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We define a semidirect product groupoid of a system of partially defined local
homeomorphims T = (T1, . . . , Tr). We prove that this construction gives rise
to amenable groupoids. The algebra associated is a Cuntz-like algebra. We use
this construction for higher rank graph algebras in order to give a topological
interpretation for the duality in E-theory between C∗(Λ) and C∗(Λop).
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INTRODUCTION

Toeplitz algebras have been used to define extensions of C∗-algebras.
The beginning of this paper is in [20] where a Toeplitz algebra was the main
tool in constructing a K-homology class for higher rank graph algebras. Let
(Λ, σ) be a higher rank graph with shape (see [17]), Λ∗ the set of morphism of
nonzero shape and Λ = Ω ∪ Λ∗ where Ω is a symbol (the vacuum morphism)
which does not belong to Λ∗. We define left and right creations on the Fock
space FΛ = F = l2(Λ):

Lλδµ =
{
δλµ if s(λ) = t(µ)
0 otherwise,

Rλδµ =
{
δµλ if s(µ) = t(λ)
0 otherwise, LλΩ = RλΩ = δλ.

The left sided Toeplitz algebra is El = C∗(Lλ;λ ∈ Λ∗) the right sided Toeplitz
algebra is Er = C∗(Rλ;λ ∈ Λ∗) and the two sided Toeplitz algebra is E =
C∗(Lλ, Rλ;λ ∈ Λ∗). These algebras are well known in the rank one case since
they give rise to short exact sequences. For example, one can use E to define

0→ K → E → OE ⊗OEop → 0,

where E is an ordinary oriented graph with certain conditions which give the
uniqueness of the algebras OE and OEop , Eop is the graph obtain by reversing
the arrows. In the higher rank case the algebra E has a more complicated ideal
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structure. It is this fact which gives a longer exact sequence. It would give a
KK-class if the sequence was semisplit [20, 24]. This would follow immediately
from the nuclearity of E . We tried to give a more conceptual construction of
this algebra as a groupoid algebra of an amenable groupoid. We have not been
able to do it except in the rank one case. However, the construction appearing
in [22] can be generalized to give a groupoid description of one-sided Toeplitz
algebras of a higher rank graph. We believe that this construction can be
generalized to actions of other semigroups. For example actions of cones in
Rn should give algebras generated by Wiener-Hopf operators (see [18, 19]).

The organization of this paper is as follows. In the first section we give
the main construction of this paper, the semidirect product of an action of
Nr by partial local homeomorphism which we also call a multiply generated
dynamical system. Such an action is obtained by choosing r commuting par-
tially defined local homeomorphisms. The main examples come from shifts
on finite, semifinite and infinite paths of a higher rank graph. There are two
groupoids associated to such an action, the groupoid of germs of the pseu-
dogroup generated by these local homeomorphism and the semidirect product
groupoid. We think that these groupoids have been around in the study of
Toeplitz algebras of higher rank graphs as well as in the general theory of
crossed products by partial actions (see for example [11, 12]). The semidirect
product can be defined only if we have a condition on the domains of the
partial maps. Otherwise it may not even give rise to an algebraic groupoid.
This condition is fullfiled for one sided Toeplitz algebras associated to higher
rank graphs. Following the lines in [22], we prove that these two groupoids
are isomorphic if and only if the dynamical system is essentially free. Next
we prove the amenability of the semidirect product. This is done by decom-
posing the action in subaction and then applying a result on the amenability
of extensions.

In the second section we give a groupoid approach for the two-sided
Toeplitz extension of a rank-one graph. The description is ad-hoc since we do
not know an elegant construction like a semidirect product. The definition of
the unit space is indicated by the diagonal algebra E∩l∞(Λ) which is generated
by the projections LλL

∗
λ and RλR

∗
λ. These groupoids are not Hausdorff and

this fact is best illustrated by the graph with one vertex and one edge (whose
C∗-algebra is C(T)).

In the third section we remind several facts about duality in a bivariant
theory. We give the definition of Spanier-Whitehead duality and a condition
which is often taken as definition in literature. We remind then a way to con-
struct exact sequences starting from an algebra and a tuple of ideals. We prove
that irrational rotation algebras are dual. Here we give an operator approach
and a long exact sequence approach. We start with simple observations of the
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duality of circles along the lines of [15]. Ideas appearing in this example are
inspiring for more general cases, even for higher rank graph algebras. The
example of rotation algebras is included in the last section using a twist of the
Cuntz-Krieger relation for a higher rank graph.

In the last section we improve the results in [20] and give a groupoid
approach to the duality of higher rank graph algebras. We make some simple
observations inspired by the example of rotation algebras to improve the result
to any locally finite higher rank graph with finite set of objects, regardless the
uniqueness of the generating relation of our graph algebras as for examples
the graph Nr. We obtain a duality for the universal C∗-algebras C∗(Λ) and
C∗(Λop). The K-theory fundamental class is given by r partial unitaries which
can be best described in the groupoid picture as two-sided shifts. Even if we
do not have a conceptual groupoid approach to the two-sided Toeplitz algebra,
we can define it as a groupoid of germs. The main problem in understanding
better this groupoid is the unit space X which is given by the spectrum of the
diagonal algebra E ∩ l∞(Λ). The isometries L∗λRµ with σ(λ) = σ(µ) = ej are
not given by something like shift equivalence. However, the partial isometries
can be viewed as partial homeomorphisms using Gelfand duality . The space
X has three properties inherited from the graph Λ: the shape σ extends to a
map from X to Nr, the multiplication λµν extends to a multiplication λxµ,
and the unique factorization α = λα′µ where σ(α) ≥ σ(λ)+σ(µ) extends to a
unique factorization x = λx′µ where σ(x) ≥ σ(λ)+σ(µ). These properties are
enough to define a MGDS given by shifts on the space X ×Λ∞ together with
an equivariant map to the MGDS Nr × Λ∞ given again by shifts. This map
induces a map of the semidirect product groupoids which in turn induces a
morphism between the algebras T ⊗r ⊗C∗(Λ) and E ⊗C∗(Λ). This morphism
is the crucial step in the proof of the duality.

Finally, we want to draw the attention to the results in [9, 10]. Our
groupoid approach may give a hint to what a higher rank hyperbolic group
would be.

1. PRELIMINARIES

In this paper we shall use locally compact r-discrete groupoids (possibly
non-Hausdorff) ([23]). The canonical Haar system λu is the discrete measure.
A 2-cocycle α in Z2(G,T) is a map α defined on the set G2 of composable
pairs to T such that α(x, yz)α(y, z) = α(xy, z)α(x, y) for any (x, y), (y, z) ∈ G2

([21]). The convolution algebra Cc(G, σ) is given by the operation

f ∗ g(x) =
∫
f(xy)g(y−1)α(xy, y−1)dλd(x)(y), f∗(x) = f(x−1)α(x, x−1).
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We shall use mainly the reduced algebra Cr(G,α) which is a certain completion
of Cc(G,α). Any open invariant set of G0 gives rise to an ideal of Cr(G,α).
We use the cocycle σ in order to include in our study rotation algebras and
some twisted higher rank graph algebras.

Two partial maps on a set X, L : dom(L)→ ran(L) and R : dom(R)→
ran(R) can be composed if one defines

dom(LR) = {x ∈ dom(R); R(x) ∈ dom(L)}

and LR(x) = L(R(x) for any x ∈ dom(LR). We say that two partial maps
L and R on a set X commute if dom(LR) = dom(RL) and LR = RL on
dom(LR). We set L0 = id for any partial map onX. If L is injective, we denote
by L−1 the partial map L−1 : ran(L) → dom(L). A local homeomorphism is
a map φ : X → Y with the property that each point x has a neighborhood U
such that φ|U : U → φ(U) is a homeomorphism.

A partial homeomorphism on X is a local homeomorphism S from an
open set dom(S) of X onto an open set ran(S) of X. A set G of partial homeo-
morphisms of X which is closed under composition, inversion and containing
the identity is called a pseudogroup ([2]). For any set S of partial homeomor-
phisms on X, there exists the smallest pseudogroup [S] generated by S. The
semi-direct product groupoid X o G of a pseudogroup G is the set of triples
(x, S, y) where S ∈ G, y ∈ dom(S), x = S(y) with the obvious operations

(x, S, y)(y, T, z) = (x, ST, y), (x, S, y)−1 = (y, S−1, x).

The topology is given by the product topology of X and G where G has the
discrete topology. The groupoid of germs is a quotion of the semidirect product
groupoid by the equivalence relation (x1, S1, y1) ∼ (x2, S2, y2) if and only if
y1 = y2 and S1 = S2 on a neighborhood of y1. The topology is the quotient
topology. These two groupoids are r-discrete, that is the range and source
maps are local homeomorphisms.

In the monoid Nr we write n = (n1, . . . , nr) with nj ∈ N and ek the
coordinates (0, . . . , 1, . . . , 0).

2. CUNTZ-LIKE ALGEBRAS ASSOCIATED
WITH MULTIPLY GENERATED DYNAMICAL SYSTEMS

Definition 2.1 (Conform [22]). A multiply generated dynamical system
(MGDS) is a pair (X,T ) where X is a topological space and T = (T1, . . . , Tr)
a system of r commuting partial homeomorphisms on X.

Examples 2.2. (i) ([12], Definition 5.1) For m ∈ Nr let Nr
m be the higher

rank graph {(n, n′) ∈ Nr × Nr : n ≤ n′ ≤ m} where s(n, k) = k, t(n, k) = n,
σ(n, k) = k−n and the composition is given by (n, k)(k, p) = (n, p). Let Λ be
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a finitely aligned rank r graph and

XΛ = {x : Nr
m → Λ; m ∈ Nr

m}

the space of finite, semifinite and infinite paths. The shape σ can be extended
to XΛ, σ(x) = m where x is defined on Nr

m. For r = 2 an element in XΛ can
be seen graphically as one of the following:

oo ��

oo

�� oo ���� oo��

oo

oo��

A basis of a topology onXΛ is given by the sets {x : x(0, k) = λ, k ≤ σ(x) ≤ m}
where k ∈ Nr

m, λ ∈ Λ and m ∈ Nr
m. Then the partial homeomorphisms Tk

with dom(Tk) = {x ∈ XΛ : σ(x) ≥ k}, Tk(x) : Nr
σ(x)−k → Λ, Tk(n, n′) =

x(n+ k, n′ + k) give a MGDS.
(ii) In the example above the restriction to boundary paths ∂X gives a

subsystem. If Λ has no sources then ∂X = Λ∞ = {x : σ(x) = (∞ . . .∞)} (see
[12], Definition 5.10 and [17]).

