We shall actually prove a stronger property,
which implies the property P for any εΓ > 0:

P (1,m) : If Γ has 1 vertex and m edges, detDΓ(ω) = m and det D̃Γ(ω) = m− 2.
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Figure 1.5: With vertex v we obtain tree Γ4 (left) from Γ3 (right).

It remains to show that P (n − 1) → P (n) holds. Any tree Γn with n vertices, n ≥ 2, can be
seen as a tree Γn−1 with n − 1 vertices on which we add an extra-vertex. More precisely, let us
consider a vertex v from which there start m ≥ 2 external infinite edges and one internal edge
connecting it to the rest of the tree (see Fig. 1.5). Let us notice that such a choice is possible
since the graph has no cycles. In particular the edge whose lower extremity is this vertex v is an
internal edge l, whose length should be denoted by a, and whose upper vertex we denote by ṽ.
Now we remove this vertex and transform the internal edge l into an external infinite one. The
new graph Γn−1 has n− 1 vertices.

With respect to the problem on Γn−1, the resolvent on Γn involves a new term ceωx aside from
c̃e−ωx on the interval edge l, and on the external edges emerging from the vertex v it involves
terms c̃je

−ωx, 1 ≤ j ≤ m. We have also the Kirchhoff conditions at the vertex v, which give m+ 1
equations on the coefficients.

We write the square N ×N matrix DΓn such that the last m + 2 column corresponds to the
unknowns c̃, c, c̃1, ..., c̃m . On the last line we write the Kirchhoff derivative condition at the vertex
v, and on the N − j lines, 1 ≤ j ≤ m the Kirchhoff continuity conditions at the vertex v. Also, on
the N −m− 1 line we write the derivative condition in the vertex ṽ and on the N −m− 2 line the
continuity condition in ṽ relating c̃, and now also c, to the others coefficients. So DΓn is a matrix
obtained from the (N −m− 1)× (N −m− 1) matrix DΓn−1

(whose last column corresponds to
the unknown c̃) in the following way

DΓn =



DΓn−1

−1
−1

e−ωa eωa −1
1 −1

1 −1
. .

. .
. .

1 −1
1 −1

−e−ωa eωa 1 1 1 1 1 1 1 1



.

We develop detDΓn with respect to the last m + 1 lines, that is as an alternated sum of
determinants of m + 1 × m + 1 minors composed from the last m + 1 lines of DΓn times the
determinant of DΓn without the lines and columns the minor is made of. The only possibility to
obtain a m+ 1×m+ 1 minor composed from the last m+ 1 lines of DΓn different from zero is to
choose one of the columns N −m− 1 and N −m, together with all last m columns. This follows
from the fact that if we eliminate from detDΓn both columns N −m − 1 and N −m, together
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with m − 1 columns among the last m columns, we obtain a block-diagonal type matrix, with
first diagonal block DΓn−1

with its last column replaced by zeros, so its determinant vanishes.
Therefore

detDΓn = detDΓn−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

eωa −1
1 −1

1 −1
. .

. .
. .

1 −1
1 −1

eωa 1 1 1 1 1 1 1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−det D̃Γn−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

e−ωa −1
1 −1

1 −1
. .

. .
. .

1 −1
1 −1

−e−ωa 1 1 1 1 1 1 1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

By developing with respect to the first column the m+ 1×m+ 1 minors,

detDΓn = detDΓn−1
(eωa detDΓm + (−1)m+2eωa(−1)m)

−det D̃Γn−1
(e−ωa detDΓm − (−1)m+2e−ωa(−1)m),

so using from the previous subsection that detDΓm = m,det D̃Γm(ω) = m− 2, we find

detDΓn(ω) = (m+ 1)eωa detDΓn−1(ω)− (m− 1)e−ωa det D̃Γn−1(ω)

= (m+ 1)eωa detDΓn−1(ω)

(
1− e−2ωam− 1

m+ 1

det D̃Γn−1
(ω)

detDΓn−1
(ω)

)
.

Now, from P (n− 1) we have for |<ω| small enough

1− e−2ωam− 1

m+ 1

det D̃Γn−1
(ω)

detDΓn−1
(ω)

> c0 > 0.

Also, P (n−1) gives us the existence of two positive constants cΓn−1
and εΓn−1

such that |detDΓn−1
(ω)| >

cΓn−1 , ∀ω ∈ C, |<ω| < εΓn−1 , so eventually we get

∃cΓn , εΓn > 0, |detDΓn(ω)| > cΓn , ∀ω ∈ C, |<ω| < εΓn ,

and the first part of property P is proved for P (n).
In a similar way we get

det D̃Γn(ω) = (m− 1)eωa detDΓn−1(ω)− (m− 3)e−ωa det D̃Γn−1(ω),

so

det D̃Γn(ω)

detDΓn(ω)
=

m−1
m+1 −

m−3
m+1e

−2ωa det D̃Γn−1
(ω)

detDΓn−1
(ω)

1− m−1
m+1e

−2ωa
det D̃Γn−1

(ω)

detDΓn−1
(ω)

.

Thus we also get the second part of P for P (n) since∣∣∣∣∣ m−1
m+1 −

m−3
m+1z

1− m−1
m+1z

∣∣∣∣∣ < 1 ⇐⇒ 0 < (m− 2)(|z|2 − 1) + 2(m− 1)(1−<z).
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1.5 Open Problems

In this paper we have analyzed the dispersive properties for the linear Schrödinger equation on
trees. We have assumed that the coupling is given by the classical Kirchhoff’s conditions. However
there are other coupling conditions (see [77]) which allow to define a “Laplace” operator on a metric
graph. To be more precise, let us consider the operator H that acts on functions on the graph Γ

as the second derivative d2

dx2 , and its domain consists in all functions f that belong to the Sobolev
space H2(e) on each edge e of Γ and satisfy the following boundary condition at the vertices:

A(v)f(v) +B(v)f ′(v) = 0 for each vertex v. (1.27)

Here f(v) and f ′(v) are correspondingly the vector of values of f at v attained from directions of
different edges converging at v and the vector of derivatives at v in the outgoing directions. For
each vertex v of the tree we assume that matrices A(v) and B(v) are of size d(v) and satisfy the
following two conditions

1. the joint matrix (A(v), B(v)) has maximal rank, i.e. d(v),

2. A(v)B(v)T = B(v)A(v)T .

Under those assumptions it has been proved in [77] that the considered operator, denoted by
∆(A,B), is self-adjoint. The case considered in this paper, the Kirchhoff coupling, corresponds to
the matrices

A(v) =



1 −1 0 . . . 0 0
0 1 −1 . . . 0 0
0 0 1 . . . 0 0
...

...
...

...
...

0 0 0
... 1 −1

0 0 0
... 0 0


, B(v) =



0 0 0 . . . 0 0
0 0 0 . . . 0 0
0 0 0 . . . 0 0
...

...
...

...
...

0 0 0 . . . 0 0
1 1 1 . . . 1 1


.

More examples of matrices satisfying the above conditions are given in [77, 78].
The existence of the dispersive properties for the solutions of the Schrödinger on a graph under

general coupling conditions on the vertices iut + ∆Γ(A,B)u = 0 is mainly an open problem. The
resolvent formula obtained in [78] and [80] in terms of the coupling matrices A and B might
help to understand the general problem. In the same papers there are also some combinatorial
formulations of the resolvent in terms of walks on graphs. Such combinational aspects could clarify
if the dispersion is possible only on trees or there are graphs (with some of the edges infinite) with
suitable couplings where the dispersion is still true.

It is expected that other results on the Schrödinger equation on R are still valid on networks.
For instance, the smoothing estimate for the linear equation with constant coefficients is still valid.
Although its classical proof on R relies on Fourier analysis, one may easily adapt the proof in [20]
which uses only integrations by parts and Besovs spaces that can still be defined on a tree using
the heat operator. Strichartz estimates has been used previously to treat controllability issues for
the NSE in [92]. The possible applications of the present results in the control context remains
to be analyzed. We mention here some previous works on the controllability/stabilization of the
wave equation on networks [37], [107].

Another interesting problem consists in the analysis of the same properties on some graphs
which combine the periodic structure with the infinite strips. This is the case in Fig. 1.6. We recall
that for LSE on the one-dimensional torus Bourgain [16] has analyzed the existence of Strichartz
estimates. In the same framework we also mention the work of Burq et. al. [19].

Finally, another problem of interest is the study of the dispersion properties for the magnetic
operators analyzed in [81], [79]. The analysis in this case is more difficult since in the presence of
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u1

u2

u3

u13

u12

u23

Figure 1.6: A tree where two kinds of structures occur: a periodic one given by the triangle and
the infinite strips

an external magnetic field the effect of the topology of the graph becomes more pronounced. In
contrast with the analysis done here, in the case of magnetic operators the graphs are viewed as
structures in the three dimensional Euclidean space R3 and the orientation of the edges becomes
important.



Chapter 2

Inverse problems on trees

In this chapter we establish global Carleman estimates for the heat and Schrödinger equations on
a finite network. The heat equation is considered on a general tree and the Schrödinger equation
on a star-shaped tree. The Carleman inequalities are used to prove the Lipschitz stability for
an inverse problem consisting in retrieving a stationary potential in the heat (resp. Schrödinger)
equation from boundary measurements.

To be more precise we consider the heat equation on a 1-D network Γ given by the edges of a
general tree and the Schrödinger equation on a star-shaped tree.

The first system we consider is the following one
ut −∆Γu + pu = 0, in Γ× (0, T ),

u = h, on ∂Γ× (0, T ),

u(·, 0) = u0, in Γ,

(2.1)

where ∆Γ is the Laplace operator on the network Γ. The system is closed with the coupling
conditions at the internal nodes of the tree, namely the continuity and the Kirchhoff’s law on the
flux at all internal vertices of Γ. Here, u is a collection of functions uα each of them satisfying a
heat equation on some edge of the network.

Simultaneously with problem (2.1) we consider the following problem
iut + ∆Γu + pu = 0, in Γ× (0, T ),

u = h, on ∂Γ× (0, T ),

u(·, 0) = u0, in Γ,

(2.2)

under similar coupling conditions as in the previous model.
In both cases we are interested in determining the potential p, a collection of functions defined

on the edges of Γ, from boundary measurements. In the case of the first system, we are able
to prove that we can recover p using only N − 1 measurements, where N is the total number
of exterior nodes of the network Γ. However, in the case of the second system, besides of the
fact that we need to deal with a star-shaped network, we only can recover the potential p from
measurements performed at all the exterior nodes of Γ.

The use of Carleman estimates to achieve uniqueness and stability results in inverse problems
is well known. Some authors use local Carleman inequalities and deduce uniqueness and Hölder
estimates. Others make use of global Carleman inequalities and deduce Lipschitz stability results
and hence uniqueness results. We shall follow that second approach.

Inverse problems with a finite number of measurements have been widely studied by Bukhgeim
and Klibanov (see [18], [74], and [75]) by means of Carleman estimates (see also the book [69] and
the references therein). For a wide class of partial differential equations, their method provides

21
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the stability in the inverse problem, whenever a suitable Carleman estimate is available. Since
[18], there have been many works based upon their methodology.

The theory of global Carleman estimates for parabolic operator has been largely developed since
the work by Fursikov-Imanuvilov [45] and it has been applied to many situations (e.g. to prove
the controllability along the trajectories or the stability in inverse problems). Since a complete
list of references is too long we refer the reader to [113] for a quite complete review of the state of
art.

Concerning the Schrödinger equation we refer to [11, 13, 21, 22, 88] where Carleman estimates
are proved and used to establish the stability for some inverse problems (see also [68, 85] for some
other Carleman estimates for Schrödinger equation).

The same approach has given many results for the wave equation. Since a complete list is too
long we quote only some of them, related to the same inverse problem consisting in retrieving a
stationary potential in wave equation: [91] and [112] for Dirichlet boundary data and a Neumann
measurement and [67] for Neumann boundary data and a Dirichlet measurement. These refer-
ences are based on the use of local or global Carleman estimates. In the framework of Carleman
inequalities on networks we mention the recent paper [10] where the authors establish a global
Carleman estimate for the wave equation on a star-shaped tree and used it to derive the Lipschitz
stability in an inverse problem. The Carleman estimate in [10] involves some positive definite
matrix introduced in [14] to derive a Carleman estimate for the one-dimensional heat equation
with discontinuous coefficients.

As far as we know, the determination of a time-independent potential for the heat or Schrödinger
equation in a network-like structure has not been addressed in the literature yet. This type of
problems has been studied for example for membranes or elastic strings (see for instance [5] and
the references therein).

Let us now state the main results of this chaper. For a given initial data u0 and a given
boundary data h, we denote by u(p) the solution of the above systems associated with the potential
p ∈ L∞(Γ,R). We introduce the space

H2,1(Γ× (0, T )) := L2(0, T ;H2(Γ)) ∩H1(0, T ;L2(Γ)).

We also introduce the ball Bm(0) := {q ∈ L∞(Γ,R); ||q||L∞(Γ) ≤ m}. Then the following stability
results hold.

Theorem 2.1. Assume that p ∈ L∞(Γ), u0 = u0(x), h = h(x, t) and r > 0 are such that the
solution u(p) of (2.1) fulfills u(p) ∈ H2,1(Γ × (0, T )), ∂tu(p) ∈ H2,1(Γ × (0, T )), and such that
for some t0 ∈ (0, T ) it holds

|u(p)(·, t0)| ≥ r a.e. on Γ.

Then, for any m > 0 there exists a constant C = C(m, ||∂tu(p)||L∞(Γ×(0,T )), r) such that for any
q ∈ Bm(0) satisfying

∂x[u(p)− u(q)](v, .) ∈ H1(0, T ) for all exterior nodes v,

we have

‖p−q‖L2(Γ)

≤ C
(
‖[u(p)− u(q)](·, t0)‖H2(Γ) +

∑
v∈E
‖∂x[u(p)− u(q)](v, ·)‖H1(0,T )

)
,

where E denotes the set of all the exterior vertices of Γ except one.

For the second system, under the assumption that the network is a star-shaped tree, we can
prove a similar stability result.

Theorem 2.2. Assume that p ∈ L∞(Γ;R), u0 = u0(x), h = h(x, t) and r > 0 are such that the
solution of (2.2) satisfies
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• u0(x) ∈ R or iu0(x) ∈ R a.e. in Γ,

• |u0(x)| ≥ r > 0 a.e. in Γ, and

• ∂tu(p) ∈ H2,1(Γ× (0, T )).

Then, for any m ≥ 0, there exists a constant C = C(m, ||∂tu(p)||H2,1(Γ×(0,T )), r) > 0 such that
for any q ∈ Bm(0) satisfying

∂tu(q) ∈ H2,1(Γ× (0, T )),

we have
||p− q||L2(Γ) ≤ C

∑
v∈∂Γ

||∂x[u(p)− u(q)](v, .)||H1(0,T )·

The above theorems extend to networks classical results on inverse problems. To prove those
results, we need to establish (new) global Carleman estimates for the heat (resp. the Schrödinger)
equation on trees. Note that if we impose Kirchhoff-type conditions to the weight function at the
internal vertices, the Carleman estimate cannot be derived. In our Carleman estimates, the weight
function has to fulfill some nonlinear flux condition at each internal vertex. On the other hand,
for the Schrödinger equation posed on a star-shaped tree with N external vertices, we consider a
combination of N weight functions in order to cancel some “bad” terms at the internal vertices
involving time derivatives. That strategy was used in [12], with two different weight functions, in
order to improve the observation region for the wave equation.

The chapter is organized as follows. In Section 2.1 we introduce some notations. Section 2.2
presents the analysis in the case of the heat equation. The Schrödinger equation is considered in
Section 2.3. Finally we discuss some open problems in Section 5.

2.1 Notations and Preliminaries

Let Γ = (V,E) be a graph where V is the set of vertices and E the set of edges. The edges are
assumed to be of finite length and their ends are the vertices of V . For each v ∈ V we denote
Ev = {e ∈ E : v ∈ e}. The multiplicity of a vertex of Γ is equal to the number of edges that
branch out from it. If the multiplicity is equal to one, the vertex is said to be exterior, otherwise
it is said to be interior. We assume that Γ does not contain vertices with multiplicity two, since
they are irrelevant for our models.

From now on, we assume that Γ is a finite tree, that is, Γ is a planar finite connected graph
without circuit (closed path). We fix an orientation of Γ and for each oriented edge e, we denote
by I(e) its initial vertex and by T (e) its terminal one.

We will use the notations from Chapter 1. The only difference is that here we have all the edges
finite. We introduce the space H1

0 (Γ) which denotes the set of functions in H1(Γ) that vanish at
the exterior vertices. We now introduce the Laplace operator ∆Γ on the tree Γ. Even if it is a
standard procedure, we prefer to recall it following [26], for the sake of completeness. Consider
the sesquilinear continuous form ϕ on H1

0 (Γ) defined by

ϕ(u,v) = (ux,vx)L2(Γ) =
∑
e∈E

∫
Ie

uex(x)vex(x)dx.

We denote by D(∆Γ) the set of all the functions u ∈ H1
0 (Γ) such that the linear map v ∈ H1

0 (Γ)→
ϕu(v) := ϕ(u,v) satisfies

|ϕu(v)| ≤ C‖v‖L2(Γ) for all v ∈ H1
0 (Γ).

For u ∈ D(∆Γ), we can extend ϕu to a linear continuous mapping on L2(Γ). There is a unique
element in L2(Γ), denoted by ∆Γu, such that

ϕ(u,v) = −(∆Γu,v)L2(Γ) for all v ∈ H1
0 (Γ).
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We now define the normal exterior derivative of a function u = {ue}e∈E at the endpoints of the
edges. For each e ∈ E and v an endpoint of e we consider the normal derivative of the restriction
of u to the edge e of Ev evaluated at i(v, e) to be defined by:

∂ue

∂ne
(i(v, e)) =

 −u
e
x(0+) if i(v, e) = 0,

uex(le−) if i(v, e) = le.

With this notation it is easy to characterize D(∆Γ) (see [26]):

D(∆Γ) =
{

u = {ue}e∈E ∈ H2(Γ) ∩H1
0 (Γ);

∑
e∈Ev

∂ue

∂ne
(i(v, e)) = 0 for any interior vertex v

}
and

(∆Γu)e = (ue)xx for all e ∈ E, u ∈ D(∆Γ).

In other words D(∆Γ) is the space of all the continuous functions u = {ue}e∈E on Γ, such that
for each edge e ∈ E, ue ∈ H2(Ie), and which vanish at each exterior node and fulfill the following
Kirchhoff-type condition ∑

e∈E; T (e)=v

uex(le−)−
∑

e∈E; I(e)=v

uex(0+) = 0

at each interior node v. It is easy to verify that (∆Γ, D(∆Γ)) is a linear, unbounded, self-adjoint,
dissipative operator on L2(Γ), i.e. <(∆Γu,u)L2(Γ) ≤ 0 for all u ∈ D(∆Γ).

We introduce the notations for the elements of the considered tree. We mainly follow the
notations of [37]. We first describe the procedure to index the edges and vertices of the tree. We
first choose an exterior vertex, called the root of the tree and denoted by R. The remaining edges
and vertices will be denoted by eα and Oα, respectively, where α = (α1, . . . , αk) is a multi-index
(taking value in {1} ∪

⋃
k≥2 Nk). The multi-indices are defined by induction in the following way.

For the edge containing the root R we choose the index 1. That edge is denoted by e1 and its
second end is denoted by O1. Assume now that the interior vertex Oα, which is the end of the
edge eα, has multiplicity equal to mα + 1. The mα edges, different from eα, that branch out from
Oα are denoted by eαβ with β ∈ {1, . . . ,mα}. (See Figure 2.1.)

Let now I be the set of the interior vertices of Γ and E be the set of the exterior vertices of Γ,
R being excepted. We denote by

II = {α,Oα ∈ I}, IE = {α,Oα ∈ E}.

the sets of the indices for the interior and exterior vertices (except the root R). With these
notations I = II ∪ IE is the set of the indices of all the vertices except the root R.

The length of the edge eα will be denoted by lα. Each eα is parameterized by the interval
[0, lα], so that the end Oα of eα corresponds to x = lα while the origin of eα corresponds to x = 0.

2.2 The heat equation

In this section we derive a Carleman estimate for the heat equation on a tree and sketch the proof
of Theorem 2.1. The following properties for a function u = {uα}α∈I : Γ→ R will be relevant for
our work.

(C1) Continuity condition at the internal vertices: uα(lα) = uαβ(0) for all α ∈ II and β ∈ [[1,mα]].

(C2) Flux condition at the internal vertices: uαx(lα) =
mα∑
β=1

uαβx (0) for all α ∈ II .
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No measurement

Measurement

R

e1

e132

e131

e122

e121

e1211
e1212

O11
O12

O121

O1211 O122

O1

e13

e12e11
O13

O131

O132

O1212

Figure 2.1: A tree with 10 edges.

(C3) Vanishing condition at the root R and at the external vertices: u(v) = 0 for all v ∈ {R}∪E .

We introduce the set

Z = {u = {uα}α∈I : Γ× [0, T ]→ R; uα ∈ C2,1([0, lα]× [0, T ]), u(·, t) satisfies (C1)-(C3)}.

Note that u(·, t) ∈ D(∆Γ) for u ∈ Z and t ∈ [0, T ]. The aim of this section is to define a continuous
weight function ψ = {ψα}α∈I : Γ→ (0,∞) and a constant Cψ > 0 such that if we set

θ(x, t) =
eλψ(x)

t(T − t)
, ϕ(x, t) =

eλCψ − eλψ(x)

t(T − t)
, x ∈ Γ, t ∈ (0, T ),

we have the following Carleman estimate.

Proposition 2.1. There exist a continuous function ψ : Γ→ (0,+∞) and some positive constants
λ0, s0, C such that for all λ ≥ λ0, s ≥ s0 and q ∈ Z, it holds∫ T

0

∫
Γ

(
(sθ)−1(|qt|2 + |∆Γq|2) + λ2(sθ)|qx|2 + λ4(sθ)3|q|2

)
e−2sϕdxdt

+

∫ T

0

λ(sθ)(|qx|2e−2sϕ)(R, t)dt

≤ C
(∫ T

0

∫
Γ

|qt + ∆Γq|2e−2sϕdxdt+
∑
v∈E

∫ T

0

λ(sθ)(|qx|2e−2sϕ)(v, t)dt
)
. (2.3)

In the above proposition we have used the following notations |q|2 = {|qα|2}α∈I , |qt|2 =
{|qαt |2}α∈I , |qx|2 = {|qαx |2}α∈I , etc. and∫

Γ

u dx =
∑
α∈I

∫
Iα

uαdx.

Note that the same inequality holds for the operator ∂t −∆Γ instead of ∂t + ∆Γ just by changing
t into T − t. Note also that in the definition of Z we can replace C2,1 by H2,1, as well.
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Proof. Let us consider the operator P = ∂t+∆Γ. Set u = e−sϕq and w = e−sϕP (esϕu). Following
[93] we obtain

w = Mu = ut + sϕtu + (∆Γu + 2sϕxux + s(∆Γϕ)u + s2|ϕx|2u) = M1u +M2u,

where
M1u = ∆Γu + sϕtu + s2|ϕx|2u (2.4)

and
M2u = ut + 2sϕxux + s(∆Γϕ)u (2.5)

are the self-adjoint and skew-adjoint parts of M , respectively. Then

‖w‖2 = ‖M1u +M2u‖2 = ‖M1u‖2 + ‖M2u‖2 + 2(M1u,M2u),

where ‖ · ‖ and (·, ·) denote the norm and the inner product of L2(Γ× (0, T )), respectively.

Step 1. Exact computation of (M1u,M2u).
Recall that

(M1u,M2u) =
∑
α∈I

∫ T

0

∫ lα

0

(M1u)α(M2u)αdxdt.

We compute the integral term in the r.h.s. of the above identity only for one (arbitrary) edge eα,
that we denote by e for simplicity. We assume that e is parameterized by x ∈ [0, l].

For the edge e we have,∫ T

0

∫ l

0

M1uM2u dxdt = −2s

∫ T

0

∫ l

0

ϕxx|ux|2 +

∫ T

0

∫ l

0

|u|2
[s

2
(ϕ4x − ϕtt)− s2(|ϕx|2)t − s3ϕx(|ϕx|2)x

]
+

∫ T

0

[
uxut + sϕxxuux + s|ux|2ϕx + |u|2

(
− s

2
ϕ3x + s2ϕxϕt + s3(ϕx)3

)]∣∣∣l
0
. (2.6)

Summing now the above identity over all the edges {eα}α∈I we obtain the exact expression of the
scalar product (M1u,M2u):

(M1u,M2u) = −2s

∫ T

0

∫
Γ

(∆Γϕ)|ux|2 +

∫ T

0

∫
Γ

|u|2
[s

2
(ϕ4x −ϕtt)− s2(|ϕx|2)t − s3ϕx(|ϕx|2)x

]
+
∑
α∈I

∫ T

0

[
uαxu

α
t + sϕαxxu

αuαx + s|uαx |2ϕαx + |uα|2
(
− s

2
ϕα3x + s2ϕαxϕ

α
t + s3(ϕαx)3

)]∣∣∣lα
0
. (2.7)

Step 2. Terms in the inner product related to the internal nodes.
Let us pick an internal node Oα. Using our previous notations, its parent edge is eα and its children
edges are denoted by eαβ with β ∈ [[1,mα]]. Let us denote by Xα the sum of the boundary terms
involving this internal node Oα in the right hand side of (2.7). Thus

Xα =

∫ T

0

[
uαxu

α
t + sϕαxxu

αuαx + s|uαx |2ϕαx + |uα|2
(
− s

2
ϕα3x + s2ϕαxϕ

α
t + s3(ϕαx)3

)]
(lα, t)dt

−
∫ T

0

∑
β∈[[1,mα]]

[
uαβx uαβt + sϕαβxxu

αβuαβx + s|uαβx |2ϕαβx

+ |uαβ |2
(
− s

2
ϕαβ3x + s2ϕαβx ϕαβt + s3(ϕαβx )3

)]
(0, t)dt.

Moreover, in (2.7) we also have contributions from the exterior nodes in E and from the root R.
These contributions are given by

Y = −s
∫ T

0

|u1
x|2ϕ1

x(0, t)dt+ s
∑
α∈IE

∫ T

0

|uαx |2ϕαx(lα, t)dt. (2.8)
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Let us now define the weight function ψ = {ψα}α∈I on the tree as follows. The components
ψα : [0, lα]→ R are chosen in such a way that ψα ∈ C∞([0, lα]) and

(B1) |ψαx (x)|2 + ψαxx(x) ≥ 0 on [0, lα],

(B2) ψαx > 0 on [0, lα],

(B3) 3
4Cψ ≥ ψ

α > 2
3Cψ on [0, lα], for some positive constant Cψ,

(B4) |ψαxx| ≤ Kψαx on [0, lα] for some positive constant K,

(B5) ψα(lα) = ψαβ(0) for all α ∈ II , β ∈ [[1,mα]],

(B6) ψαβx (0)− (mα + 1)ψαx (lα) > 0 for all α ∈ II , β ∈ [[1,mα]],

(B7)
∑

β∈[[1,mα]]

(ψαβx (0))3−(ψαx (lα))3−(mα+1)ψαx (lα)
∣∣∣ψαx (lα)−

∑
β∈[[1,mα]]

ψαβx (0)
∣∣∣2 > 0 for all α ∈ II .

Finding a set of functions as above is easy. We can even take ψα to be affine, ψα(x) = aαx+bα.
The coefficients aα and bα are positive numbers that satisfy

(P1) 3
4Cψ ≥ aαlα + bα > bα >

2
3Cψ for all α ∈ I,

(P2) aαlα + bα = bαβ for all α ∈ II and β ∈ [[1,mα]],

(P3) aαβ − (mα + 1)aα > 0 for all α ∈ II and β ∈ [[1,mα]],

(P4)
∑

β∈[[1,mα]]

(aαβ)3 − (aα)3 − (mα + 1)aα

∣∣∣aα − ∑
β∈[[1,mα]]

aαβ

∣∣∣2 > 0 for all α ∈ II .

Let us first deal with the conditions (P2)-(P4). We define the constants corresponding to the edge
e1 by a1 = 2 and b1 = 1. Assuming that we have already constructed aα and bα for some multi-
index α, then bαβ is given by (P2). Next, we have to find aαβ large enough to satisfy (P3)-(P4).
Let us choose aαβ = rαaα. Obviously, for large enough rα, depending on mα, conditions (P3) and
(P4) are satisfied. Finally, assume that all the coefficients aα and bα have been defined to satisfy
(P2)-(P4). Adding 2

3Cψ to all the bαβ , we see that (P1) is fulfilled for Cψ large enough, while
(P2)-(P4) still hold true.

Using the definition of the function u we have for any index α ∈ I the following identities

uαx = e−sϕ
α

(−sϕαxqα + qαx ), uαt = e−sϕ
α

(−sϕαt qα + qαt ).

Let us set u(Oα, t) = uα(lα, t) = uαβ(0, t) and ϕ(Oα, t) = ϕα(lα, t) = ϕαβ(0, t) for any α ∈ II and
β ∈ [[1,mα]]. With these notations we have that

Xα ≥ Zα1 + Zα2
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where

Zα1 = −
∫ T

0

(
− sϕαxt(lα, t) + s

∑
β∈[[1,mα]]

ϕαβxt (0, t)
) |u(Oα, t)|2

2
dt

− s2

2

∫ T

0

|u(Oα, t)|2
[
(
T 2

4
|ϕαx |+K)2|ϕαx |(lα, t) +

∑
β∈[[1,mα]]

(
T 2

4
|ϕαβx |+K)2|ϕαβx |(0, t)

]
dt

− (s3 +
1

2
s2)(mα + 1)

∫ T

0

|u(Oα, t)|2|ϕαx(lα, t)|
∣∣∣ϕαx(lα, t)−

∑
β∈[[1,mα]]

ϕαβx (0, t)
∣∣∣2dt

+

∫ T

0

|u(Oα, t)|2|
(
− s

2
ϕα3x + s2ϕαxϕ

α
t + s3(ϕαx)3

)]
(lα, t)dt

−
∫ T

0

|u(Oα, t)|2
∑

β∈[[1,mα]]

(
− s

2
ϕαβ3x + s2ϕαβx ϕαβt + s3(ϕαβx )3

)
(0, t)dt

and

Zα2 = (s− 1

2
)

∑
β∈[[1,mα]]

∫ T

0

[
|ϕαβx ||uαβx |2

]
(0, t)dt

− (s+
1

2
)(mα + 1)

∫ T

0

[
|ϕαx(lα, t)|

∑
β∈[[1,mα]]

|uαβx (0, t)|2
]
dt.

Looking at the coefficient of s3 in Zα1 and of s in Zα2 and using (B6) and (B7) we obtain that
for s ≥ s0 and λ ≥ λ0 (with s0, λ0 large enough)

Xα ≥ Zα1 + Zα2

≥ C

∫ T

0

s3λ3θ3|u(Oα, t)|2dt+ C

∫ T

0

sλθ
(
|uαx(lα, t)|2 +

∑
β∈[[1,mα]]

|uαβx (0, t)|2
)
dt. (2.9)

In particular, Xα > 0.

Step 3. Estimation of the integrals along the edges.
We need the following lemma.

Lemma 2.1. [93, Claim 1] There exist λ1 ≥ λ0, s1 ≥ s0 and A > 0 such that for all λ ≥ λ1,
s ≥ s1, it holds∫ T

0

∫
Γ

|u|2
[s

2
(ϕ4x − ϕtt)− s2(|ϕx|2)t − s3ϕx(|ϕx|2)x

]
dxdt ≥ Aλs3

∫ T

0

∫
Γ

|u|2|ϕx|3dxdt. (2.10)

As the proof of [93, Claim 1] does not involve any integration by parts in x, it is still valid in
our context.

The following lemma is inspired by [93, Claim 2].

Lemma 2.2. There exist s2 ≥ s1, λ2 ≥ λ1, and a positive constant C such that for all λ ≥ λ2

and s ≥ s2

λs

∫ T

0

∫
Γ

|ϕx||ux|2 + λs−1

∫ T

0

∫
Γ

|ϕx|−1|∆Γu|2

≤ C
(
s−1‖M1u‖2 + λs3

∫ T

0

∫
Γ

|ϕx|3|u|2 + λs

∫ T

0

∑
α∈I
|ϕαxuαuαx |(0) + |ϕαxuαuαx |(lα)

+ λs

∫ T

0

∑
α∈I
|(|ϕαx |)x||uα|2(0) + |(|ϕαx |)x||uα|2(lα)

)
. (2.11)
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Step 4. Conclusion.
By (2.7), (2.10) and (B1), we get for λ ≥ 1

‖w‖2 = ‖M1u +M2u‖2

= ‖M1u‖2 + ‖M2u‖2 + 2(M1u,M2u)

= ‖M1u‖2 + ‖M2u‖2 + 2
{ ∑
α∈II

Xα + Y

− 2s

∫ T

0

∫
Γ

ϕxx|ux|2 +

∫ T

0

∫
Γ

|u|2
[s

2
(ϕ4x −ϕtt)− s2(|ϕ2

x|)t − s3ϕx(|ϕx|2)x

]}
≥ ‖M1u‖2 + ‖M2u‖2 + 2

{ ∑
α∈II

Xα + Y

+ 2s

∫ T

0

∫
Γ

(λ2ψ2
x + λψxx)θ|ux|2 +Aλs3

∫ T

0

∫
Γ

|u|2|ϕx|3
}

≥ ‖M1u‖2 + ‖M2u‖2 +
∑
α∈II

Xα + Y +Aλs3

∫ T

0

∫
Γ

|u|2|ϕx|2. (2.12)

Multiplying (2.11) by A/2C and adding it to (2.12) we get

‖M2u‖2 + ‖M1u‖2(1− A

2s
) +

Aλs3

2

∫∫
|u|2|ϕx|3 +

Aλs

2C

∫∫
|ϕx||ux|2 +

Aλ

2sC

∫∫
|ϕx|−1|∆Γu|2

+
∑
α∈II

Xα + Y ≤ ‖w‖2 +
A

2
B, (2.13)

where

B = B1 +B2

= λs

∫ T

0

∑
α∈I
|ϕαxuαuαx |(0) + |ϕαxuαuαx |(lα) + λs

∫ T

0

∑
α∈I
|(|ϕαx |)x||uα|2(0) + |(|ϕαx |)x||uα|2(lα)

)
.