(iii) Let X be the free monoid on r letters a1, . . . , ar, that is the set of
words ai1 . . . aik . Put on X the discrete topology and define T = (L,R) the
translations on the left and on the right dom(L) = dom(R) = {ai1 . . . aik : k ≥
1} (the set of nonvoid words), L(ai1ai2 . . . aik) = ai2 . . . aik , R(ai1 . . . aik−1

aik) =
ai1 . . . aik−1

. For instance, if r = 1 then X = N and dom(L) = dom(R) =
N \ {0}, L(k) = R(k) = k − 1. It is clear that L and R commute.

We denote by G(X,T ) the full pseudogroup generated by the restrictions
of Tj |U where U is an open subset of X on which Tj is injective. Because
of the commutation conditions on T , we can define Tn = Tn1

1 Tn2
2 · · ·T

nr
k for

n ∈ Nk. One can see a MGDS as an action of the semigroup Nr on X by
partial local homeomorphisms. We write sometimes Tn instead of Tn when we
want to view T as a semigroup. We need a technical condition on the domains
of Tn (domain condition)

(DC) dom(Tn) ∩ dom(Tm) ⊂ dom(Tn∨m),

where n ∨m is the componentwise maximum. The following lemma is basically
Lemma 2.4 from [22] for MGDS with (DC).

Lemma 2.3. Let (X,T ) be a MGDS with (DC).
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(i) A partial homeomorphism S belongs to G(X,T ) if and only if it is
locally of the form (Tm

|U )−1Tn
|V where m,n ∈ Nr, U is an open set on which

Tm is injective and V is an open set on which Tn is injective.
(ii) Let a ∈ X. Suppose that (Tm

|U )−1Tn
|V and (T p

|W )−1T q
|Y are two par-

tial homeomorphisms as in (i) having a in their domains and (Tm
|U )−1Tn

|V a =
(T p
|W )−1T q

|Y a. If m − n = p − q, then (Tm
|U )−1Tn

|V and (T p
|W )−1T q

|Y have the
same germ at a.

Proof. (i) It is clear that (Tm
|U )−1Tn

|V ∈ G(X,T ) and, since G(X,T ) is
full, it is still true for a partial homeomorphism locally of this form. The
inverse of (Tm

|U )−1Tn
|V is (Tn

|V )−1Tm
|U which belongs to G(X,T ). It remains to

show that the product of (Tm
|U )−1Tn

|V and (T p
|W )−1T q

|Y is locally of the same
form. When r = 1 this is the alternative n ≥ p or n ≤ p given in the proof
of Lemma 2.4 of [22]. In our setting this alternative does not work since
Nr is not totally ordered. For this reason we need the condition (DC). Let
x ∈ Y such that (T p

|W )−1T q
|Y x = y ∈ V . We can suppose that this happens

in a neighborhood of x and so we assume that it is true on Y . Then with
z = (Tm

|U )−1Tn
|V y we have T qx = T py and Tny = Tmz. From condition (DC)

we have y ∈ dom(T p∨n) and T q+p∨n−px = T p∨ny = Tm+p∨n−nz for any x ∈ Y
so that (Tm

|U )−1Tn
|V (T p

|W )−1T q
|Y is locally of the form (Tm+p∨n−n

|Z )−1T q+p∨n−p
|Z′ .

(ii) Taking neighborhoods of a and (Tm
|U )−1Tn

|V a, we may assume that
W = U and Y = V , T p(U) = T q(V ) and Tm∨p is injective on U . For x ∈ V ,
(Tm
|U )−1Tn

|V x = y ∈ U , (T p
|U )−1T q

|V x = y′ ∈ U we have Tmy = Tnx and
T py′ = T qx. As U ⊂ dom(Tm) ∩ dom(T p) ⊂ dom(Tm∨p) we have Tm∨py =
Tn+m∨p−mx = T q+m∨p−px = Tm∨py′ and therefore y = y′ so (Tm

|U )−1Tn
|V =

(T p
|U )−1T q

|V . �

Having defined a pseudogroup, we denote by Germ(X,T ) the groupoid
of germs of G(X,T ).

Following [22], Definition 2.5 we consider another groupoid, the semidi-
rect product groupoid (simply replacing Z with Zr):

Definition 2.4. Let (X,T ) be a MGDS with (DC). Its semidirect grou-
poid is

G(X,T ) = {(x,m− n, y); m,n∈Nr, x∈dom(Tm), y∈dom(Tn), Tmx = Tny}

with the groupoid structure induced by the product structure of the trivial
groupoid X × X and of the group Zr. The topology is defined by the basic
open sets

U(U ;m,n;V ) = {(x,m− n, y) : (x, y) ∈ U × V, Tmx = Tny},
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where U (respectively V ) is an open subset of the domain of Tm (respectively
Tn) on which Tm (respectively Tn) is injective.

The family of given subsets is indeed a basis for a topology since

U(U ;m,n;V ) ∩ U(U ′;m′, n′;V ′) ⊃ U(U ∩ U ′;m ∨m′, n ∨ n′;V ∩ V ′).

Thus, γ = (x, z, y) and η = (x′, z′, y′) in G(X,T ) are composable if
and only if y = x′ and then γη = (x, z + z′, y′). The range and domain
are r(x, z, y) = x and d(x, z, y) = y. This is a groupoid indeed since y ∈
dom(Tn∨m′

) so Tm+n∨m′−nx = Tn′+n∨m′−m′
y′. In the absence of the condition

(DC), G(X,T ) may not be a groupoid. Consider, for example, (X,L,R) as in
Example 2.2(iii). The condition (DC) is not satisfied since dom(L)∩dom(R) is
the set of nonvoid words, while dom(LR) is the set of words with length greater
or equal to 2. Let |·| be the word length onX and Ω the empty word. For x, y ∈
X we have γ = (x, (|x|,−|y|), y) ∈ G(X,T ) and η = (y, (|y|, 0),Ω) ∈ G(X,T )
since T (|x|,0)x = L|x|x = Ω = R|y|y = T (0,|y|) and T (|y|,0)y = L|y|y = Ω = T 0Ω
but γη = (x, (|x|+ |y|,−|y|),Ω) /∈ G(X,T ) since x /∈ dom(Tn) for any n ∈ N2

with n1 > |x|.
We assume again that (X,T ) have (DC). According to (ii) of the previous

lemma, there is a map π from G(X,T ) onto Germ(X,T ) which sends (x,m−
n, y) into the germ [x, (Tm

|U )−1Tn
|V , y] where U is an open neighborhood of x

on which Tm is injective and V is an open neighborhood of y on which Tn is
injective. This map is continuous and is a groupoid homomorphism. It is an
isomorphism when (X,T ) is essentially free.

Definition 2.5 (Conform [22], Definition 2.6). We shall say that a MGDS
(X,T ) is essentially free if for every pair of distinct m,n ∈ Nr, there is no
open set on which Tn and Tm agree.

Lemma 2.6 (Conform [22], Lemma 2.7). Let (X,T ) be an essentially free
MGDS with (DC). Then

(i) If (Tm
|U )−1Tn

|V and (T p
|W )−1T q

|Y , where m,n, p, q ∈ N and U, V,W, Y

are open sets such that Tm
|U , T

n
|V , T

p
|W , T q

|Y are injective and have the same germ
at a, then m− n = p− q.

(ii) The map c : Germ(X,T ) → Zr such that c[(Tm
|U )−1Tn

|V x, (T
m
|U )−1Tn

|V ,

x] = m− n is a continuous homomorphism.

Proof. (i) By assumption, we have Tmy = Tnx and T py = T qx for x
and y in neighborhoods of a respectively b = (Tm

|U )−1Tn
|V a. Then on these

neighborhoods we have Tn+m∨p−mx = Tm∨py = T q+m∨p−px. The essential
freeness implies that n+m ∨ p−m = q +m ∨ p− p so n−m = q − p.

(ii) We have seen in the proof of the previous lemma that the product
of (Tm

|U )−1Tn
|V and (T p

|W )−1T q
|Y is locally of the form (Tm+p∨n−n

|Z )−1T q+p∨n−p
|Z′
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and that the inverse of (Tm
|U )−1Tn

|V is (Tn
|V )−1Tm

|U . This shows that c is a
homomorphism and by construction it is locally constant. �

Proposition 2.7. Let (X,T ) be a MGDS with (DC). Then (X,T ) is
essentially free if and only if the above surjection π : G(X,T )→ Germ(X,T )
is an isomorphism.

Proof. Word with word as in [22], Proposition 2.8. �

This homomorphism induces a morphism of algebras even if (X,T ) is
not essentially free. We construct it in

Lemma 2.8. Let π : G1 → G2 a surjective morphism between two r-
discrete groupoids with the property that if s(π(x)) = r(π(y)) then s(x) =
r(y) Then the correspondence Cc(G1) 3 f → π̃(f) ∈ Cc(G2), π̃(f)(x) =∑

π(x′)=x f(x′), is a *-homomorphism between the topological algebras Cc(G1)
and Cc(G2). Composing it with the regular representation of Cc(G2) we ob-
tain a bounded representation of Cc(G1) therefore a morphism π̃ : C∗(G1) →
C∗

r (G2).

Proof. The condition in the statement is (π × π)−1(G2
2) = G2

1. This
means that composable pairs lifts only to composable pairs. In particular, the
restriction π0 of π to the unit space must be a bijection. Moreover, π satisfies
this condition if π0 is a bijection which identifies the equivalence relations as-
sociated to G1 and G2. In particular if π(u) = r(x) then {x′; π(x′) = x} ⊂ Gu

1 .
Indeed, if π(x′) = π(y′) = x then π(y′−1) and π(x′) are composable, so y′−1

and x′ are composable, hence r(x′) = r(y′). This says that π(Gu
1) = G

π0(u)
2 .

If f ∈ Cc(G1) then {x′ : π(x′) = x} ⊂ supp(f)∩Gu
1 which is finite. Therefore,

the sum which defines π̃(f) is finite. We have supp(π̃(f)) ⊂ π(supp(f) so
π̃(f) ∈ Cc(G2).

We compute

π̃(f ? g)(x) =
∑

π(x′)=x

f ? g(x′) =
∑

π(y′z′)=x

f(y′)g(z′),

π̃(f) ? π̃(g)(x) =
∑
yz=x

π̃(f)(y)π̃(g)(z).

Since π is surjective we have

π̃(f) ? π̃(g)(x) =
∑

π(y′)π(z′)=x

f(y′)g(z′).

The first sum runs over {(y′, z′) : π(y′)π(z′) = x} and the second over sum
runs over {(y′, z′) : π(y′z′) = x}. These two sets are equal by the assumption
on π so π̃ is an algebraic morphism.
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If fn ∈ Cc(G1), supp(fn) ⊂ K, fn →u f on K, then π̃(fn) →u π̃(f)
since the cardinal of the set {x′ : π(x′) = x} is bounded when x runs over a
compact set.

Finally, one has

‖π̃(f)‖I = sup
u∈G0

2

∑
r(x)=u

|π̃(f)(x)| =

= sup
u∈G0

2

∑
r(x)=u

∣∣∣∣ ∑
π(x′)=x

f(x′)
∣∣∣∣ ≤ sup

u∈G0
2

∑
r(x)=u, π(x′)=x

|f(x′)|.

Since π(Gu
1) = G

π0(u)
2 and π0 is a bijection, the last sum is

sup
u∈G0

1

∑
r(x)=u

|f(x)| = ‖f‖I ≥ ‖π̃(f)‖I .

Therefore, ‖f‖I ≥ ‖π̃(f)‖B(L2(G2)) since the regular representation is
bounded. �

Proposition 2.9. Lemma 2.8 holds for G1 = G(X,T ), G2 = Germ(X,T )
and π the morphism of Lemma 2.3.

Proof. π is continuous and surjective. π(x, z, y) and π(x′, z′, y′) are com-
posable if and only if y = x′ which is the condition for (x, z, y) and (x′, z′, y′)
to be composable. �

We assume from now on that X is Hausdorff, second countable and
locally compact. Then G(X,T ) becomes a Hausdorff, locally compact étale
groupoid. In the next theorem we prove the amenability of G(X,T ). For the
proof we need some notations. The motivation comes from Example 2.2. For
1 ≤ j ≤ r let Xj =

⋂
n∈N dom(Tn

j ) and for a subset J ⊂ {1, . . . , r} (J may
be void) we denote by XJ =

⋂
j∈J Xj ∩

⋂
j /∈J(X\Xj). Clearly, XJ ∩XJ ′ = Φ

for J 6= J ′ and for x ∈ X we have x ∈ XJx where Jx = {j : x ∈ Xj} so the
subsets XJ provide a partition of X. When r = 1 we get the partition in the
end of the proof of Proposition 2.9 (i) in [22]. For x ∈ X let

σ(x) = sup{n ∈ Nr : x ∈ dom(Tn)} ∈ Nr
.

For the rank one case σ(x) may be considered as the exit time of T , the first
time when x escapes the domain of T . In general σ(x)j can be thought of as
the exit time of Tj so we call σ(x) the exit time of T. The crucial assumption
(DC) ensures the existence of this supremum. Then XJ = {x ∈ X : σ(x)j =
∞ for j ∈ J and σ(x)j finite for j /∈ J}. For n ∈ Nr and J = {j : nj =∞} we
have σ−1(n) =

⋂
j∈J Xj ∩

⋂
j /∈J dom(Tnj )\dom(Tnj+ej ) ⊂ XJ which is Borel
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and analytic so that a preimage by σ is analytic. Note that from the condition
(DC) we have⋂

j /∈J

dom(Tn)\dom(Tn+ej ) =
⋂
j /∈J

dom(Tnj

j )\dom(Tnj+1
j ).

Denote by ZJ the subgroup of Zr given by the inclusion Z|J | 3 z 7→
∑

j∈J zjej ∈
Zr and, for z ∈ Zr, let zJ =

∑
j∈J zjej ∈ ZJ . We use a similar notation for

NJ and nJ .

Lemma 2.10. (i) For x, y ∈ X and n ∈ Nr we have σ(Tnx) = σ(x)− n.
(ii) For (x, z, y) ∈ G(X,T )|XJ

we have zJc = σ(x)Jc − σ(y)Jc, where
Jc = {1, . . . , r}\J .

Proof. (i) By definition of σ we have σ(Tnx) = sup{m ∈ Nr : x ∈
dom(Tm+n)} = sup{m − n ∈ Nr : m ≥ n, x ∈ dom(Tm)} = sup{m ∈ Nr :
m ≥ n, x ∈ dom(Tm)} − nσ(x)− n.

(ii) By definition of G(X,T ) there exist n,m ∈ Nr such that Tnx = Tmy
so by (i) we have σ(Tnx) = σ(x)−n = σ(Tmy) = σ(y)−m. We can substract
the finite Jc coordinates to get zJc = nJc −mJc = σ(x)Jc − σ(y)Jc . �

The following lemma is very likely folklore

Lemma 2.11. Let G be a Borel groupoid, (Xj)j∈J , J a finite set, a par-
tition of G0 by invariant Borel sets. Then G is measurewise amenable if and
only if G|Xj is measurewise amenable.

Proof. This follows directly from the definition of amenability ([1], Defi-
nition 3.2.8). Precisely, we denote by t the disjoint union of Borel set with the
obvious Borel structure. We know that G0 = tXj , G = tG|Xj so L∞(G) =
⊕L∞(G|Xj ) and L∞(G0) = ⊕L∞(Xj). Therefore a mean m : L∞(G) →
L∞(G0) is invariant if and only if the restrictions mj : L∞(G|Xj ) → L∞(Xj)
are invariant. Conversely, we can piece mj together to define m = ⊕mj an
invariant mean L∞(G)→ L∞(G0). �

Theorem 2.12 (Conform [22], Proposition 2.9). Let (X,T ) be a MGDS
with (DC). Then

i) G(X,T ) is amenable;
ii) the full and reduced C∗-algebras coincide;
iii) the C∗-algebra C∗(X,T ) = C∗(G(X,T )) is nuclear.

Proof. (i) We will check measurewise amenability (according to [1], 3.3.7,
it is equivalent to topological amenability for étale groupoids). Each XJ is
an invariant Borel set for G(X,T ). By Lemma 2.11 it is enough to prove
that the reduction of G(X,T ) on XJ is amenable. By the definition of XJ ,
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the homomorphism cJ : G(X,T )|XJ
→ ZJ defined by cJ(x, z, y) = zJ is

strongly surjective in the sense given in [1], Definition 5.3.7. We shall show
that RJ = c−1

J (0) is an amenable equivalence relation. Once this proven, we
can now apply a result on the amenability of an extension ([1], 5.3.14) to
conclude that G(X,T )|XJ

is amenable, hence G(X,T ) amenable.
We have

RJ = {(x,m− n, y) : x, y ∈ XJ ,∃n,m ∈ Nr, with mJ = nJ ,

x ∈ dom(Tn), y ∈ dom(Tm), Tm(x) = Tn(y)}.

If (x, z, y) ∈ RJ we have zJ = 0 and zJc = σ(x)Jc − σ(y)Jc (conform Lemma
2.10(ii)) so z depends only on x, y and RJ ⊂ XJ ×XJ . We leave z out when
we have such an element. We show that RJ is an equivalence relation. If
(x, y), (y, z) ∈ RJ then we can find n, n′,m,m′ ∈ Nr such that nJ = n′J ,
Tnx = Tn′y, mJ = m′

J , Tmy = Tm′
z. As we have seen before, we can assume

nJc = σ(x)Jc , n′Jc = σ(y)Jc , mJc = σ(y)Jc , m′
Jc = σ(z)Jc . (DC) gives again

TnJ∨mJ+σ(x)Jcx = TnJ∨mJ+σ(y)Jcy = TnJ∨mJ+σ(z)Jcz and then (x, z) ∈ RJ

which proves that RJ is an equivalence relation.
We shall show that RJ is an inductive limit of amenable equivalence

relations. For N ∈ NJ let

RN
J = {(x, y) ∈ RJ : ∃n,m ∈ Nr such that nJ = mJ ≤ N, Tn(x) = Tm(y)}.

By Lemma 2.10(ii), we can choose n, m such that nJc = σ(x)Jc and mJc =
σ(y)Jc so RN

J can be described as

RN
J = {(x, y)∈RJ : ∃n∈NJ , n≤N, such that Tn+σ(x)Jc (x) = Tn+σ(y)Jc (y)}.

RN
J is an equivalence relation on XJ since we have seen before that

TnJ∨pJ+σ(x)Jcx = TnJ∨pJ+σ(z)Jcz

for (x, y,m, n), (y, z, p, q) defining two elements in RN
J as above. RJ =

⋃
N∈NJ ·

·RN
J , (RN

J )0 = XJ = (RJ)0 and RN
J = RN+1

J . We shall show that RN
J is a

proper equivalence relation. This ensures that RJ is the inductive limit of
RN

J in the sense of [1], Chapter 5.3.f. Then Proposition 5.3.37 of [1] gives the
amenability of RJ .