We now prove that for s large enough, the term B is small compared to
∑
α∈II X

α, so that B
can be absorbed by the left hand side of (2.13). Using (2.9) and the fact that u vanishes at the
vertices of E ∪ R = ∂Γ, we see that

B2 ≤ Cλ3s

∫ T

0

∑
α∈I

θ|u(Oα, t)|2dt = Cλ3s

∫ T

0

∑
α∈II

θ|u(Oα, t)|2dt ≤
C

s2

∑
α∈II

Xα. (2.14)

Using again the fact that u vanishes at the vertices of ∂Γ, we obtain with (2.9) that

B1 ≤ Cλs
∫ T

0

∑
α∈II

|ϕαx uα|(Oα, t)
(
|uαx(lα, t)|+

∑
β∈[[1,mα]]

|uαβx (0, t)|
)

≤ C
∫ T

0

∑
α∈II

(
(sλ)2|ϕαx ||uα|2(Oα, t) + |ϕαx(Oα, t)|

(
|uαx(lα, t)|2 +

∑
β∈[[1,mα]]

|uαβx (0, t)|2
)
dt

≤ C

s

∑
α∈II

Xα. (2.15)

Gathering together (2.13), (2.14) and (2.15), we obtain

‖M2u‖2 + ‖M1u‖2(1− A

2s
) +

Aλs3

2

∫ T

0

∫
Γ

|u|2|ϕx|3 +
Aλs

2C

∫∫
|ϕx||ux|2 +

Aλ

2sC

∫ T

0

∫
Γ

|ϕx|−1|∆Γu|2

+ (1− C

s
)
∑
α∈II

Xα + Y ≤ ‖w‖2.
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Writing explicitly the term Y and tacking into account the sign of the functions ψαx occuring in
Y , we get for s and λ large enough

‖M1u‖2 + ‖M2u‖2 + λs3

∫ T

0

∫
Γ

|u|2|ϕx|3 + λs

∫ T

0

∫
Γ

|ϕx||ux|2 + λs−1

∫ T

0

∫
Γ

|ϕx|−1|∆Γu|2

+
∑
α∈II

Xα +

∫ T

0

λsθ1|ux|2(R, t)dt ≤ C
(
‖w‖2 +

∫ T

0

∑
α∈IE

λsθα|uαx |2(lα, t)dt
)
. (2.16)

Finally, using the definition of M2 we get

λs−1

∫ T

0

∫
Γ

|ϕx|−1|ut|2dxdt ≤ Cλs−1

∫ T

0

∫
Γ

|ϕx|−1
(
|M2u|2 + s2|ϕx|2|ux|2 + s2|ϕxx|2|u|2

)
≤ C

∫ T

0

∫
Γ

s−1|M2u|2 + λs|ϕx||ux|2 + λs|ϕx|−1|ϕxx|2|u|2
)
.(2.17)

From (2.16) and (2.17), we infer that for s ≥ s3 and λ ≥ λ3 (with s3, λ3 large enough) we have
that

‖M1u‖2 + ‖M2u‖2 + λs3

∫ T

0

∫
Γ

|u|2|ϕx|3 + λs

∫ T

0

∫
Γ

|ϕx||ux|2 + λs−1

∫ T

0

∫
Γ

|ϕx|−1(|∆Γu|2 + |ut|2)

+
∑
α∈II

Xα +

∫ T

0

λsθ1|ux|2(R, t)dt ≤ C
(
‖w‖2 +

∫ T

0

∑
α∈IE

λsθα|uαx |2(lα, t)dt
)
.

Replacing u by e−sϕq in the last inequality, we readily obtain (2.3).

Before proving the stability result in Theorem 2.1 we need to analyze the following system:

uαt (x, t) = uαxx(x, t) + bα(x)uα(x, t)

+Rα(x, t)fα(x), (x, t) ∈ (0, lα)× (0, T ), α ∈ I,

uα(lα, t) = 0, t ∈ (0, T ), α ∈ IE ,

u1(0, t) = 0, t ∈ (0, T ),

uα(lα, t) = uαβ(0, t), t ∈ (0, T ), α ∈ II , β ∈ [[1,mα]],

uαx(lα, t) =
mα∑
β=1

uαβx (0, t), t ∈ (0, T ), α ∈ II ,

(2.18)

where b = {bα}α∈I ∈ L∞(Γ).
We now apply the Carleman estimate (2.3) with q = ∂tu (and some fixed λ > 0).

Proposition 2.2. Assume that u = {uα}α∈I is a solution of (2.18) which satisfies ut ∈ H2,1(Γ×
(0, T )). If R = {Rα(x, t)}α∈I is such that Rt ∈ L∞(Γ× (0, T )) and that

|R(x, t0)| ≥ r > 0, for a.e. x ∈ Γ and some t0 ∈ (0, T ), (2.19)

then there exists a positive constant C = C(||Rt||L∞(Γ×(0,T )), ||b||L∞(Γ), r) such that

‖f‖L2(Γ) ≤ C

(
‖u(·, t0)‖H2(Γ) +

∑
v∈E
‖∂xtu(v, ·)‖L2(0,T )

)
(2.20)

for any f ∈ L2(Γ).
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We are now able to prove the stability result for system (2.1). Let us denote

w = u(p)− u(q).

It satisfies the following system{
wt = ∆Γw − qw + Rf in Γ× (0, T ),
w(x, t) = 0, on ∂Γ× (0, T ),

where f = q − p, R = u(p). Note that R ∈ C([0, T ];H1(Γ)) ⊂ C(Γ × [0, T ]), for u ∈
L2(0, T ;H2(Γ)) and ut ∈ L2(0, T ;L2(Γ)). Using our hypothesis, we see that |R(·, t0)| ≥ r > 0 on
Γ, hence we can apply Proposition 2.2 to obtain

‖p− q‖L2(Γ) ≤ C
(
‖[u(p)− u(q)](·, t0)‖H2(Γ)) +

∑
v∈E
‖∂x[u(p)− u(q)](v, ·)‖H1(0,T )

)
,

where C = C(‖∂tu(p)‖L∞(Γ×(0,T )), ‖q‖L∞(Γ), r). The proof is now completed.

2.3 Schrödinger equation on a star-shaped tree

In this section, we consider a network Γ which is a star-shaped tree constituted by N edges ej
(with N ≥ 3) connected at the internal node O. Here, the parameterization of the edge ej is
chosen so that the origin O of ej corresponds to x = 0, while the endpoint Oj of ej corresponds
to x = lj , for all j ∈ [[1, N ]].

O1

O

e1 e3

e4

O2

O3

O4
e2

Figure 2.2: A star-shaped tree with 4 edges

We consider the following Cauchy problem

iyj,t + yj,xx + pj(x)yj = fj(x, t), x ∈ (0, lj), j ∈ [[1, N ]], t ∈ (0, T ), (2.21)

yj(0, t) = yl(0, t), t ∈ (0, T ), j, l ∈ [[1, N ]], (2.22)∑
1≤j≤N

yj,x(0, t) = 0, t ∈ (0, T ), (2.23)

y(lj , t) = 0, j ∈ [[1, N ]], t ∈ (0, T ), (2.24)

y(x, 0) = y0(x), x ∈ Γ, (2.25)
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where p = {pj}j=1,N ∈ L∞(Γ) is some given potential function. Our main aim is to prove the
stability for the inverse problem consisting in retrieving the potential p from the measurement of
yx(lj , t) for j ∈ [[1, N ]]. This is done thanks to some Carleman estimate in following the classical
Bukhgeim-Klibanov method.

The first step will be the proof of a Carleman inequality on Γ. The key point is that choosing
only one weight function ψ = {ψj}j=1,N : Γ → R as in the case of the heat equation is not
convenient since we fail to control some boundary terms. Instead, we consider a family of weights
{ψk}k=1,N allowing us to get rid of some bad boundary terms.

Assume given a family (ψkj )1≤j,k≤N of functions fulfilling the following properties

ψkj : [0, lj ]→ R is of class C2, ∀j, k ∈ [[1, N ]], (2.26)

ψk1
j1

(0) = ψk2
j2

(0), ∀j1, k1, j2, k2 ∈ [[1, N ]], (2.27)

|(ψkj )′(x)|2 + (ψkj )′′(x) ≥ 0, ∀x ∈ [0, lj ], ∀j, k ∈ [[1, N ]], (2.28)

(ψkj )′(x) 6= 0, ∀x ∈ [0, lj ], ∀j, k ∈ [[1, N ]], (2.29)

C

2
≥ ψkj (x) >

C

3
, ∀x ∈ [0, lj ], ∀j, k ∈ [[1, N ]], (2.30)

where C > 0 is some positive constant. We also assume that the following flux conditions at x = 0
are satisfied: ∑

1≤j≤N

(ψkj )′(0) = 0, ∀k ∈ [[1, N ]], (2.31)

∑
1≤k≤N

(ψkj )′(0) = 0, ∀j ∈ [[1, N ]], (2.32)

∑
1≤k≤N

|(ψkj )′(0)|2 = C1, ∀j ∈ [[1, N ]], (2.33)

∑
1≤k≤N

(ψkj )′′(0) = C2, ∀j ∈ [[1, N ]], (2.34)

∑
1≤k≤N

[(ψkj )′(0)]3 > 0, ∀j ∈ [[1, N ]], (2.35)

for some constants C1 > 0 and C2 ∈ R. Such a family of weights functions (ψkj )1≤j,k≤N exists. It

is sufficient to pick (affine) functions of the form ψkj (x) = akjx+ 5
12C with C >> 1 and

akj :=

{
N − 1 if j = k,
−1 if j 6= k.

Let us introduce the families of weights

θkj (x, t) =
eλψ

k
j (x)

t(T − t)
, ϕkj (x, t) =

eλC − eλψ
k
j (x)

t(T − t)
,

and the class of functions

Z = {q = (qj)j=1,N ∈ C(Γ×[0, T ]); qj ∈ C2,1([0, lj ]×[0, T ]) ∀j ∈ [[1, N ]], and (2.22)−(2.24) hold}.
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Proposition 2.3. Assume that the family of weights (ψjk) fulfills (2.26)-(2.35). Then there exist
some constants λ0 ≥ 1, s0 ≥ 1 and C0 > 0 such that for all λ ≥ λ0, all s ≥ s0, and all q ∈ Z, it
holds

∑
1≤j,k≤N

∫ T

0

∫ lj

0

[λ2sθkj |qj,x|2 + λ4(sθkj )3|qj |2 + |(M̃k
1 q)j |2 + |(M̃k

2 q)j |2]e−2sϕkj dxdt

≤ C0

∑
1≤j,k≤N

(∫ T

0

∫ lj

0

|qj,t + iqj,xx|2e−2sϕkj dxdt+

∫ T

0

λsθkj (lj)|qj,x(lj)|2e−2sϕkj dt

)
, (2.36)

where i =
√
−1 and M̃k

1 and M̃k
2 denote the operators

(M̃k
1 q)j := [s(ϕkj,t + iϕkj,xx)− 2is2|ϕkj,x|2]qj + 2isϕkj,xqj,x, (2.37)

(M̃k
2 q)j := [−s(ϕkj,t + iϕkj,xx) + 2is2|ϕkj,x|2]qj + qj,t − 2isϕkj,xqj,x + iqj,xx. (2.38)

Remark 2.1. Note that (2.36) is still valid if, in the definition of Z, one replaces

qj ∈ C2,1([0, lj ]× [0, T ]) ∀j ∈ [[1, N ]]

by

q ∈ H2,1(Γ× (0, T )).

Proof. In what follows, the letter c will denote a constant (independent of s, λ, q, j, k) which
may vary from line to line. Let q ∈ Z be given, and for j, k ∈ [[1, N ]], let

ukj = e−sϕ
k
j qj , wkj = e−sϕ

k
jL(esϕ

k
j ukj )

where L denotes the operator

L = ∂t + i∂2
x.

Straightforward computations show that wk = Mkuk with

wkj = (Mkuk)j := ukj,t + sϕkj,tu
k
j + i(ukj,xx + 2sϕkj,xu

k
j,x + sϕkj,xxu

k
j + s2|ϕkj,x|2ukj ),

the operator Mk acting simply on the components of uk along the different edges. Let Mk
1 and Mk

2

denote respectively the (formal) adjoint and skew-adjoint parts of the operator Mk. We readily
obtain that

(Mk
1 uk)j = i(2sϕkj,xu

k
j,x + sϕkj,xxu

k
j ) + sϕkj,tu

k
j (2.39)

(Mk
2 uk)j = ukj,t + i(ukj,xx + s2|ϕkj,x|2ukj ). (2.40)

Letting (M̃k
1 q)j := esϕ

k
j (Mk

1 uk)j and (M̃k
2 q)j := esϕ

k
j (Mk

2 uk)j , we easily check that (2.37) and
(2.38) hold. On the other hand,

||wk||2 = ||Mk
1 uk +Mk

2 uk||2 = ||Mk
1 uk||2 + ||Mk

2 uk||2 + 2 Re (Mk
1 uk,Mk

2 uk)

where (u,v) :=
∑

1≤j≤N
∫ T

0

∫ lj
0
uj(x, t)vj(x, t)dxdt and ||w||2 = (w,w). The proof of the Carle-

man estimate is inspired by those of [88, Proposition 2.1]. In the first step, we compute precisely
Re (Mk

1 uk,Mk
2 uk). In the second step, we check that the boundary terms related to the internal

node O give positive contributions. The third step is completely similar to the second step in the
proof of [88, Proposition 2.1].
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Step 1. Exact computation. Exact computations of Re (Mk
1 uk,Mk

2 uk) give us that∑
1≤k≤N

||wk||2 =
∑

1≤k≤N

[
||Mk

1 uk||2 + ||Mk
2 uk||2

]

+
∑

1≤j,k≤N

{
−4s

∫ T

0

∫ lj

0

ϕkj,xx|ukj,x|2 − 4s Im

∫ T

0

∫ lj

0

ϕkj,xtu
k
ju

k
j,x

+

∫ T

0

∫ lj

0

|ukj |2[s(ϕkj,4x − ϕkj,tt)− 4s3(ϕkj,x)2ϕkj,xx]

+

∫ T

0

[2sϕkj,x|ukj,x|2 + (−sϕkj,3x + 2s3(ϕkj,x)3)|ukj |2 + 2sϕkj,xx Re (ukju
k
j,x)

+2sϕkj,t Re (−iukjukj,x) + isϕkj,x(ukju
k
j,t − u

k
j,tu

k
j )]
∣∣∣l
0

}
. (2.41)

Step 2. Estimation of the boundary terms at the internal node O.
We estimate each term in∑

j,k

(−2s)

∫ T

0

ϕkj,x(0)|ukj,x(0)|2 +
∑
j,k

∫ T

0

(sϕkj,3x(0)− 2s3(ϕkj,x(0))3)|u(0)|2

+
∑
j,k

(−2s)

∫ T

0

ϕkj,xx(0) Re (u(0)ukj,x(0)) +
∑
j,k

(−2s)

∫ T

0

ϕkj,t(0) Re (−iu(0)ukj,x(0))

+
∑
j,k

∫ T

0

(−is)ϕkj,x(0)(u(0)ut(0)− ut(0)u(0)) =: J1 + J2 + J3 + J4 + J5,

and conclude that

J1 + J2 + J3 + J4 + J5 ≥ cs3λ3

∫ T

0

(
eλψ(0)

t(T − t)

)3

|u(0)|2. (2.42)

for s ≥ s1, λ ≥ λ1.

Step 3. Estimation of the integrals along the edges.
Direct estimations as in [88, Proposition 2.1] yield that for some constant A > 0

∑
j,k

{(−4s)

∫ T

0

∫ lj

0

ϕkj,xx|ukj,x|2 − 4s Im

∫ T

0

∫ lj

0

ϕkj,xtu
k
ju

k
j,x

+

∫ T

0

∫ lj

0

|ukj |2[s(ϕkj,4x − ϕkj,tt)− 4s3(ϕkj,x)2ϕkj,xx]}

≥ A
∑
j,k

{λ2s

∫ T

0

∫ lj

0

eλψ
k
j

t(T − t)
|(ψkj )′ukj,x|2 + λs3

∫ T

0

∫ lj

0

|ϕkj,x|3|ukj |2} (2.43)

provided that s ≥ s2, λ ≥ λ2. Combining (2.41), (2.42) and (2.43), we infer that

∑
j,k

{∫ T

0

∫ lj

0

[|(Mk
1 uk)j |2 + |(Mk

2 uk)j |2] + λ2s

∫ T

0

∫ lj

0

eλψ
k
j

t(T − t)
|(ψkj )′ukj,x|2

+ λs3

∫ T

0

∫ lj

0

|ϕkj,x|3|ukj |2 + cs3λ3

∫ T

0

( eλψ(0)

t(T − t)

)3

|u(0)|2
}

≤ c
∑
j,k

(∫ T

0

∫ lj

0

|wkj |2 + s

∫ T

0

|ϕkj,x(lj)| |ukj,x(lj)|2dt
)
. (2.44)



2.4. OPEN PROBLEMS 35

Replacing ukj by e−sϕ
k
j qj in (2.44) gives (2.36).

We consider the following boundary initial-value problem

iuj,t + uj,xx + pj(x)uj = 0, x ∈ (0, lj), j ∈ [[1, N ]], t ∈ (0, T ),

uj(0, t) = ul(0, t), j, k ∈ [[1, N ]], t ∈ (0, T ),∑
1≤j≤N uj,x(0, t) = 0, t ∈ (0, T ),

uj(lj , t) = hj(t), j ∈ [[1, N ]], t ∈ (0, T ),

u(x, 0) = u0(x), x ∈ Γ.

(2.45)

In what follows we fix the initial data u0 and the boundary data h = {hj}j=1,N , and we denote
by u(p) the solution of the system (2.45) associated with the potential p ∈ L∞(Γ).

Pick any p,q as in the statement of Theorem 2.2, and introduce the difference y := u(p)−u(q)
of the corresponding solutions of (2.45). Then y fulfills the system

iyj,t + yj,xx + qj(x)yj = fj(x)Rj(x, t), x ∈ (0, lj), j ∈ [[1, N ]], t ∈ (0, T ),

yj(0, t) = yl(0, t), j, k ∈ [[1, N ]], t ∈ (0, T ),∑
1≤j≤N yj,x(0, t) = 0, t ∈ (0, T ),

yj(lj , t) = 0, j ∈ [[1, N ]], t ∈ (0, T ),

y(x, 0) = 0, x ∈ Γ,

(2.46)

with fj = qj − pj (real valued) and Rj := (u(p))j . Theorem 2.2 follows by applying the following
result to function y.

Proposition 2.4. [57, Proposition 4.4] Suppose that R = {Rj}j=1,N satisfies

• R(x, 0) ∈ R or iR(x, 0) ∈ R a.e. in Γ,

• |R(x, 0)| ≥ r > 0 a.e. in Γ,

• R ∈ H1(0, T ;L∞(Γ)), and

• ∂ty ∈ H2,1(Γ× (0, T )).

Then for any m ≥ 0 there exists a constant C = C(m, ||Rt||L2(0,T ;L∞(Γ)), r) such that for any
q ∈ L∞(Γ,R) with ||q||L∞(Γ) ≤ m and for all f ∈ L2(Γ,R), the solution y of (2.46) satisfies

||f ||L2(Γ) ≤ C
∑

1≤j≤N

||yj,x(lj , .)||H1(0,T )· (2.47)

The complete details of the proof are given in [57].

2.4 Open problems

We now mention a few open problems related to our work. One of them is whether it is possible
to reduce the number of measurements at the boundaries. It could be interesting to combine the
ideas of the paper with those appearing in [36], [37] where less measurements on the boundary
are needed but some rationality assumptions on the lengths of the edges have to be made. For
the Schrödinger equation, the question whether a Carleman estimate on a tree with N exterior
vertices can be written with only one weight function and N − 1 boundary observations seems to
be challenging.

The extension of the present work to more general graphs with other kind of coupling is also
an open problem. We recall here the works of Kostrykin and Schrader [77, 80] where self-adjoint
Laplace operators with general coupling conditions are introduced.



36 CHAPTER 2. INVERSE PROBLEMS ON TREES



Part II

Discrete Equations and Numerical
Approximations
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Chapter 3

Discrete Schrödinger equations

In this chapter we prove dispersive estimates for the system formed by two coupled discrete
Schrödinger equations (DSE). The main goal is to analyze a model which consists in coupling two
DSE by Kirchhoff’s type condition:

iut(t, j) + b−2
1 (∆du)(t, j) = 0 j ≤ −1, t 6= 0,

ivt(t, j) + b−2
2 (∆dv)(t, j) = 0 j ≥ 1, t 6= 0,

u(t, 0) = v(t, 0), t 6= 0,

b−2
1 (u(t,−1)− u(t, 0)) = b−2

2 (v(t, 0)− v(t, 1)), t 6= 0,

u(0, j) = ϕ(j), j ≤ −1,

v(0, j) = ϕ(j), j ≥ 1.

(3.1)

In the above system u(t, 0) and v(t, 0) have been artificially introduced to couple the two equations
on positive and negative integers. The third condition in the above system requires continuity
along the interface j = 0 and the fourth one can be interpreted as the continuity of the flux along
the interface. We will obtain estimates for the resolvent of the discrete operator. The decay of
the solutions is obtained by using classical and some new results on oscillatory integrals.

Let us now recall some previous results related with our work. First we consider the following
system of difference equations  iut + ∆du = 0, j ∈ Z, t 6= 0,

u(0) = ϕ,
(3.2)

where ∆d is the discrete laplacian defined by

(∆du)(j) = uj+1 − 2uj + uj−1, j ∈ Z.

Concerning the long time behavior of the solutions of system (3.2) in [99] the authors have proved
the following:

‖u(t)‖l∞(Z) ≤ C(|t|+ 1)−1/3‖ϕ‖l1(Z), ∀ t 6= 0. (3.3)

The proof of (3.3) consists in writing the solution u of (3.2) as the convolution between a kernel
Kt and the initial data ϕ and then estimate Kt by using Van der Corput’s lemma (see Section
3.2). For the linear semigroup exp(it∆d), Strichartz like estimates similar have been obtained in
[99] for pairs (q, r) satinsfying:

1

q
≤ 1

3

(1

2
− 1

r

)
, 2 ≤ q, r ≤ ∞. (3.4)

39



40 CHAPTER 3. DISCRETE SCHRÖDINGER EQUATIONS

We also mention [63] and [65] where the authors consider a similar equation on hZ by replacing
∆d by ∆d/h

2 and analyze the same properties in the context of numerical approximations of the
linear and nonlinear Schrödinger equation.

A more thorough analysis has been done in [76] and [90] where the authors analyze the decay
properties of the solutions of equation iut + Au = 0 where A = ∆d − V , with V a real-valued
potential. In these papers l1(Z) − l∞(Z) and l2−σ(Z) − l2σ(Z) estimates for exp(itA)Pa,c(A) have
been obtained where Pa,c(A) is the spectral projection to the absolutely continuous spectrum of
A and l2±σ(Z) are weighted l2(Z)-spaces.

In what concerns the continuous counterpart of the results presented here, i.e. the Schödinger
equation with variable coefficients, we mention the results of Banica [7]. Consider a partition of
the real axis as follows: −∞ = x0 < x1 < · · · < xn+1 =∞ and a step function σ(x) = b−2

i for x ∈
(xi, xi+1), where bi are positive numbers. The solution u of the Schrödinger equation iut(t, x) + (σ(x)ux)x(t, x) = 0, for x ∈ R, t 6= 0,

u(0, x) = u0(x), x ∈ R,

satisfies the dispersion inequality

‖u(t)‖L∞(R) ≤ C|t|−1/2‖u0‖L1(R), t 6= 0,

where constant C depends on n and on sequence {bi}ni=0. We recall that in [55] the above result
was used in the analysis of the long time behavior of the solutions of the linear Schödinger equation
on regular trees. In the case of discrete equations the corresponding model is given by iUt +AU = 0, t 6= 0,

U(0) = ϕ,
(3.5)

where the infinite matrix A is symmetric with a finite number of diagonals nonidentically vanishing.
Once a result similar to [7] will be obtained for discrete Schrödinger equations with non-constant
coefficients we can apply it to obtain dispersive estimates for discrete Schrödinger equations on
trees. But as far as we know the study of the decay properties of solutions of system (3.5) in terms
of the properties of A is a difficult task and we try to give here a partial answer to this problem.
In the case when A is a diagonal matrix these properties are easily obtained by using the Fourier
transform and classical estimates for oscillatory integrals.

The main result of this chapter is given by the following theorem.

Theorem 3.1. For any ϕ ∈ l2(Z \ {0}) there exists a unique solution (u, v) ∈ C(R, l2(Z \ {0}))
of system (3.1). Moreover, there exists a positive constant C(b1, b2) such that

‖(u, v)(t)‖l∞(Z\{0}) ≤ C(b1, b2)(|t|+ 1)−1/3‖ϕ‖l1(Z\{0}), ∀t ∈ R, (3.6)

holds for all ϕ ∈ l1(Z \ {0}).
Using the well-known results of Keel and Tao [72] we obtain the following Strichartz-like

estimates for the solutions of system (3.1).

Theorem 3.2. For any ϕ ∈ l2(Z \ {0}) the solution (u, v) of system (3.1) satisfies

‖(u, v)‖Lq(R, lr(Z\{0})) ≤ C(q, r)‖ϕ‖l2(Z\{0})

for all pairs (q, r) satisfying (3.4).

The chapter is organized as follows: In section 3.1 we present some discrete models, in particular
system (3.1) in the case b1 = b2 and show how it is related with problem (3.2). In addition, a
system with a dynamic coupling along the interface is presented. In section 3.2 we present some
classical results on oscillatory integrals and make some improvements that we need to obtain the
result in Theorem 3.1.

In Section 3.3 we obtain the explicit formula of the resolvent associated with system (3.1) and
write a limiting absorption principle. Finally we sketch the proof of Theorem 3.1 and present some
open problems.
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3.1 Some discrete models

In this section in order to emphasize the main differences and difficulties with respect to the
continuous case when we deal with discrete systems we consider two models. In the first case we
consider system (3.1) with the two coefficients in the front of the discrete laplacian equal. The
second case involves a time dependent ODE coupling at the interface j = 0.

In the following we denote Z∗ = Z \ {0}.

Theorem 3.3. Let us assume that b1 = b2. For any ϕ ∈ l2(Z∗) there exists a unique solution
u ∈ C(R, l2(Z∗)) of system (3.1). Moreover there exists a positive constant C(b1) such that

‖u(t)‖l∞(Z∗) ≤ C(b1)(|t|+ 1)−1/3‖ϕ‖l1(Z∗), ∀ t ∈ R, (3.7)

holds for all ϕ ∈ l1(Z∗).

The existence of the solutions of system (3.1) is immediate since we can write it in the form
(3.5) where operator A is bounded in l2(Z∗):

A =



... ... ... 0 0 0 0 0
0 1 −2 1 0 0 0 0

0 0 1 − 3
2

3
2 0 0 0

0 0 0 3
2 − 3

2 1 0 0

0 0 0 0 1 −2 1 0
0 0 0 0 0 ... ... ...


In the particular case considered here we can reduce the proof of the dispersive estimate (3.7)

to the analysis of two problems: one with Dirichlet’s boundary condition and another one with a
discrete Neumann’s boundary condition.

Let us recall that in the case of system (3.2) its solution is given by u(t) = Kt ∗ ϕ where ∗ is
the standard convolution on Z and

Kt(j) =

∫ π

−π
e−4it sin2( ξ2 )eijξdξ, t ∈ R, j ∈ Z.

In [99] a simple argument based on Van der Corput’s lemma has been used to show that for
any real number t the following holds:

|Kt(j)| ≤ C(|t|+ 1)−1/3, ∀j ∈ Z. (3.8)

Let us restrict for simplicity to the case b1 = b2 = 1. For (u, v) solution of system (3.1) let us
set

S(j) =
v(j) + u(−j)

2
, D(j) =

v(j)− u(−j)
2

, j ≥ 0.

Observe that u and v can be recovered from S and D as follows

(u, v) = ((S −D)(−·), S +D).

Writing the equations satisfied by u and v we obtain that D and S solve two discrete Schrödinger
equations on Z+ = {j ∈ Z, j ≥ 1} with Dirichlet, respectively Neumann boundary conditions:

iDt(t, j) + (∆dD)(t, j) = 0 j ≥ 1, t 6= 0,

D(t, 0) = 0, t 6= 0,

D(0, j) = ϕ(j)−ϕ(−j)
2 , j ≥ 1,

(3.9)
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and 
iSt(t, j) + (∆dS)(t, j) = 0 j ≥ 1, t 6= 0,

S(t, 0) = S(t, 1), t 6= 0,

S(0, j) = ϕ(j)+ϕ(−j)
2 , j ≥ 1.

(3.10)

Making an odd extension of the function D and using the representation formula for the
solutions of (3.2) we obtain that the solution of the Dirichlet problem (3.9) satisfies

D(t, j) =
∑
k≥1

(Kt(j − k)−Kt(j + k))D(0, k), t 6= 0, j ≥ 1. (3.11)

A similar even extension of function S permits us to obtain the explicit formula for the solution
of the Neumann problem (3.10)

S(t, j) =
∑
k≥1

(Kt(k − j) +Kt(k + j − 1))S(0, k), t 6= 0, j ≥ 1. (3.12)

Using the decay of the kernel Kt given by (3.8) we obtain that S(t) and D(t) decay as (|t|+1)−1/3

and then the same property holds for u and v. This finishes the proof of this particular case.

In our previous analysis has taken into account the particular structure of the equations. When
the coefficients b1 and b2 are not equal we cannot write an equation verified by functions D or S.
We now write system (3.1) in matrix formulation. Using the coupling conditions at j = 0 system
(3.1) can be written in the following equivalent form{

iUt +AU = 0,
U(0) = ϕ,

where U = (u, v)T , u = (u(j))j≤−1, v = (vj)j≥1 and

A =



... ... ... 0 0 0 0 0
0 b−2

1 −2b−2
1 b−2

1 0 0 0 0
0 0 b−2

1 −b−2
1 − 1

b21+b22

1
b21+b22

0 0 0

0 0 0 1
b21+b22

− 1
b21+b22

− b−2
2 b−2

2 0 0

0 0 0 0 b−2
2 −2b−2

2 b−2
2 0

0 0 0 0 0 ... ... ...


. (3.13)

In the particular case b1 = b2 = 1 the operator A can be decomposed as follows

A = ∆d+B =


... ... ... 0 0 0 0 0
0 1 −2 1 0 0 0 0
0 0 1 −2 1 0 0 0
0 0 0 1 −2 1 0 0
0 0 0 0 1 −2 1 0
0 0 0 0 0 ... ... ...

+


... ... ... 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1

2 − 1
2 0 0 0

0 0 0 − 1
2

1
2 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 ... ... ...

 .

However, we do not know how to use the dispersive properties of exp(it∆d) and the particular
structure of B in order to obtain the decay of the new semigroup exp(it(∆d +B)).

Another model of interest is the following one inspired in the numerical approximations of
LSE. Set

a(x) =

{
b−2
1 , x < 0,
b−2
2 , x > 0.

Using the following discrete derivative operator

(∂u)(x) = u(x+
1

2
)− u(x− 1

2
)
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we can introduce the second order discrete operator

∂(a∂u)(j) = a(j +
1

2
)u(j + 1)−

(
a(j +

1

2
) + a(j − 1

2
)
)
u(j) + a(j − 1

2
)u(j − 1), j ∈ Z.

In this case we have to analyze the following system
iut(t, j) + b−2

1 (∆du)(t, j) = 0, j ≤ −1, t 6= 0,

iut(t, j) + b−2
2 (∆du)(t, j) = 0, j ≥ 1, t 6= 0,

iut(t, 0) + b−2
1 u(t,−1)− (b−2

1 + b−2
2 )u(t, 0) + b−1

2 u(t, 1) = 0, t 6= 0,

u(0, j) = ϕ(j), j ∈ Z.

(3.14)

In matrix formulation it reads iUt +AU = 0 where U = (u(j))j∈Z, and the operator A is given by
the following one

A =


... ... ... 0 0 0 0
0 b−2

1 −2b−2
1 b−2

1 0 0 0
0 0 b−2

1 −(b−2
1 + b−2

2 ) b−2
2 0 0

0 0 0 b−2
2 −2b−2

2 b−2
2 0

0 0 0 0 ... ... ...

 . (3.15)

Observe that in the case b1 = b2 the results of [99] give us the decay of the solutions.

Regarding the long time behavior of the solutions of system (3.14) we have the following result.

Theorem 3.4. For any ϕ ∈ l2(Z) there exists a unique solution u ∈ C(R, l2(Z)) of system (3.14).
Moreover, there exists a positive constant C(b1, b2) such that

‖u(t)‖l∞(Z) ≤ C(b1, b2)(|t|+ 1)−1/3‖ϕ‖l1(Z), ∀t ∈ R,

holds for all ϕ ∈ l1(Z).

The proof of this result is similar to the one of Theorem 3.1.

3.2 Oscillatory integrals

In this section we present some classical tools for oscillatory integrals and we give an improvement
of Van der Corput’s Lemma that is in some sense similar to the one obtained in [73]. First of all
let us recall Van der Corput’s lemma(see for example [101], p. 332).

Lemma 3.1. (Van der Corput) Let k ≥ 1 be an integer, and φ : [a, b]→ R such that |φ(k)(x)| ≥ 1
for all x ∈ [a, b], and φ′ monotone in the case k = 1.
Then ∣∣∣∣∣

∫ b

a

eitφ(x)ψ(x)dx

∣∣∣∣∣ ≤ ck|t|− 1
k

(
‖ψ‖L∞(a,b) +

∫ b

a

|ψ′(ξ)|dξ
)
, ∀ t 6= 0.

A first improvement has been obtained in [73] where the authors analyze the smoothing effect
of some dispersive equations. We will present here a particular case of the results in [73], that will
be sufficient for our purposes. In the sequel Ω will be a bounded interval. We consider class A2

of real functions φ ∈ C3(Ω) satisfying the following conditions:

1) Set Sφ = {ξ ∈ Ω : φ′′ = 0} is finite,

2) If ξ0 ∈ Sφ then there exist constants ε, c1, c2 and α ≥ 2 such that for all |ξ − ξ0| < ε,

c1|ξ − ξ0|α−2 ≤ |φ′′(ξ)| ≤ c2|ξ − ξ0|α−2,

3) φ′′ has a finite number of changes of monotonicity.
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Lemma 3.2. ([73]) Let Ω be a bounded interval, φ ∈ A2 and

I(x, t) =

∫
Ω

ei(tφ(ξ)−xξ)|φ′′(ξ)|1/2dξ.

Then for any x, t ∈ R
|I(x, t)| ≤ cφ|t|−1/2, (3.16)

where cφ depends only on the constants involved in the definition of class A2.

Remark 3.1. The results of [73] are more general that the one presented here allowing functions
with vertical asymptotics, finite union of intervals or infinite domains.

In the proof of our main result we will need a result similar to Lemma 3.2 but with |p′′′|1/3
instead of |p′′|1/2 in the definition of I(x, t). We define class A3 of real functions φ ∈ C4(Ω)
satisfying the following conditions:

1) Set Sφ = {ξ ∈ Ω : φ′′′ = 0} is finite,

2) If ξ0 ∈ Sφ then there exist constants ε, c1, c2 and α ≥ 3 such that for all |ξ − ξ0| < ε,

c1|ξ − ξ0|α−3 ≤ |φ′′′(ξ)| ≤ c2|ξ − ξ0|α−3, (3.17)

3) φ′′′ has a finite number of changes of monotonicity.

Lemma 3.3. ([61]) Let Ω be a bounded interval, φ ∈ A3 and

I(x, t) =

∫
Ω

ei(tφ(ξ)−xξ)|φ′′′(ξ)|1/3dξ.

Then for any x, t ∈ R
|I(x, t)| ≤ cφ|t|−1/3, (3.18)

where cφ depends only on the constants involved in the definition of class A3.

As a consequence of the above results we obtain the following:

Lemma 3.4. ([61]) Let a ∈ (0, 1] and 0 ≤ δ ≤ π. There exists C(a, δ) such that for all real
numbers y, z and t∣∣∣ ∫ π

δ

eit(2 cos θ+2z arcsin(a sin θ
2 ))eiyθ sin θdθ

∣∣∣ ≤ C(a, δ)(|t|+ 1)−1/3 (3.19)

and if δ > 0 ∣∣∣ ∫ π−δ

0

eit(2 cos θ+2z arcsin(a sin θ
2 ))eiyθdθ

∣∣∣ ≤ C(a, δ)(|t|+ 1)−1/3. (3.20)

We point out here that the proof of Lemma 3.4 is not trivial and needs a careful applications
of the three previous lemmas.

3.3 The resolvent

Let us consider the system {
iUt +AU = 0,
U(0) = ϕ,

(3.21)

where U(t) = (u(t, j))j 6=0 and operator A is given by (3.13). We compute explicitly the resolvent
(A− λI)−1 and we obtain a limiting absorption principle.

We start by localizing the spectrum of operator A and computing the resolvent R(λ) = (A−
λI)−1. We use some classical results on difference equations.
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Lemma 3.5. For any b1 and b2 positive the spectrum of operator A satisfies

σ(A) = [−4 max{b−2
1 , b−2

2 }, 0]. (3.22)

Before computing the resolvent (A− λI)−1 we need some results for difference equations.

Lemma 3.6. For any λ ∈ C \ [−4, 0] and g ∈ l2(Z∗), any solution f ∈ l2(Z∗) of

∆df(j)− λf(j) = g(j), j 6= 0

with f(0) prescribed is given by

f(j) = αr|j| +
1

2r − 2− λ
∑
k∈Z∗

r|j−k|g(k) (3.23)

where α is determined by f(0) and r is the unique solution with |r| < 1 of

r2 − 2r + 1 = λr.

Moreover

f(j) = f(0)r|j| +
1

r − r−1

∑
k

(r|j−k| − r|j|+|k|)g(k), j 6= 0.

As an application of the previous Lemma we have the following result.

Lemma 3.7. Let λ ∈ C \ [−4 max{b−2
1 , b−2

2 }, 0]. For any g ∈ l2(Z∗) there exists a unique solution
f ∈ l2(Z∗) of the equation (A− λI)f = g. Moreover, it is given by the following formula

f(j) =
−r|j|s

b−2
2 (1− r2) + b−2

1 (1− r1)

[ ∑
k∈Z1

r
|k|
1 g(k) +

∑
k∈Z2

r
|k|
2 g(k)

]
(3.24)

+
b2s

rs − r−1
s

∑
k∈Zs

(r|j−k|s − r|j|+|k|s )g(k), j ∈ Zs,

where for s ∈ {1, 2}, rs = rs(λ) is the unique solution with |rs| < 1 of the equation

r2
s − 2rs + 1 = λb2srs.

We now write a limiting absorption principle. From Lemma 3.7 we know that for any λ ∈
C \ [−4 max{b−2

1 , b−2
2 }, 0] and ϕ ∈ l2(Z∗) there exists R(λ)ϕ = (A−λ)−1ϕ ∈ l2(Z∗) and it is given

by

(R(λ)ϕ)(j) =
−r|j|s

b−2
2 (1− r2) + b−2

1 (1− r1)

[ ∑
k∈I1

r
|k|
1 ϕ(k) +

∑
k∈I2

r
|k|
2 ϕ(k)

]
(3.25)

+
b2s

rs − r−1
s

∑
k∈Is

(r|j−k|s − r|j|+|k|s )ϕ(k), j ∈ Zs,

where rs = rs(λ), s ∈ {1, 2}, is the unique solution with |rs| < 1 of the equation

r2
s − 2rs + 1 = λb2srs.

Let us now consider I = [−4 max{b−2
1 , b−2

2 }, 0]. From Lemma 3.5 we have that σ(A) = I. For
any ω ∈ I and ε ≥ 0 let us denote by r±s,ε the unique solution with modulus less than one of

r2 − 2r + 1 = (ω ± iε)b2sr.
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Denoting r+
s,ε = exp(z+

s,ε) with z+
s,ε = a+

s,ε + iã+
s,ε, a

+
s,ε < 0 and ã+

s,ε ∈ [−π, π] we obtain by taking
the imaginary part in the equation satisfied by r+

s,ε that

(exp(a+
s,ε)− exp(−a+

s,ε)) sin(ã+
s,ε) = εb2s.

Thus ã+
s,ε ∈ [−π, 0]. A similar result holds for r−s,ε, ã

−
s,ε ∈ [0, π].

Let us set r±s = limε↓0 r
±
s,ε. Using the sign of the imaginary part of r±s,ε we obtain that r±s are

the solutions with =(r+
s ) ≤ 0 ≤ =(r−s ) of the equation

r2 − 2r + 1 = ωb2sr.

Also, using that r−s,ε = r+
s,ε we obtain r−s = r+

s .

For any ω ∈ J = I \ {−4b−2
1 ,−4b−2

2 , 0} and ϕ ∈ l1(Z∗) let us set

(R±(ω)ϕ)(j) =
−(r±s )|j|

b−2
2 (1− r±2 ) + b−2

1 (1− r±1 )

[ ∑
k∈I1

(r±1 )|k|ϕ(k) +
∑
k∈I2

(r±2 )|k|ϕ(k)
]

+
b2s

r±s − (r±s )−1

∑
k∈Is

((r±s )|j−k| − (r±s )|j|+|k|)ϕ(k), j ∈ Zs.

The new operators R±(ω) are well defined as bounded operators from l1(Z∗) to l∞(Z∗). We point
out that we cannot define R±(ω) for ω ∈ {−4b−2

1 ,−4b−2
2 , 0} since for ω = 0 we have r1 = r2 = 1

and for ω = 4b−2
s , s ∈ {1, 2}, we have rs = −1. We also emphasize that R−(ω)ϕ = R+(ω)ϕ. This

is a consequence of the fact that for any ω ∈ I, r−s (ω) = r+
s (ω). Formally, the above operator

equals R(ω ± iε) with ε = 0. We point out that as operators on l2(Z∗), R(ω ± iε) are defined for
any ω ∈ I but only if ε 6= 0.

Making rigourous the above comments on the the resolvent we obtain that the linear semigroup
satisfies the following limiting absorption principle.

Lemma 3.8. For any ϕ ∈ l1(Z∗) operator exp(itA) satisfies

eitAϕ =
1

2iπ

∫
I

eitω[R+(ω)−R−(ω)]ϕdω. (3.26)

We now able to sketch the proof of the main result of this Chapter, Theorem 3.1. For any
ϕ ∈ l1(Z∗) Lemma 3.8 gives us that

(eitAϕ)(n) =
1

2πi

∫
I

eitω(R+(ω)−R−(ω))ϕ(n)ds, n ∈ Z∗,

where I = [−4 max{b−2
1 , b−2

2 }, 0]. Using the fact that R−(ω)ϕ = R+(ω)ϕ we obtain

(eitAϕ)(n) =
1

π

∫
I

eitω((=R+)(ω)ϕ)(n)dω, n ∈ Z∗,

where =R+ is given by

(=R+)(ω)ϕ(j) =
(R+(ω)ϕ)(j)− (R−(ω)ϕ)(j)

2i

=
∑
k∈Z1

ϕ(k)= −(r+
s )|j|(r+

1 )|k|

b−2
2 (1− r+

2 ) + b−2
1 (1− r+

1 )

+
∑
k∈Z2

ϕ(k)= −(r+
s )|j|(r+

2 )|k|

b−2
2 (1− r+

2 ) + b−2
1 (1− r+

1 )

+
∑
k∈Zs

ϕ(k)= b2s
r+
s − (r+

s )−1
((r+

s )|j−k| − (r+
s )|j|+|k|), j ∈ Zs
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and for s ∈ {1, 2}, r+
s is the root of r2 − 2r + 1 = ωb2sr with the imaginary part nonpositive.

In order to prove (3.6) it is sufficient to show the existence of a constant C = C(b1, b2) such
that∑

k∈Z1

|ϕ(k)|
∣∣∣ ∫
I

eitω= (r+
s )|j|(r+

1 )|k|

b−2
2 (1− r+

2 ) + b−2
1 (1− r+

1 )
dω
∣∣∣ ≤ C(|t|+ 1)−1/3‖ϕ‖l1(Z∗), ∀j ∈ Z∗, (3.27)

and ∑
k∈Zs

|ϕ(k)|
∣∣∣ ∫
I

eitω= (r+
s )|j−k|

r+
s − (r+

s )−1
dω
∣∣∣ ≤ C(|t|+ 1)−1/3‖ϕ‖l1(Z∗), ∀j ∈ Z∗. (3.28)

The estimates for the other two terms occurring in the representation of =R+(ω) are similar.
Using the results on oscillatory integrals contained in Section 3.2 we obtain that

sup
j∈Z

∣∣∣ ∫
I

eitω= (r+
s )|j|

r+
s − (r+

s )−1
dω
∣∣∣ ≤ C(b1, b2)(|t|+ 1)−1/3, ∀ t ∈ R. (3.29)

and

sup
j,k∈N

∣∣∣ ∫
I

eitω
(r+

1 )j(r+
2 )k

b−2
2 (1− r+

2 ) + b−2
1 (1− r+

1 )
dω
∣∣∣ ≤ C(b1, b2)(|t|+ 1)−1/3, ∀t ∈ R,

which finishes the proof of the main result of this chapter.

3.4 Open problems

In this papers we have presented the analysis of the dispersive properties of the solutions of a
system consisting in coupling two discrete Schrödinger equations. However we did not cover the
case when more discrete equations are coupled. The main difficulty is to write in an accurate
and clean way the resolvent of the linear operator occurring in the system. Once this case will be
understood then we can treat discrete Schödinger equations on trees similar to those considered
in [55] in the continuous case.

The analysis presented here mainly concerns the l1 − l∞ decay property. In a recent paper
[89] the authors use some modifications of the stationary phase method to obtain improved l1− lp
decay estimates for the linear Fermi-Pasta-Ulam chain, the Klein-Gordon chain and the discrete
nonlinear Schrödinger equation. The optimality of l1− lp estimates for the models presented here
remains to be investigated.

There is another question which arises from the presentation given in this chaper. Suppose
that we have a system iUt + AU = 0 with an initial datum at t = 0, where A is an symmetric
operator with a finite number of diagonals not identically vanishing. Under which assumptions on
the operator A does solution U decay and how can we characterize the decay property in terms
of the properties of A? When A is a diagonal operator we can use Fourier’s analysis tools but in
the case of a non-diagonal operator this is not useful.
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Chapter 4

Convergence rates for dispersive
approximation schemes to
nonlinear Schrödinger equations

Let us consider the linear (LSE) and the nonlinear (NSE) Schrödinger equations:{
iut + ∂2

xu = 0, x ∈ R, t 6= 0,
u(0, x) = ϕ(x), x ∈ R (4.1)

and {
iut + ∂2

xu = f(u), x ∈ R, t 6= 0,
u(0, x) = ϕ(x), x ∈ R, (4.2)

respectively.
The linear equation (4.1) is solved by u(x, t) = S(t)ϕ, where S(t) = eit∆ is the free Schrödinger

operator and has two important properties. First, the conservation of the L2-norm

‖u(t)‖L2(R) = ‖ϕ‖L2(R)

which shows that it is in fact a group of isometries in L2(R), and a dispersive estimate of the form:

|S(t)ϕ(x)| = |u(t, x)| ≤ 1

(4π|t|)1/2
‖ϕ‖L1(R), x ∈ R, t 6= 0.

The space-time estimate

‖S(·)ϕ‖L6(R, L6(R)) ≤ C‖ϕ‖L2(R), (4.3)

due to Strichartz [102], guarantees that the solutions decay as t becomes large and that they gain
some spatial integrability. Inequality (4.3) was generalized by Ginibre and Velo [49]. They proved:

‖S(·)ϕ‖Lq(R, Lr(R)) ≤ C(q)‖ϕ‖L2(R) (4.4)

for the so-called 1/2-admissible pairs (q, r). We recall that the exponent pair (q, r) is α-admissible
(cf. [72]) if 2 ≤ q, r ≤ ∞, (q, r, α) 6= (2,∞, 1) and

1

q
= α

(
1

2
− 1

r

)
. (4.5)

We see that (4.3) is a particular instance of (4.4) in which α = 1/2 and q = r = 6.
The extension of these estimates to the inhomogeneous linear Schrödinger equation is due to

Yajima [111] and Cazenave and Weissler [30]. These estimates can also be extended to a larger

49
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class of equations for which the Laplacian is replaced by any self-adjoint operator such that the
L∞-norm of the fundamental solution behaves like t−1/2, [72].

The Strichartz estimates play an important role in the proof of the well-posedness of the
nonlinear Schrödinger equation. Typically they are used for nonlinearities for which the energy
methods fail to provide well-posedness results. In this way, Tsutsumi [106] proved the existence
and uniqueness for L2(R)-initial data for power-like nonlinearities F (u) = |u|pu, in the range
of exponents 0 ≤ p ≤ 4. More precisely it was proved that the NSE is globally well posed in
L∞(R, L2(R)) ∩ Lqloc(R, Lr(R)), where (q, r) is a 1/2-admissible pair depending on the exponent
p. This result was complemented by Cazenave and Weissler [31] who proved the local existence in
the critical case p = 4. The case of H1-solutions was analyzed by Baillon, Cazenave and Figueira
[6], Lin and Strauss [86], Ginibre and Velo [47, 48], Cazenave [27], and, in a more general context,
by Kato [70, 71].

This analysis has been extended to semi-discrete numerical schemes for Schrödinger equations
by Ignat and Zuazua in [63], [64], [65]. In these articles it was first pointed out that conservative
numerical schemes often fail to be dispersive, in the sense that numerical solutions do not fulfill
the integrability properties above. This is due to the pathological behavior of high frequency
spurious numerical solutions. Then several numerical schemes were developed fulfilling the dis-
persive properties, uniformly in the mesh-parameter. In the sequel these schemes will be referred
to as being dispersive. As proved in those articles these schemes may be used in the nonlinear
context to prove convergence towards the solutions of the NSE, for the range of exponents p and
the functional setting above. The analysis of fully discrete schemes was later developed in [53]
where necessary and sufficient conditions were given guaranteeing that the dispersive properties
of the continuous model are maintained uniformly with respect to the mesh-size parameters at the
discrete level. The present paper is devoted to further analyze the convergence of these numerical
schemes, the main goal being the obtention of convergence rates.

Despite of the fact that non-dispersive schemes (in the sense that they do not satisfy the
discrete analogue of (4.3)) can not be applied directly in the L2-setting for nonlinear equations
one could still use them by first approximating the L2-initial data by smooth ones. The paper
[66] is devoted to prove that, even if this is done, dispersive schemes are better behaved than the
non-dispersive ones in what concerns the order of convergence for rough initial data.

The main results of the chapter are as follows. Theorem 4.4 proves that the error committed
when the LSE is approximated by a dispersive numerical scheme in the Lq(0, T ; lr(hZ))-norms
is of the same order as the one classical consistency+stability analysis yields. Using the ideas
of [17], Ch. 6 we can also estimate the error in the Lq(0, T ; lr(hZ))-norms, r > 2, for non-
dispersive schemes; for example for the classical three-point second order approximation of the
laplace operator. In this case, in contrast with the good properties of dispersive schemes, for
Hs(R)-initial data with small s, 1/2 − 1/r ≤ s ≤ 4 + 1/2 − 1/r, the error losses a factor of
order h3/2(1/2−1/r) with respect to the case L∞(0, T ; l2(hZ)) which can be handled by classical
energy methods (see Example 1 in Section 4.3). Summarizing, we see that dispersive property of
numerical schemes is needed to guarantee that the convergence rate of numerical solution is kept
in the spaces Lq(0, T ; lr(hZ)).

In the the context of the NSE we prove that the dispersive methods introduced in [66] converge
to the solutions of NSE with the same order as in the linear problem. To be more precise,
in Theorem 4.10 we obtain a polynomial order of convergence, hs/2, in the case of a dispersive
approximation scheme of order two for the laplace operator for initial data Hs(Rd) when 0 < s < 4.
In the case of the classical non-dispersive schemes this convergence rate can only be guaranteed
for smooth enough initial data, Hs(R), 1/2 < s < 4 (see Theorem 4.12).

In Section 4.6 we show that non-dispersive numerical schemes with rough data behaves badly.
Indeed, when using non-dispersive numerical schemes, combined with a H1(R)-approximation of
the initial data ϕ ∈ Hs(R)\H1(R), one gets an order of convergence | log h|−s/(1−s) which is much
weeker than the hs/2-one that dispersive schemes ensure.

This Chapter is organized as follows. In Section 4.2 we first obtain a quite general result which
allows us to estimate the difference of two families of operators that admit Strichartz estimates.
We then particularize it to operators acting on discrete spaces lp(hZ), obtaining results which
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will be used in the following sections to get the order of convergence for approximations of the
NSE. In Section 4.3 and Section 4.4 we revisit the dispersive schemes for LSE introduced in
[62, 63, 64, 65] which are based, respectively, on the use of artificial numerical viscosity and a
two-grid preconditioning technique of the initial data.

Section 4.5 is devoted to analyze approximations of the NSE based on the dispersive schemes
analyzed in previous sections. Section 4.6 contains classical material on conservative schemes that
we include here in order to emphasize the advantages of the dispersive methods.

The analysis in this paper can be extended to fully discrete dispersive schemes introduced and
analyzed in [53] and to the multidimensional case. However, several technical aspects need to be
dealt with carefully. In particular, one has to take care of the well-posedness of the NSE (see [28]).
Furthermore, suitable versions of the technical harmonic analysis results employed in the paper
would also be needed (see [52]). This will be the object of future work.

Our methods use Fourier analysis techniques in an essential manner. Adapting this theory to
numerical approximation schemes in non-regular meshes is by now a completely open subject.

4.1 Spaces and Notations.

In this section we introduce the spaces we will use along the paper. The computational mesh is
hZ = {jh : j ∈ Z} for some h > 0 and the lp(hZ) spaces are defined as follows:

lp(hZ) = {ϕ : hZ→ C : ‖ϕ‖lp(hZ) <∞}

where

‖ϕ‖lp(hZ) =


(
h
∑
j∈Z
|u(jh)|p

)1/p

1 ≤ p <∞,

sup
j∈Z
|u(jh)| p =∞.

On the Hilbert space l2(hZ) we will consider the following scalar product

(u, v)h = Re
(
h
∑
j∈Z

u(jh)v(jh)
)
.

When necessary, to simplify the presentation, we will write (ϕj)j∈Z instead of (ϕ(jh))j∈Z.
For a discrete function {ϕ(jh)}j∈Z we denote by ϕ̂ its discrete Fourier transform:

ϕ̂(ξ) = h
∑
j∈Z

e−ijξhϕ(jh). (4.6)

We will also use the Besov spaces both in the continuous and the discrete framework. It is
convenient to consider a function η0 ∈ Cc(R) such that

η0(ξ) =

{
1 if |ξ| ≤ 1,

0 if |ξ| ≥ 2,

and to define the sequence (ηj)j≥1 ∈ S(R) by

ηj = η0

( ξ
2j

)
− η0

( ξ

2j−1

)
in order to define the Littlewood-Paley decomposition. For any j ≥ 0 we set the cut-off projectors,
Pjϕ, as follows

Pjϕ = (ηjϕ̂)∨. (4.7)

We point out that these projectors can be defined both for functions of continuous and discrete
variables by means of the classical and the semi-discrete Fourier transform.
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We introduce the Besov spaces Bsp,2(R) for 1 ≤ p ≤ ∞ by Bsp,2 = {u ∈ S ′(R) : ‖u‖Bsp,2(R) <∞}
with

‖u‖Bsp,2(R) = ‖P0u‖Lp(R) +
( ∞∑
j=1

22sj‖Pju‖2Lp(R)

)1/2

.

Their discrete counterpart Bsp,2(hZ) with 1 < p <∞ and s ∈ R is given by

Bsp,2(hZ) = {u : ‖u‖Bsp,2(hZ) <∞},

with

‖u‖Bsp,2(hZ) = ‖P0u‖lp(hZ) +
( ∞∑
j=1

22js‖Pju‖2lp(hZ)

)1/2

, (4.8)

where Pju given as in (4.7) are now defined by means of the discrete Fourier transform of the
discrete function u : hZ→ C.

4.2 Estimates on linear semigroups

In this section we will obtain LqtL
r
x estimates for the difference of two semigroups SA(t) and

SB(t) which admit Strichartz estimates. Once this result is obtained in an abstract setting we
particularize it to the discrete spaces lp(hZ).

First we state a well-known result by Keel and Tao [72].

Theorem 4.1. ([72], Theorem 1.2) Let H be a Hilbert space, (X, dx) be a measure space and
U(t) : H → L2(X) be a one parameter family of mappings with t ∈ R, which obey the energy
estimate

‖U(t)f‖L2(X) ≤ C‖f‖H (4.9)

and the decay estimate

‖U(t)U(s)∗g‖L∞(X) ≤ C|t− s|−α‖g‖L1(X) (4.10)

for some α > 0. Then

‖U(t)f‖Lq(R, Lr(X)) ≤ C‖f‖H , (4.11)∥∥∥∥∫
R

(U(s))∗F (s, ·))ds
∥∥∥∥
H

≤ C‖F‖Lq′ (R, Lr′ (X)), (4.12)

∥∥∥∥∫ t

0

U(t− s)F (s)ds

∥∥∥∥
Lq(R, Lr(X))

≤ C‖F‖Lq̃′ (R, Lr̃′ (X)) (4.13)

for all (q, r) and (q̃, r̃), α-admissible pairs.

The following theorem provides the key estimate in obtaining the order of convergence when
the LSE is approximated by a dispersive scheme.

Theorem 4.2. ([66]) Let (X, dx) be a measure space, A : D(A) → L2(X), B : D(B) → L2(X)
two linear m-dissipative operators with D(A) ↪→ D(B) continuously and satisfying AB = BA.
Assume that (SA(t))t≥0 and (SB(t))t≥0 the semigroups generated by A and B satisfy assumptions
(4.9) and (4.10) with H = L2(X). Then for any two α-admissible pairs (q, r), (q̃, r̃) the following
hold:
i) There exists a positive constant C(q) such that

‖SA(t)ϕ− SB(t)ϕ‖Lq(I, Lr(X)) ≤ C(q) min
{
‖ϕ‖L2(X), |I|‖(A−B)ϕ‖L2(X)

}
(4.14)
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for all bounded intervals I and ϕ ∈ D(A).
ii) There exists a positive constant C(q, q̃) such that∥∥∥∫ t

0

SA(t− s)f(s)ds−
∫ t

0

SB(t− s)f(s)ds
∥∥∥
Lq(I, Lr(X))

(4.15)

≤ C(q, q̃) min
{
‖f‖Lq̃′ (I, Lr̃′ (X)), |I|‖(A−B)f‖Lq̃′ (I, Lr̃′ (X))

}
for all bounded intervals I and f ∈ Lq̃′(I, Lr̃′(X)) such that (A−B)f ∈ Lq̃′(I, Lr̃′(X)).

Proof of Theorem 4.2. Using that the operators SA and SB verify hypotheses (4.9) and (4.10) of
Proposition 4.1 with H = L2(X), by (4.11) we obtain

‖SA(t)ϕ− SB(t)ϕ‖Lq(I, Lr(X)) ≤ C(q)‖ϕ‖L2(X) (4.16)

and, by (4.13),∥∥∥ ∫ t

0

SA(t− s)f(s)ds−
∫ t

0

SB(t− s)f(s)ds
∥∥∥
Lq(R, Lr(X))

≤ C(q, q̃)‖f‖Lq̃′ (R, Lr̃′ (X)). (4.17)

In view of (4.16) and (4.17) it is then sufficient to prove the following estimates:

‖SA(t)ϕ− SB(t)ϕ‖Lq(I, Lr(X)) ≤ C(q)|I|‖(A−B)ϕ‖L2(X) (4.18)

and∥∥∥ ∫ t

0

SA(t−s)f(s)ds−
∫ t

0

SB(t−s)f(s)ds
∥∥∥
Lq(I, Lr(X))

≤ C(q, q̃)|I|‖(A−B)f‖Lq̃′ (I, Lr̃′ (X)). (4.19)

In the case of (4.18) we write the difference SA(·)− SB(·) as follows

SA(t)ϕ− SB(t)ϕ =

∫ t

0

SB(t− s)(A−B)SA(s)ϕds. (4.20)

In order to justify this identity let us recall that for any ϕ ∈ D(A) ↪→ D(B) we have that
u(t) = SA(t)ϕ ∈ C([0,∞), D(A)) ∩ C1([0,∞), L2(X)) and v(t) = SB(t)ϕ ∈ C([0,∞), D(B)) ∩
C1([0,∞), L2(X)) verify the systems ut = Au, u(0) = ϕ, and vt = Bv, v(0) = ϕ respectively. Thus
w = u−v ∈ C([0,∞), D(B))∩C1([0,∞), L2(X)) satisfy the system wt = Bw+(A−B)u,w(0) = 0.
Since (A−B)u ∈ C([0,∞), L2(X)) we obtain that w satisfies (4.20).

Going back to (4.20) and using that A and B commute we get the following identity which is
the key of our estimates:

SA(t)ϕ− SB(t)ϕ =

∫ t

0

SB(t− s)SA(s)(A−B)ϕds. (4.21)

We apply Theorem 4.1 to the semigroup SB(·) and to function F (s) = SA(s)(A − B)ϕ in this
identity. By (4.13) with r̃ = 2 and q̃ =∞, we get

‖SA(t)ϕ− SB(t)ϕ‖Lq(I, Lr(X)) ≤ C(q)‖SA(s)(A−B)ϕ‖L1(I, L2(X)) (4.22)

≤ C(q)|I|‖(A−B)ϕ‖L2(X).

Thus, (4.18) is proved. As a consequence (4.16) and (4.18) give us (4.14).

We now prove the inhomogenous estimate (4.19). Using again (4.21) we have

SA(t− s)f(s)− SB(t− s)f(s) =

∫ t−s

0

SB(t− s− σ)SA(σ)(A−B)f(s)dσ.



54 CHAPTER 4. CONVERGENCE RATES FOR APPROXIMATION OF NSE

We integrate this identity in the s variable. Applying Fubini’s theorem on the triangle {(s, σ) :
0 ≤ s ≤ t, 0 ≤ σ ≤ t− s} and using that A and B commute, we get:

Λf(t) :=

∫ t

0

SA(t− s)f(s)ds−
∫ t

0

SB(t− s)f(s) =

∫ t

0

SA(t− σ)Λ1(A−B)f(σ)dσ

where

Λ1g(t) =

∫ t

0

SB(t− τ)g(τ)dτ.

Applying the inhomogeneous estimate (4.13) to the operator SA(·) with (q̃′, r̃′) = (1, 2) we obtain

‖Λf‖Lq(I, Lr(X)) ≤ C(q)‖Λ1(A−B)f‖L1(I, L2(X)) ≤ C(q)|I|‖Λ1(A−B)f‖L∞(I, L2(X)). (4.23)

Using again (4.13) for the semigroup SB(·), F = (A−B)f and (q, r) = (∞, 2) we get

‖Λ1(A−B)f‖L∞(I, L2(X)) ≤ C(q̃)‖(A−B)f‖Lq̃′ (I, Lr̃′ (X)). (4.24)

Combining (4.23) and (4.24) we deduce (4.19). Estimates (4.17) and (4.19) finish the proof.

Remark 4.1. We point out that, in the the proof of the following estimate

‖SA(t)ϕ− SB(t)ϕ‖Lq(I, lr(X)) ≤ C(q)|I|‖(A−B)ϕ‖L2(X),

we do not need that the two operators SA(t) and SB(t) admit Strichartz estimates. Indeed, it is
sufficient to assume that only one of the involved operators admits Strichartz estimates and the
other one to be stable in L2(X).

In the following we apply the previous results to the particular case X = hZ. We consider
operators Ahwith symbol ah : [−π/h, π/h]→ C such that

(Ahϕ)j =

∫ π/h

−π/h
eijξhah(ξ)ϕ̂(ξ)dξ, j ∈ Z.

Also we will consider the operator |∇|s acting on discrete spaces l2(hZ) whose symbol is given by
|ξ|s.

The numerical schemes we shall consider, associated to regular meshes, will enter in this frame
by means of the Fourier representation formula of solutions.

Theorem 4.3. Let Ah, Bh : l2(hZ) → l2(hZ) be two operators whose symbols are ah and bh, ibh
being a real function, such that the semigroups they generate, (SAh(t))t≥0 and (SBh(t))t≥0, satisfy
assumptions (4.9) and (4.10) with some constant C, independent of h. Finally, assume that for
some functions {µ(k, h)}k∈F , with F a finite set, the following holds for all ξ ∈ [−π/h, π/h]:

|ah(ξ)− bh(ξ)| ≤
∑
k∈F

µ(k, h)|ξ|k. (4.25)

For any s > 0, denoting

ε(s, h) =
∑
k∈F

µ(k, h)min{s/k,1}, (4.26)

the following hold for all (q, r), (q̃, r̃), α-admissible pairs:
a) There exists a positive constant C(q) such that

‖SAh(t)ϕ− SBh(t)ϕ‖Lq(I, lr(hZ)) ≤ C(q)ε(s, h) max{1, |I|}‖ϕ‖Bs2,2(hZ) (4.27)
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holds for all ϕ ∈ Bs2,2(hZ) uniformly in h > 0.
b) There exists a positive constant C(s, q, q̃) such that∥∥∥∫ t

0

SAh(t− σ)f(σ)dσ−
∫ t

0

SBh(t− σ)f(σ)dσ
∥∥∥
Lq(I, lr(hZ))

(4.28)

≤ C(s, q, q̃)ε(s, h) max{1, |I|}‖f‖Lq̃′ (I, Bs
r̃′,2(hZ))

holds for all f ∈ Lq̃′(I, Bsr̃′,2(hZ)).