Since RN
J is a discrete equivalence relation we have to show that the

space XJ/R
N
J is analytic (conform [1], Example 2.1.4(2)). According to [3],

Corollary 4.12, this follows from the countable separability of XJ/R
N
J . Since

σ is a Borel map, we can find a sequence Yi of Borel subsets of XJ such that
Yi ⊂ {x ∈ XJ : σ(x)Jc = k} for some k ∈ NJc

and the restriction of Tn to Yi

is injective. We can suppose furthermore that (Yi)i is separating for XJ and
is closed under finite intersections. The saturation of a Borel set A ⊂ XJ is
[A] =

⋃
n∈NJ , n≤N (Tn+σ(·)Jc )−1Tn+σ(·)Jc (A) which is a Borel set. We use here
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the notation Tn+σJc (·) for the Borel map x 7→ Tn+σJc (x)(x). Let (x, y) /∈ RN
J ,

x ∈ Yi. We prove that we can choose Yj such that y /∈ [Yj ] so π(Yj) separates
π(x) and π(y) where π is the projection from XJ to XJ/R

N
J . If y /∈ Yi we

are done. If y ∈ [Yi], there exists y′ ∈ Yi such that (y, y′) ∈ RN
J . Since the

family (Yi)i separates XJ and is closed under finite intersections, we can find
another set Yj ⊂ Yi which separates x and y′, that is x ∈ Yj and y′ /∈ Yj . If
y /∈ [Yj ] we are back to the case y /∈ [Yi]. If y ∈ [Yj ] then (y, y′′) ∈ RN

J for
some y′′ ∈ Yj ⊂ Yi so (y′, y′′) ∈ RN

J . This means that there exists n ∈ NJ ,
n ≤ N such that Tn+σ(y′)Jc (y′) = Tn+σ(y′′)Jc (y′′). Since y′, y′′ ∈ Yi we have
σ(y′)Jc = σ(y′′)Jc . Tn+σ(·)Jc is injective on Yi so y′ = y′′. This contradicts the
choice of Yj (y′ /∈ Yj). Therefore, y /∈ [Yj ]. �

Corollary 2.13. There is a morphism

π̃ : Cr(G(X,T ))→ Cr(Germ(X,T ))

induced by the canonical morphism π : G(X,T )→ Germ(X,T ).

Proof. According to Proposition 2.9 there is a morphism

C∗
r (G(X,T )) = C∗(G(X,T ))→ C∗

r (Germ(X,T )). �

3. GRUPOIDS OF TWO-SIDED TOEPLITZ ALGEBRAS
OF A DIRECTED GRAPH

Let us start with the classical Toeplitz extension. The two-sided Toeplitz
extension is given by pulling back the Toeplitz extension of C(T) with the
diagonal morphism. If S is a proper isometry this Toeplitz algebra is T =
C∗((S, z1), (S, z2)) ⊂ C∗(S)⊕C(T)⊗C(T). If we think of C(T) as C∗(Z) the
diagonal morphism is given by the morphism Z×Z 3 (x, y) 7→ x+y ∈ Z. C∗(S)
is a Cuntz-like algebra of the groupoid given by (N, T ) where T : N \ {0} →
N, T (n) = n − 1. We replace now the points (∞, z,∞) by (∞, (z1, z2),∞)
where z1, z2 ∈ Z to get another groupoid, G. Two pairs (x, z, y) and (x′, z′, y′)
are composable if y = x′ and then (x, z, y)(y, z′, y′) = (x, z + z′, y′) where
z + z′ is the addition in Z or Z2 accordingly. As an algebraic object, G is the
reduction of G(N, T ) × G(N, T ) to the diagonal of N × N. Its reduction to N
(an invariant subset) is N×N and to {∞} is Z×Z. The basis of the topology
is given by {(n, n−m,m)}, n,m ∈ N and

Bz1,z2 = {(n+ z1 + z2, z1 + z2, n) : n ∈ N} ∪ {(∞, (z1, z2),∞)}.

This is not a Hausdorff topology since if z1 + z2 = z′1 + z′2 then the sequence
(n, z1 + z2, n+ z1 + z2) converges both to (∞, (z1, z2),∞) and (∞, (z′1, z′2),∞).
However, the sets in the above base are Hausdorff and compact, Gu, u ∈ N
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is a discrete set in the relative topology from G and N, the unit space, is
Hausdorff. G is therefore a non-Hausdorff r-discrete groupoid. The algebra
Cc(G) is generated by 1{(m,n)} with m,n ∈ N and 1B(z1,z2). It is easy to
check that the map which sends 1B(1,0) to(S, z1) and 1B(0,1) to (S, z2) can be
extended to an isomorphism from C∗(G) to T .

We define next a groupoid which gives rise to the algebra C∗(Lλ⊕sλ, Rλ⊕
tλ) ⊂ E ⊕C∗(Λ)⊗C∗(Λop) where Λ is a rank one graph. Let X = Λ∪ (Λ∞ ×
(Λop)∞) be the space of finite words and pairs (x, y) of infinite words given
by the graphs Λ respectively Λop. The sets {λ}, λ ∈ Λ and {λxµ : x ∈
Λ} ∪ {(λx, µy)(x, y) ∈ Λ∞ × (Λop)∞} provide a basis for a Hausdorff locally
compact topology on X. X is a compactification of Λ provided that Λ is
connected (there is at least one finite paths between any two objects). We
assume this hereafter. A sequence in λn ∈ Λ converges in X if and only if it is
eventually constant or converges in Λ∞ and (Λop)∞}. Equivalently, it means
that (λn, λn) converges in XΛ ×XΛop . This shows again that the unit space
is a kind of diagonal. Note that for x ∈ Λ, λxµ is µ(λx) if we think of λx as
an element in Λop. We define a groupoid G

{(λ, σ(λ)− σ(µ), µ) : λ, µ ∈ Λ} ∪ {((λx, µy), (σ(λ)− σ(λ′),

σ(µ)− σ(µ′)), (λ′x, µ′y)) : (λ, µ), (λ′, µ′) ∈ Λ× Λop, (x, y) ∈ Λ∞ × (Λop)∞},

where two pairs (x, z, y) and (x′, z′, y′) are composable if y = x′ and then
(x, z, y)(y, z′, y′) = (x, z + z′, y′) where z + z′ is the addition in Z or Z2 accor-
dingly. We see that the piece of information σ(λ)−σ(µ) in (λ, σ(λ)−σ(µ), µ)
is redundant, that is G reduced to Λ is the principal groupoid Λ × Λ. We
freely avoid it whenever convenient. As an algebraic object G can be thought
of as the reduction of G(XΛ, TΛ)×G(XΛop , TΛop) to X. But G does not have
the induced topology which is rather odd. A basis for the topology is given
by the sets {(λ, µ)}, λ, µ ∈ Λ and

B(λ, µ, λ′, µ′) = {(λxµ, λ′xµ′) : x ∈ Λ} ∪ {((λx, µy), (σ(λ)− σ(λ′),

σ(µ)− σ(µ′)), (λ′x, µ′y)); (λ, µ), (λ′, µ′) ∈ Λ× Λop, (x, y) ∈ Λ∞ × (Λop)∞}.
This groupoid may not be Hausdorff, the non-Hausdorffness appearing

from periodic infinite paths. To see it, we construct a sequence which converges
to two distinct points. Start with λ ∈ Λ∗, o(λ) = t(λ). Then the sequence
(λn, λn)n converges to ((λ∞, λ∞), (σ(λk),−σ(λk), (λ∞, λ∞)) for any k ∈ N.
Nevertheless, the topology induced on the sets B(λ, µ, λ′, µ′) is Hausdorff.
Indeed, it is clear that the points (λ, µ) are separated being open sets. Let
(x, z, y) 6= (x′, z, y′) ∈ B(λ, µ, λ′, µ′) such that x ∈ Λ∞ × (Λop)∞. Here z =
(σ(λ)− σ(λ′), σ(µ)− σ(µ′)). Let us suppose that x = (x1, x2) 6= x′ = (x′1, x

′
2),

the case y 6= y′ being similar. Assume x1 6= x′1 the case x2 6= x′2 being similar.
Then there exist γ 6= γ′ ∈ Λ, a, b ∈ Λ∞ such that γ ≥ λ, γ′ ≥ λ′, σ(γ) = σ(γ′)
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and x1 = λa, x′1 = γ′b. The sets B(γ, δ, µ, µ′) and B(γ′, δ′, µ, µ′) are disjoint
for any δ, δ′ ∈ Λ, δ, δ′ ≥ λ′, σ(δ) = σ(δ′) = σ(λ′)+σ(γ)−σ(λ). Therefore, G is
a non-Hausdorff locally compact groupoid. The correspondence 1B(λ,Ω,Ω,Ω) →
Lλ ⊕ sλ extends to an isomorphism from C∗(G) to C∗(Lλ ⊕ sλ, Rλ ⊕ tλ).

4. DUALITY IN BIVARIANT THEORIES

K-theory and K-homology are particular cases of the Kasparov groups.
The product in KK-theory provides the analogue of the cup and cap products
in algebraic topology. Therefore KK-theory and other bivariant theories are
the framework for notions of duality. KK-theory is suitable when geometric
classes are available Ext-theory was used in [15, 9, 10]. The novelty in [20] is to
use Extr but a technical condition of semisplitness leads to E-theory. We give
first a general notion of duality analogous with the Spanier-Whitehead duality
in algebraic topology. Then we give a condition which implies this duality. It
appeared for the first time in [16], Chapter 4, Theorem 6, but was highlighted
by Connes in [7], Chapter VI.4.β. After that we recall the construction of long
exact sequences starting from an algebra and a tuple of ideals.

Let F be any of the bivariant theories KK-theory, E-theory, Ext-theory
or KExt-theory. For x ∈ F (A1⊗. . .⊗An, B1⊗. . .⊗Bm) we define the flip maps
σij(x) and σij(x) the induced maps on F -groups by the flip homomorphisms
of C∗-algebras A1⊗ . . .⊗Ai⊗ . . .⊗Aj⊗An → A1⊗ . . .⊗Aj⊗ . . .⊗Ai⊗ . . .⊗An

respectively B1⊗. . .⊗Bi⊗. . .⊗Bj⊗. . .⊗Bn → B1⊗. . .⊗Bj⊗. . .⊗Bi⊗. . .⊗Bn.