Few comments on the above result are needed.
The assumption that the semigroups (SAh(t))t≥0 and (SBh(t))t≥0, satisfy (4.9) and (4.10) with

some constant C, independent of h, means that both of them are l2(hZ)-stable with constants
that are independent of h and that the corresponding numerical schemes are dispersive.

Taking into account that both operators, Ah and Bh, commute in view that they are associated
to their symbols, the hypotheses of Theorem 4.2 are fulfilled. They also commute with |∇| and
Pj which are also defined by a Fourier symbol.

The requirement that ibh is a real function is needed to assure that the semigroup generated
by Bh, SBh , satisfies

SBh(t− σ) = SBh(t)SBh(−σ) = SBh(t)SBh(σ)∗,

identity which will be used in the proof.

In Section 4.3 we will give examples of operators Ah and Bh verifying these hypotheses. In
all our estimates we will choose bh(ξ) = iξ2 , which is the symbol of the continuous Schrödinger
semigroup.

4.3 Dispersive schemes for the linear Schrödinger equation

In this section we obtain error estimates for the numerical approximations of the linear Schrödinger
equation. We do this not only in the l2(hZ)-norm but also in the auxiliary spaces that are needed
in the analysis of the nonlinear Schrödinger equation.

The numerical schemes we shall consider can all be written in the abstract form{
iuht (t) +Ahu

h = 0, t > 0,

uh(0) = Thϕ.
(4.29)

We assume that the operator Ah is an approximation of the 1− d Laplacian. On the other hand,
Thϕ is an approximation of the initial data ϕ, Th being a map from L2(R) into l2(hZ) defined as
follows:

(Thϕ)(jh) =

∫ π/h

−π/h
eijhξϕ̂(ξ)dξ. (4.30)

Observe that this operator acts by truncating the continuous Fourier transform of ϕ on the interval
(−π/h, π/h) and then considering the discrete inverse Fourier transform on the grid points hZ.

To estimate the error committed in the approximation of the LSE we assume that the operator
Ah, approximating the continuous Laplacian, has a symbol ah which satisfies

|ah(ξ)− ξ2| ≤
∑
k∈F

a(k, h)|ξ|k, ξ ∈
[
−π
h
,
π

h

]
, (4.31)

for a finite set of indexes F . As we shall see, different approximation schemes enter in this class
for different sets F and orders k.

This condition on the operatorAh suffices to analyze the rate of convergence in the L∞(−T, T ; l2(hZ))
norm. However, one of our main objectives in this paper is to analyze this error in the auxiliary
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norms Lq(−T, T ; lr(hZ)) which is necessary for addressing the NSE with rough initial data. More
precisely, we need to identify classes of approximating operators Ah of the 1− d Laplacian so that
the semi-discrete semigroup exp(itAh) maps uniformly, with respect to parameter h, l2(hZ) into
those spaces.

In the following we consider operators Ah generating dispersive schemes which are l2(hZ)-stable

‖ exp(itAh)ϕ‖l2(hZ) ≤ C‖ϕ‖l2(hZ), ∀ t ≥ 0 (4.32)

and satisfy the uniform l1(hZ)− l∞(hZ) dispersive property:

‖ exp(itAh)ϕ‖l∞(hZ) ≤
C

|t|1/2
‖ϕ‖l1(hZ), ∀ t ≥ 0, (4.33)

for all h > 0 and for all ϕ ∈ l1(hZ), where the above constant C is independent of h. We point
out that (4.32) is the standard stability property while the second one, (4.33), holds only for well
chosen numerical schemes.

Applying Theorem 4.3 to the operator Bh whose symbol is −iξ2 and to iAh, Ah being the
approximation of the Laplace operator with the symbol ah(ξ), we obtain the following result.

Theorem 4.4. Let s ≥ 0, Ah satisfying (4.31), (4.32), (4.33), and (q, r) and (q̃, r̃) be two 1/2-
admissible pairs. Denoting

ε(s, h) =
∑
k∈F

a(k, h)min{s/k,1}, (4.34)

the following hold:
a) There exists a positive constant C(q) such that

‖ exp(itAh)Thϕ−Th exp(it∂2
x)ϕ‖Lq(0,T ; lr(hZ)) ≤ max{1, T}C(q)ε(s, h)‖ϕ‖Hs(R) (4.35)

holds for all ϕ ∈ Hs(R), T > 0 and h > 0.
b) There exists a positive constant C(q, q̃) such that∥∥∥ ∫ t

0

exp(i(t− σ)Ah)Thf(σ)dσ−
∫ t

0

Th exp(i(t− σ)∂2
x)f(σ)dσ

∥∥∥
Lq(0,T ; lr(hZ))

(4.36)

≤ C(q, q̃) max{1, T}ε(s, h)‖f‖Lq̃′ (0,T ;Bs
r̃′,2(R)),

holds for all T > 0, f ∈ Lq̃′(0, T ; Bsr̃′,2(R)) and h > 0.

In the particular case when (q, r) = (∞, 2) and the set F of indices k entering in the definition
(4.34) of ε(s, h) is reduced to a simple element, the statements in this Theorem are proved in [103]
(Theorem 10.1.2, p. 201):

‖ exp(itAh)Thϕ−Th exp(it∂2
x)ϕ‖L∞(0,T ; l2(hZ)) ≤ C(q)Tε(s, h)‖ϕ‖Hs(R). (4.37)

We observe that for s ≥ s0 = max{k : k ∈ F} the function s → ε(s, h) is independent of the
s-variable:

ε(s, k) = ε(s0, k) =
∑
k∈F

a(k, h).

This means that imposing more than Hs0(R) regularity on the initial data does not improve the
order of convergence in (4.35) and (4.36).

In the case 0 ≤ s ≤ s0, with s0 as above, the estimate Hs0(R) → L∞(0, T ; l2(hZ)) in (4.35)
and the one given by the stability of the scheme L2(R)→ L∞(0, T ; l2(hZ)), allow to obtain, using
an interpolation argument, a weaker estimate:

‖ exp(itAh)Thϕ−Th exp(it∂2
x)ϕ‖L∞(0,T ; l2(hZ)) ≤ C(T )ε(s0, h)s/s0‖ϕ‖Hs(R).
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If the set F has an unique element then this estimate is equivalent to (4.35). However, the improved
estimates (4.35) and (4.36) cannot be proved without using Paley-Littlewood’s decomposition, as
in the proof of Theorem 4.3.

In the following we analyze various operators Ah which approximate the 1−d Laplace operator
∂2
x.

Example 1. The 3-point conservative approximation. The simplest example of approx-
imation scheme for the Laplace operator ∂2

x is given by the classical finite difference approximation
∆h

(∆hu)j =
uj+1 + uj−1 − 2uj

h2
. (4.38)

It satisfies hypothesis (4.31) with F = {4} and a(4, h) = h2. Thus, we are dealing with an
approximation scheme of order two. Indeed, we have:∣∣∣ 4

h2
sin2

(ξh
2

)
− ξ2

∣∣∣ . h2|ξ|4, ∀ ξ ∈
[
− π

h
,
π

h

]
.

However, this operator does not satisfy (4.33) with a constant C independent of the mesh size h,
(see [63], Theorem 1.1) and Theorem 4.4 cannot be applied. This means that we cannot obtain
the same estimate as for second order dispersive schemes:

‖ exp(itAh)Thϕ−Th exp(it∂2
x)ϕ‖Lq(0,T ; lr(hZ)) ≤ C(q, T )‖ϕ‖Hs(R)

{
hs/2, s ∈ (0, 4),
h2, s > 4.

(4.39)

However, using the ideas of Brenner on the order of convergence in the lr(hZ)-norm, r > 2,
([17], Ch. 6, Theorem 3.2, Theorem 3.3 and Ch.3, Corollary 5.1) we can get the following estimates:

‖ exp(itAh)Thϕ−Th exp(it∂2
x)ϕ‖Lq(0,T ; lr(hZ))

≤ C(q, T )‖ϕ‖Bsr,∞(R)

 h
1
2 (s−1+ 2

r ), s ∈ (0, 4 + 1− 2
r ),

h2, s ≥ 4 + 1− 2
r ,

≤ C(q, T )‖ϕ‖
Hs+

1
2
− 1
r (R)

 h
1
2 (s−1+ 2

r ), s ∈ (0, 4 + 1− 2
r ),

h2, s ≥ 4 + 1− 2
r ,

where we have used that Hs0(R) = Bs02,2(R) ↪→ Bsr,∞(R) when s0 − 1/2 = s− 1/r.
Observe that in the case s ∈ (0, 4) the above estimate guarantees that

‖ exp(itAh)Thϕ−Th exp(it∂2
x)ϕ‖Lq(0,T ; lr(hZ)) (4.40)

≤ C(q, T )‖ϕ‖
Hs+

1
2
− 1
r (R)

h
1
2 (s+ 1

2−
1
r )h−

3
2 ( 1

2−
1
r ).

Moreover for any σ ∈ (1/2− 1/r, 4 + 1/2− 1/r) we can find s ∈ (0, 4) with σ = s+ 1/2− 1/r and
using (4.40) we obtain

‖ exp(itAh)Thϕ−Th exp(it∂2
x)ϕ‖Lq(0,T ; lr(hZ)) ≤ C(q, T )‖ϕ‖Hσ(R)h

σ
2 h−

3
2 ( 1

2−
1
r ). (4.41)

In the case of an approximation of order two one could expect the error in the above estimate
to be of order hσ/2 as in the L∞(0, T ; l2(hZ)) case. But, here we get an extra factor of order
h−3/2(1/2−1/r) which diverges unless r = 2, which corresponds to the classical energy estimate in
L∞(0, T ; L2(R)). This does not happen in the case of a second order dispersive approximation of
the Schrödinger operator, where Theorem 4.4 give us an order of error as in (4.39).

Note that, according to Theorem 4.4, this loss in the rate of convergence is due to the lack of
dispersive properties of the scheme.
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Also we point out that to obtain an error of order h2 in (4.40) we need to consider initial data
in H4+1−2/r(R). So we need to impose an extra regularity condition of 1− 2/r derivatives on the
initial data ϕ to assure the same order of convergence as the one in (4.39) for dispersive schemes.

Example 2. Fourier filtering of the 3-point conservative approximation. Another
example is given by the spectral filtering ∆h,γ defined by:

∆h,γϕ = ∆h(1(− γπh ,
γπ
h )ϕ̂)∨, γ <

1

2
. (4.42)

In other words, ∆h,γ is a discrete operator whose action is as follows:

(∆h,γϕ)j =

∫ γπ/h

−γπ/h

4

h2
sin2

(ξh
2

)
eijhξϕ̂(ξ)dξ, j ∈ Z,

i.e. it has the symbol

ah,γ(ξ) =
4

h2
sin2

(ξh
2

)
1(−γπ/h,γπ/h).

In this case

|ah,γ(ξ)− ξ2| ≤ c(γ)

 h2ξ4, |ξ| ≤ πγ/h,

ξ2, |ξ| ≥ πγ/h
≤ c(γ)h2ξ4 for all ξ ∈

[
− π

h
,
π

h

]
.

Thus ∆h,γ constitutes an approximation of the Laplace operator ∆ of order two and the semigroup
generated by i∆h,γ has uniform dispersive properties (see [64]). Theorem 4.4, which exploits the
dispersive character of the numerical scheme, gives us

‖ exp(itAh)Thϕ−Th exp(it∆)ϕ‖Lq(0,T ; lr(hZ)) ≤ C(q, T )‖ϕ‖Hs(R)

{
hs/2, s ∈ (0, 4),
h2, s > 4.

We note that using the same arguments based on lr(hZ)-error estimates (given in [17]), as in the
Example 1, we can obtain the same result only if r = 2 or assuming more regularity of the initial
data ϕ.

This scheme, however, has a serious drawback to be implemented in nonlinear problems since
it requires the Fourier filtering to be applied on the initial data and also on the nonlinearity, which
is computationally expensive.

Example 3. Viscous approximation. To overcome the lack of uniform Lq(I, lr(hZ))
estimates, in [64] and [54] numerical schemes based in adding extra numerical viscosity have
been introduced. The first possibility is to take Ah = ∆h + ia(h)∆h with a(h) = h2−1/α(h) and
α(h)→ 1/2 such that a(h)→ 0. In this case (4.31) is satisfied as follows:∣∣∣ 4

h2
sin2

(ξh
2

)
+ ia(h)

4

h2
sin2

(ξh
2

)
− ξ2

∣∣∣ ≤ h2ξ4 + a(h)ξ2. (4.43)

This numerical approximation of the Schrödinger semigroup has been used in [64] and [65] to
construct convergent numerical schemes for the NSE. However, the special choice of the function
a(h) that is required, shows that the error in the right hand side of (4.43) goes to zero slower that
any polynomial function of h and thus, at least theoretically, the convergence towards LSE, and,
consequently to the NSE, will be very slow. Thus, we will not further analyze this scheme.

Example 4. A higher order viscous approximation. A possibility to overcome the
drawbacks of the previous scheme, associated to the different behavior of the l1(hZ) − l∞(hZ)
decay rate of the solutions, is to choose higher order dissipative schemes as introduced in [54]:

Ah = ∆h − ih2(m−1)(−∆h)m, m ≥ 2. (4.44)
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In this case, hypothesis (4.31) reads:∣∣∣ 4

h2
sin2

(ξh
2

)
+ ih2(m−1)

( 4

h2
sin2

(ξh
2

))m
− ξ2

∣∣∣ ≤ h2ξ4 + h2(m−1)ξ2m. (4.45)

Theorem 4.4 then guarantees that for any 0 ≤ s ≤ 4 the following estimate holds:

‖ exp(itAh)Thϕ−Th exp(it∆)ϕ‖Lq(0,T ; lr(hZ)) ≤ max{1, T}(hs/2 + h(m−1)s/m)‖ϕ‖Hs(R)

≤ max{1, T}hs/2‖ϕ‖Hs(R).

Thus we obtain the same order of error as for the discrete Laplacian Ah = ∆h but this time not
only in the L∞(I; l2(hZ))-norm but in all the auxiliary Lq(I, lr(hZ))-norms. We thus get the
same optimal results as for the other dispersive scheme in Example 2 based on Fourier filtering.

4.4 A two-grid algorithm

In this section we analyze one further strategy introduced in [62] and [64] to recover the unifor-
mity of the dispersive properties. It is based on the two-grid algorithm that we now describe.
We consider the standard conservative 3-point approximation of the laplacian: Ah = ∆h. But,
this time, in order to avoid the lack of dispersive properties associated with the high frequency
components, the scheme will be restricted to the class of slowly oscillatory data obtained by a
two-grid algorithm. The main advantage of this filtering method with respect to the Fourier one
is that the filtering can be realized in the physical space.

The method, inspired by [50], is roughly as follows. We consider two meshes: the coarse one
of size 4h, h > 0, 4hZ, and the finer one, the computational one, hZ, of size h > 0. The method
relies basically on solving the finite-difference semi-discretization on the fine mesh hZ, but only
for slowly oscillating data, interpolated from the coarse grid 4hZ. The 1/4 ratio between the
two meshes is important to guarantee the dispersive properties of the method. This particular
structure of the data cancels the pathology of the discrete symbol at the points ±π/2h.

To be more precise we introduce the extension operator Π4h
h which associates to any function

ψ : 4hZ→ C a new function Π4h
h ψ : hZ→ C obtained by an interpolation process:

(Π4h
h ψ)j = (P1

4hψ)(jh), j ∈ Z,

where P1
4hψ is the piecewise linear interpolator of ψ.

The semi-discrete method we propose is the following:
iuht (t) + ∆hu

h = 0, t > 0,

uh(0) = Π4h
h T4hϕ.

(4.46)

The Fourier transform of the two-grid initial datum can be characterized as follows (see Lemma
5.2, [64]):

(Π4h
h T4hϕ)∧(ξ) = m(hξ)T̃4hϕ(ξ), ξ ∈

[
−π
h
,
π

h

]
, (4.47)

where T̃4hϕ(ξ) is the extension by periodicity of the function T̂4hϕ, initially defined on [−π/4h, π/4h],
to the interval [−π/h, π/h], and

m(ξ) =

(
e4iξ − 1

4(eiξ − 1)

)2

, p ≥ 2. (4.48)

The following result, proved in [62], guarantees that system (4.46) is dispersive in the sense
that the discrete version of the Strichartz inequalities hold, uniformly on h > 0.
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Theorem 4.5. Let (q, r), (q̃, r̃) be two 1/2-admissible pairs. The following properties hold
i) There exists a positive constant C(q) such that

‖eit∆hΠ4h
h ϕ‖Lq(R, lr(hZ)) ≤ C(q)‖Π4h

h ϕ‖l2(hZ) (4.49)

uniformly on h > 0.
ii) There exists a positive constant C(d, r, r̃) such that∥∥∥∥∫

s<t

ei(t−s)∆hΠ4h
h f(s)ds

∥∥∥∥
Lq(R, lr(hZ))

≤ C(q, q̃)‖Π4h
h f‖Lq̃′ (R, lr̃′ (hZ)) (4.50)

for all f ∈ Lq̃′(R, lr̃′(4hZ)), uniformly in h > 0.

In the following lemma we estimate the error introduced by the two-grid algorithm.

Theorem 4.6. Let s ≥ 0 and (q, r), (q̃, r̃) be two admissible pairs.
a) There exists a positive constant C(q, s) such that

‖ exp(it∆h)Π4h
h T4hϕ−Th exp(it∂2

x)ϕ‖Lq(I; lr(hZ)) (4.51)

≤ C(q, s) max{1, |I|}
(
hmin{s/2,2} + hmin{s,1})‖ϕ‖Hs(R),

holds for all ϕ ∈ Hs(R) and h > 0.
b) There exists a positive constant C(q, q̃, s) such that∥∥∥∫

s<t

exp(i(t− s)∆h)Π4h
h T4hf(s)ds−

∫
s<t

Th exp(i(t− s)∂2
x)f(s)ds

∥∥∥
Lq(I; lr(hZ))

(4.52)

≤ C(q, q̃, s) max{1, |I|}
(
hmin{s/2,2} + hmin{s,1})‖f‖Lq̃′ (I;Bs

r̃′,2(R)).

There are two error terms in the above estimates: hmin{s/2,2} and hmin{s,1}. The first one comes
from a second order numerical scheme generated by the approximation of the laplacian ∂2

x with ∆h

and the second one from the use of a two-grid interpolator. Observe that for initial data ϕ ∈ Hs(R),
s ∈ (0, 2) the results are the same as in the case of the second order schemes. Also, imposing more
than H2(R) regularity on the initial data does not improve the order of convergence. This is a
consequence of the fact that the two-grid interpolator appears. The multiplier m(ξ) defined in
(4.48) satisfies m(ξ) − 1 ' ξ as ξ ∼ 0 and then the following estimate, which occurs in the proof
of Theorem 4.6, ∫ π/4h

−π/4h
|m(hξ)− 1|2|ϕ̂(ξ)|2dξ . (h‖ϕ‖H1(R))

2,

cannot be improved by imposing more regularity on the function ϕ.

4.5 Convergence of the dispersive method for the NSE

In this section we introduce numerical schemes for the NSE based on dispersive approximations of
the LSE. We first present some classical results on well-posedness and regularity of solutions of the
NSE. Secondly we obtain the order of convergence for the approximations of the NSE described
above.

We consider the NSE with nonlinearity f(u) = |u|pu and ϕ ∈ Hs(R). We are interested in the
case of Hs(R) initial data with s ≤ 1. The following well-posedness result is known.

Theorem 4.7. Let f(u) = |u|pu with p ∈ (0, 4). Then
i) (Global existence and uniqueness, [28], Th. 4.6.1, Ch. 4, p. 109)

For any ϕ ∈ L2(R), there exists a unique global solution u of (4.2) in the class

u ∈ C(R, L2(R)) ∩ Lqloc(R, L
r(R))
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for all 1/2-admissible pairs (q, r) such that

‖u(t)‖L2(R) = ‖ϕ‖L2(R), ∀ t ∈ R.

ii) (Stability, [28], Th. 4.6.1, Ch. 4, p. 109) Let ϕ and ψ be two L2(R) functions, and u and
v the corresponding solutions of the NSE. Then for any T > 0 there exists a positive constant
C(T, ‖ϕ‖L2(R), ‖ψ‖L2(R)) such that the following holds

‖u− v‖L∞(0,T ;L2(R)) ≤ C(T, ‖ϕ‖L2(R), ‖ψ‖L2(R))‖ϕ− ψ‖L2(R) (4.53)

iii) (Regularity) Moreover if ϕ ∈ Hs(R), s ∈ (0, 1/2) then ([28], Theorem 5.1.1, Ch. 5, p. 147)

u ∈ C(R, Hs(R)) ∩ Lqloc(R, B
s
r,2(R))

for every admissible pairs (q, r).
Also if ϕ ∈ H1(R) then u ∈ C(R, H1(R)) ([28], Theorem 5.2.1, Ch. 5, p. 149).

Remark 4.2. The embedding Bsr,2(R) ↪→ W s,r(R), r ≥ 2, (see [28], Remark 1.4.3, p. 14) guar-

antees that, in particular, u ∈ Lqloc(R,W s,r(R)). Moreover, f(u) ∈ Lq
′

loc(R, Bsr′,2(R)) and for any
0 < s ≤ 1 (see [28], formula (4.9.20), p. 128)

‖f(u)‖Lq′ (I,Bs
r′,2(R)) . |I|

4−p(1−2s)
4 ‖u‖p+1

Lq(I,Bsr,2(R)). (4.54)

The fixed point argument used to prove the existence and uniqueness result in Theorem 4.7
gives us also quantitative information of the solutions of NSE in terms of the L2(R)-norm of the
initial data. The following holds:

Lemma 4.1. Let ϕ ∈ L2(R) and u be the solution of the NSE with initial data ϕ and nonlinearity

f(u) = |u|pu, p ∈ (0, 4), as in Theorem 4.7. There exists c(p) > 0 and T0 = c(p)‖ϕ‖−4p/(4−p)
L2(R) such

that for any 1/2-admissible pairs (q, r), there exists a positive constant C(p, q) such that

‖u‖Lq(I;Lr(R)) ≤ C(p, q)‖ϕ‖L2(R) (4.55)

holds for all intervals I with |I| ≤ T0.

Proof of Lemma 4.1. Let us fix an admissible pair (q, r). The fixed point argument used in the
proof of Theorem 4.7 (see ([27], Th. 5.5.1, p. 15) gives us the existence of a time T0,

T0 = c(p)‖ϕ‖−
4p

4−p
L2(R) ,

such that

‖u‖Lq(0,T0;Lr(R)) ≤ C(p, q)‖ϕ‖L2(R).

The same argument applied to the interval [(k − 1)T0, kT0], k ≥ 1, and the conservation of the
L2(R)-norm of the solution u of the NSE gives us that

‖u‖Lq((k−1)T0, kT0;Lr(R)) ≤ C(p, q)‖u((k − 1)T0)‖L2(R) = C(p, q)‖ϕ‖L2(R).

This proves (4.55) and finishes the proof of Lemma 4.1.

We now consider a numerical scheme for the NSE based on approximations of the LSE that
has uniform dispersive properties of Strichartz type. Examples of such schemes have been given
in Section 4.3 and Section 4.4.

To be more precise, we deal with the following numerical schemes:
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• Consider {
iuht +Ahu

h = f(uh), t > 0,

uh(0) = ϕh,
(4.56)

where Ah is an approximation of ∆ such that exp(itAh) has uniform dispersive properties of
Strichartz type. We also assume that Ah satisfies Re(iAhϕ,ϕ)h ≤ 0, < being the real part,
and has a symbol ah(ξ) which verifies

|ah(ξ)− ξ2| ≤
∑
k∈F

a(k, h)|ξ|k, ξ ∈
[
−π
h
,
π

h

]
. (4.57)

• The two-grid scheme. The two-grid scheme can be adapted to the nonlinear frame as follows.
Consider the equation iu0,h

t + ∆hu
0,h = Π4h

h f((Π4h
h )∗u0,h), t > 0,

u0,h(0) = Π4h
h ϕ

h,
(4.58)

where (Π4h
h )∗ : l2(hZ) → l2(4hZ) is the adjoint of Π4h

h : l2(4hZ) → l2(hZ) and ϕh is an
approximation of ϕ.

By [62], Theorem 4.1, for any p ∈ (0, 4) there exists of a positive time T0 = T0(‖ϕ‖L2(R))

and a unique solution uh,0 ∈ C(0, T0; l2(hZd))∩Lq(0, T0; lp+2(hZd)), q = 4(p+ 2)/p, of the
system (4.58). Moreover, uh,0 satisfies

‖uh‖L∞(R, l2(hZd)) ≤ ‖Π4h
h ϕ

h‖l2(hZd) (4.59)

and

‖uh‖Lq(0,T0; lp+2(hZd)) ≤ c(T0)‖Π4h
h ϕ

h‖l2(hZd), (4.60)

where the above constant is independent of h.

With T0 obtained above, for any k ≥ 1 we consider uk,h : [kT0, (k + 1)T0]→ C the solution
of the following system iuk,ht + ∆hu

k,h = Π4h
h f((Π4h

h )∗uk,h), t ∈ [kT0, (k + 1)T0],

uk,h(kT0) = Π4h
h u

k−1,h(kT0).
(4.61)

Once, uk,h are computed the approximation uh of NSE is defined as

uh(t) = uk,h(t), t ∈ [kT0, (k + 1)T0). (4.62)

We point out that systems (4.58) and (4.61) have always a global solution in the class
C(R, l2(hZ)) (use the embedding l2(hZ) ⊂ l∞(hZ), a classical fix point argument and the
conservation of the l2(hZ)-norm). However, estimates in the Lq(0, T ; lr(hZ))-norm, uni-
formly with respect to the mesh-size parameter h > 0, cannot be proved without using
Strichartz estimates given by Theorem 4.5. Thus we need to take initial data obtained
through a two-grid process. Since the two-grid class of functions is not invariant under the
flow of system (4.58) we need to update the solution at some time-step T0 which depends
only on L2(R)-norm of the initial data ϕ.

The following theorems give us the existence and uniqueness of solutions for the above systems
as well as quantitative dispersive estimates of solutions uh, similar to those obtained in Lemma
4.1 for the continuous NSE, uniformly on the mesh-size parameter h > 0.
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Theorem 4.8. Let p ∈ (0, 4), f(u) = |u|pu and Ah be such that Re(iAhϕ,ϕ)h ≤ 0 and (4.33)
holds. Then for every ϕh ∈ l2(hZ), there exists a unique global solution uh ∈ C(R, l2(hZ)) of
(4.56) which satisfies

‖uh‖L∞(R, l2(hZ)) ≤ ‖ϕh‖l2(hZ). (4.63)

Moreover, there exist c(p) > 0 and C(p, q) > 0 such that for any finite interval I with |I| ≤ T0 =

c(p)‖ϕh‖−4p/(4−p)
l2(hZ)

‖uh‖Lq(I, lr(hZ)) ≤ C(p, q)‖ϕh‖l2(hZ), (4.64)

where (q, r) is a 1/2-admissible pair and the above constant is independent of h.

Proof. Condition Re(iAhϕ,ϕ)h ≤ 0 implies the l2(hZ) stability property (4.32). Then local exis-
tence is obtained by using Strichartz estimates given by Proposition 4.1 applied to the operator
exp(itAh) and a classical fix point argument in a suitable Banach space (see [64] and [65] for more
details). The global existence of solutions and estimate (4.63) are guaranteed by the property
Re(iAhϕ,ϕ)h ≤ 0, and that Re(if(uh), uh)h = 0 and the energy identity:

d

dt
‖uh(t)‖2l2(hZ) = 2Re(iAhu

h, uh)h + 2Re(if(uh), uh)h ≤ 0. (4.65)

Once the global existence is proved, estimate (4.64) is obtained in a similar manner as Lemma 4.1
and we will omit its proof.

Theorem 4.9. Let p ∈ (0, 4) and q = 4(p+ 2)/p. Then for all h > 0 and for every ϕh ∈ l2(4hZ),
there exists a unique global solution uh ∈ C(R, l2(hZ))∩Lqloc(R, lp+2(hZd)) of (4.58)-(4.62) which
satisfies

‖uh‖L∞(R, l2(hZ)) ≤ ‖Π4h
h ϕ

h‖l2(hZ). (4.66)

Moreover, there exist c(p) > 0 and C(p, q) > 0 such that for any finite interval I with |I| ≤ T0 =

c(p)‖ϕh‖−4p/(4−p)
l2(hZ)

‖uh‖Lq(I, lp+2(hZ)) ≤ C(p, q)‖Π4h
h ϕ

h‖l2(hZ), (4.67)

where (q, r) is a 1/2-admissible pair and the above constant is independent of h.

Proof. The existence in the interval (0, T0), T0 = T0(‖ϕh‖l2(hZ)) for system (4.56) is obtained
by using the Strichartz estimates given by Theorem 4.5 and a classical fix point argument in a
suitable Banach space (see [64] and [65] for more details).

For any k ≥ 1 the same arguments guarantee the local existence for systems (4.61). To prove
that each system has solutions on an interval of length T0 we have to prove a priori that the
l2(hZ)-norm of uh does not increase. The particular approximation we have introduced of the
nonlinear term in (4.58)-(4.61) gives us (after multiplying these equations by uk,h and taking the
l2(hZ)-norm) that for any t ∈ [kT0, (k + 1)T0]

‖uk,h(t)‖l2(hZ) = ‖uk,h(kT0)‖l2(hZ) ≤ ‖uk−1,h(kT0)‖l2(hZ)

and then

‖uk,h(t)‖l2(hZ) ≤ ‖u0,h(0)‖l2(hZ) = ‖Π4h
h ϕ

h‖l2(hZ).

This proves (4.66) and the fact that for any k ≥ 1 system (4.61) has a solution on the whole
interval [kT0, (k + 1)T0]. Estimate (4.67) is obtained locally on each interval [kT0, (k + 1)T0]
together with the local existence result.

Let us consider uh the solution of the semidiscrete problem (4.56) and u of the continuous one
(4.2). In the following theorem we evaluate the difference between uh and Thu.



64 CHAPTER 4. CONVERGENCE RATES FOR APPROXIMATION OF NSE

Theorem 4.10. Let p ∈ (0, 4), s ∈ (0, 1/2), f(u) = |u|pu and Ah be as in Theorem 4.8 satisfying
(4.57). For any ϕ ∈ Hs(R), we consider uh and u ∈ L∞(R, Hs(R)) ∩ Lq0loc(R, Bsp+2,2(R)), q0 =
4(p+ 2)/p solutions of problems (4.56) and (4.2), respectively. Then for any T > 0 there exists a
positive constant C(T, ‖ϕ‖L2(R)) such that

‖uh −Thu‖Lq0 (0,T ; lp+2(hZ)) + ‖uh −Thu‖L∞(0,T ; l2(hZ)) (4.68)

≤ C(T, ‖ϕ‖L2(R), p)
[
ε(s, h)‖u‖L∞(0,T ;Hs(R)) +

(
hs + ε(s, h)

)
‖u‖p+1

Lq0 (0,T ;Bsp+2,2(R))

]
holds for all h > 0.

In the case of the two-grid method, the solution uh of system (4.58) approximates the solution
u of the NSE (4.2) and the error committed is given by the following theorem.

Theorem 4.11. Let p ∈ (0, 4), s ∈ (0, 1/2), f(u) = |u|pu. For any ϕ ∈ Hs(R), we consider uh

and u ∈ L∞(R, Hs(R)) ∩ Lq0loc(R, Bsp+2,2(R)), q0 = 4(p+ 2)/p, solutions of problems (4.58)-(4.62)
and (4.2), respectively. Then for any T > 0 there exists a positive constant C(T, ‖ϕ‖L2(R)) such
that

‖uh −Thu‖Lq0 (0,T ; lp+2(hZ)) + ‖uh −Thu‖L∞(0,T ; l2(hZ)) (4.69)

≤ C(T, ‖ϕ‖L2(R), p)
[
hs/2‖u‖L∞(0,T ;Hs(R)) +

(
hs + hs/2

)
‖u‖p+1

Lq0 (0,T ;Bsp+2,2(R))

]
holds for all h > 0.

Remark 4.3. Using classical results on the solutions of the NSE (see for example [27], Theo-
rem 5.1.1, Ch. 5, p. 147) we can state the above result in a more compact way: For any T > 0
there exists a positive constant C(T, ‖ϕ‖Hs(R)) such that

‖uh −Thu‖Lq0 (0,T ; lp+2(hZ)) + ‖uh −Thu‖L∞(0,T ; l2(hZ)) ≤ C(T, ‖ϕ‖Hs(R))h
s/2 (4.70)

holds for all h > 0.

Theorem 4.10 shows that if hs ≤ ε(s, h) then the error committed to approximate the nonlinear
problem is the same as for the linear problem with the same initial data. As we proved in Section
4.3, for the higher order dissipative scheme Ah = ∆h − ih2(m−1)(−∆h)m, m ≥ 2, and for the two-
grid method, ε(s, h) = hs/2 ≥ hs. So these schemes enter in this framework. It is also remarkable
that the use of dispersive schemes allows to prove the convergence for the NSE and to obtain the
convergence rate for Hs(R) initial data with 0 < s < 1/2. We point out that the energy method
does not provide any error estimate in this case, the minimal smoothing required for the energy
method being Hs(R), with s > 1/2 (see Section 4.6 for all the details).

The idea of the proof of Theorem 4.10 is that there exists a time T1 depending on the L2(R)-
norm of the initial data:

T1 ' min{1, ‖ϕ‖−4p/(4−p)
L2(R) },

such that the error in the approximation of the nonlinear problem

errh(t) = uh(t)−Thu(t),

when considered in the Lq0(0, T1; lp+2(hZ)) ∩ L∞(0, T1; l2(hZ))-norm is controlled by the error
produced in the linear part

errlinh (t) = exp(itAh)Thϕ−Th exp(it∂2
x)ϕ.

The proof of Theorem 4.11 is similar to that of Theorem 4.10 since the estimates in any
interval (0, T ) are obtained reiterating the argument in each interval (kT0, (k + 1)T0), k ≥ 0, for
some T0 = T0(‖ϕ‖L2(R)) in view of the structure of the scheme. All the details are given in [66].
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4.6 Nondispersive methods

In this section we will consider a numerical scheme for which the operator Ah has no uniform
(with respect to the mesh size h) dispersive properties of Strichartz type. Accordingly we may not
use LqtL

r
x estimates for the linear semigroup exp(itAh) and all the possible convergence estimates

need to be based on the fact that the solution u of the continuous problem is uniformly bounded
in space and time: u ∈ L∞((0, T );L∞(R)). Thus, the only estimates we can use are those that
the L2-theory may yield. When working with Hs(R)-data with s > 1/2, using L∞(R;Hs(R))
estimates on solutions and Sobolev’s embedding we can get L2-estimates.

There is a classical argument that works whenever the nonlinearity f satisfies

|f(u)− f(v)| ≤ C(|u|p + |v|p)|u− v|. (4.71)

Standard error estimates (see Theorem 4.4 with the particular case (q, r) = (∞, 2) or [103],
Theorem 10.1.2, p. 201) and Gronwall’s inequality yield when 0 ≤ t ≤ T :

‖uh(t)−Thu(t)‖l2(hZ) (4.72)

≤ h1/2C(T )
(
‖ϕ‖H1(R) + ‖u‖p+1

L∞(0,T :H1(R))

)
exp(T‖u‖pL∞(0,T ;H1(R))),

for the conservative semi-discrete finite-difference scheme. For the sake of completness we will
prove this estimate in Section 4.6.1.

We emphasize that in order to obtain estimate (4.72) we need to use that the solution u, which
we want to approximate, belongs to the space L∞(R), condition which is guaranteed by assuming
that the initial data is smooth enough. However, obviously, in general, solutions of the NSE do
not belong to L∞(R) and therefore these estimates can not be applied. One can overcome this
drawback assuming that the initial data belong to H1(R) or even to Hs(R) with s > 1/2 since in
this case Hs(R) ↪→ L∞(R). Using H1-energy estimates and Sobolev’s embedding we can deduce
L∞-bounds on solutions allowing to apply (4.72). We emphasize that this standard approach fails
to provide any error estimate for initial data in Hs(R) with s < 1/2.

However, this type of error estimate can also be used for Hs(R)-initial data with s < 1/2 (or
even for L2(R)-initial data), by a density argument. Indeed, given ϕ ∈ Hs(R) with 0 ≤ s < 1/2,
for any δ > 0 we may choose ϕδ ∈ H1(R) such that

‖ϕ− ϕδ‖Hs(R) ≤ δ.

Let uδ be the solution of NSE corresponding to ϕδ. Obviously, ϕδ being H1(R)-smooth, we can
apply standard results as (4.72) to uδ. On the other hand, stability results for NSE allow us to
prove the proximity of u and uδ in Hs(R). This allows showing the convergence of numerical
approximations of uδ, that we may denote by uδ,h, towards the solution u associated to ϕ as both
δ → 0 and h → 0. But for this to be true h needs to be exponentially small of the order of
exp(−1/δ) which is much smaller than the typical mesh-size needed to apply the results of the
previous sections on dispersive schemes that required h to be of the order of δ2/s.

4.6.1 A classical argument for smooth initial data

In this section we present the technical details of the error estimates in the case of H1(R)-initial
data. In this case we do not require the numerical scheme to be dispersive, the only ingredient
being the Sobolev’s embedding H1(R) ↪→ L∞(R).

Theorem 4.12. Let f(u) = |u|pu with p ∈ (0, 4) and u ∈ C(R, H1(R)) be solution of (4.2) with
initial data ϕ ∈ H1(R). Also assume that Ah is an approximation of order two of the laplace
operator ∂2

x and uh is the solution of the following system{
iuht +Ahu

h = f(uh), t > 0,

uh(0) = Thϕ,
(4.73)
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satisfying ‖uh‖L∞((0,T )×hZ) ≤ C(T, ‖ϕ‖H1(R)).
Then for all T > 0 and h > 0

‖uh(t)−Thu(t)‖l2(hZ) ≤ h1/2 max{T, T 2}
(
‖ϕ‖H1(R) + ‖u‖p+1

L∞(0,T :H1(R))

)
exp(T‖u‖pL∞(0,T ;H1(R))).

We now give an example where the hypotheses of the above theorem are verified. We consider
the following NSE: {

iut + ∂2
xu = |u|pu, x ∈ R, t > 0,

u(0, x) = ϕ(x), x ∈ R, (4.74)

and its numerical approximation{
iuht + ∆hu

h = |uh|puh, t > 0,

uh(0) = ϕh.
(4.75)

In the case of the continuous problem we have the following conservation laws (see [28], Corol-
lary 4.3.4, p. 93):

‖u(t)‖L2(R) = ‖ϕ‖L2(R)

and
d

dt

(1

2

∫
R
|ux(t, x)|2dx+

1

p+ 2

∫
R
|u(t, x)|p+2dx

)
= 0.

The same identities apply in the semi-discrete case (it suffices to multiply the equation (4.75) by
uh, respectively uht , to sum over the integers and to take the real part of the resulting identity):

‖uh(t)‖l2(hZ) = ‖ϕh‖l2(hZ)

and
d

dt

(h
2

∑
j∈Z

∣∣uhj+1(t)− uhj (t)

h

∣∣2 +
h

p+ 2

∑
j∈Z
|uhj (t)|p+2

)
= 0.

In view of the above identities, the hypotheses of Theorem 4.12 are verified.

Proof of Theorem 4.12. Using the variations of constants formula we get

Thu(t) = Th exp(it∂2
x)ϕ+

∫ t

0

Th exp(i(t− σ)∂2
x)f(u(σ))dσ

and

uh(t) = exp(itAh)Thϕ+

∫ t

0

exp(i(t− σ)Ah)f(uh(σ))dσ.

Then

errh(t) := ‖uh(t)−Thu(t)‖l2(hZ)

≤ ‖ exp(itAh)Thϕ−Th exp(it∂2
x)ϕ‖l2(hZ)

+

∫ t

0

‖ exp(i(t− σ)Ah)
(
f(uh(σ))−Thf(u(σ))

)
dσ‖l2(hZ)dσ

+

∫ t

0

‖ exp(i(t− σ)Ah)Thf(u(σ))−Th exp((t− σ)∂2
x)f(u(σ))‖l2(hZ)dσ. (4.76)

Now, applying the error estimates for the linear terms as in (4.37) with ε(1, h) = h1/2, we get

‖ exp(itAh))Thϕ−Th exp(it∂2
x)ϕ‖l2(hZ) ≤ Th1/2‖ϕ‖H1(R). (4.77)
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Also, using that f(u) = |u|pu we have that ‖f(u)‖H1(R) ≤ C‖u‖pH1(R) and then by (4.37) we get∫ t

0

‖ exp(i(t− σ)Ah)Thf(u(σ))−Th exp(i(t− σ)∂2
x)f(u(σ))‖l2(hZ)dσ

≤ CTh1/2‖f(u)‖L1(0,T ;H1(R)) ≤ CT 2h1/2‖u‖p+1
L∞(0,T ;H1(R)). (4.78)

Using the l2(hZ)-stability of exp(itAh), (4.76), (4.77) and (4.78) we obtain

errh(t) ≤ Th1/2‖ϕ‖H1(R) + CT 2h1/2‖u‖p+1
L∞(0,T ;H1(R)) +

∫ t

0

‖f(uh(σ))−Thf(u(σ)‖l2(hZ)).

Now we write f(uh(s))−Thf(u(s)) = Ih1 (s) + Ih2 (s) where

Ih1 (s) = f(uh(s))− f(Thu(s)), Ih2 (s) = f(Thu(s))−Thf(u(s)).

In the case of Ih1 we use that f satisfies (4.71) to get

‖Ih1 (s)‖l2(hZ) ≤ C
(
‖uh(s)‖pl∞(hZ) + ‖Thu(s)‖pl∞(hZ)

)
‖uh(s)−Thu(s)‖l2(hZ)

≤ C(‖uh‖pL∞((0,T )×hZ) + ‖u‖pL∞((0,T )×R))‖u
h(s)−Thu(s)‖l2(hZ)

≤ C‖u‖pL∞(0,T ;H1(R))errh(s).

Also we obtain that
‖Ih2 (s)‖l2(hZ) ≤ h‖u(s)‖p+1

H1(R).

Putting together all the above estimates, for any 0 ≤ t ≤ T we obtain:

errh(t) ≤ h1/2T‖ϕ‖H1(R) + ‖u‖pL∞(0,T ;H1(R))

∫ t

0

errh(σ)dσ

+ hT‖u‖p+1
L∞(0,T ;H1(R)) + T 2h1/2‖u‖p+1

L∞(0,T :H1(R))

≤ h1/2 max{T, T 2}
(
‖ϕ‖H1(R) + ‖u‖p+1

L∞(0,T :H1(R))

)
+ ‖u‖pL∞(0,T ;H1(R))

∫ t

0

errh(s)ds.

Applying Gronwall’s Lemma we obtain

errh(t) . h1/2 max{T, T 2}
(
‖ϕ‖H1(R) + ‖u‖p+1

L∞(0,T :H1(R))

)
exp(T‖u‖pL∞(0,T ;H1(R))). (4.79)

The proof is now finished.

4.6.2 Approximating Hs(R), s < 1/2, solutions by smooth ones.

Given ϕ ∈ Hs(R) we choose an approximation ϕ̃ ∈ H1(R) such that ‖ϕ − ϕ̃‖Hs(R) is small (a
similar analysis can be done by considering ϕδ ∈ Hs1 with s1 > 1/2). For ϕ̃ we consider the
following approximation of ũ solution of the NSE (4.2) with initial data ϕ̃: i∂tũh(t) +Ahũh = f(ũh), t > 0,

ũh(0) = Thϕ̃,
(4.80)

where the operator Ah is a second order approximation of the Laplace operator. We do not require
the linear scheme associated to the operator Ah to satisfy uniform dispersive estimates.

Solving (4.80) we obtain an approximation ũh of the solutions ũ of NSE with initial datum ϕ̃,
which itself is an approximation of the solution u of the NSE with initial datum ϕ.

In the following Theorem we give an explicit estimate of the distance between ũh and u.



68 CHAPTER 4. CONVERGENCE RATES FOR APPROXIMATION OF NSE

Theorem 4.13. Let 0 ≤ s < 1/2, ϕ ∈ Hs(R), and u ∈ C(R; Hs(R)) be the solution of NSE
with initial datum ϕ given by Theorem 4.7. For any T > 0 there exists a positive constant
C(T, ‖ϕ‖L2(R)) such that the following holds

‖Thu− ũh‖L∞(0,T ; l2(hZ)) ≤ C(T, p, ‖ϕ‖L2(R))‖ϕ− ϕ̃‖L2(R) +h1/2 exp
(
T‖ũ‖pL∞(0,T ;H1(R))

)
(4.81)

for all h > 0 and δ > 0.

In the following we show that the above method of regularizing the initial data ϕ ∈ Hs(R) and
then applying the H1(R) theory for that approximation does not give the same rate of convergence
hs/2 obtained in the case of a dispersive method of order two (see (4.70)). This occurs since for
‖ϕ− ϕ̃‖L2(R) to be small, ‖ϕ̃‖H1(R) needs to be large and ‖ũ‖L∞(0,T ;H1(R)) too.

To simplify the presentation we will consider the case p = 2.

Theorem 4.14. Let p = 2, 0 < s < 1/2, ϕ ∈ Hs(R) and u ∈ C(R, Hs(R)) be solution of NSE
with initial data ϕ given by Theorem 4.7 and u∗h be the best approximation with H1(R)-initial data
as given by (4.80) with the conservative approximation Ah = ∆h. Then for any time T , there
exists a constant C(‖ϕ‖Hs(R), T, s) such that

‖Thu− u∗h‖L∞(0,T ; l2(hZ)) ≤ C(‖ϕ‖Hs(R), T, s)| log h|−
s

1−s . (4.82)

To prove this result we will use in an essential manner the following Lemma.

Lemma 4.2. Let 0 < s < 1 and h ∈ (0, 1). Then for any ϕ ∈ Hs(R) the functional Jh,ϕ defined
by

Jh,ϕ(g) =
1

2
‖ϕ− g‖2L2(R) +

h

2
exp(‖g‖2H1(R)) (4.83)

satisfies:
min

g∈H1(R)
Jh,ϕ(g) ≤ C(‖ϕ‖Hs(R), s)| log h|−s/(1−s). (4.84)

Moreover, the above estimate is optimal in the sense that the power of the | log h| term cannot be
improved: for any 0 < ε < 1− s there exists ϕε ∈ Hs(R) such that

lim inf
h→0

ming∈H1(R) Jh,ϕε(g)

| log h|−(s+ε)/(1−s−ε) > 0.

Remark 4.4. We point out that, to obtain (4.84) and (4.2), we will use in an essential manner
that s < 1. In fact in the case s = 1 the minimum of Jh over H1(R) is of order h. This can be
seen by choosing g = ϕ and observing that Jh(ϕ) = h exp(‖ϕ‖H1(R)). This choice cannot be done
if ϕ ∈ Hs(R)\H1(R).

Proof of Theorem 4.14. Let us choose ϕ̃ ∈ H1(R) which approximates ϕ in Hs(R). Then by
Theorem 4.13 we get

‖Thu− ũh‖2L∞(0,T ; l2(hZ)) ≤ C(T, ‖ϕ‖L2(R))‖ϕ− ϕ̃‖2L2(R) + h exp
(
2T‖ϕ̃‖2H1(R)

)
≤ C(T, ‖ϕ‖L2(R))Jh,

√
2Tϕ(
√

2T ϕ̃),

where ũh is the solution of (4.80) with initial data Thϕ̃.
For each h fixed, in order to obtain the best approximation u∗h of Thu, we have to choose in the

right hand side of the above inequality the function ϕ∗ which minimizes the functional Jh,
√

2Tϕ(·)
defined by (4.83) over H1(R). Using estimate (4.84) from Lemma 4.2 we obtain the desired result:

‖Thu− u∗h‖L∞(0,T ; l2(hZ)) ≤ C(‖ϕ‖Hs(R), T, s) min
ϕ̃∈H1(R)

Jh,
√

2Tϕ(
√

2T ϕ̃)

≤ C(‖ϕ‖Hs(R), T, s)| log h|−
s

1−s

where u∗h is the solution of (4.80) with initial data Thϕ
∗
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Proof of Theorem 4.13. Using the stability result (4.53) for the NSE we obtain

‖u− ũ‖L∞(0,T ;L2(R)) ≤ C(T, p, ‖ϕ‖L2(R), ‖ϕ̃‖L2(R))‖ϕ− ϕ̃‖L2(R)

≤ C(T, p, ‖ϕ‖L2(R))‖ϕ− ϕ̃‖L2(R).

Now using the classical results for smooth initial data presented in Section 4.6.1, by (4.79) we
get

‖Thũ− ũhh‖L∞(0,T ; l2(hZ)) ≤ Ch1/2 exp(T‖ũ‖pL∞(0,T ;H1(R))).

Thus

‖Thu− ũh‖L∞(0,T ; l2(hZ)) ≤ ‖Thu−Thũ‖L∞(0,T ; l2(hZ)) + ‖Thũ− ũh‖L∞(0,T ; l2(hZ))

≤ ‖u− ũ‖L∞(0,T ;L2(R)) + ‖Thũ− ũh‖L∞(0,T ; l2(hZ))

≤ C(T, p, ‖ϕ‖L2(R))‖ϕ− ϕ̃‖L2(R) + h1/2 exp(T‖ũ‖pL∞(0,T ;H1(R))).

This yields (4.81).
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Chapter 5

A splitting method for the
Nonlinear Schrödinger equation

Let us consider the nonlinear Schrödinger equation (NSE):
du

dt
= i∆u+ iλ|u|pu, x ∈ Rd, t 6= 0,

u(x, 0) = ϕ(x), x ∈ Rd.
(5.1)

For any 0 ≤ p < 4/d, λ ∈ R and ϕ ∈ L2(Rd), equation (5.1) has a unique global solution
u ∈ C(R, L2(Rd)) ∩ Lqloc(R, Lr(Rd)) for some suitable pairs (q, r). This has been proved by
Tsutsumi in [106] by using a fix point argument and the so-called Strichartz estimates [102].
These estimates show that the semigroup generated by the linear Schrödinger equation (LSE),
S(t) = exp(it∆), satisfies

‖S(·)ϕ‖Lq(R, Lr(Rd)) ≤ C(d, q)‖ϕ‖L2(Rd) for all ϕ ∈ L2(Rd), (5.2)

for the so-called admissible pairs (q, r) (cf. [72]): 2 ≤ q, r ≤ ∞, (q, r, d) 6= (2,∞, 2) and

1

q
=
d

2

(
1

2
− 1

r

)
.

In addition, in [106] the stability of solutions under perturbation of the initial data has been
proved. In fact there exists a time T , depending on the L2(Rd)-norm of the initial data, such that
on the interval (0, T ) the difference between two solutions of equation (5.1) is controlled by the
error made in the linear part S(t)(ϕ1−ϕ2) in a certain Lq(0, T, Lr(Rd))-norm. Thus, Strichartz’s
estimate (5.2) shows that, locally, the error between two solutions u1 and u2 can be estimated
in terms of the L2(Rd)-norm of the difference of the initial data ϕ1 − ϕ2. Using the global well-
posedness of system (5.1) the same procedure can be extended to any bounded time interval.
We will adapt this idea to the numerical context in order to estimate the error committed when
approximating the solutions of (5.1) by a splitting method.

A splitting method consists in decomposing the flow (5.1) in two flows, which in principle should
be computed easily. To be more precise, we define the flow N(t) for the differential equation:

du

dt
= iλ|u|pu, x ∈ Rd, t > 0,

u(x, 0) = ϕ(x), x ∈ Rd,
(5.3)

i.e.

N(t)ϕ = exp(itλ|ϕ|p)ϕ. (5.4)

71
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The idea of splitting methods is to approximate the solutions of (5.1) by combining the two flows
S(t) and N(t). For a fixed time interval [0, T ] we can choose a small positive time step τ and
consider either the Lie approximation:

Z(nτ) = (S(τ)N(τ))nϕ, 0 ≤ nτ ≤ T, (5.5)

or Strang approximation

Z(nτ) = (S(τ/2)N(τ)S(τ/2))nϕ, 0 ≤ nτ ≤ T. (5.6)

In the two-dimensional case, Besse et al. [15] have analyzed the convergence of the above
methods for globally Lipschitz-continuous nonlinearities. Also Lubich [87] analyzed the Strang
method for the Schrödinger-Poisson equation and the cubic NSE in the case of H4(R3)-initial
data. There, the H4(R3)-regularity was imposed to guarantee that the approximate solution Z
remains bounded in the H2(R3)-norm.

In this chapter we introduce a splitting method for the NSE with 1 ≤ p < 4/d and prove the
convergence in the L2(Rd)-norm for H2(Rd)-initial data. The scheme we analyse is based on an
approximation Sτ (t) of the linear semigroup S(t) which admits Strichartz-like estimates in some
time discrete spaces. We make use of these new estimates to establish uniform bounds on the
numerical solution in the auxiliary spaces lqloc(τZ, Lr(Rd)) without assuming more than L2(Rd)-
regularity on the initial data. Once these bounds are obtained we will need the H2(Rd) regularity
in order to obtain the order of error.

The idea behind the numerical schemes for the LSE which admit uniform (with respect to
discretization parameters) estimates of Strichartz type is that when they are applied in the context
of NSE, the error committed is controlled by the error committed in approximating the LSE. The
application of these numerical schemes for NSE has been previously used in the case of semidiscrete
space approximations [62, 63, 65] and in the fully discrete case in [53].

In this chapter we will concentrate on Lie’s approximation method. We remark that Z defined
by (5.5) satisfies

Z(nτ) = S(nτ)ϕ+ τ

n−1∑
k=0

S(nτ − kτ)
N(τ)− I

τ
Z(kτ), n ≥ 1. (5.7)

Since Z is defined on a discrete set of points we need to evaluate Z in some discrete time norms
lq(τZ, Lr(Rd)). We emphasize that for (q, r) 6= (∞, 2) even the linear part S(nτ)ϕ does not satisfy
Strichartz-like estimates:

‖S(nτ)ϕ‖lq(τZ,Lr(Rd)) ≤ C(d, q)‖ϕ‖L2(Rd) for all ϕ ∈ L2(Rd),

where

‖u‖lq(τZ,Lr(Rd)) =
(
τ
∑
n∈Z
‖u(kτ)‖q

Lr(Rd)

)1/q

.

Indeed, in contrast with the classical estimate (5.2), the above inequality implies that

τ1/q‖S(τ)ϕ‖Lr(Rd) ≤ C(d, q)‖ϕ‖L2(Rd),

inequality which does not hold for all ϕ ∈ L2(Rd) (choose ϕ = S(−τ)ψ with ψ ∈ L2(Rd)\Lr(Rd)
for r 6= 2). This implies that we have to choose an approximation Sτ (t) of the linear semigroup
S(t) such that Sτ (t) admits Strichartz-like estimates which are discrete in time and moreover,
these estimates are uniform with respect to the time parameter τ :

‖Sτ (nτ)ϕ‖lq(τZ,Lr(Rd)) ≤ C‖ϕ‖L2(Rd), ∀ϕ ∈ L2(Rd).

One of the possible choices is the filtered operator

Sτ (t)ϕ = S(t)Πτϕ
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where Πτ filters the high frequencies as follows

Π̂τϕ(ξ) = ϕ̂(ξ)1{|ξ|≤τ−1/2}(ξ), ξ ∈ Rd. (5.8)

For other possible choices of the operator Sτ we refer to the previous work on dispersive methods
for LSE [62, 63, 65]. Also as initial data we have to choose a filtration of ϕ, Πτϕ, since otherwise
Zτ (0)ϕ = ϕ does not belong to Lr(Rd) and we cannot evaluate the lq(0 ≤ nτ ≤ T, Lr(Rd))-norm
of the approximation Zτ .

The splitting scheme we propose is the following one:

Zτ (nτ) = (Sτ (τ)N(τ))nΠτϕ, n ≥ 0. (5.9)

Observe that in this scheme only the linear equation is filtered while the nonlinear one is solved
exactly.

In the following, for any interval I with |I| ≥ τ , the space lq(nτ ∈ I, Lr(Rd)) contains all
functions defined on τZ ∩ I with values in Lr(Rd) and the norm on this space is defined by

‖u‖lq(nτ∈I, Lr(Rd)) =
(
τ
∑
n∈Z
‖u(kτ)‖q

Lr(Rd)

)1/q

.

In the sequel we always assume that τ is a small parameter, in the sense that there exists
τ0 = τ0(‖ϕ‖L2(Rd)) such that all the results holds for τ ≤ τ0.

The main results of this chapter are the following.

Theorem 5.1. (Stability) Let 0 < p < 4/d. For any ϕ ∈ L2(Rd) the approximation Zτ introduced
in (5.9) satisfies:
i) a uniform L2(Rd)-bound

max
n≥0
‖Zτ (nτ)‖L2(Rd) ≤ ‖ϕ‖L2(Rd), (5.10)

ii) there exists T0 ' ‖ϕ‖−
4p

4−dp such that for any interval I with |I| ≤ T0 and for any admissible
pair (q, r) the following

‖Zτ (nτ)‖lq(nτ∈I, Lr(Rd)) ≤ C(d, p, q)‖ϕ‖L2(Rd) (5.11)

holds for some constant C(d, p, q) independent of the time step τ ,

iii) for any T > 0 and (q, r) admissible-pair the following

‖Zτ (nτ)‖lq(0≤nτ≤T ;Lr(Rd)) ≤ C(T, d, p, q)‖ϕ‖L2(Rd) (5.12)

holds for some constant C(T, d, p, q) independent of the time step τ .

Theorem 5.2. (Convergence) Let d ≤ 3, p ∈ [1, 4/d) and ϕ ∈ H2(Rd). The numerical solution
Zτ has a first-order error bound in L2(Rd):

max
0≤nτ≤T

‖Zτ (nτ)− u(nτ)‖L2(Rd) ≤ τC(T, d, p, ‖ϕ‖H2(Rd)).

We point out that Theorem 5.2 works in the case d ≤ 3 which is quite restrictive. The
restriction p ≥ 1 comes from the fact that in our proof we need to guarantee that u solution of
(5.1) belongs to C(0, T,H2(Rd)) (see [28], Ch. 5.3).

We now comment on the possible analysis of the order of error in the case of less regularity or
other nonlinearities. It is convenient to write u in the semigroup formulation:

u(t) = S(t)ϕ+ iλ

∫ t

0

S(t− s)|u|pu(s)ds, t ≥ 0. (5.13)
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Looking at (5.7), we observe that Z (or Zτ ) defined by (5.5) (or (5.9)), differs from u in two
important facts: the integral in (5.13) is replaced by a sum in (5.7) and the nonlinear term
f(u) = λ|u|pu is replaced by τ−1(N(τ) − I)Z. In view of this, it seems to be reasonable that Z
better approximates the solution of the following NSE:

dv

dt
= i∆v +

exp(iλτ |v|p)− 1

τ
v, x ∈ Rd, t > 0,

v(x, 0) = ϕ(x), x ∈ Rd,
(5.14)

whose solution satisfies

v(t) = S(t)ϕ+

∫ t

0

S(t− s)N(τ)− I
τ

v(s)ds, t ≥ 0. (5.15)

When 0 ≤ p < 4/d and ϕ ∈ H1(Rd), equation (5.14) has a global H1(Rd)-solution (see [28],
Theorem 5.2.1). We conjecture that in this case similar results to those obtained in this chapter
could be obtained.

In what concerns the range 4/d < p < 4/(d− 2), d ≥ 3, (4/d < p <∞ if d ∈ {1, 2}) equation
(5.1) entries in the subcritical H1-case and there are instances where the solution is global (see
[28], Ch. 6 for a precise statement) since we have the following conservation of energy:

E(u) =
1

2

∫
Rd
|∇u|2 − λ

p+ 1

∫
Rd
|u|p+1.

However, in this range of p’s we cannot guarantee that system (5.14) has a global H1-solution
since it is not obvious what is the energy which is preserved. This suggests that the H1(Rd)-
stability for large time intervals for the splitting methods (5.5)-(5.6) will be very difficult to prove,
or even impossible, even though the solutions of (5.1) are global and belong to H1(Rd) at any
positive time. It has been proved in [87] that the H1(R3)-stability of the numerical scheme can be
established assuming more regularity on the initial data, for example H3(R3) in the case p = 2.

Since in the case 4/d < p < 4/(d−2), d ≥ 3, (4/d < p <∞ if d ∈ {1, 2}) the global existence of
an H1-solution for (5.14) is not an easy task we can only guarantee the existence of a local solution
v in some time interval [0, T0] with T0 = T0(‖ϕ‖H1(Rd)). In what concerns the splitting method
we conjecture that there exists a positive time T1 ' T0 such that the solution {Z(nτ)}0≤nτ≤T1

is uniformly bounded with respect to the time parameter τ in the H1(Rd)-norm. This smallness
on the time interval has been also previously imposed by Fröhlich in [44] where the order of error
has been obtained in the case of the Schrödinger-Poisson equation. The error analysis for small
intervals of time remains to be analysed in a future work.

The analysis presented here can be extended to splitting methods in fully discrete framework
by using the schemes introduced and analyzed in [53].

We now give discrete in time Strichartz-like estimates for the operator Sτ introduced in previous
section. Similar estimates for space semidiscretizations and fully discrete schemes have been
obtained in [62, 63] and [53]. Once the Strichartz estimates are obtained we can apply them to
obtain uniform bounds on the discrete solution Zτ .

Theorem 5.3. The semigroup {Sτ (t)}t∈R satisfies

‖Sτ (t)ϕ‖L2(Rd) ≤ ‖ϕ‖L2(Rd), ∀ t ∈ R, (5.16)

and

‖Sτ (t)ϕ‖L∞(Rd) ≤
C(d)

τd/2 + |t|d/2
‖ϕ‖L1(Rd), ∀ t ∈ R. (5.17)

Moreover, for any admissible pairs (q, r) and (q̃, r̃) the following hold
i) Continuous in time estimates:

‖Sτ (·)ϕ‖Lq(R,Lr(Rd)) ≤ C(d, q)‖ϕ‖L2(Rd), (5.18)
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∥∥∥∫
R
Sτ (s)∗f(s)ds

∥∥∥
L2(Rd)

≤ C(d, q̃)‖f‖Lq̃′ (R,Lr̃′ (Rd)), (5.19)

and ∥∥∥∫
s<t

Sτ (t− s)f(s)ds
∥∥∥
Lq(R,Lr(Rd))

≤ C(d, q, q̃)‖f‖Lq̃′ (R,Lr̃′ (Rd)), (5.20)

ii) Discrete in time estimates:

‖Sτ (·)ϕ‖lq(τZ,Lr(Rd)) ≤ C(d, q)‖ϕ‖L2(Rd), (5.21)∥∥∥τ∑
n∈Z

Sτ (nτ)∗f(nτ)
∥∥∥
L2(Rd)

≤ C(d, q̃)‖f‖lq̃′ (τZ,Lr̃′ (Rd)), (5.22)

and ∥∥∥τ n−1∑
k=−∞

Sτ ((n− k)τ)f(kτ)
∥∥∥
lq(τZ,Lr(Rd))

≤ C(d, q, q̃)‖f‖lq̃′ (τZ,Lr̃′ (Rd)). (5.23)

Remark 5.1. Inequalities (5.16) and (5.17) give us estimates for Sτ in norms which are discrete
in time. When considering continuous in time norms Lq(R, Lr(Rd)) we obtain similar results
since (5.17) implies that

‖Sτ (t)Sτ (s)∗ϕ‖L∞(Rd) ≤
C

|t− s|d/2
‖ϕ‖L1(Rd), ∀ t 6= s,

and we apply the results of Keel and Tao, [72], Theorem 1.2.

With the above estimates we are able to prove the stability result in Theorem 5.1 and the error
in Theorem 5.2. The complete proof is contained in [56].
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Part III

Nonlocal Diffusion
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Chapter 6

A nonlocal convection-diffusion
equation

In this chapter we analyze a nonlocal equation that takes into account convective and diffusive
effects. We deal with the nonlocal evolution equation{

ut(t, x) = (J ∗ u− u) (t, x) + (G ∗ (f(u))− f(u)) (t, x), t > 0, x ∈ Rd,

u(0, x) = u0(x), x ∈ Rd.
(6.1)

Let us state first our basic assumptions. The functions J and G are nonnegatives and verify∫
Rd J(x)dx =

∫
Rd G(x)dx = 1. Moreover, we consider J smooth, J ∈ S(Rd), the space of rapidly

decreasing functions, and radially symmetric and G smooth, G ∈ S(Rd), but not necessarily
symmetric. To obtain a diffusion operator similar to the Laplacian we impose in addition that J
verifies

1

2
∂2
ξiξi Ĵ(0) =

1

2

∫
supp(J)

J(z)z2
i dz = 1.

This implies that

Ĵ(ξ)− 1 + ξ2 ∼ |ξ|3, for ξ close to 0.

Here Ĵ is the Fourier transform of J and the notation A ∼ B means that there exist constants C1

and C2 such that C1A ≤ B ≤ C2A. We can consider more general kernels J with expansions in
Fourier variables of the form Ĵ(ξ)− 1 +Aξ2 ∼ |ξ|3. Since the results (and the proofs) are almost
the same, we do not include the details for this more general case, but we comment on how the
results are modified by the appearance of A.

The nonlinearity f will de assumed nondecreasing with f(0) = 0 and locally Lipschitz contin-
uous (a typical example that we will consider below is f(u) = |u|q−1u with q > 1).