Definition 4.1 (Spanier-Whitehead duality, [15], Definition 2.2). Let A,B
be separable C∗-algebras, ∆ ∈ F r(A⊗B,C), δ ∈ F r(C, A⊗B). We say that
A and B are Spanier-Whitehead r-dual in F -theory if the maps ∆i : Ki(A)→
Ki+r(B), ∆i(x) = x ⊗A ∆ and σ12(∆)i : Ki(B) → Ki+r(A), σ12(∆)i(x) =
x⊗B ∆ are isomorphisms with inverses δi : Ki+r(B)→ Ki(A), δi(y) = δ⊗B y
respectively σ12(δ)i : Ki+r(A)→ Ki(B), σ12(δ)i(y) = σ12(δ)⊗A y.

The duality classes, ∆ and δ, are the K-homology and the K-theory
classes.

Theorem 4.2 ([10], Theorem 11). Let A,B,∆, δ be C∗-algebras and
classes as above such that

δ ⊗B σ12(∆) = [1A], σ12(δ)⊗A ∆ = [(−1)i1B].

Then the maps ∆i and δi defined above are isomorphisms.

The proof can be found in [10]. We shall call such algebras simply r-dual.
The sign in the second condition comes from the change of sign under flip maps
σ. The sign is not given in [16] and [7]. We do not know of any example of two
dual C∗-algebras such that the assumptions of Theorem 4.2 are not fulfilled.
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If B is the same as A we say that A is a Poincaré duality algebra. The dual
is not unique since if A has a dual B and A is KK-equivalent to A′ then A′ is
also dual with B.

Bivariant theories work well when the algebra in the first argument is
separable. For KK-theory this is forced by the Kasparov technical theorem.
Since in the definition of duality both algebras appear in the first argument
we are forced to work with separable algebras. For a separable algebra the
K-theory group is countable. For this reason not every algebra has a dual.
For example M2∞ , the CAR algebra, does not have a dual. If there was a
dual B for M2∞ we would have Ki(B) = K1(M2∞) where i is 0 or 1. But
K1(M2∞) is Z(2)/Z ([14]), where Z(2) is the group of 2-adic numbers, which is
uncountable. Therefore, B cannot be separable.

In [20] the K-homology class was given as an E-theory class associated
to a long exact sequences. We recall the construction of long exact sequences
starting from an algebra and a tuple of ideals.

Let E be an arbitrary C∗-algebra and J1, . . . , Jr be r ideals in it. We shall
describe next a procedure of defining an r-fold exact sequence starting with
B =

⋂r
i=1 Ji and ending with A = E

/
J1 + . . .+ Jr

. The motivation comes
from the Zekri’s Yonneda product ([24]) ε1 ⊗C ε2 of two 1-fold extensions
ε1 ∈ Ext(A1, B1) and ε2 ∈ Ext(A2, B2). Let

0→ B1 → E1 → A1 → 0
0→ B2 → E2 → A2 → 0

be the extensions ε1 and ε2. Forgetting for the moment the troubles caused
by tensor products, the product ε1⊗C ε2 is computed by tensoring ε1 with B2

on the right, ε2 with A1 on the left and then splicing:

0→ B1 ⊗B2 → E1 ⊗B2 → A1 ⊗ E2 → A1 ⊗A2 → 0.

Define E = E1 ⊗ E2, J1 = B1 ⊗ E2, J2 = E1 ⊗B2. We have

B1 ⊗B2 = J1 ∩ J2 = J1J2, E1 ⊗B2 = J2,

A1 ⊗ E2 = E/J1
, A1 ⊗A2 = E/J1 + J2

so the exact sequence is

0→ J1 ∩ J2 → J2 → E/J1
→ E/J1 + J2

→ 0.

For a nonempty subset S ⊆ {1, . . . , r} let us define

JS =
⋂
j∈S

Jj and JS =
∑
j∈S

Jj .
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We shall use the abbreviation {k, k + 1, . . . , l} = k, l. Define

E0 = J1 ∩ . . . ∩ Jr = J1,r, E1 = J2 ∩ . . . ∩ Jr = J2,r,

Ek = Jk+1 ∩ . . . ∩ Jr

/
(J1 + . . .+ Jk−1) ∩ Jk+1 ∩ . . . ∩ Jr

=

= Jk+1,r
/
J1,k−1 ∩ J

k+1,r,

for any k ∈ {2, . . . r − 1} and

Er = E
/
J1 + . . .+ Jr−1

= E
/
J1,r−1,

Er+1 = E
/
J1 + . . .+ Jr

= E
/
J1,r.

E0 ⊆ E1 so we can define i0 : E0 ↪→ E1. Since E1 ⊆ J3 ∩ . . . ∩ Jr, there is a
map i1 : E1 → E2 given by the inclusion composed with the quotient map. For
k ∈ {2, . . . , r − 2} we have

Jk+1,r = Jk+1 ∩ . . . ∩ Jr ⊆ Jk+2 ∩ . . . ∩ Jr = Jk+2,r

and
J1,k−1 ∩ J

k+1,r ⊆ J1,k ∩ J
k+2,r

so that we can again define a map ik : Ek → Ek+1 as the bottom line of
the diagram

Jk+1,r
� � //

πk

��

Jk+2,r

πk+1

��
Ek

ik // Ek+1

where the vertical arrows are projections. Using the isomorphism J
/
J ∩ I '

J + I
/
I we write

Er−1
Jr

/
J1,r−2 ∩ Jr

J1 + · · ·+ Jr−2 + Jr

/
J1 + · · ·+ Jr−2

.

Therefore, there is also a natural homomorphism ir−1 : Er−1 → Er since J1 +
· · ·+Jr−2+Jr ⊆ E and J1+ · · ·+Jr−2 ⊆ J1+ · · ·+Jr−1. Finally, ir : Er → Er+1

is defined since J1 + · · ·+ Jr−1 ⊆ J1 + · · ·+ Jr.

Theorem 4.3 ([20], Proposition 3.1). The r-fold sequence

0 // B
i0 // E1

i1 // · · ·
ir−1 // Er

ir // A // 0

is exact.
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Such sequences define Extr classes provided they are semisplit. In [20]
this technical condition was avoided using E-theory, that is thinking of such
a sequence as an Er-theory class. However, as a consequence of the fact
that Ext1(A,B) = Ext1(A,B) is a group and the Yonneda product is bi-
linear, we can prove that Extr(A,B) is a group. Indeed, we can decompose
any ε ∈ Extr(A,B) as a Yonneda product γ(ε1, ε2) with ε1 ∈ Ext1(A,A1).
Since Ext1(A,A1) is a group, we can find an extension, ε′1 ∈ Ext1(A,A1) such
that ε1 ⊕ ε′1 is a null (i.e., split) extension in ext1(A,A1). The inverse of ε is
now γ(ε′1, ε2). As a consequence, if A is nuclear then ε1 is always semisplit so
γ(ε′1, ε2) provides an inverse for ε in Extr(A,B). Therefore, Extr(A,B) is a
group which contains Extr(A,B). We conjecture that they are equal if A is
nuclear. More generally, we can define a group if in the semisplitness condition
we only require that εr, the rightmost 1-fold exact sequence, is semisplit. We
believe that this is equal to Extr(A,B). In any case it factors through KK as
a consequence of abstract characterizations ([8]).

For example if G is a groupoid and X1, . . . , Xr are r open invariant
subsets of G0, we get a tuple of ideals of C∗

r (G) (C∗
r (G|X1), C

∗
r (G|X2), . . . ,

C∗
r (G|Xr)). The algebras Ek corresponds to C∗

r (G|Yk
), where

Y0 = X1 ∩ . . . ∩Xr, Y1 = X2 ∩ . . . ∩Xr,

Yk = (Xk+1 ∩ . . . ∩Xr) \ (X1 ∪ . . . ∪Xk−1),
Yr = X \ (X1 ∪ . . . ∪Xr−1), Yr+1 = X \ (X1 ∪ . . . ∪Xr).

In particular, if (X,T ) is a MGDS with (DC) condition and Xj are the set
used in the proof of the amenability of G(X,T ) we have

Yk = {x ∈ X : σ(x)j <∞ for j ≥ k + 1 and σ(x)j =∞ for j ≤ k − 1}.

5. DUALITY FOR ROTATION ALGEBRAS

We begin with the simple example of the circle. We give here two ap-
proaches, using extensions and operators. Ideas in the computation below
appear again and again for more complicated algebras so it is worth having in
mind this simple example. The K-homology class ∆ ∈ KK1(C(T)⊗C(T),C)
is the pull-back of the Toeplitz extension by the diagonal morphism, that is
the top row of the diagram,

0 // K // E //

��

C(T)⊗ C(T) //

��

0

0 // K // T // C(T) // 0

where E = C∗((S, z1), (S, z2)) ⊂ T ⊕ C(T)⊗ C(T).
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TheK-theory class δ ∈ KK1(C, C(T)⊗C(T)) is given by the unitary z⊗z
but we would like to view it as a morphism δ : S → C(T)⊗C(T) given by the
restriction to S of the morphism C(T) 3 z 7→ z⊗z ∈ C(T)⊗C(T) . We have to
compute the product δ⊗C(T)σ

12∆ inKK1(C, C(T)⊗C(T))⊗C(T)KK
1(C(T)⊗

C(T),C), that is in KK(S ⊗ C(T), C(T) ⊗ C(T) ⊗ C(T)) ⊗ KK1(C(T) ⊗
C(T)⊗ C(T), C(T)). We use the underline in order to highlight the fact that
C(T) → C(T) is the identity homomorphism. Since δ is a morphism, this
product is given by a pull-back, the top line of the following diagram pulled-
back further by the inclusion S ⊗ C(T) ⊂ C(T)⊗ C(T):

∆′ : 0 // C(T)⊗K // E ′ //

��

C(T)⊗ C(T) //

δ⊗1C(T)

��

0

0 // C(T)⊗K // C(T)⊗ E // C(T)⊗ C(T)⊗ C(T) // 0

Here E ′ = C∗(z⊗(S, z1), 1⊗(S, z2)) with z⊗(S, z1) 7→ z⊗1 and 1⊗(S, z2) 7→ 1⊗
z. Informally, this shows that C(T) of C(T)⊗K acts on C(T) of C(T)⊗C(T) in
the top row of the diagram above. We want to have it act on C(T). We do this
formally by applying a pull-back with a rotation morphism on the right. This is
called an untwist in [15]. Namely, let Θ : C(T)⊗C(T)→ C(T)⊗C(T) defined
by z⊗ 1 7→ z⊗ 1 and 1⊗ z 7→ z⊗ z. If we view C(T)⊗C(T) as C(T→ C(T)),
Θ can be expressed in terms of the gauge action γ as Θ(f)(z) = γz(f(z)). This
is important since Θ restricted to S ⊗ C(T) is given by Θ(f)(t) = γe2πit(f(t))
so it is homotopic to the identity by Θs(f)(t) = γe2πist(f(t)).