Equations like wt = J ∗ w − w and variations of it, have been recently widely used to model
diffusion processes, for example, in biology, dislocations dynamics, etc. See, for example, [9], [24],
[33], [34], [35], [41], [42], [110] and [114]. As stated in [41], if w(t, x) is thought of as the density
of a single population at the point x at time t, and J(x − y) is thought of as the probability
distribution of jumping from location y to location x, then (J ∗ w)(t, x) =

∫
RN J(y − x)w(t, y) dy

is the rate at which individuals are arriving to position x from all other places and −w(t, x) =
−
∫
RN J(y−x)w(t, x) dy is the rate at which they are leaving location x to travel to all other sites.

This consideration, in the absence of external or internal sources, leads immediately to the fact
that the density w satisfies the equation wt = J ∗ w − w.

In our case, see the equation in (6.1), we have a diffusion operator J ∗ u − u and a nonlinear
convective part given by G ∗ (f(u)) − f(u). Concerning this last term, if G is not symmetric
then individuals have greater probability of jumping in one direction than in others, provoking a
convective effect.

79
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We will call equation (6.1), a nonlocal convection-diffusion equation. It is nonlocal since the
diffusion of the density u at a point x and time t does not only depend on u(x, t) and its derivatives
at that point (t, x), but on all the values of u in a fixed spatial neighborhood of x through the
convolution terms J ∗ u and G ∗ (f(u)) (this neighborhood depends on the supports of J and G).

First, we prove existence, uniqueness and well-possedness of a solution with an initial condition
u(0, x) = u0(x) ∈ L1(Rd) ∩ L∞(Rd).

Theorem 6.1. For any u0 ∈ L1(Rd) ∩ L∞(Rd) there exists a unique global solution

u ∈ C([0,∞);L1(Rd) ∩ L∞(Rd)).

If u and v are solutions of (6.1) corresponding to initial data u0, v0 ∈ L1(Rd)∩L∞(Rd) respectively,
then the following contraction property

‖u(t)− v(t)‖L1(Rd) ≤ ‖u0 − v0‖L1(Rd)

holds for any t ≥ 0. In addition,

‖u(t)‖L∞(Rd) ≤ ‖u0‖L∞(Rd).

We have to emphasize that a lack of regularizing effect occurs. This has been already observed
in [32] for the linear problem wt = J ∗ w − w. In [39], the authors prove that the solutions
to the local convection-diffusion problem, ut = ∆u + b · ∇f(u), satisfy an estimate of the form
‖u(t)‖L∞(Rd) ≤ C(‖u0‖L1(Rd)) t

−d/2 for any initial data u0 ∈ L1(Rd) ∩ L∞(Rd). In our nonlocal

model, we cannot prove such type of inequality independently of the L∞(Rd)-norm of the initial
data. Moreover, in the one-dimensional case with a suitable bound on the nonlinearity that
appears in the convective part, f , we can prove that such an inequality does not hold in general,
see Section 6.2. In addition, the L1(Rd)−L∞(Rd) regularizing effect is not available for the linear
equation, wt = J ∗ w − w, see Section 6.1.

Concerning (6.1) we can obtain a solution to a standard convection-diffusion equation

vt(t, x) = ∆v(t, x) + b · ∇f(v)(t, x), t > 0, x ∈ Rd, (6.2)

as the limit of solutions to (6.1) when a scaling parameter goes to zero. In fact, let us consider

Jε(s) =
1

εd
J
(s
ε

)
, Gε(s) =

1

εd
G
(s
ε

)
,

and the solution uε(t, x) to our convection-diffusion problem rescaled adequately,
(uε)t(t, x) =

1

ε2

∫
Rd
Jε(x− y)(uε(t, y)− uε(t, x)) dy

+
1

ε

∫
Rd
Gε(x− y)(f(uε(t, y))− f(uε(t, x))) dy,

uε(x, 0) = u0(x).

(6.3)

Remark that the scaling is different for the diffusive part of the equation J ∗ u− u and for the
convective part G ∗ f(u) − f(u). The same different scaling properties can be observed for the
local terms ∆u and b · ∇f(u).

Theorem 6.2. With the above notations, for any T > 0, we have

lim
ε→0

sup
t∈[0,T ]

‖uε − v‖L2(Rd) = 0,

where v(t, x) is the unique solution to the local convection-diffusion problem (6.2) with initial
condition v(x, 0) = u0(x) ∈ L1(Rd) ∩ L∞(Rd) and b = (b1, ..., bd) given by

bj =

∫
Rd
xj G(x) dx, j = 1, ..., d.
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This result justifies the use of the name “nonlocal convection-diffusion problem” when we refer
to (6.1).

From our hypotheses on J and G it follows that they verify |Ĝ(ξ) − 1 − ib · ξ| ≤ C|ξ|2 and

|Ĵ(ξ)− 1 + ξ2| ≤ C|ξ|3 for every ξ ∈ Rd. These bounds are exactly what we are using in the proof
of this convergence result.

Remark that when G is symmetric then b = 0 and we obtain the heat equation in the limit.
Of course the most interesting case is when b 6= 0 (this happens when G is not symmetric). Also
we note that the conclusion of the theorem holds for other Lp(Rd)-norms besides L2(Rd), however
the proof is more involved.

We can consider kernels J such that

A =
1

2

∫
supp(J)

J(z)z2
i dz 6= 1.

This gives the expansion Ĵ(ξ) − 1 + Aξ2 ∼ |ξ|3, for ξ close to 0. In this case we will arrive
to a convection-diffusion equation with a multiple of the Laplacian as the diffusion operator,
vt = A∆v + b · ∇f(v).

Next, we want to study the asymptotic behaviour as t → ∞ of solutions to (6.1). To this
end we first analyze the decay of solutions taking into account only the diffusive part (the linear
part) of the equation. These solutions have a similar decay rate as the one that holds for the heat
equation, see [32] and [59] where the Fourier transform play a key role. For the linear problem we
have the following result concerning the asymptotic behaviour.

Theorem 6.3. Let p ∈ [1,∞]. For any u0 ∈ L1(Rd) ∩ L∞(Rd) the solution w(t, x) of the linear
problem {

wt(t, x) = (J ∗ w − w)(t, x), t > 0, x ∈ Rd,

u(0, x) = u0(x), x ∈ Rd,
(6.4)

satisfies the decay estimate

‖w(t)‖Lp(Rd) ≤ C(‖u0‖L1(Rd), ‖u0‖L∞(Rd)) 〈t〉−
d
2 (1− 1

p ).

Throughout this paper we will use the notation A ≤ 〈t〉−α to denote A ≤ (1 + t)−α.
Now we are ready to face the study of the asymptotic behaviour of the complete problem (6.1).

To this end we have to impose some grow condition on f . Therefore, in the sequel we restrict
ourselves to nonlinearities f that are pure powers

f(u) = |u|q−1u, q > 1. (6.5)

The analysis is more involved than the one performed for the linear part and we cannot use
here the Fourier transform directly (of course, by the presence of the nonlinear term). Our strategy
is to write a variation of constants formula for the solution and then prove estimates that say that
the nonlinear part decay faster than the linear one. For the local convection diffusion equation this
analysis was performed by Escobedo and Zuazua in [39]. However, in the previously mentioned
reference energy estimates were used together with Sobolev inequalities to obtain decay bounds.
These Sobolev inequalities are not available for the nonlocal model, since the linear part does not
have any regularizing effect, see the remark at the end of Section 6.4. Therefore, we have to avoid
the use of energy estimates and tackle the problem using a variant of the Fourier splitting method
proposed by Schonbek to deal with local problems, see [94], [95] and [96].

We state our result concerning the asymptotic behaviour (decay rate) of the complete nonlocal
model as follows:

Theorem 6.4. Let f satisfies (6.5) with q > 1 and u0 ∈ L1(Rd) ∩ L∞(Rd). Then, for every
p ∈ [1,∞) the solution u of equation (6.1) verifies

‖u(t)‖Lp(Rd) ≤ C(‖u0‖L1(Rd), ‖u0‖L∞(Rd)) 〈t〉−
d
2 (1− 1

p ). (6.6)
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Finally, we look at the first order term in the asymptotic expansion of the solution. For
q > (d + 1)/d, we find that this leading order term is the same as the one that appears in the
linear local heat equation. This is due to the fact that the nonlinear convection is of higher order
and that the radially symmetric diffusion leads to gaussian kernels in the asymptotic regime, see
[32] and [59].

Theorem 6.5. Let f satisfies (6.5) with q > (d+ 1)/d and let the initial condition u0 belongs to
L1(Rd, 1 + |x|) ∩ L∞(Rd). For any p ∈ [2,∞) the following holds

t−
d
2 (1− 1

p )‖u(t)−MH(t)‖Lp(Rd) ≤ C(J,G, p, d)αq(t),

where

M =

∫
Rd
u0(x) dx,

H(t) is the Gaussian,

H(t) =
e−

x2

4t

(2πt)
d
2

,

and

αq(t) =

 〈t〉
− 1

2 if q ≥ (d+ 2)/d,

〈t〉
1−d(q−1)

2 if (d+ 1)/d < q < (d+ 2)/d.

Remark that we prove a weak nonlinear behaviour, in fact the decay rate and the first order
term in the expansion are the same that appear in the linear model wt = J ∗ w − w, see [59].

As before, recall that our hypotheses on J imply that Ĵ(ξ)− (1− |ξ|2) ∼ B|ξ|3, for ξ close to
0. This is the key property of J used in the proof of Theorem 6.5. We note that when we have an
expansion of the form Ĵ(ξ)− (1−A|ξ|2) ∼ B|ξ|3, for ξ ∼ 0, we get as first order term a Gaussian
profile of the form HA(t) = H(At).

Also note that q = (d+ 1)/d is a critical exponent for the local convection-diffusion problem,
vt = ∆v + b · ∇(vq), see [39]. When q is supercritical, q > (d+ 1)/d, for the local equation it also
holds an asymptotic simplification to the heat semigroup as t→∞.

The first order term in the asymptotic behaviour for critical or subcritical exponents 1 < q ≤
(d + 1)/d is left open. One of the main difficulties that one has to face here is the absence of a
self-similar profile due to the inhomogeneous behaviour of the convolution kernels.

The rest of the paper is organized as follows: in Section 6.1 we deal with the estimates for the
linear semigroup that will be used to prove existence and uniqueness of solutions as well as for the
proof of the asymptotic behaviour. In Section 6.2 we prove existence and uniqueness of solutions,
Theorem 6.1. In Section 6.3 we show the convergence to the local convection-diffusion equation,
Theorem 6.2 and finally in Sections 6.4 and 6.5 we deal with the asymptotic behaviour, we find
the decay rate and the first order term in the asymptotic expansion, Theorems 6.4 and 6.5.

6.1 The linear semigroup

In this section we analyze the asymptotic behavior of the solutions of the equation{
wt(t, x) = (J ∗ w − w)(t, x), t > 0, x ∈ Rd,

w(0, x) = u0(x), x ∈ Rd.
(6.7)

When J is nonnegative and compactly supported, this equation shares many properties with the
classical heat equation, wt = ∆w, such as: bounded stationary solutions are constant, a maximum
principle holds for both of them and perturbations propagate with infinite speed, see [41]. However,
there is no regularizing effect in general. In fact, the singularity of the source solution, that is
a solution to (6.7) with initial condition a delta measure, u0 = δ0, remains with an exponential
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decay. In fact, this fundamental solution can be decomposed as S(t, x) = e−tδ0 + Kt(x) where
Kt(x) is smooth, see Lemma 6.1. In this way we see that there is no regularizing effect since the
solution w of (6.7) can be written as w(t) = S(t) ∗ u0 = e−tu0 + Kt ∗ u0 with Kt smooth, which
means that w(·, t) is as regular as u0 is. This fact makes the analysis of (6.7) more involved.

Lemma 6.1. The fundamental solution of (6.7), that is the solution of (6.7) with initial condition
u0 = δ0, can be decomposed as

S(t, x) = e−tδ0(x) +Kt(x), (6.8)

with Kt(x) = K(t, x) smooth. Moreover, if u is the solution of (6.7) it can be written as

w(t, x) = (S ∗ u0)(t, x) =

∫
R
S(t, x− y)u0(y) dy.

In the following we will give estimates on the regular part of the fundamental solution Kt

defined by:

Kt(x) =

∫
Rd

(et(Ĵ(ξ)−1) − e−t) eix·ξ dξ, (6.9)

that is, in the Fourier space,

K̂t(ξ) = et(Ĵ(ξ)−1) − e−t.

The behavior of Lp(Rd)-norms of Kt will be obtained by analyzing the cases p =∞ and p = 1.
The case p =∞ follows by Hausdorff-Young’s inequality. The case p = 1 follows by using the fact
that the L1(Rd)-norm of the solutions to (6.7) does not increase.

The following lemma gives us the decay rate of the Lp(Rd)-norms of the kernel Kt.

Lemma 6.2. For any p ≥ 1 there exists a positive constant c(p, J) such that Kt, defined in (6.9),
satisfies:

‖Kt‖Lp(Rd) ≤ c(p, J) 〈t〉−
d
2 (1− 1

p ) (6.10)

for any t > 0.

Remark 6.1. In fact, when p =∞, a stronger inequality can be proven,

‖Kt‖L∞(Rd) ≤ Cte−δt‖Ĵ‖L1(Rd) + C 〈t〉−d/2,

for some positive δ = δ(J). Moreover, for p = 1 we have,

‖Kt‖L1(Rd) ≤ 2

and for any p ∈ [1,∞]
‖S(t)‖Lp(Rd)−Lp(Rd) ≤ 3.

Proof of Lemma 6.2. We analyze the cases p = ∞ and p = 1, the others can be easily obtained
applying Hölder’s inequality.

Case p =∞. Using Hausdorff-Young’s inequality we obtain that

‖Kt‖L∞(Rd) ≤
∫
Rd
|et(Ĵ(ξ)−1) − e−t|dξ.

Let us choose R > 0 such that

|Ĵ(ξ)| ≤ 1− |ξ|
2

2
for all |ξ| ≤ R. (6.11)

Once R is fixed, there exists δ = δ(J), 0 < δ < 1, with

|Ĵ(ξ)| ≤ 1− δ for all |ξ| ≥ R. (6.12)
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For any |ξ| ≥ R,

|et(Ĵ(ξ)−1) − e−t| ≤ t|Ĵ(ξ)|max{e−t, et(Ĵ(ξ)−1)} ≤ te−δt|Ĵ(ξ)|. (6.13)

Then the following integral decays exponentially,∫
|ξ|≥R

|et(Ĵ(ξ)−1) − e−t|dξ ≤ e−δtt
∫
|ξ|≥R

|Ĵ(ξ)|dξ.

Using that this term is exponentially small, it remains to prove that

I(t) =

∫
|ξ|≤R

|et(Ĵ(ξ)−1) − e−t|dξ ≤ C〈t〉−d/2. (6.14)

To handle this case we use the following estimates:

|I(t)| ≤
∫
|ξ|≤R

et(Ĵ(ξ)−1)dξ + e−tC(R) ≤
∫
|ξ|≤R

dξ + e−tC(R) ≤ C(R)

and

|I(t)| ≤
∫
|ξ|≤R

et(Ĵ(ξ)−1)dξ + e−tC(R) ≤
∫
|ξ|≤R

e−
t|ξ|2

2 + e−tC(R)

= t−d/2
∫
|η|≤Rt1/2

e−
|η|2

2 + e−tC(R) ≤ Ct−d/2.

The last two estimates prove (6.14) and this finishes the analysis of this case.
Case p = 1. First we prove that the L1(Rd)-norm of the solutions to equation (6.4) does not

increase. Multiplying equation (6.4) by sgn(w(t, x)) and integrating in space variable we obtain,

d

dt

∫
Rd
|w(t, x)| dx ≤

∫
Rd

∫
Rd
J(x− y)|w(t, y)| dx dy −

∫
Rd
|w(t, x)| dx ≤ 0,

which shows that the L1(Rd)-norm does not increase. Hence, for any u0 ∈ L1(Rd), the following
holds: ∫

Rd
|e−tu0(x) + (Kt ∗ u0)(x)| dx ≤

∫
Rd
|u0(x)| dx,

and as a consequence, ∫
Rd
|(Kt ∗ u0)(x)| dx ≤ 2

∫
Rd
|u0(x)| dx.

Choosing (u0)n ∈ L1(Rd) such that (u0)n → δ0 in S ′(Rd) we obtain in the limit that∫
Rd
|Kt(x)|dx ≤ 2.

This ends the proof of the L1-case and finishes the proof.

The following lemma will play a key role when analyzing the decay of the complete prob-
lem (6.1). In the sequel we will denote by L1(Rd, a(x)) the following space:

L1(Rd, a(x)) =

{
ϕ :

∫
Rd
a(x)|ϕ(x)|dx <∞

}
.

Lemma 6.3. Let p ≥ 1 and J ∈ S(Rd). There exists a positive constant c(p, J) such that

‖Kt ∗ ϕ−Kt‖Lp(Rd) ≤ c(p)〈t〉−
d
2 (1− 1

p )− 1
2 ‖ϕ‖L1(Rd,|x|)

holds for all ϕ ∈ L1(Rd, 1 + |x|).
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We now prove a decay estimate that takes into account the linear semigroup applied to the
convolution with a kernel G.

Lemma 6.4. Let 1 ≤ p ≤ r ≤ ∞, J ∈ S(Rd) and G ∈ L1(Rd, |x|). There exists a positive
constant C = C(p, J,G) such that the following estimate

‖S(t) ∗G ∗ ϕ− S(t) ∗ ϕ‖Lr(Rd) ≤ C〈t〉−
d
2 ( 1
p−

1
r )− 1

2 (‖ϕ‖Lp(Rd) + ‖ϕ‖Lr(Rd)). (6.15)

holds for all ϕ ∈ Lp(Rd) ∩ Lr(Rd).

Remark 6.2. In fact the following stronger inequality holds:

‖S(t) ∗G ∗ ϕ− S(t) ∗ ϕ‖Lr(Rd) ≤ C 〈t〉−
d
2 ( 1
p−

1
r )− 1

2 ‖ϕ‖Lp(Rd) + C e−t‖ϕ‖Lr(Rd).

Proof. We write S(t) as S(t) = e−tδ0 +Kt and we get

S(t) ∗G ∗ ϕ− S(t) ∗ ϕ = e−t(G ∗ ϕ− ϕ) +Kt ∗G ∗ ϕ−Kt ∗ ϕ.

The first term in the above right hand side verifies:

e−t‖G ∗ ϕ− ϕ‖Lr(Rd) ≤ e−t(‖G‖L1(Rd)‖ϕ‖Lr(Rd) + ‖ϕ‖Lr(Rd)) ≤ 2e−t‖ϕ‖Lr(Rd).

For the second one, by Lemma 6.3 we get that Kt satisfies

‖Kt ∗G−Kt‖La(Rd) ≤ C(r, J)‖G‖L1(Rd,|x|)〈t〉−
d
2 (1− 1

a )− 1
2

for all t ≥ 0 where a is such that 1/r = 1/a+ 1/p− 1. Then, using Young’s inequality we end the
proof.

6.2 Existence and uniqueness

In this section we use the previous results and estimates on the linear semigroup to prove the
existence and uniqueness of the solution to our nonlinear problem (6.1). The proof is based on the
variation of constants formula and uses the previous properties of the linear diffusion semigroup.

Proof of Theorem 6.1. Recall that we want prove the global existence of solutions for initial con-
ditions u0 ∈ L1(Rd) ∩ L∞(Rd).

Let us consider the following integral equation associated with (6.1):

u(t) = S(t) ∗ u0 +

∫ t

0

S(t− s) ∗ (G ∗ (f(u))− f(u))(s) ds, (6.16)

the functional

Φ[u](t) = S(t) ∗ u0 +

∫ t

0

S(t− s) ∗ (G ∗ (f(u))− f(u))(s) ds

and the space
X(T ) = C([0, T ];L1(Rd)) ∩ L∞([0, T ]; Rd)

endowed with the norm

‖u‖X(T ) = sup
t∈[0,T ]

(
‖u(t)‖L1(Rd) + ‖u(t)‖L∞(Rd)

)
.

It follows that Φ is a contraction in the ball of radius R, BR, of XT , if T is small enough. This
proves the local existence of the solutions.

To prove the global well posedness of the solutions we have to guarantee that both L1(Rd) and
L∞(Rd)-norms of the solutions do not blow up in finite time. We will apply the following lemma
to control the L∞(Rd)-norm of the solutions.
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Lemma 6.5. Let θ ∈ L1(Rd) and K be a nonnegative function with mass one. Then for any
µ ≥ 0 the following hold:∫

θ(x)>µ

∫
Rd
K(x− y)θ(y) dy dx ≤

∫
θ(x)>µ

θ(x) dx (6.17)

and ∫
θ(x)<−µ

∫
Rd
K(x− y)θ(y) dy dx ≥

∫
θ(x)<−µ

θ(x) dx. (6.18)

Control of the L1-norm. As in the previous section, we multiply equation (6.1) by sgn(u(t, x))
and integrate in Rd to obtain the following estimate

d

dt

∫
Rd
|u(t, x)| dx =

∫
Rd

∫
Rd
J(x− y)u(t, y) sgn(u(t, x)) dy dx−

∫
Rd
|u(t, x)| dx

+

∫
Rd

∫
Rd
G(x− y)f(u(t, y)) sgn(u(t, x)) dy dx−

∫
Rd
f(u(t, x)) sgn(u(t, x)) dx

≤ 0,

which shows that the L1-norm does not increase.

Control of the L∞-norm. Let us denote m = ‖u0‖L∞(Rd). Multiplying the equation in (6.1)
by sgn(u−m)+ and integrating in the x variable we get,

d

dt

∫
Rd

(u(t, x)−m)+dx = I1(t) + I2(t)

where

I1(t) =

∫
Rd

∫
Rd
J(x− y)u(t, y) sgn(u(t, x)−m)+ dy dx−

∫
Rd
u(t, x) sgn(u(t, x)−m)+ dx

and

I2(t) =

∫
Rd

∫
Rd
G(x− y)f(u)(t, y) sgn(u(t, x)−m)+ dy dx

−
∫
Rd
f(u)(t, x) sgn(u(t, x)−m)+ dx.

We claim that both I1 and I2 are negative. Thus (u(t, x) − m)+ = 0 a.e. x ∈ Rd and then
u(t, x) ≤ m for all t > 0 and a.e. x ∈ Rd.

In the case of I1, applying Lemma 6.5 with K = J , θ = u(t) and µ = m we obtain∫
Rd

∫
Rd
J(x− y)u(t, y) sgn(u(t, x)−m)+ dy dx =

∫
u(x)>m

∫
Rd
J(x− y)u(t, y) dy dx

≤
∫
u(x)>m

u(t, x) dx.

To handle the second one, I2, we proceed in a similar manner. Applying Lemma 6.5 with

θ(x) = f(u)(t, x) and µ = f(m)

we obtain ∫
f(u(t,x))>f(m)

∫
Rd
G(x− y)f(u)(t, y) dy dx ≤

∫
f(u(t,x))>f(m)

f(u)(t, x) dx.
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Using that f is a nondecreasing function, we rewrite this inequality in an equivalent form te obtain
the desired inequality:∫

Rd

∫
Rd
G(x− y)f(u)(t, y) sgn(u(t, x)−m)+ dy dx =

∫
u(t,x)≥m

∫
Rd
G(x− y)f(u)(t, y) dy dx

=

∫
f(u)(t,x)≥f(m)

∫
Rd
G(x− y)f(u)(t, y) dy dx ≤

∫
u(t,x)≥m

f(u)(t, x) dx.

In a similar way, by using inequality (6.18) we get

d

dt

∫
Rd

(u(t, x) +m)− dx ≤ 0,

which implies that u(t, x) ≥ −m for all t > 0 and a.e. x ∈ Rd.
We conclude that ‖u(t)‖L∞(Rd) ≤ ‖u0‖L∞(Rd).
Step III. Uniqueness and contraction property. Let us consider u and v two solutions

corresponding to initial data u0 and v0 respectively. We will prove that for any t > 0 the following
holds:

d

dt

∫
Rd
|u(t, x)− v(t, x)| dx ≤ 0.

To this end, we multiply by sgn(u(t, x) − v(t, x)) the equation satisfied by u − v and using the
symmetry of J , the positivity of J and G and that their mass equals one we obtain,

d

dt

∫
Rd
|u(t, x)− v(t, x)| dx ≤ 0.

Thus we get the uniqueness of the solutions and the contraction property

‖u(t)− v(t)‖L1(Rd) ≤ ‖u0 − v0‖L1(Rd).

This ends the proof of Theorem 6.1.

Now we prove that, due to the lack of regularizing effect, the L∞(R)-norm does not get bounded
for positive times when we consider initial conditions in L1(R). This is in contrast to what happens
for the local convection-diffusion problem, see [39].

Proposition 6.1. Let d = 1 and |f(u)| ≤ C|u|q with 1 ≤ q < 2. Then

sup
u0∈L1(R)

sup
t∈[0,1]

t
1
2 ‖u(t)‖L∞(R)

‖u0‖L1(R)
=∞.

Proof. Assume by contradiction that

sup
u0∈L1(R)

sup
t∈[0,1]

t
1
2 ‖u(t)‖L∞(R)

‖u0‖L1(R)
= M <∞. (6.19)

Using the representation formula (6.16) we get:

‖u(1)‖L∞(R) ≥ ‖S(1) ∗ u0‖L∞(R) −
∥∥∥∥∫ 1

0

S(1− s) ∗ (G ∗ (f(u))− f(u))(s) ds

∥∥∥∥
L∞(R)

Using Lemma 6.4 the last term can be bounded as follows:∥∥∥∫ 1

0

S(1− s) ∗ (G∗(f(u))− f(u))(s) ds
∥∥∥
L∞(R)

≤
∫ 1

0

〈1− s〉− 1
2 ‖f(u(s))‖L∞(R) ds

≤ C
∫ 1

0

‖u(s)‖qL∞(R)ds ≤ CM
q‖u0‖qL1(R)

∫ 1

0

s−
q
2 ds

≤ CMq‖u0‖qL1(R),
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provided that q < 2.
This implies that the L∞(R)-norm of the solution at time t = 1 satisfies

‖u(1)‖L∞(R) ≥ ‖S(1) ∗ u0‖L∞(R) − CMq‖u0‖qL1(R)

≥ e−1‖u0‖L∞(R) − ‖K1‖L∞(R)‖u0‖L1(R) − CMq‖u0‖qL1(R)

≥ e−1‖u0‖L∞(R) − C‖u0‖L1(R) − CMq‖u0‖qL1(R).

Choosing now a sequence u0,ε with ‖u0,ε‖L1(R) = 1 and ‖u0,ε‖L∞(R) →∞ we obtain that

‖u0,ε(1)‖L∞(R) →∞,

a contradiction with our assumption (6.19). The proof of the result is now completed.

6.3 Convergence to the local problem

In this section we prove the convergence of solutions of the nonlocal problem to solutions of the
local convection-diffusion equation when we rescale the kernels and let the scaling parameter go
to zero.

As we did in the previous sections we begin with the analysis of the linear part.

Lemma 6.6. Assume that u0 ∈ L2(Rd). Let wε be the solution to (wε)t(t, x) =
1

ε2

∫
Rd
Jε(x− y)(wε(t, y)− wε(t, x)) dy,

wε(0, x) = u0(x),

(6.20)

and w the solution to {
wt(t, x) = ∆w(t, x),

w(0, x) = u0(x).
(6.21)

Then, for any positive T ,
lim
ε→0

sup
t∈[0,T ]

‖wε − w‖L2(Rd) = 0.

Next we use a lemma that provides us with a uniform (independent of ε) decay for the nonlocal
convective part.

Lemma 6.7. There exists a positive constant C = C(J,G) such that∥∥∥(Sε(t) ∗Gε − Sε(t)
ε

)
∗ ϕ
∥∥∥
L2(Rd)

≤ C t− 1
2 ‖ϕ‖L2(Rd)

holds for all t > 0 and ϕ ∈ L2(Rd), uniformly on ε > 0. Here Sε(t) is the linear semigroup
associated to (6.20).

Also, the following result will be useful in the proof of Theorem 6.2.

Lemma 6.8. Let be T > 0 and M > 0. Then the following

lim
ε→0

sup
t∈[0,T ]

∫ t

0

∥∥∥∥(Sε(s) ∗Gε − Sε(s)ε
− b · ∇H(s)

)
∗ ϕ(s)

∥∥∥∥
L2(Rd)

ds = 0,

holds uniformly for all ‖ϕ‖L∞([0,T ];L2(Rd)) ≤M . Here H is the linear heat semigroup given by the
Gaussian

H(t) =
e−

x2

4t

(2πt)
d
2
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and b = (b1, ..., bd) is given by

bj =

∫
Rd
xj G(x) dx, j = 1, ..., d.

Now we are ready to prove Theorem 6.2.

Proof of Theorem 6.2. First we write the two problems in the semigroup formulation,

uε(t) = Sε(t) ∗ u0 +

∫ t

0

Sε(t− s) ∗Gε − Sε(t− s)
ε

∗ f(uε(s)) ds

and

v(t) = H(t) ∗ u0 +

∫ t

0

b · ∇H(t− s) ∗ f(v(s)) ds.

Then

sup
t∈[0,T ]

‖uε(t)− v(t)‖L2(Rd) ≤ sup
t∈[0,T ]

I1,ε(t) + sup
t∈[0,T ]

I2,ε(t) (6.22)

where

I1,ε(t) = ‖Sε(t) ∗ u0 −H(t) ∗ u0‖L2(Rd)

and

I2,ε(t) =

∥∥∥∥∫ t

0

Sε(t− s) ∗Gε − Sε(t− s)
ε

∗ f(uε(s))−
∫ t

0

b · ∇H(t− s) ∗ f(v(s))

∥∥∥∥
L2(Rd)

.

In view of Lemma 6.6 we have

sup
t∈[0,T ]

I1,ε(t)→ 0 as ε→ 0.

So it remains to analyze the second term I2,ε. To this end, we split it again

I2,ε(t) ≤ I3,ε(t) + I4,ε(t)

where

I3,ε(t) =

∫ t

0

∥∥∥∥Sε(t− s) ∗Gε − Sε(t− s)ε
∗
(
f(uε(s))− f(v(s))

)∥∥∥∥
L2(Rd)

ds

and

I4,ε(t) =

∫ t

0

∥∥∥∥(Sε(t− s) ∗Gε − Sε(t− s)ε
− b · ∇H(t− s)

)
∗ f(v(s))

∥∥∥∥
L2(Rd)

ds.

Using Young’s inequality and that from our hypotheses we have an uniform bound for uε and
u in terms of ‖u0‖L1(Rd), ‖u0‖L∞(Rd) we obtain

I3,ε(t) ≤
∫ t

0

‖f(uε(s))− f(v(s))‖L2(Rd)

|t− s| 12
ds

≤ ‖f(uε)− f(v)‖L∞((0,T );L2(Rd))

∫ t

0

ds

|t− s| 12
(6.23)

≤ 2T 1/2‖uε − v‖L∞((0,T );L2(Rd))C(‖u0‖L1(Rd), ‖u0‖L∞(Rd)).

By Lemma 6.8 (see [58] for the full details) we obtain that

sup
t∈[0,T ]

I4,ε ≤ Cε
1
3 ‖f(v)‖L∞((0,T );L2(Rd)) ≤ Cε

1
3C(‖u0‖L1(Rd), ‖u0‖L∞(Rd)). (6.24)
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Using (6.22), (6.23) and (6.24) we get:

‖uε − v‖L∞((0,T );L2(Rd)) ≤ ‖I1,ε‖L∞((0,T );L2(Rd))

+T
1
2C(‖u0‖L1(R), ‖u0‖L∞(R))‖uε − v‖L∞((0,T );L2(Rd)).

Choosing T = T0 sufficiently small, depending on ‖u0‖L1(R) and ‖u0‖L∞(R) we get

‖uε − v‖L∞((0,T );L2(Rd)) ≤ ‖I1,ε‖L∞((0,T );L2(Rd)) → 0,

as ε→ 0.
Using the same argument in any interval [τ, τ+T0], the stability of the solutions of the equation

(6.3) in L2(Rd)-norm and that for any time τ > 0 it holds that

‖uε(τ)‖L1(Rd) + ‖uε(τ)‖L∞(Rd) ≤ ‖u0‖L1(Rd) + ‖u0‖L∞(Rd),

we obtain
lim
ε→0

sup
t∈[0,T ]

‖uε − v‖L2(Rd) = 0,

as we wanted to prove.

6.4 Long time behaviour of the solutions

The aim of this section is to obtain the first term in the asymptotic expansion of the solution u to
(6.1). The main ingredient for our proofs is the following lemma inspired in the Fourier splitting
method introduced by Schonbek, see [94], [95] and [96].

Lemma 6.9. Let R and δ be such that the function Ĵ satisfies:

Ĵ(ξ) ≤ 1− |ξ|
2

2
, |ξ| ≤ R (6.25)

and
Ĵ(ξ) ≤ 1− δ, |ξ| ≥ R. (6.26)

Let us assume that the function u : [0,∞)×Rd → R satisfies the following differential inequality:

d

dt

∫
Rd
|u(t, x)|2 dx ≤ c

∫
Rd

(J ∗ u− u)(t, x)u(t, x) dx, (6.27)

for any t > 0. Then for any 1 ≤ r <∞ there exists a constant a = rd/cδ such that∫
Rd
|u(at, x)|2dx ≤

‖u(0)‖2L2(Rd)

(t+ 1)rd
+
rdω0(2δ)

d
2

(t+ 1)rd

∫ t

0

(s+ 1)rd−
d
2−1‖u(as)‖2L1(Rd)ds (6.28)

holds for all positive time t where ω0 is the volume of the unit ball in Rd. In particular

‖u(at)‖L2(Rd) ≤
‖u(0)‖L2(Rd)

(t+ 1)
rd
2

+
(2ω0)

1
2 (2δ)

d
4

(t+ 1)
d
4

‖u‖L∞([0,∞);L1(Rd)). (6.29)

Remark 6.3. The differential inequality (6.27) can be written in the following form:

d

dt

∫
Rd
|u(t, x)|2 dx ≤ − c

2

∫
Rd

∫
Rd
J(x− y)(u(t, x)− u(t, y))2 dx dy.

This is the nonlocal version of the energy method used in [39]. However, in our case, exactly the
same inequalities used in [39] could not be applied.
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We also need the nonlocal version of the well known identity∫
Rd

∆u |u|p−1 sgn(u) dx = −4(p− 1)

p2

∫
Rd
|∇(|u|p/2)|2 dx.

Lemma 6.10. ([58]) Let 2 ≤ p <∞. For any function u : Rd 7→ Rd, I(u) defined by

I(u) =

∫
Rd

(J ∗ u− u)(x)|u(x)|p−1 sgn(u(x)) dx

satisfies

I(u) ≤ 4(p− 1)

p2

∫
Rd

(J ∗ |u|p/2 − |u|p/2)(x)|u(x)|p/2 dx

= −2(p− 1)

p2

∫
Rd

∫
Rd
J(x− y)(|u(y)|p/2 − |u(x)|p/2)2 dx dy.

Now we are ready to proceed with the proof of Theorem 6.4.

Proof of Theorem 6.4. Let u be the solution to the nonlocal convection-diffusion problem. Then,
by the same arguments that we used to control the L1(Rd)-norm, we obtain the following:

d

dt

∫
Rd
|u(t, x)|pdx = p

∫
Rd

(J ∗ u− u)(t, x)|u(t, x)|p−1 sgn(u(t, x)) dx

+

∫
Rd

(G ∗ f(u)− f(u))(t, x)|u(t, x)|p−1 sgn(u(t, x)) dx

≤ p

∫
Rd

(J ∗ u− u)(t, x)|u(t, x)|p−1 sgn(u(t, x)) dx.

Using Lemma 6.10 we get that the Lp(Rd)-norm of the solution u satisfies the following differential
inequality:

d

dt

∫
Rd
|u(t, x)|p dx ≤ 4(p− 1)

p

∫
Rd

(J ∗ |u|p/2 − |u|p/2)(x)|u(x)|p/2 dx. (6.30)

First, let us consider p = 2. Then

d

dt

∫
Rd
|u(t, x)|2 dx ≤ 2

∫
Rd

(J ∗ |u| − |u|)(t, x)|u(t, x)| dx.

Applying Lemma 6.9 with |u|, c = 2, r = 1 and using that ‖u‖L∞([0,∞);L1(Rd)) ≤ ‖u0‖L1(Rd) we
obtain

‖u(td/2δ)‖L2(R) ≤
‖u0‖L2(Rd)

(t+ 1)
d
2

+
(2ω0)

1
2 (2δ)

d
4

(t+ 1)
d
4

‖u‖L∞([0,∞);L1(Rd))

≤
‖u0‖L2(Rd)

(t+ 1)
d
2

+
(2ω0)

1
2 (2δ)

d
4

(t+ 1)
d
4

‖u0‖L1(Rd)) ≤
C(J, ‖u0‖L1(Rd), ‖u0‖L∞(Rd))

(t+ 1)
d
4

,

which proves (6.6) in the case p = 2. Using that the L1(Rd)-norm of the solutions to (6.1), does
not increase, ‖u(t)‖L1(Rd) ≤ ‖u0‖L1(Rd), by Hölder’s inequality we obtain the desired decay rate

(6.6) in any Lp(Rd)-norm with p ∈ [1, 2].
In the following, using an inductive argument, we will prove the result for any r = 2m, with

m ≥ 1 an integer. By Hölder’s inequality this will give us the Lp(Rd)-norm decay for any 2 < p <
∞.

Let us choose r = 2m with m ≥ 1 and assume that the following

‖u(t)‖Lr(Rd) ≤ C〈t〉−
d
2 (1− 1

r )
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holds for some positive constant C = C(J, ‖u0‖L1(Rd), ‖u0‖L∞(Rd)) and for every positive time t.
We want to show an analogous estimate for p = 2r = 2m+1.

We use (6.30) with p = 2r to obtain the following differential inequality:

d

dt

∫
Rd
|u(t, x)|2rdx ≤ 4(2r − 1)

2r

∫
Rd

(J ∗ |u|r − |u|r)(t, x)|u(t, x)|rdx.

Applying Lemma (6.9) with |u|r, c(r) = 2(2r − 1)/r and a = rd/c(r)δ we get:∫
Rd
|u(at)|2r ≤

‖ur0‖2L2(Rd)

(t+ 1)rd
+
dω0(2δ)

d
2

(t+ 1)rd

∫ t

0

(s+ 1)rd−
d
2−1‖ur(as)‖2L1(Rd)ds

≤
‖u0‖2rL2r(Rd)

(t+ 1)rd
+

C(J)

(t+ 1)rd

∫ t

0

(s+ 1)rd−
d
2−1‖u(as)‖2rLr(Rd)ds

≤
C(J, ‖u0‖L1(Rd), ‖u0‖L∞(Rd))

(t+ 1)d

(
1 +

∫ t

0

(s+ 1)rd−
d
2−1(s+ 1)−dr(1−

1
r )ds

)
≤ C

(t+ 1)dr
(1 + (t+ 1)

d
2 ) ≤ C(t+ 1)

d
2−dr

and then

‖u(at)‖L2r(Rd) ≤ C(J, ‖u0‖L1(Rd), ‖u0‖L∞(Rd))(t+ 1)−
d
2 (1− 1

2r ),

which finishes the proof.

Let us close this section with a remark concerning the applicability of energy methods to study
nonlocal problems. If we want to use energy estimates to get decay rates (for example in L2(Rd)),
we arrive easily to

d

dt

∫
Rd
|w(t, x)|2 dx = −1

2

∫
Rd

∫
Rd
J(x− y)(w(t, x)− w(t, y))2 dx dy

when we deal with a solution of the linear equation wt = J ∗ w − w and to

d

dt

∫
Rd
|u(t, x)|2 dx ≤ −1

2

∫
Rd

∫
Rd
J(x− y)(u(t, x)− u(t, y))2 dx dy

when we consider the complete convection-diffusion problem. However, we can not go further
since an inequality of the form(∫

Rd
|u(x)|p dx

) 2
p

≤ C
∫
Rd

∫
Rd
J(x− y)(u(x)− u(y))2 dx dy (6.31)

is not available for p > 2. However, in the next chapter we will develop a method which avoid the
use of inequality (6.31).

6.5 Weakly nonlinear behaviour

In this section we find the leading order term in the asymptotic expansion of the solution to (6.1).
We use ideas from [39] showing that the nonlinear term decays faster than the linear part.

We recall a previous result of [59] that extends to nonlocal diffusion problems the result of [38]
in the case of the heat equation.

Lemma 6.11. Let J ∈ S(Rd) such that

Ĵ(ξ)− (1− |ξ|2) ∼ B|ξ|3, ξ ∼ 0,
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for some constant B. For every p ∈ [2,∞), there exists some positive constant C = C(p, J) such
that

‖S(t) ∗ ϕ−MH(t)‖Lp(Rd) ≤ Ce−t‖ϕ‖Lp(Rd) + C‖ϕ‖L1(Rd,|x|)〈t〉−
d
2 (1− 1

p )− 1
2 , t > 0, (6.32)

for every ϕ ∈ L1(Rd, 1 + |x|) with M =
∫
R ϕ(x) dx, where

H(t) =
e−

x2

4t

(2πt)
d
2

,

is the gaussian.

Remark 6.4. We can consider a condition like Ĵ(ξ) − (1 − A|ξ|2) ∼ B|ξ|3 for ξ ∼ 0 and obtain
as profile a modified Gaussian HA(t) = H(At), but we omit the tedious details.

Remark 6.5. The case p ∈ [1, 2) is more subtle. The analysis performed in the previous sections
to handle the case p = 1 can be also extended to cover this case when the dimension d verifies
1 ≤ d ≤ 3. Indeed in this case, if J satisfies Ĵ(ξ) ∼ 1− A|ξ|s, ξ ∼ 0, then s has to be grater than
[d/2] + 1 and s = 2 to obtain the Gaussian profile.

Proof. We write S(t) = e−tδ0 +Kt. Then it is sufficient to prove that

‖Kt ∗ ϕ−MKt‖Lp(Rd) ≤ C‖ϕ‖L1(Rd,|x|)〈t〉−
d
2 (1− 1

p )− 1
2

and

t
d
2 (1− 1

p )‖Kt −H(t)‖Lp(Rd) ≤ C〈t〉−
1
2 .

The first estimate follows by Lemma 6.3. The second one uses the hypotheses on Ĵ . A detailed
proof can be found in [59].

Now we are ready to prove that the same expansion holds for solutions to the complete problem
(6.1) when q > (d+ 1)/d.

Proof of Theorem 6.5. In view of (6.32) it is sufficient to prove that

t−
d
2 (1− 1

p )‖u(t)− S(t) ∗ u0‖Lp(Rd) ≤ C〈t〉−
d
2 (q−1)+ 1

2 .

Using the representation (6.16) we get that

‖u(t)− S(t) ∗ u0‖Lp(Rd) ≤
∫ t

0

‖[S(t− s) ∗G− S(t− s)] ∗ |u(s)|q−1u(s)‖Lp(Rd) ds.

We now estimate the right hand side term as follows: we will split it in two parts, one in which we
integrate on (0, t/2) and another one where we integrate on (t/2, t). Concerning the second term,
by Lemma 6.4, Theorem 6.4 we have,∫ t

t/2

‖[S(t− s) ∗G− S(t− s)] ∗ |u(s)|q−1u(s)‖Lp(Rd)ds

≤ C(J,G)

∫ t

t/2

〈t− s〉− 1
2 ‖u(s)‖q

Lpq(Rd)
ds

≤ C(J,G, ‖u0‖L1(Rd), ‖u0‖L∞(R))

∫ t

t/2

〈t− s〉− 1
2 〈s〉−

d
2 (q− 1

p )ds

≤ C〈t〉−
d
2 (q− 1

p )+ 1
2 ≤ Ct−

d
2 (1− 1

p )〈t〉− d2 (q−1)+ 1
2 .
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To bound the first term we proceed as follows,∫ t/2

0

‖[S(t− s) ∗G− S(t− s)] ∗ |u(s)|q−1u(s)‖Lp(Rd) ds

≤ C(p, J,G)

∫ t/2

0

〈t− s〉−
d
2 (1− 1

p )− 1
2 (‖|u(s)|q‖L1(Rd) + ‖|u(s)|q‖Lp(Rd)) ds

≤ C〈t〉−
d
2 (1− 1

p )− 1
2

(∫ t/2

0

‖u(s)‖q
Lq(Rd)

ds+

∫ t/2

0

‖u(s)‖q
Lpq(Rd)

ds
)

= C〈t〉−
d
2 (1− 1

p )− 1
2 (I1(t) + I2(t)).

By Theorem 6.4, for the first integral, I1(t), we have the following estimate:

I1(t) ≤
∫ t/2

0

‖u(s)‖q
Lq(Rd)

ds ≤ C(‖u0‖L1(Rd), ‖u0‖L∞(Rd))

∫ t/2

0

〈s〉− d2 (q−1)ds,

and an explicit computation of the last integral shows that

〈t〉− 1
2

∫ t/2

0

〈s〉− d2 (q−1)ds ≤ C〈t〉− d2 (q−1)+ 1
2 .

Arguing in the same manner for I2 we get

〈t〉− 1
2 I2(t) ≤ C(‖u0‖L1(Rd), ‖u0‖L∞(Rd))〈t〉−

1
2

∫ t/2

0

〈s〉−
dq
2 (1− 1

pq )ds

≤ C(‖u0‖L1(Rd), ‖u0‖L∞(Rd))〈t〉−
d
2 (q− 1

p )+ 1
2

≤ C(‖u0‖L1(Rd), ‖u0‖L∞(Rd))〈t〉−
d
2 (q−1)+ 1

2 .

This ends the proof.



Chapter 7

Decay estimates for nonlocal
problems via energy methods

In this chapter our main aim is to apply energy methods to obtain decay estimates for solutions
to nonlocal evolution equations.

First, let us introduce the prototype of nonlocal equation that we have in mind. Let G : Rd → R
be a nonnegative, compactly supported, radial, continuous function with

∫
Rd G(z) dz = 1. Nonlocal

evolution equations of the form

ut(x, t) = (G ∗ u− u)(x, t) =

∫
Rd
G(x− y)u(y, t) dy − u(x, t), (7.1)

and variations of it, have been recently widely used to model diffusion processes.
The asymptotic behavior as t → ∞ in for the nonlocal model (7.1) was studied in [32], see

also [58] and [59], where the authors prove that every solution to (7.1) with an initial condition
u0 such that u0, û0 ∈ L1(Rd) has an asymptotic behavior given by ‖u(·, t)‖L∞(Rd) ≤ Ct−d/2.

The proof of this fact is based on a explicit representation formula for the solution in Fourier
variables. In fact, from equation (7.1) we obtain ût(ξ, t) = (Ĝ(ξ)−1)û(ξ, t), and hence the solution

is given by, û(ξ, t) = e(Ĝ(ξ)−1)tû0(ξ). From this explicit formula it can be obtained the decay in
L∞(Rd) of the solutions, see [32] and [58]. This decay, together with the conservation of mass,
gives the decay of the Lq(Rd)-norms by interpolation. It holds, ‖u(·, t)‖Lq(Rd) ≤ C t−d/2(1−1/q).
Note that the asymptotic behavior is the same as the one for solutions of the heat equation and,
as happens for the heat equation, the asymptotic profile is a gaussian, [32].

As we have mentioned, our main task here is to develop an energy method to obtain decay
estimates. Our motivation to introduce energy methods to deal with nonlocal problems is twofold,
first we want to see how energy methods can be applied to equations possibly without any reg-
ularization effect and moreover we want to deal with nonlinear problems for which there are no
explicit representation formula for the solution (in general, Fourier methods are not applicable to
nonlinear problems).

To begin our analysis, we first deal with a linear nonlocal diffusion operator with a nonlinear
source, that is, we consider the following evolution problem

ut(x, t) =

∫
Rd
J(x, y)(u(y, t)− u(x, t)) dy + f(u)(x, t) (7.2)

with f a locally Liptshitz function satisfying the sign condition f(s)s ≤ 0 and J(x, y) a symmetric
nonnegative kernel.

We generalize the previous results in two ways, we allow a nonlinear term f(u) imposing only
a dissipativity condition, f(s)s ≤ 0, and, what is even more relevant, we can consider equations
in which the nonlocal part is not given by a convolution but for a general operator of the form∫
Rd J(x, y)(u(y)− u(x)) dy.

95
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Our first result reads as follows: under adequate hypothesis on J (see Theorem 7.1 in Sec-
tion 7.1) and f a locally Liptshitz function satisfying the sign condition f(s)s ≤ 0, consider an
initial condition u0 ∈ L1(Rd)∩L∞(Rd) with d ≥ 3. Then, for any 1 ≤ q <∞ the solution to (7.2)
verifies the following decay bound,

‖u(·, t)‖Lq(Rd) ≤ C t−
d
2

(
1− 1

q

)
.

Our main hypotheses on J can be summarized as follows: J(x, y) is strictly positive (≥ c1 > 0)
for |y − a(x)| ≤ c2, where a is a function with bounded derivatives.

We remark that this decay bound need not be optimal, in the final section we present examples
of functions J that give exponential decay in L2(R). To obtain a complete classification of all
possible decay rates seems a very difficult but challenging problem.

Our energy approach not only simplifies the proof of the asymptotic decay in the linear case but
also can de applied to handle nonlinear operators, like a nonlocal analogous to the p−Laplacian.
Let p > 2 and consider

ut(x, t) =

∫
Rd
J(x, y)|u(y, t)− u(x, t)|p−2(u(y, t)− u(x, t)) dy. (7.3)

This problem, with a convolution kernel, J(x, y) = G(x − y) was considered in [3] and [4]
where the authors found existence, uniqueness and the convergence of the solutions to solutions of
the local p−Laplacian evolution problem, vt = div(|∇v|p−2∇v) when a rescaling parameter (that
measures the size of the support of the convolution kernel G) goes to zero.

In this case the asymptotic decay is described as follows: given u0 ∈ L1(Rd) ∩ L∞(Rd) there
exists a unique solution to (7.3). Moreover, under adequate hypothesis on J (see Theorem 7.1 in
Section 7.1) and 2 ≤ p < d, its asymptotic decay is bounded by

‖u(·, t)‖Lq(Rd) ≤ C t
−
(

d
d(p−2)+p

)(
1− 1

q

)
,

for 1 ≤ q <∞.
This asymptotic decay is the same one that holds for solutions to the local p−Laplacian,

vt = div(|∇v|p−2∇v), see Chapter 11 in [108].
The assumption on the initial data, u0 ∈ L1(Rd) ∩ L∞(Rd), is imposed since, in general,

nonlocal evolution equations have no regularizing L1(Rd) − Lq(Rd) effect. In the particular case
of a convolution kernel J(x, y) = G(x− y), i.e. equation (7.1), in [32] it is proved that solutions u
can be written as u(t) = e−tu0 +Kt ∗u0, where Kt is a smooth function. As a consequence at any
time t > 0, the solution u is as regular as the initial datum u0 is. Thus, it is hopeless to guarantee
that at any time t > 0, the solution u(t) belongs to Lq(Rd) without assuming that u0 ∈ Lq(Rd).

We also have to mention that we are assuming the following hypothesis on the kernel J(x; ·) ∈
L1(Rd). This excludes the analysis of the possibility of a faster decay for u if for example J has
fat tails, as happens for equations involving generators of Levy processes.

The rest of the chapter is organized as follows: In Section 7.1 we collect some preliminaries
and prove a decomposition theorem that will be used to apply energy methods; in Section 7.2 we
deal with the decay of solutions with linear nonlocal diffusion and a nonlinear dissipative source
and in Section 7.3 we prove the decay for the nonlocal p−Laplacian. Finally in Section 7.4 we
present examples of J for which we can prove exponential decay bounds for the linear problem.

7.1 Preliminaries

In this section we collect some preliminaries and state and prove a crucial decomposition theorem.
In what follows we denote by

p∗ =
pd

(d− p)



7.1. PRELIMINARIES 97

the usual Sobolev exponent, while

p′ =
p

p− 1

denotes the usual conjugate exponent.
First, let us describe briefly how the energy method can be applied to obtain decay estimates

for local problems. Let us begin with the simpler case of the estimate for solutions to the heat
equation in L2(Rd)-norm,

ut = ∆u.

If we multiply by u and integrate in Rd, we obtain

d

dt

∫
Rd
u2(x, t)dx = −

∫
Rd
|∇u(x, t)|2dx.

Now we use Sobolev’s inequality∫
Rd
|∇u|2(x, t) dx ≥ C

(∫
Rd
|u|2

∗
(x, t) dx

)2/2∗

to obtain
d

dt

∫
Rd
u2(x, t) dx ≤ −C

(∫
Rd
|u|2

∗
(x, t) dx

)2/2∗

.

If we use interpolation and conservation of mass, that implies ‖u(t)‖L1(Rd) ≤ C for any t > 0, we
have

‖u(t)‖L2(Rd) ≤ ‖u(t)‖αL1(Rd)‖u(t)‖1−α
L2∗ (Rd)

≤ C‖u(t)‖1−α
L2∗ (Rd)

with α determined by

1

2
= α+

1− α
2∗

, that is, α =
2∗ − 2

2(2∗ − 1)
.

Hence we get

d

dt

∫
Rd
u2(x, t) dx ≤ −C

(∫
Rd
u2(x, t) dx

) 1
1−α

from where the decay estimate

‖u(t)‖L2(Rd) ≤ C t−
d
2

(
1− 1

2

)
, t > 0,

follows.
In the case of the p−Laplacian in the whole space,

ut = ∆pu,

the argument is similar, we multiply by u, integrate in Rd and use Sobolev inequality, that in this
case reads, ∫

Rd
|∇u|p(x, t) dx ≥ C

(∫
Rd
|u|p

∗
(x, t) dx

)p/p∗
and interpolation to get a similar inequality for the L2-norm of a solution

d

dt

∫
Rd
u2(x, t) dx ≤ −C

(∫
Rd
u2(x, t) dx

)θ
for an explicit θ < 1 that depends on p and d. As before this inequality implies a decay bound for
the L2-norm.
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We want to mimic the steps for the nonlocal evolution problem

ut(x, t) =

∫
Rd
J(x, y)(u(y, t)− u(x, t)) dy.

Hence, we multiply by u and integrate in Rd to obtain,

d

dt

∫
Rd
u2(x, t) dx =

∫
Rd

∫
Rd
J(x, y)(u(y, t)− u(x, t)) dy u(x, t) dx. (7.4)

Now, we need to “integrate by parts”. Therefore, let us begin by a simple algebraic identity
(whose proof is immediate) that plays the role of an integration by parts formula for nonlocal
operators.

Lemma 7.1. If J is symmetric, J(x, y) = J(y, x) then it holds∫
Rd

∫
Rd
J(x, y)(ϕ(y)− ϕ(x))ψ(x)dydx = −1

2

∫
Rd

∫
Rd
J(x, y)(ϕ(y)− ϕ(x))(ψ(y)− ψ(x))dydx.

If we apply this lemma to (7.4) we get

d

dt

∫
Rd
u2(x, t)dx = −1

2

∫
Rd

∫
Rd
J(x, y)(u(y, t)− u(x, t))2 dy dx,

but now we run into troubles since there is no analogous to Sobolev inequality. In fact, an
inequality of the form∫

Rd

∫
Rd
J(x, y)(u(y, t)− u(x, t))2 dy dx ≥ C

(∫
Rd
uq(x, t) dx

)2/q

can not hold for any q > 2.
Now the idea is to split the function u as the sum of two functions u = v + w, where on the

function v (the “smooth”part of the solution) the nonlocal operator acts as a gradient and on the
function w (the “rough”part) it does not increase its norm significatively.

Therefore, we need to obtain estimates for the Lp(Rd)-norm of the nonlocal operators. The
main result of this section is the following.

Theorem 7.1. Let p ∈ [1,∞) and J(·, ·) : Rd × Rd 7→ R be a symmetric nonnegative function
satisfying

HJ1) There exists a positive constant C <∞ such that

sup
y∈Rd

∫
Rd
J(x, y) dx ≤ C.

HJ2) There exist positive constants c1, c2 and a function a ∈ C1(Rd,Rd) satisfying

sup
x∈Rd

|∇a(x)| <∞ (7.5)

such that the set
Bx = {y ∈ Rd : |y − a(x)| ≤ c2} (7.6)

verifies
Bx ⊂ {y ∈ Rd : J(x, y) > c1}.

Then, for any function u ∈ Lp(Rd) there exist two functions v and w such that u = v+w and

‖∇v‖p
Lp(Rd)

+ ‖w‖p
Lp(Rd)

≤ C(J, p)

∫
Rd

∫
Rd
J(x, y)|u(x)− u(y)|p dx dy. (7.7)
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Moreover, if u ∈ Lq(Rd) with q ∈ [1,∞] then the functions v and w satisfy

‖v‖Lq(Rd) ≤ C(J, q)‖u‖Lq(Rd) (7.8)

and
‖w‖Lq(Rd) ≤ C(J, q)‖u‖Lq(Rd). (7.9)

Before the proof we collect some remarks and a prove a corollary.

Remark 7.1. The above result says that there exists a decomposition of u in a smooth part, v,
and a rough part, w, such that the action of the nonlocal operator is like a gradient on the smooth
part and as the identity on the rough part.

Remark 7.2. The constant C(J ; q) in the theorem depends only on the constants of HJ1) and
HJ2) and not on any other characteristic of the kernel J .

Remark 7.3. We note that in the case 1 ≤ p < d using the classical Sobolev’s inequality
‖v‖Lp∗ (Rd) ≤ ‖∇v‖Lp(Rd) we get that (7.7) implies

‖v‖p
Lp∗(Rd)

+ ‖w‖p
Lp(Rd)

≤ C(J, p)

∫
Rr

∫
Rd
J(x, y)|u(x)− u(y)|p dx dy.

Remark 7.4. In particular, we can consider a(x) = x, that is, the case of a convolution kernel,
J(x, y) = G(x − y), with G(0) > 0. In fact, it is reasonable to assume that J(x, x) > 0 since
in biological models this means that the probability that some individuals that are in x at time t
remain at the same position is positive.

To simplify the notation let us note by 〈Apu, u〉 the following quantity,

〈Apu, u〉 :=

∫
Rd

∫
Rd
J(x, y)|u(x)− u(y)|p dx dy.

Observe that, in order that the above quantity to be finite, we have to assume a priori that u
belongs to Lp(Rd).

Note that our main result of this section, Theorem 7.1 gives estimates from below for 〈Apu, u〉.
A corollary of this result is the following.

Corollary 7.1. Let J(·, ·) : Rd×Rd → R be a symmetric nonnegative function satisfying hypothe-
ses HJ1) and HJ2) in Theorem 7.1 and p ∈ [1, d). There exist two positive constants C1 = C1(J, p)
and C2 = C2(J, p) such that for any u ∈ L1(Rd) ∩ Lp(Rd) the following holds:

‖u‖p
Lp(Rd)

≤ C1‖u‖p(1−α(p))

L1(Rd)
〈Apu, u〉α(p) + C2〈Apu, u〉, (7.10)

where α(p) satisfies:
1

p
=
α(p)

p∗
+ 1− α(p).

Remark 7.5. The explicit value of α(p) is given by

α(p) =
p∗

p′(p∗ − 1)
=

d(p− 1)

d(p− 1) + p
. (7.11)

Remark 7.6. In the case of the local operator Bpu = −div(|∇u|p−2∇u), using Sobolev’s inequality
and interpolation inequalities we have the following estimate

‖u‖p
Lp(Rd)

≤ C1‖u‖p(1−α(p))

L1(Rd)
〈Bpu, u〉α(p).

In the nonlocal case an extra term involving 〈Apu, u〉 occurs, see (7.10).



100 CHAPTER 7. DECAY ESTIMATES VIA ENERGY METHODS

Proof of Corollary 7.1. We use the decomposition u = v + w given by Theorem 7.1 to obtain

‖u‖p
Lp(Rd)

≤ ‖v‖p
Lp(Rd)

+ ‖w‖p
Lp(Rd)

.

Also, by (7.7), we have
‖∇v‖p

Lp(Rd)
≤ C(J, p)〈Apu, u〉

and
‖w‖p

Lp(Rd)
≤ C(J, p)〈Apu, u〉.

Then, from the interpolation inequality

‖v‖Lp(Rd) ≤ ‖v‖
α(p)

Lp∗(Rd)
‖v‖1−α(p)

L1(Rd)
,

we obtain that the Lp(Rd)-norm of u satisfies

‖u‖p
Lp(Rd)

≤ ‖v‖α(p)p

Lp∗(Rd)
‖v‖(1−α(p))p

L1(Rd)
+ ‖w‖p

Lp(Rd)
≤ ‖∇v‖α(p)p

Lp(Rd)
‖u‖(1−α(p))p

L1(Rd)
+ C(J, p)〈Apu, u〉

≤ C1‖u‖(1−α(p))p

L1(Rd)
〈Apu, u〉α(p) + C2〈Apu, u〉,

as we wanted to prove.

Now we proceed with the proof of the decomposition theorem.

Proof of Theorem 7.1. We divide the proof in two steps. First of all, we prove under the assump-
tions HJ1)-HJ2) the existence of a function ρ(·, ·) satisfying

H1) ρ(x, ·) ∈ C∞c (Rd) for a.e. x ∈ Rd,

H2)
∫
Rd ρ(x, y) dy = 1 for a.e. x ∈ Rd,

H3) supy∈Rd
∫
Rd ρ(x, y) dx ≤M <∞,

H4) supp ρ(x, ·) ⊂ Bx for a.e. x ∈ Rd,

H5) supx∈Rd ‖ρ(x, ·)‖Lp′ (Rd) ≤M <∞,

H6)
∑d
k=1 supx∈Rd ‖∂xkρ(x, ·)‖Lp′ (Rd) ≤M <∞.

Next, we define

v(x) =

∫
Rd
ρ(x, y)u(y) dy, and w = u− v,

and prove (7.7), (7.8) and (7.9).

Step I. Construction of ρ. With c2 given by HJ2) we consider a smooth function ψ ∈
C∞c (Rd) supported in the ball Bc2(0), 0 ≤ ψ ≤ C and having mass one:∫

Bc2 (0)

ψ(x) dx = 1.

For any x ∈ Rd we consider the function a(x) and the set Bx as in (7.6), see HJ2). We then
define ρ(x, y) by

ρ(x, y) = ψ(y − a(x)). (7.12)

We will prove properties H3) and H6) since the others easily follow with a constant M(J). We
point out that the assumption on the existence of a ball Bx centered at a(x) with radius c2 is
necessary in proving H5). Otherwise, infx∈Rd |Bx| = 0 and by Hölder inequality, we get

‖ρ(x, ·)‖
Lp′(Rd) ≥

∫
Rd ρ(x, y)dy

|Bx|1/p
=

1

|Bx|1/p
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and then

sup
x∈Rd

‖ρ(x, ·)‖Lp′ (Rd) ≥
1

infx∈Rd |Bx|1/p
=∞.

Therefore, we cannot obtain property H5).
We now prove property H3). Observe that, by definition (7.12) of the function ρ(·, ·) and the

fact that ψ ≤ C we have

sup
y∈Rd

∫
Rd
ρ(x, y) dx = sup

y∈Rd

∫
Rd
ψ(y − a(x)) dx = sup

y∈Rd

∫
|y−a(x)|≤c2

ψ(y − a(x)) dx

≤ C sup
y∈Rd

∣∣{x : |y − a(x)| ≤ c2}
∣∣.

It remains to show that the last term in the right hand side is finite. Indeed, given y, we have

|{x : |y − a(x)| ≤ c2}| ≤
∫
{x:|yn−a(x)|≤c2}

J(x, y)

c1
dx ≤ 1

c1

∫
Rd
J(x, y) dx ≤ C.

We now prove HJ6). By definition (7.12) for any x ∈ Rd we have

‖∂xkρ(x, ·)‖Lp′ (Rd) = ‖∇ψ(· − a(x)) · ∂xka(x)‖Lp′ (Rd) ≤ |∂xka(x)|‖∇ψ‖Lp′ (Rd).

Using (7.5) and the construction of ψ we obtain HJ6).

Step II. Proof of the estimates on u, v and w. We have proved that there exists a
function ρ satisfying hypotheses H1)-H6). Let us take

v(x) =

∫
Rd
ρ(x, y)u(y) dy, and w = u− v.

First we prove (7.8) and (7.9). Hölder’s inequality applied to the function v and H2) guarantee
that

|v(x)|q ≤
∫
Rd
ρ(x, y)|u(y)|q dy

(∫
Rd
ρ(x, y) dy

) q
q′

=

∫
Rd
ρ(x, y)|u(y)|q dy,

Then, property H3) gives us∫
Rd
|v(x)|q dx ≤

∫
Rd
|u(y)|q

∫
Rd
ρ(x, y) dx dy ≤ sup

y∈Rd

∫
Rd
ρ(x, y)dx

∫
Rd
|u(y)|q dy

≤M
∫
Rd
|u(y)|q dy

which proves (7.8).
Also, we obviously have

‖w‖Lq(Rd) ≤ ‖u‖Lq(Rd) + ‖v‖Lq(Rd) ≤ (1 +M1/q)‖u‖Lq(Rd).

We now proceed to prove (7.7). To do that we prove the following inequalities:

‖w‖p
Lp(Rd)

≤ c−1
1 sup

x∈Rd
‖ρ(x, ·)‖p

Lp′ (Rd)

∫
Rd

∫
Rd
J(x, y)|u(x)− u(y)|p dx dy (7.13)

and

‖∇v‖p
Lp(Rd)

≤
d∑
k=1

c−1
1 sup

x∈Rd
‖∂xkρ(x, ·)‖p

Lp′ (Rd)

∫
Rd

∫
Rd
J(x, y)|u(x)− u(y)|p dx dy. (7.14)
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The fact that for any x ∈ Rd, ρ(x, ·) is supported in the set Bx and has mass one gives the following

w(x) = u(x)−
∫
Rd
ρ(x, y)u(y) dy =

∫
Rd
ρ(x, y)(u(x)− u(y)) dy

=

∫
Bx

ρ(x, y)(u(x)− u(y)) dy.