Now we pull back ∆′ with Θ but it is enough to notice a subsequence:

0 // K⊗ C(T) //
� _

��

T ⊗ C(T) //
� _

��

C(T)⊗ C(T) //

Θ
��

0

∆′ : 0 // C(T)⊗K // E ′ // C(T)⊗ C(T) // 0

Indeed, by the pull-back construction Θ(z ⊗ 1) = z ⊗ 1 ← z ⊗ (S, z1) = W
and Θ(1⊗ z) = z ⊗ z ← z ⊗ (1, z1z2) = W ∗(1⊗ (S, z2)). Then C∗(W,W ∗(1⊗
(S, z2))) ' T ⊗ C(T). The inclusion K⊗ C(T) ⊂ C(T)⊗K is given by a full
corner since C(T)⊗ Pξ0 is a full corner in both. Therefore, δ ⊗C(T) σ

12(∆) =
τC(T)(T ) so by Bott periodicity this is the same with [1C(T)].

It is shown in [7], Chapter VI.4.β that Aθ, the irrational rotation alge-
bra, is a Poincaré duality algebra. This was one of the first non-commutative
examples. In fact one can notice that Aθ is in the bootstrap category so its
KK-theory is given by the K-theory. The 2-torus T2 has the same K-theory.
By a consequence of the universal coefficient theorem ([4], Corollary 23.10.2)
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they are KK-equivalent and the dual of Aθ can be taken Aθ. But the interest
is to give an explicit description of ∆ and δ.

The dual of Aθ constructed in [7] is Aop
θ , the opposite algebra, which is

isomorphic to A−θ and Aθ. Indeed, let λ = e2πiθ and u, v, u, v be the canonical
generators of Aθ respectively A−θ, that is uv = λvu and uv = λvu. An
isomorphism between Aθ and A−θ is given by u 7→ v, v 7→ u. The arguments
given below work for θ arbitrary if we consider Aθ as the universal C∗-algebra
generated by the commutation relation uv = λvu. The K-homology class is
similar to the K-homology class of the torus T2. It is most easily defined by
an unbounded Fredholm operator. It is known that an orthonormal basis in
L2(τ), τ the canonical trace on Aθ, is given by unvm which we shall also denote
by ξn,m. The algebra Aθ acts on L2(τ) by left multiplication uξm,n = ξm+1,n,
vξm,n = λ−mξm,n+1 and the algebra A−θ = Aop

θ acts by right multiplication
uξm,n = λ−nξm+1,n, vξm,n = ξm,n+1. The action of Aθ commutes with the
action of A−θ so we have an action of Aθ⊗A−θ on H. On L2(τ) there exist two
canonical unbounded operators D1ξn,m = nξn,m and D2ξn,m = mξn,m. These
come from the canonical derivations of the gauge action, δ1x = ∂

∂z1
γz1(x) and

δ2x = ∂
∂z2

γz2(x). Let H = L2(τ)⊕ L2(τ) with the natural grading and

D =
(

0 D1 + iD2

D1 − iD2 0

)
⊂ L(H).

Then D is an essentially selfadjoint unbounded operator with D2 = D2
1 +D2

2.
Therefore, (1 + D2)−1ξm,n = 1

m2+n2 so (1 + D2)−1 is compact. We could
pass to a bounded operator by a standard procedure: F = D√

D2+1
but we

prefer to use the unbounded Kasparov triples ([4], Definition 17.11.1). What
is crucial for the computation below is that D is the Dirac operator of T2 if
we identify L2(τ) with l2(Z2). It is easy to check that [D,u], [D, v], [D,u],
[D, v] are bounded operators since this is true if we replace D by D1 or D2.
Therefore, the pair (H,D) gives an element ∆ in KK(Aθ ⊗ A−θ,C). The
K-theory class is defined by a homomorphism δ : S⊗2 → Aθ ⊗ A−θ. First
define δ : C(T2)→ Aθ ⊗A−θ by δ(z1) = u⊗ u, δ(z2) = v⊗ v and then restrict
to S⊗2 = C0((0, 1)× (0, 1)) ⊂ C(T2). The definition makes sense since u ⊗ u
commutes with v ⊗ v.

To compute the product we use an untwist morphism, an idea from [15]
which is a rotation argument. Let Θ : C(T2) ⊗ Aθ → C(T2) ⊗ Aθ defined on
generators by zj⊗1 7→ zj⊗1, 1⊗u 7→ z1⊗u, 1⊗v 7→ z2⊗v. We denote also by
Θ the restriction to S⊗2. If we use the identification C(T2)⊗Aθ ' C(T2 → Aθ)
then Θ is given by Θ(f)(z) = γz(f(z)). The restriction to S⊗2 = C0((0, 1) ×
(0, 1)) is Θ(f)(t1, t2) = γ(e2πit1 ,e2πit2 )(f(t1, t2)). There is an obvious homotopy
between Θ and the identity, Θs(f)(t1, t2) = γ(e2πist1 ,e2πist2 )(f(t1, t2)), s ∈ [0, 1].
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Therefore, the product [Θ]⊗τAθ
(δ)⊗τAθ(σ12(∆)) is equal to δ⊗σ12(∆). This

is given by the Kasparov module (Aθ⊗H,ψ, 1Aθ
⊗D). The homomorphism ψ :

S⊗2⊗Aθ → L(Aθ⊗H) is given by the restriction to S⊗2 of the homomorphism
C(T2)⊗Aθ → L(Aθ ⊗H), which we shall denote again by ψ,

z1 7→ u∗ ⊗ u, z2 7→ v∗ ⊗ v,
u 7→ u⊗ u∗ ⊗ u, v 7→ v ⊗ v∗ ⊗ v,

where the first component acts as an operator on Aθ while the second and
the third component act on H. We shall define a unitary operator in U ∈
L(Aθ)⊗H such that (Aθ⊗H,UψU∗, 1⊗D) is the class τAθ(T ⊗2) ∈ KK(Aθ⊗
C(T)2, Aθ). By Bott periodicity this is the same as 1Aθ

. Let U(a ⊗ ξm,n) =
λmnvn uma ⊗ ξm,n when restricted to Aθ ⊗ S⊗2. Then U∗(a ⊗ ξm,n) =
λ−mnu−mv−na⊗ξm,n. We have Uψ(z1⊗1)U∗(a⊗ξm,n) = a⊗ξm+1,n, Uψ(z2⊗
1)U∗(a ⊗ ξm,n) = a ⊗ ξm,n+1, Uψ(1 ⊗ u)U∗(a ⊗ ξm,n) = ua ⊗ ξm,n and
Uψ(1⊗v)U∗(a⊗ξm,n) = va⊗ξm,n. Then Uψ(1⊗u)U∗ = u⊗1, Uψ(1⊗v)U∗ =
v ⊗ 1 and U(1 ⊗ D)U∗ = 1 ⊗ D. Therefore, the cycle (Aθ ⊗ H,ψ, 1 ⊗ D) is
unitary equivalent to τAθ(T ⊗2).

We give next another approach using exact sequences. More exactly,
we express the Dirac class as a four term exact sequence. Let s1, s2, s1, s2 :
l2(N2) → l2(N2) be the operators s1ξm,n = ξm+1,n, s2ξm,n = λ−mξm,n+1,
s1ξm,n = λ−nξm+1,n, s2ξm,n = ξm,n+1. To define a Toeplitz algebra E , a kind
of pull-back, let S1 = s1⊕u⊗1, S2 = s2⊕v⊗1, S1 = s1⊕1⊗u, S2 = s2⊕1⊗v
in L(l2(N2))⊕Aθ ⊗A−θ. Let

E = C∗(S1, S2, S1, S2),

P1 = S∗1S1 − S1S
∗
1 = S

∗
1S1 − S1S

∗
1 = P[ξ0,n; n∈N],

P2 = S∗2S2 − S2S
∗
2 = S

∗
2S2 − S2S

∗
2 = P[ξm,0; m∈N],

and J1, J2 the ideals generated in E by P1 respectively P2. Then J1 =
(K(l2(N)) ⊗ L(l2(N))) ∩ E and J2 = (L(l2(N)) ⊗ K(l2(N))) ∩ E . It is easy
to see that J1 and J2 are nuclear. Indeed, P1J1P1 = C∗(P1s2P1) is a Toeplitz
algebra generated by an isometry and at the same time a full corner in J1.

Proposition 5.1. We have J1J2'K(l2(N2)) and E/(J1+J2)'Aθ⊗A−θ.

Proof. For the first isomorphism we show that P1xP2y is a finite rank
operator for any x, y finite products of Sj , Sj , S

∗
j , S

∗
j . Indeed, if P2yξm,n 6= 0

then n is bounded by a constant depending only on y and if P1xξm,n 6= 0 then
m is bounded by a constant depending only on x. Therefore if P1xP2yξm,n 6= 0
then m and n are bounded by a constant depending only on x and y so
J1J2 ⊂ K. The opposite inclusion follows from P1P2 = Pξ0,0 . For the second
isomorphism we have the following commutation relations (the hat means

modulo J1 + J2) Ŝ1Ŝ2 = λŜ2Ŝ1, Ŝ2Ŝ2
∗

= Ŝ2
∗
Ŝ2 = 1, Ŝ1Ŝ2 = λŜ2Ŝ1, Ŝ1Ŝ2 =
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λŜ2Ŝ1, SiSj = SjSi, S∗i Sj = SjS
∗
i . By the universality of Aθ we can define a

morphism Aθ ⊗A−θ → E/J1 + J2 by u 7→ Ŝ1, v 7→ Ŝ2, u 7→ Ŝ1, v 7→ Ŝ2. This
is injective since the diagram

Aθ ⊗A−θ
//

id

&&NNNNNNNNNNN
E/J1 + J2

��
Aθ ⊗A−θ

is commutative, where the vertical arrow is the restriction to E of the projec-
tion L(l2(N2))⊕Aθ ⊗A−θ → Aθ ⊗A−θ. Surjectivity is obvious. �

The above proof shows that if θ is irrational we do not have to consider
that kind of pull-back since the algebra Aθ ⊗ A−θ is simple. By Theorem 4.3
we have a 4-term exact sequence

0→ K(l2(N2))→ J2 → E/J1 → Aθ ⊗A−θ → 0.