Then by Hölder’s inequality we get:

‖w‖p
Lp(Rd)

=

∫
Rd

∣∣∣∣∫
Bx

ρ(x, y)(u(x)− u(y))dy

∣∣∣∣p dx
≤
∫
Rd

∫
Bx

|u(x)− u(y)|pdy
(∫

Bx

ρ(x, y)p
′
dy

) p
p′

dx

≤ sup
x∈Rd

(∫
Bx

ρ(x, y)p
′
dy

) p
p′
∫
Rd

∫
Bx

|u(x)− u(y)|p dy dx

≤ sup
x∈Rd

‖ρ(x, ·)‖p
Lp′ (Rd)

∫
Rd

∫
Bx

|u(x)− u(y)|p dy dx.

Using now that for any x ∈ Rd and y ∈ Bx we have J(x, y) > c1 we obtain

‖w‖p
Lp(Rd)

≤ c−1
1 sup

x∈Rd
‖ρ(x, ·)‖p

Lp′ (Rd)

∫
Rd

∫
Bx

J(x, y)|u(x)− u(y)|p dy dx

≤ c−1
1 sup

x∈Rd
‖ρ(x, ·)‖p

Lp′ (Rd)

∫
Rd

∫
Rd
J(x, y)|u(x)− u(y)|p dy dx

which proves (7.13).
In the case of v we proceed in a similar manner, by tacking into account that for any x ∈ R

the mass of ∂xkρ(x, y), k = 1, . . . , d vanishes:∫
Rd
∂xkρ(x, y) dy = ∂xk

(∫
Rd
ρ(x, y)dy

)
= 0.

The definition of v and this mass property gives,

∂xkv(x) =

∫
Rd
∂xkρ(x, y)(u(y)− u(x)) dy =

∫
Bx

∂xkρ(x, y)(u(y)− u(x)) dy.

Thus, by Hölder inequality and the fact that J(x, y) > c1 for all y ∈ Bx we obtain,

‖∂xkv‖
p
Lp(Rd)

=

∫
Rd

∣∣∣∣∫
Bx

∂xkρ(x, y)(u(y)− u(x))dy

∣∣∣∣p dx
≤
∫
Rd

∫
Bx

|u(y)− u(x)|p dy
(∫

Bx

|∂xkρ(x, y)|p
′
dy

) p
p′

dx

= sup
x∈Rd

‖∂xkρ(x, ·)‖p
Lp′ (Rd)

∫
Rd

∫
Bx

|u(y)− u(x)|p dx dy

≤ c−1 sup
x∈Rd

‖∂xkρ(x, ·)‖p
Lp′ (Rd)

∫
Rd

∫
Bx

J(x, y)|u(y)− u(x)|p dx dy

≤ c−1 sup
x∈Rd

‖∂xkρ(x, ·)‖p
Lp′ (Rd)

∫
Rd

∫
Rd
J(x, y)|u(y)− u(x)|p dx dy.

Summing the above inequalities for all k = 1, . . . , d we get (7.14).
The proof is now finished since (7.13) and (7.14) imply (7.7).
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Now we present a similar result to Corollary 7.1 which can be used to obtain less accurate
bounds (hence we prefer to use the more general result presented above) in the particular case
of the nonlocal laplacian, i.e. p = 2, and J(x, y) = G(x − y). The result is no so general as
Corollary 7.1, but it is obtained using Fourier analysis tools and has the advantage that the
previous decomposition u = v + w can be better understood. We include it here just for this
purpose. In fact this decomposition can be viewed as a Fourier splitting of the function u in two
parts, the first one, v, corresponding to the low frequencies (the smooth part) of u, and the second
one, w, corresponds to the high frequencies component (the rough part) of u.

We will use that in the particular case p = 2 and J(x, y) = G(x − y), G with mass one, the
operator 〈A2u, u〉 can be represented by means of the Fourier transform of G as follows

〈A2u, u〉 =

∫
Rd

∫
Rd
G(x− y)|u(x)− u(y)|2 dx dy =

∫
Rd

(1− Ĝ(ξ))|û(ξ)|2 dξ.

Lemma 7.2. Let d ≥ 3 and G be such that its Fourier transform Ĝ(ξ) satisfies Ĝ(ξ) ≤ 1− |ξ|
2

2 , |ξ| ≤ R,

Ĝ(ξ) ≤ 1− δ, |ξ| ≥ R,
(7.15)

for some positive numbers R and δ. Then, for any ε ∈ (0, 1) there exists a constant C =
C(ε, δ, R, d) such that the following

‖u‖2L2(R) ≤ C‖u‖
2(1−β(ε))

L1+ε(Rd)
〈A2u, u〉β(ε) + 〈A2u, u〉 (7.16)

holds for all u ∈ L1+ε(Rd) ∩ L2(Rd) where

β(ε) =
(1− ε)d

d+ 2− ε(d− 2)
.

Remark 7.7. The limit case ε = 0 cannot be obtained since an estimate of the type

‖(1{|ξ|≤R}û)∨‖L1(Rd) ≤ ‖u‖L1(Rd)

does not hold for all functions u ∈ L1(Rd). In dimension one this can be seen by choosing a
sequence uε with ‖uε‖L1(Rd) = 1 such that uε → δ0, the Dirac delta. Then

(1{|ξ|≤R}ûε)
∨ = uε ∗

sin(Rx)

Rx
→ sinRx

Rx

and the last function does not belong to L1(Rd). Thus ‖(1{|ξ|≤R}ûε)∨‖L1(Rd) →∞ but ‖uε‖L1(Rd) =
1.

Remark 7.8. The same arguments can be used to obtain estimates for any function G which
satisfies  Ĝ(ξ) ≤ 1− |ξ|

2s

2 , |ξ| ≤ R,

Ĝ(ξ) ≤ 1− δ, |ξ| ≥ R,

for some positive numbers R, δ and s.

Proof of Lemma 7.2. For any function u ∈ L2(Rd) we define its projections on the low and high
frequencies respectively,

v := (1{|ξ|≤R}û)∨, w := (1{|ξ|≥R}û)∨. (7.17)
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Using that the function Ĝ satisfies (7.15) we obtain the following estimate for the operator A2:

〈A2u, u〉 =

∫
Rd

(1− Ĝ(ξ))|û(ξ)|2 dξ ≥
∫
|ξ|≤R

|ξ|2

2
|û(ξ)|2 dξ + δ

∫
|ξ|≥R

|û(ξ)|2 dξ (7.18)

=
1

2

∫
Rd
|ξ|2|v̂(ξ)|2dξ + δ

∫
Rd
|ŵ(ξ)|2dξ

≥c(δ)
(
‖∇v‖2L2(Rd) + ‖w‖2L2(Rd)

)
≥c(δ)(‖v‖2L2∗ (Rd) + ‖w‖2L2(Rd)

)
.

In order to estimate from above the L2(Rd)-norm of u as in (7.16), using the orthogonality of
v and w it is sufficient to estimate each projection v and w since

‖u‖2L2(Rd) = ‖v‖2L2(Rd) + ‖w‖2L2(Rd).

In the case of w, using (7.17) and (7.18) we have the rough estimate:

‖w‖2L2(Rd) ≤
1

c(δ)
〈A2u, u〉. (7.19)

Next we estimate the L2(Rd)-norm of v. We recall that classical results on Fourier multipliers
(see Chapter 4 in [100]) give us that for any p ∈ (1,∞) the Lp(Rd)-norm of v, defined by (7.17),
can be bounded from above by the Lp(Rd)-norm of u as follows:

‖v‖Lp(Rd) ≤ C(p, d)‖u‖Lp(Rd). (7.20)

Using this estimate and interpolation inequalities we obtain that v, the low frequency projection
of u, satisfies

‖v‖2L2(Rd) ≤
(
‖v‖1−β(ε)

L1+ε(Rd)
‖v‖β(ε)

L2∗ (Rd)

)2

≤
(
c(ε, d)‖u‖1−β(ε)

L1+ε(Rd)
‖v‖β(ε)

L2∗ (Rd)

)2

(7.21)

≤ c2(ε, d)c(δ)−β(ε)‖u‖2(1−β(ε))

L1+ε(Rd)
〈A2u, u〉β(ε),

where c(ε, d) is given by applying (7.20) with p = 1 + ε and β(ε) by

1

2
=

1− β(ε)

1 + ε
+
β(ε)

2∗
,

that is,

β(ε) =
(1− ε)d

d+ 2− ε(d− 2)
.

Combining (7.18), (7.19) and (7.21) we obtain

‖u‖2L2(Rd) ≤ c(ε, δ, d)‖u‖2(1−β(ε))

L1+β(ε)(Rd)
〈A2u, u〉α(ε) + 〈A2u, u〉. (7.22)

The proof is now finished.

7.2 Decay estimates for a nonlinear problem.

In this section we will obtain the long time behavior of the solutions u to the following equation

ut(x, t) =

∫
Rd
J(x, y)(u(y, t)− u(x, t)) dy + f(u)(x, t) (7.23)

under suitable assumptions on the kernel J and the nonlinearity f . Our goal is to obtain here a
proof of the decay rate of the solution u to (7.23) by using energy methods.

The main result of this section is the following theorem.
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Theorem 7.2. Let J(x, y) be a symmetric nonnegative kernel satisfying HJ1) as in Theorem 7.1
and f be a locally Lipshitz function with f(s)s ≤ 0. For any u0 ∈ L1(Rd)∩L∞(Rd) there exists a
unique solution to equation (7.23) which satisfies

‖u(t)‖L1(Rd) ≤ ‖u0‖L1(Rd) and ‖u(t)‖L∞(Rd) ≤ ‖u0‖L∞(Rd) (7.24)

for every t > 0.

Moreover, if d ≥ 3 and J also satisfies HJ2) then the following holds:

‖u(t)‖Lq(Rd) ≤ C(q, d)‖u0‖L1(Rd)t
− d2 (1− 1

q ) (7.25)

for all q ∈ [1,∞) and for all t sufficiently large.

Remark 7.9. The proof uses the results of Theorem 7.1 and Corollary 7.1 obtained in Section
7.1 in the particular case p = 2. In order to apply Corollary 7.1 we need to assume d > 2, i.e.
d ≥ 3.

The same arguments we use here also work for the convection diffusion equation:{
ut(t, x) = (G1 ∗ u− u) (t, x) +

(
G2 ∗ (|u|r−1u)− |u|r−1u

)
(t, x), t > 0, x ∈ Rd,

u(0, x) = u0(x), x ∈ Rd,
(7.26)

where r > 1 and G1 and G2 are positive functions with mass one. We have to mention that this
time the dissipativity condition on the nonlinear part have to be understood in the following sense∫

Rd

(
G ∗ (|u|r−1u)− |u|r−1u

)
|u|q−2u ≤ 0

for any q ≥ 1.

In the case of equation (7.26), the same decay as in (7.25) has been obtained in [58] by means of
the so-called Fourier Splitting method introduced by Schonbek in [94], [95] and [96] in the context
of the local convection-diffusion equation. Our method also works if the convolution terms in
(7.26) are replaced by integral operators as in (7.23).

The following lemma will be used in the proof of Theorem 7.2.

Lemma 7.3. Let d > 2 and u such that u(t) ∈ L1(Rd) ∩ L2(Rd) for all t ≥ 0 satisfying:

d

dt

∫
Rd
u2(x, t)dx+ 〈A2u(t), u(t)〉 ≤ 0, for all t > 0,

with J as in Theorem 7.1. Assuming that

‖u(t)‖L1(Rd) ≤ ‖u(0)‖L1(Rd), for all t > 0, (7.27)

there exists a constant c(d, J) such that

‖u(t)‖L2(Rd) ≤ c(d, J)‖u(0)‖L1(Rd)t
− d2 (1− 1

2 )

holds for all t large enough.

Remark 7.10. Under the same hypotheses we can replace the initial time t = 0 with any positive
time t0, the result being the same for large time t,

‖u(t)‖L2(Rd) ≤ c(d)‖u(t0)‖L1(Rd)(t− t0)−
d
2 (1− 1

2 ).
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Proof of Lemma 7.3. By Corollary 7.1 and property (7.27) we obtain

‖u(t)‖2L2(Rd) ≤ C1(J)‖u(t)‖2(1−α(2))

L1(Rd)
〈A2u(t), u(t)〉α(2) + C2(J)〈A2u(t), u(t)〉

≤ C1(J)‖u(0)‖2(1−α(2))

L1(Rd)
〈A2u(t), u(t)〉α(2) + C2(J)〈A2u(t), u(t)〉

where α(2) = d/(d + 2) is given by (7.11). To simplify the presentation we will assume without
loss of generality that C1(J) = C2(J) = 1 (otherwise one can track the constants that appear in
each step of the proof). Then for any t > 0, 〈A2u(t), u(t)〉 satisfies

H−1(‖u(t)‖2L2(Rd)) ≤ 〈A2u(t), u(t)〉

where

H(x) = ‖u(0)‖2(1−α(2))

L1(Rd)
xα(2) + x.

Analyzing the function Ha,β(x) = axβ+x, a > 0, β ∈ (0, 1), we find that 〈A2u(t), u(t)〉 verifies:

〈A2u(t), u(t)〉 ≥


1
2‖u(t)‖2L2(Rd), ‖u(t)‖2L2(Rd) > 2 ‖u(0)‖2L1(Rd),( ‖u(t)‖2

L2(Rd)

2‖u(0)‖2(1−α(2))

L1(Rd)

) 1
α(2)

, ‖u(t)‖2L2(Rd) < 2 ‖u(0)‖2L1(Rd).

Then, φ(t) = ‖u(t)‖2L2(R) satisfies the following differential inequality for all t ≥ 0:

φt(t) +
φ(t)

2
χ{

φ(t)>2‖u(0)‖2
L1(Rd)

} +

 φ(t)

2‖u(0)‖2(1−α(2))

L1(Rd)

 1
α(2)

χ{
φ(t)<2‖u(0)‖2

L1(Rd)

} ≤ 0.

Thus, there exists t0 such that for all t ≥ t0, φ(t) satisfies the following differential inequality
for all t ≥ t0:

φt(t) +

 φ(t)

2‖u(0)‖2(1−α(2))

L1(Rd)

 1
α(2)

≤ 0.

Integrating it on (t0, t) we get that φ satisfies

φ(t) ≤ C‖u(0)‖2L1(Rd)(t− t0)−d(1− 1
2 ), t > t0,

in other words

‖u(t)‖L2(Rd) ≤ C‖u(0)‖L1(Rd)t
− d2 (1− 1

2 )

holds for all time t large enough.

Proof of Theorem 7.2. Step I. Global existence and uniqueness. First, let us prove the
existence and uniqueness of a local solution. To this end we use a fixed point argument.

Let us consider the space

X = C0
(
[0, T ]; L1(Rd) ∩ L∞(Rd)

)
with the norm

‖u‖X = max
t∈[0,T ]

{
‖u(t)‖L1(Rd) + ‖u(t)‖L∞(Rd)

}
.

Since the map u → f(u) is Lipschitz continuous on bounded subsets of X (as a consequence
of the properties of f) classical results on semilinear evolution problems (see for example [29],
Proposition 4.3.3) guarantees the existence of a unique local solution u.
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We now prove (7.24) which guarantee the global existence of solutions to equation (7.23). We
multiply equation (7.23) with sgn(u) and integrate on Rd. Using Lemma 7.1 and the fact that
f(s)s ≤ 0, s ∈ R, we get

d

dt

∫
Rd
|u(x, t)|dx ≤

∫
Rd

∫
Rd
J(x, y)(u(y, t)− u(x, t)) sgn(u(x, t))dydx

= −1

2

∫
Rd

∫
Rd
J(x, y)(u(y, t)− u(x, t))( sgn(u(y, t))− sgn(u(x, t)))dydx

≤ 0.

From here it follows that
‖u(t)‖L1(Rd) ≤ ‖u0‖L1(Rd).

Now, multiplying the equation by (u(x, t)−M)+, where M = ‖u0‖L∞(Rd), and integrating on

Rd we get

d

dt

∫
Rd

(u(x, t)−M)2
+

2
dx ≤

∫
Rd

∫
Rd
J(x, y)(u(y, t)− u(x, t))(u(x, t)−M)+dydx

= −1

2

∫
Rd

∫
Rd
J(x, y)(u(y, t)− u(x, t))

(
(u(y, t)−M)+ − (u(x, t)−M)+

)
dx dy

≤ −1

2

∫
Rd

∫
Rd
J(x, y)

∣∣(u(y, t)−M)+ − (u(x, t)−M)+

∣∣2dx dy.
Therefore, we obtain that u(x, t) ≤ M for all t ≥ 0 and a.e. x ∈ Rd. In a similar way we get
u(x, t) ≥ −M for all t ≥ 0 and a.e. x ∈ Rd.

We conclude that ‖u‖L∞(Rd) ≤ ‖u0‖L∞(Rd) and that the solution u is global.

Step II. Proof of the long time behaviour. We divide the proof in several steps.
Step II a). The case p = 2. Multiplying equation (7.23) by sgn(u) and u we obtain

d

dt

∫
Rd
|u(t, x)| dx ≤ 0 (7.28)

and
d

dt

∫
Rd
u2(t)dx+ 〈A2u(t), u(t)〉 ≤ 0. (7.29)

Inequality (7.28) implies that (7.27) holds.
Inequalities (7.28) and (7.29) allow us to apply Lemma 7.3. Thus we obtain that

‖u(t)‖L2(Rd) ≤ ‖u0‖L1(Rd)t
− d2 (1− 1

2 ).

holds for large enough t. This gives us, by interpolation, the long time behaviour of the solution
u in any Lq(Rd)-norm when 1 ≤ q ≤ 2.

Step II b). The case p = 2n+1. We use an iterative argument to prove that once the result
is assumed for p = 2n we get the result for p = 2n+1.

Assume that it holds for p = 2n. Then

‖u(t)‖L2n (Rd) ≤ ‖u0‖L1(Rd)t
− d2 (1− 1

2n )

holds for all t large enough.
Let us fix r = 2n+1. We multiply equation (7.23) with ur−1 to obtain

1

r

d

dt

∫
Rd
ur(x, t)dx ≤

∫
Rd

∫
Rd
J(x, y)(u(x, t)− u(y, t))ur−1(x, t) dx dy

= −1

2

∫
Rd

∫
Rd
J(x, y)(u(x, t)− u(y, t))(ur−1(x, t)− ur−1(y, t)) dx dy

≤ −c(r)
∫
Rd

∫
Rd
J(x, y)(ur/2(x, t)− ur/2(y, t))2 dx dy.
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Then v = ur/2 verifies:

d

dt

∫
Rd
v2(x, t)dx+ c(r)〈A2v(t), v(t)〉 ≤ 0, t > 0.

By Lemma 7.3 and Remark 7.10 we obtain that for large time t the following holds:

‖v(t)‖L2(Rd) ≤ ‖v(t/2)‖L1(Rd)t
− d2 (1− 1

2 ).

Then
‖ur/2(t)‖L2(Rd) ≤ ‖ur/2(t/2)‖L1(Rd)t

− d2 (1− 1
2 )

and using that r = 2n+1:

‖u(t)‖2
n

L2n+1 (Rd)
≤ C(d, n)‖u(t/2)‖2

n

L2n (Rd)t
− d2 (1− 1

2 ).

Using the hypothesis on the L2n(Rd)-norm of u we get

‖u(t)‖L2n+1 (Rd) ≤ C(d, n)‖u(t/2)‖L2n (Rd)t
− d2 ( 1

2n−
1

2n+1 )

≤ C(d, n)‖u0‖L1(Rd)t
− d2 (1− 1

2n )t−
d
2 ( 1

2n−
1

2n+1 )

≤ C(d, n)‖u0‖L1(Rd)t
− d2 (1− 1

2n+1 ).

The proof is now finished since we can interpolate between the cases r = 2n and r = 2n+1,
n ≥ 0 an integer.

7.3 Decay estimates for the nonlocal p−Laplacian

In this section we deal with the following nonlocal analogous to the p−laplacian evolution,

ut(x, t) =

∫
Rd
J(x, y)|u(y, t)− u(x, t)|p−2(u(y, t)− u(x, t)) dy. (7.30)

Existence and uniqueness of a solution follows from the results in [4] (see also [3] for the
Neumann problem). Again for this case we have to note that in those references a convolution
kernel was considered J(x, y) = G(x−y) but it can be checked that the same proof gives existence
and uniqueness for a general J(x, y).

Theorem 7.3. ([4], Proposition 2.4) Let 1 < p <∞. For any initial condition u0 ∈ Lp(Rd) there
exists a unique global solution u ∈ C([0,∞) : Lp(Rd))∩W 1,1((0,∞) : Lp(Rd)) of equation (7.30).

Concerning the long time behaviour of the solutions of equation (7.30) we have the following
result.

Theorem 7.4. Let u0 ∈ L1(Rd) ∩ L∞(Rd) and 2 ≤ p < d. For any 1 ≤ q < ∞ the solution to
(7.30) verifies

‖u(·, t)‖Lq(Rd) ≤ Ct
−
(

d
d(p−2)+p

)(
1− 1

q

)
(7.31)

for all t sufficiently large.

Remark 7.11. The condition p ≥ 2 is used in the inductive step in our proof. Also p < d is
necessary in order to use Corollary 7.1.

Proof. We multiply equation (7.30) by |u|r−2u(x), 1 ≤ r < ∞, and integrate to obtain, using
Lemma 7.1,

d

dt

∫
Rd
|u|r(x, t) dx ≤ −C(p, r)

∫
Rd

∫
Rd
J(x, y)

∣∣∣|u| p+r−2
p (y, t)− |u|

p+r−2
p (x, t)

∣∣∣p dy dx.
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The above inequality gives us that for any 1 ≤ r <∞, u, the solution to (7.30), satisfies

d

dt

∫
Rd
|u|r(t, x)dx+ C(p, r)〈Ap|u(t)|

p+r−2
p , |u(t)|

p+r−2
p 〉 ≤ 0 (7.32)

This inequality is crucial to obtain the long time behaviour (7.31) of a solution u to (7.30).

Next, we will prove by induction that the sequence {pn}n≥0 defined by

p0 = 1, pn+1 = ppn − p+ 2, n ≥ 0,

satisfies

‖u(t)‖Lpn (Rd) ≤ Ct−dn (7.33)

where

dn =
d

d(p− 2) + p

(
1− 1

pn

)
.

As the sequence pn verifies pn → ∞ as n → ∞ the desired inequality (7.31) follows by
interpolation.

7.4 Examples of exponential decay

In this section we present a simple example of J(x, y) for which we obtain exponential decay of
the solutions to the linear problem

ut(x, t) =

∫
R
J(x, y)(u(y, t)− u(x, t)) dy. (7.34)

Note that, to simplify, we restrict ourselves to one space dimension.

Lemma 7.4. Let a : R→ R be a diffeomorfism. Assume that

J(x, y) ≥ 1

2
on |y − a(x)| ≤ 1,

where the function a satisfies

sup
R
|(a−1)x| < 1 or inf

R
|(a−1)x| > 1

then there exists a positive constant C such that

〈A2u, u〉 ≥ C‖u‖2L2(R).

Proof. Using the symmetry of the function J we get

J(x, y) ≥ 1

4
χ{|x−a(y)|<1} +

1

4
χ{|y−a(x)|<1}. (7.35)

Let us consider ψ : R→ R a smooth positive function, supported on (−1, 1). Then

2‖ψ‖L∞(R)J(x, y) ≥ ρ(x, y) := ψ(x− a(y)) + ψ(y − a(x))

and

2‖ψ‖L∞(R)〈A2u, u〉 ≥
∫∫

R2

ρ(x, y)(u(x)− u(y))2dxdy. (7.36)
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Let be θ a positive constant which will be fixed latter. We have∫∫
R2

ρ(x, y)(u(x)− u(y))2 dx dy

≥


1− θ
θ

∫
R
ψ(y)dy

∫
R
u2(x)

(
θ −

supx∈R ψ ∗ |(a−1)x|∫
R ψ(y)dy

)
dx, θ < 1,

1− θ
θ

∫
R
ψ(y) dy

∫
R
u2(x)

(
θ − inf ψ ∗ (a−1)x∫

R ψ(y) dy

)
dx, θ > 1.

If supx∈R |(a−1)x(x)| < 1 we choose θ satisfying

supR ψ ∗ |(a−1)x|∫
R ψ(y)dy

< θ < 1

and thus by (7.36)
2‖ψ‖L∞(R)〈A2u, u〉 ≥ C(θ, ψ, a)‖u‖2L2(R).

The other case
inf
x∈R
|(a−1)x(x)| > 1

can be treated in a similar way.

Theorem 7.5. Let u0 ∈ L1(R) ∩ L∞(R). Then the solution to (7.34) verifies

‖u(·, t)‖L2(R) ≤ Ce−Ct

for all t > t0.

Proof. Multiplying equation (7.34) by u we obtain

d

dt

∫
Rd
u2(t) dx+ 〈A2u(t), u(t)〉 ≤ 0,

and using our previous estimate (Lemma 7.4) we get

d

dt

∫
Rd
u2(t) dx+ C

∫
Rd
u2(t)dx ≤ 0,

from where the result follows.



Chapter 8

Final comments and further
directions of research

The activity of L. Ignat in the last five years has been mainly carried out within the Institute
of Mathematics ”Simion Stoilow” of the Romanian Academy. The teaching activity has been
concretized in three master courses on Partial Differential Equations at ”Şcoala Normală Supe-
rioară Bucureşti”. For short periods of times L. Ignat was visiting researcher at Basque Center
for Applied Mathematics (Spain) and Henri Poincare Institute (France).

The author of this thesis has also advised one master thesis at SNSB Bucharest: Diana Stan
in 2010. Diana is now a PhD student at ICMAT Madrid under the advice of Juan-Luis Vasquez.
Another master thesis is under my supervision: that of Cristian Gavrus which will be defended in
2012. This shows the capacity of the author to advise PhD theses in the future.

We want to point out that in September 2010, L. Ignat was member of the committee of Aurora
Marica’s PhD thesis at Universidad Autonoma de Madrid even this would have been impossible
in Romania under the Romanian legislation at the time. Aurora Marica visited IMAR with a
Bitdefender fellowship working under the supervision of L. Ignat.

The author of this thesis has obtained three grants in the last five years:

1. Analysis, Control and Numerical Approximations of Partial Differential Equation, CNCS-
UEFICDI, 05/10/2011-04/10/2014, 1.5000.00 RON=350.000 EUR

2. Qualitative properties of partial differential equations and their numerical approximations,
CNCSIS, PN II, TE-4/2010, 28/07/2010 - 27/07/2013, 750.000RON=175.000 EUR.

3. Qualitative properties of diffusion and dispersion in the study of the nonlinear problems and
their numerical approximations, CNCSIS, RP-3,10/2007-09/2009, 500.000RON=125000EUR.

He has also been a member in Spanish research projects as well as in the EU grant NUMERI-
WAVES whose IP was/is Enrique Zuazua.

In the last four years, L. Ignat have taught four courses, three at SNSB and another one at
Basque Center for Applied Mathematics, Bilbao, Spain.

1. Numerical Methods for Partial Differential Equations, SNSB, 2010-2011,

2. Numerical schemes for dispersive equations, February 08, 2010 - February 12, 2010, BCAM,
Bilbao, Spain,

3. Evolution equations, SNSB, 2009-2010,

4. Evolution equations: dissipation and dispersion, SNSB, 2008-2009.
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The activity of L. Ignat in the last five years therefore shows his capacity to advise PhD
students, a thing that was impossible until now under the Romanian legislation. All the author’s
future plans will also depend on the capacity of the Romanian institutions to attract persons that
have obtained their habilitation.

The future plan of L. Ignats evolution will include advising students and continuing the research
lines that have been productive in the last five years. To transform all these plans into reality the
author will apply to open positions in the Romanian academic environment. L. Ignat will also
apply to grant calls. This was productive in the past since the author has obtained grants in all
the competitions he has applied to in the last five years, even in the case of those destined to
senior researchers.

Some Open Problems

Finally we want to present only a few of the open problems that are under consideration to be
analyzed in the future. We mention that these problems have also been presented in the chapters
of this thesis.

I. Schrödinger equation on networks. In Chapter 1 we have analyzed the dispersive
properties for the linear Schrödinger equation on trees. We have assumed that the coupling is
given by Kirchhoff’s classical conditions. However there are other coupling conditions (see [77])
which allow us to define a “Laplace” operator on a metric graph. To be more precise, let us

consider the operator H that acts on functions on the graph Γ as the second derivative d2

dx2 , and
its domain consists in all functions f that belong to the Sobolev space H2(e) on each edge e of Γ
and satisfy the following boundary condition at the vertices:

A(v)f(v) +B(v)f ′(v) = 0 for each vertex v. (8.1)

Here f(v) and f ′(v) are correspondingly the vector of values of f at v attained from directions of
different edges converging at v and the vector of derivatives at v in the outgoing directions. For
each vertex v of the tree we assume that matrices A(v) and B(v) are of size d(v) and satisfy the
following two conditions

1. the joint matrix (A(v), B(v)) has maximal rank, i.e. d(v),

2. A(v)B(v)T = B(v)A(v)T .

Under these assumptions it has been proved in [77] that the considered operator, denoted by
∆(A,B), is self-adjoint. The case considered in this paper, the Kirchhoff coupling, corresponds to
the matrices

A(v) =



1 −1 0 . . . 0 0
0 1 −1 . . . 0 0
0 0 1 . . . 0 0
...

...
...

...
...

0 0 0
... 1 −1

0 0 0
... 0 0


, B(v) =



0 0 0 . . . 0 0
0 0 0 . . . 0 0
0 0 0 . . . 0 0
...

...
...

...
...

0 0 0 . . . 0 0
1 1 1 . . . 1 1


.

More examples of matrices satisfying the above conditions are given in [77, 78].
The existence of the dispersive properties for the solutions of the Schrödinger equation on a

graph under general coupling conditions on the vertices iut + ∆Γ(A,B)u = 0 is mainly an open
problem. The resolvent formula obtained in [78] and [80] in terms of the coupling matrices A
and B might help one to understand the general problem. In the same papers there are also
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u23

Figure 8.1: Networks where two kinds of structures occur: a periodic one coupled with an infinite
one

some combinatorial formulations of the resolvent in terms of walks on graphs. Such combinational
aspects could clarify if the dispersion is possible only on trees or if there are graphs (with some of
the edges infinite) with suitable couplings where the dispersion is still true.

It is expected that other results on the Schrödinger equation on R are still valid on networks.
For instance, the smoothing estimate for the linear equation with constant coefficients is still valid.
Although its classical proof on R relies on Fourier analysis, one may easily adapt the proof in [20]
which uses only integrations by parts and Besovs spaces that can still be defined on a tree using
the heat operator. Strichartz estimates were used previously to treat controllability issues for the
NSE in [92]. The possible applications of the present results in the control context are still to be
analyzed. We mention here some previous works on the controllability/stabilization of the wave
equation on networks [37], [107].

Another interesting problem consists in the analysis of the same properties on some graphs
which combine the periodic structure with the infinite strips. This is the case in Fig. 8.1 and
Fig. 8.2. We recall that for LSE on the one-dimensional torus, Bourgain [16] has analyzed the
existence of Strichartz estimates. In the same framework we also mention works [19] and [104].

Finally, another problem of interest is the study of the dispersion properties for the magnetic
operators analyzed in [81], [79]. The analysis in this case is more difficult since in the presence of
an external magnetic field the effect of the topology of the graph becomes more pronounced. In
contrast with the analysis done here, in the case of magnetic operators the graphs are viewed as
structures in the three dimensional Euclidean space R3 and the orientation of the edges becomes
important.

II. Inverse problems on networks. We now mention a few open problems related to our
work in Chapter 2. One of them is whether it is possible to reduce the number of measurements at
the boundaries. It could be interesting to combine the ideas of the paper with those appearing in
[36], [37] where less measurements on the boundary are needed but some rationality assumptions
on the lengths of the edges have to be made. For the Schrödinger equation, the question whether a
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Figure 8.2: Exotic structures

Carleman estimate on a tree with N exterior vertices can be written with only one weight function
and N − 1 boundary observations seems to be challenging.

The extension of the present work to more general graphs with other kind of coupling is also
an open problem. We recall here the works of Kostrykin and Schrader [77, 80] where self-adjoint
Laplace operators with general coupling conditions are introduced.

III. Discrete equations. In Chapter 3 we have analyzed the dispersive properties of the
solutions of a system consisting in coupling two discrete Schrödinger equations. However we do
not cover the case when more discrete equations are coupled. The main difficulty is to write in
an accurate and clean way the resolvent of the linear operator occurring in the system. Once
this case is understood then we can treat discrete Schödinger equations on trees similarly to those
considered in [55] in the continuous case.

The analysis presented in this paper mainly concerns the l1 − l∞ decay property. In a recent
paper [89] the authors used some modifications of the stationary phase method to obtain improved
l1− lp decay estimates for the linear Fermi-Pasta-Ulam chain, the Klein-Gordon chain and the dis-
crete nonlinear Schrödinger equation. The optimality of l1− lp estimates for the models presented
here remains to be investigated.

There is another question which arises from this paper. Suppose that we have a system
iUt + AU = 0 with an initial datum at t = 0, where A is a symmetric operator with a finite
number of diagonals not identically vanishing. Under which assumptions on the operator A does
solution U decay and how can we characterize the decay property in terms of the properties of A?
When A is a diagonal operator we can use Fourier’s analysis tools but in the case of a non-diagonal
operator this is not useful.
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