The nuclearity of E follows from the nuclearity of J1 + J2 Therefore, we have
a class ∆ ∈ Ext2(Aθ ⊗A−θ,C). This is our K-homology class. The K-theory
class and the morphism Θ is defined as in the Fredholm operator approach
above. The product [Θ]⊗ τAθ

(δ)⊗ τAθ(σ12(∆)), which is equal to δ⊗ σ12(∆),
is given by a pull-back:

0 // Aθ ⊗K // E ′1 // E ′2 // C(T2)⊗Aθ
//

Θ
��

0

C(Tr)⊗Aθ

δ⊗id
��

0 // Aθ ⊗K // E1 // E2 // Aθ ⊗A−θ ⊗Aθ
// 0

Thinking of the 2-fold exact sequence as 2 splices of 1-fold exact sequences
this pull-back is constructed inductively. In fact, only E ′r is changed.

Let W1 = u∗ ⊗ S1, W2 = v∗ ⊗ S2, u′ = W ∗
1 (1⊗ S1), v′ = W ∗

2 (1⊗ S2).

Proposition 5.2. One has
(i) W1W2 = W2W1;
(ii) W ∗

1W2 = W2W
∗
1 ;

(iii) Wj(1⊗ Si) = (1⊗ Si)Wj for any i, j ∈ {1, 2};
(iv) W ∗

j (1⊗ Si) = (1⊗ Si)W ∗
j for any i, j ∈ {1, 2};

(v) W ∗
j Wj −WjW

∗
j = 1⊗ Pj;

(vi) Wju
′ = u′Wj, Wjv

′ = v′Wj for j ∈ {1, 2};
(vii) u′v′ = λv′u′.
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Proof. (i) and (ii) follow from the relations u∗v∗ = λv∗u∗ and S1S2 =
λS2S1.

(iii) and (iv) follow from the commutation between C∗(Si) and C∗(Sj).
(iv) follows from Pj = S

∗
jSj − SjS

∗
j .

(v) is an immediate consequence of (i)–(iv).
(vi) and (vii) follow from S1S2 = λS2S1. �

A consequence of Proposition 5.2 is that there is a morphism T ⊗2⊗Aθ →
C∗(W1,W2, u

′, v′) with S ⊗ 1 7→ W1, 1 ⊗ S 7→ W2, u 7→ u′, v 7→ v′. Indeed,
T ⊗2 → C∗(W1,W2) is a morphism by the universality of Toeplitz algebra,
u′ = u ⊗ S∗1S1, v′ = v ⊗ S∗2S2, S

∗
1S1, S

∗
2S2 are unitaries with u′v′ = λv′u′ so

C∗(u′, v′) is an image of Aθ.
Now, we have the diagram

0 // K⊗Aθ
//

��

T ⊗K⊗Aθ
//

��

C(T)⊗ T ⊗Aθ
//

��
0 // Aθ ⊗K(l2(N2)) // E ′1 // E ′2 //

// C(T2)⊗Aθ
// 0

// C(T2)⊗Aθ
// 0

By Proposition 5.2(v) we have Aθ ⊗ P[ξ0,0] ⊂ C∗(Wj , u
′, v′) so the leftmost

vertical arrow in the diagram above sends a full corner onto a full corner.
Therefore, the two sequences give rise to the same Ext-theory class.

6. A GRUPOID PICTURE OF THE DUALITY
FOR HRG ALGEBRA

One can improve the result of [20] for any higher rank graph Λ with the
following finitness condition

(F) the set {λ : σ(λ) = n} is nonvoid and finite for any n ∈ Nr

such that 0 < #Λn(v) <∞ and 0 < #Λn(v) <∞ where n ∈ Nr, v ∈ Λ0. One
direction is to give up the aperiodicity condition. Inspired by the example of
rotation algebras, we can replace the Toeplitz algebra E with the subalgebra
Ẽ of E ⊕ C∗(Λ) ⊗ C∗(Λop) generated by L̃λ = Lλ ⊕ (sλ ⊗ 1) and R̃λ = Rλ ⊕
(1 ⊗ tλ). We refer to E as the first summand of Ẽ and to C∗(Λ) ⊗ C∗(Λop)
as to the second summand. This trick will give rise to a kind of pull-back
for long exact sequences. The constructions are the same as in [20] with



23 Toeplitz algebras arising from actions of Nr 227

OΛ replaced by C∗(Λ) and OΛop replaced by C∗(Λop). In this way we avoid
aperiodicity conditions.

Another way to improve the result is to change one Cuntz-Krieger rela-
tions which define the graph algebra. We want it in order to include rotation
algebras. We want a map c : Λ× Λ→ T and isometries sλ such that

sλsµ = c(λ, µ)sλµ.

For associativity we must have

sα(sβsγ) = sαc(β, γ)sβγ = c(β, γ)c(α, βγ)sαβγ ,

(sαsβ)sγ = c(α, β)sαβsγ = c(α, β)c(αβ, γ)sαβγ ,

so c must satisfy the condition

c(α, β)c(αβ, γ) = c(α, βγ)c(β, γ),

where s(α) = t(β), s(β) = t(γ). An example is

c(λ, µ) =
∏
i<j

c
σ(λ)iσ(µ)j

ij ,

where cij ∈ T. When Λ is the monoid Nr, we get the universal rotation algebras
generated by n unitaries u1, . . . , un subject to the relations uiuj = cijujui,
i < j.

TheK-theory class is the same as in [20]. It is given by n partial unitaries

wk =
∑

σ(λ)=ek

s∗λ ⊗ tλ.

More exactly, δ ∈ Er(C, C∗(Λ) ⊗ C∗(Λop))KK(S⊗r, C∗(Λ) ⊗ C∗(Λop)) is de-
fined by restricting the morphism C(Tr) → C∗(Λ) ⊗ C∗(Λop), zk 7→ wk to
S⊗r. We note that the condition (F) we imposed on Λ at the beginning of
this section is crucial for these operators to be well defined (the sum must be
finite) and partial unitaries.

To define the K-homology class we twist the creations

Lλδµ =
{
c(λ, µ)δλµ if s(λ) = t(µ)
0 otherwise,

Rλδµ =
{
c(µ, λ)δµλ if s(µ) = t(λ)
0 otherwise.

LλΩ = RλΩ = δλ for any λ ∈ Λ∗.

One can check that LλLµδα = c(µ, α)c(λ, µα)δλµα and Lλµδα = c(λµ, α)δλµα.
Using the relation c(λ, µ)c(λµ, α) = c(µ, α)c(λ, µα) we get LλLµ = c(λ, µ)Lλµ.
Similarly, one has RλRµ = c(µ, λ)Rµλ.
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The closed linear span of a set S in a normed linear space is denoted by
[S] and the projection onto a closed subspace L of a Hilbert space H by PL.
For any j ∈ {1, . . . , r} and a ∈ Λo we define

Pa = P[Ω,δλ|o(λ)=a], P j
a = P[Ω,δλ|o(λ)=a and σ(λ)j=0],

Qa = P[Ω,δλ|t(λ)=a], Qj
a = P[Ω,δλ|t(λ)=a and σ(λ)j=0],

P j = P[Ω,δλ|σ(λ)j=0].

Define LΩ = 1 = RΩ and for a ∈ Λo let La be the projection Pa and Ra the
projection Qa. It is easy to check that for any µ ∈ Λ∗, j ∈ {1, . . . , r} and
a ∈ Λo we have

L∗µLµ = Ps(µ), Pa = La

∑
t(λ)=a; σ(λ)=ej

LλL
∗
λ + P j

a ,

R∗µRµ = Qt(µ), Qa = Ra

∑
t(λ)=a; σ(λ)=ej

RλR
∗
λ +Qj

a.

Note also that

1−
∑

σ(λ)=ej

LλL
∗
λ = P j = 1−

∑
σ(λ)=ej

RλR
∗
λ

and for all k ∈ Nr we have∑
σ(λ)=k

LλL
∗
λ =

∑
σ(λ)=k

RλR
∗
λ = P[δµ|σ(µ)≥k].

We have similar relations in the algebra Ẽ if we replace L with L̃ and R with R̃

L̃a =
∑

t(λ)=a; σ(λ)=ej

L̃λL̃
∗
λ + P j

a , R̃a =
∑

t(λ)=a; σ(λ)=ej

R̃λR̃
∗
λ +Qj

a.

1−
∑

σ(λ)=ej

L̃λL̃
∗
λ = P j = 1−

∑
σ(λ)=ej

R̃λR̃
∗
λ

As in [20], the Toeplitz algebra E contains a tuple of r ideals (J1, . . . , Jr),
Jj = 〈P j〉 the closed two-sided ideals generated by P j in Ẽ . Note that the
ideals Jk are in the first summand.

As in [20], Lemma 2.1 we have
⋂r

j=1 Jj = K(F) and as in [20], Theo-
rem 2.2, there is a morphism C∗(Λ)⊗C∗(Λop) ' Ẽ/J{1,...,r} given by sλ⊗ 1 7→̂̃Lλ and 1 ⊗ tλ 7→ ̂̃Rλ. The pull back construction, more exactly the second
summand, is used to prove the injectivity of the above isomorphism which
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used the uniqueness of the Cuntz-Krieger relations associated to the graph.
Indeed, since J{1,...,r} ⊂ π1(E) we have the diagram

C∗(Λ)⊗ C∗(Λop) //

id

))SSSSSSSSSSSSSSS
Ẽ/J{1,...,r}

��
C∗(Λ)⊗ C∗(Λop)

where the vertical arrow is the projection onto the second summand E/J{1,...,r}
3 x̂⊕ y 7→ y ∈ C∗(Λ)⊗C∗(Λop). From the construction in Section 4 we get a
long exact sequence

0→ K(F)→ E1 → . . .→ Er → C∗(Λ)⊗ C∗(Λop)→ 0,

therefore, an E-theory class ∆ ∈ Er(C∗(Λ) ⊗ C∗(Λop),C) = Kr(C∗(Λ) ⊗
C∗(Λop)). To compute the product δ ⊗C∗(Λop) σ12(∆) = τC∗(Λ)(δ) ⊗ τC∗(Λ)·
·(σ12(∆)), which is a class in E0(S⊗r ⊗ C∗(Λ),S⊗r ⊗ C∗(Λ)), we find [Θ] ⊗
τC∗(Λ)(δ)⊗τC∗(Λ)(σ12(∆)) = [τC∗(Λ)(δ)◦Θ]⊗τC∗(Λ)(σ12(∆)), where Θ : S⊗r⊗
C∗(Λ) → S⊗r ⊗ C∗(Λ). This is defined by restricting the morphism Θ :
C(Tr)⊗C∗(Λ)→ C(Tr)⊗C∗(Λ), Θ(f)(z) = γz(f(z)), γ the gauge action, to
S⊗r⊗C∗(Λ). This restriction is in turn homotopic to the identity. Our product
is a pull-back ([13], Proposition 5.8), that is the top row of the diagram

0 // C∗(Λ)⊗ E0 // E ′1 // . . . // E ′r //

0 // C∗(Λ)⊗ E0 // C∗(Λ)⊗ E1 // . . . // C∗(Λ)⊗ Er //

// C(Tr)⊗ C∗(Λ) //

Θ
��

0

C(Tr)⊗ C∗(Λ)

δ⊗id
��

// C∗(Λ)⊗ C∗(Λop)⊗ C∗(Λ) // 0

To show that it gives the same element as τC∗(Λ)(T ⊗r) ∈ Er(S⊗r ⊗
C∗(Λ), C∗(Λ)) (which is 1C∗(Λ) ∈ E(C∗(Λ), C∗(Λ)) by Bott periodicity), we
shall identify a subsequence which gives τC∗(Λ)(T ⊗r). This is done by identify-
ing in C∗(Λ)⊗ Ẽ an image E ′ of the algebra T ⊗r⊗C∗(Λ) which preserves the
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canonical tuple of ideals of T ⊗r ⊗ C∗(Λ). Therefore, it gives a commutative
diagram

0 // C∗(Λ)⊗ E0 // E ′1 // · · · // E ′r −→

0 // T0 ⊗ C∗(Λ) //

OO

T1 ⊗ C∗(Λ) //

OO

· · · // Tr ⊗ C∗(Λ) −→

OO

// C(Tr)⊗ C∗(Λ) // 0

// C(Tr)⊗ C∗(Λ) // 0

In addition, the leftmost vertical arrow gives an E-theoretic equivalence since
the algebras C∗(Λ)⊗ PΩ ⊂ C∗(Λ)⊗ E0 and P0 ⊗C∗(Λ) ⊂ T0 ⊗C∗(Λ) are full
corners. To construct the algebra E ′ we define

Wj =
∑

σ(λ)=ej

s∗λ ⊗ R̃λ, Vλ =
[
W σ(λ)

]∗(1⊗ L̃λ),

where for a tuple of r commuting operators x = (x1, . . . , xr) and k ∈ Nr we
define xk = xk1

1 . . . xkr
r . One can prove as in [20], Proposition 6.4 that C∗(Λ) '

C∗(Vλ | λ ∈ Λ∗), the isomorphism being given by sλ 7→ Vλ. The pull-back
construction replaces the uniqueness of OΛ invoked in [20], Proposition 6.4
and gives the injectivity. The isometries (Wk)k commute with each other and
with Vλ’s. So we have a morphism T ⊗r ⊗ C∗(Λ) → C∗(Wk, Vλ) which is the
identity on the full corner PΩ ⊗C∗(Λ). All these statements follow exactly as
in [20].

We want to give this duality a groupoid interpretation. First we make
some comments about our twisted algebras which include rotation algebras.
We do not know a 2-cocycle α on G(X,T ) as in Section 2 which gives the
twisted algebra given by a cocycle c. However, for the particular cocycles
c(λ, µ) =

∏
i<j c

σ(λ)iσ(µ)j

ij , which include the rotation algebras, we can define

α((x, z, y), (x′, z′, y′)) =
∏
i<j

c
ziz

′
j

ij .

Let us start with theK-theory class. More precisely, from the groupoid picture
of the algebra C∗(Λ)⊗ C∗(Λ) the partial unitaries wk are two-sided shifts on
the double infinite paths space. Indeed, conform [20], Proposition 4.1

wkw
∗
k = w∗kwk =

∑
a∈Λo

sa ⊗ ta.
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In the groupoid G(Λ∞, T ) × G((Λop)∞, T op), this projection corresponds to
the set 1Z where

Z = {(x, y) ∈ Λ∞ × (Λop)∞; s(x) = s(y)}.
The isometry wk is given by the bisection∑

σ(λ)=ek

1{((λx,y),(1,−1),(x,λy))}.

//OO
t(λ)

��oo ��
λ

(1,−1)

y

x

//OOOO λ

y

x

��
s(λ)
oo

Identifying the set Z with the set of two-sided infinite words, we can say that
wk is the two sided shift in the direction k. The transformation group of the
n shifts on Z, Z o Zn is an open subgroupoid of G(Λ∞, T )×G((Λop)∞, T op).
Note that here one can see clearly the necessity of the condition (F) on Λ.
Without it the space Z may not be locally compact or the two-sided shifts on
the double infinite path space may not be well defined on Z (when the graph
has sinks or sources). The morphism C(Tr) → C∗(Λ) ⊗ C∗(Λop), zk 7→ wk

is given by the inclusion of C∗(Zr) → C(Z) n Zr. The twist morphism Θ is
given by the topological isomorphism of groupoids

Zr ×G(Λ∞, T ) 3 (z, x) 7→ (z + b(x), x) ∈ Zr ×G(Λ∞, T ),

where b is the cocycle which gives the gauge action b(x, z, y) = z. The restric-
tion morphism is Rr × G(Λ∞, T ) 3 (t, x) 7→ (t + b(x), x) ∈ Rr × G(Λ∞, T ).
The homotopy of this morphism and the identity is obtained by multiplying
b(x) with a parameter s ∈ [0, 1].

To give a groupoid description of the K-homology class it would be
ideal to have a conceptual groupoid description (like semidirect product) of
the two-sided Toeplitz algebra E . We have not been able to do it but we
can still use a groupoid of germs. Let Xl, Xr, X be the Gelfand spectrum
of the commutative unital algebras El ∩ l∞(Λ), Er ∩ l∞(Λ) respectively E ∩
l∞(Λ) where l∞(Λ) ⊂ L(l2(Λ)) is the algebra of diagonal operators. There
is an isomorphism from L∗λLλC(X)L∗λLλ to LλL

∗
λC(X)LλL

∗
λ given by f 7→

LλfL
∗
λ. Therefore, the isometries {Lλ : λ ∈ Λ} give rise by Gelfand duality to

partial homeomorphisms of Xl, so they generate a pseudogroup Gl. Similarly,
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{Rλ : λ ∈ Λ} give rise to partial homeomorphisms of Xr and they generate
a pseudogroup Gr. The set of partial isometries {Lλ, Rλ : λ ∈ Λ} gives also
partial homeomorphisms {lλ, rλ : λ ∈ Λ} of X which generate a pseudogroup
G. We denote by Gl, Gr, G the corresponding groupoids of germs. It is
important to have in mind that the maps lλ and rλ extend the maps s(λ)Λ 3
x 7→ λx ∈ λΛ respectively Λt(λ) 3 x 7→ xλ ∈ Λλ so we shall freely use the
notation λx = lλx and yλ = rλy whenever x ∈ dom(lλ), y ∈ dom(rλ). Here
our convention is that Ωx = x for any x ∈ X.

Xl is easily described since the algebra El ∩ l∞(Λ) is generated by the
projections LλL

∗
λ. It is the space appearing in Example 2.2(i) of [12]. Xr is

the same space when we replace Λ with Λop. However, the space X seems
to be much more complicated. The difficulty appears from the projections
PjL

∗
λRµR

∗
µLµPj with σ(λ) = σ(µ) = ej which are not in the algebra generated

by the projections LλL
∗
λ and RλR

∗
λ. This projection is the domain of the

partial isometry R∗µLµPj which is not given by shift equivalence.

oo

����oo
λ

µ

R∗µLλoo_ _ _ _ _ _ _ _ _

This does not happen in the rank one case since left and right creations com-
mute up to compact operators.

Lemma 6.1. (i) The set Λ is an open dense discrete subset of X (X is a
compactification of Λ).

(ii)The algebra E is the image of the canonical representation π of C∗
r (G)

on l2(Λ) = F.

Proof. (i) E contains the ideal of compact operators K(F) so E ∩ l∞(Λ)
contains the diagonal algebra K(F) ∩ l∞(Λ) = C0(Λ) as an essential ideal.
Therefore, X contains the discrete set Λ as a dense open subset. X is compact
since it is the spectrum of an unital algebra.

(ii) The set Λ is invariant with respect to the partial homeomorphisms
lλ, rλ so it is invariant for the groupoid G. It is also open so it gives rise to an
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ideal of C∗
r (G). Since the reduction G|Λ is the transitive groupoid, this ideal

is the ideal of compact operators. We have a representation π of C∗
r (G) on

l2(Λ) induced by the canonical representation of the ideal K(l2(Λ)): π(T )δλ =
π(TP[δλ])δλ, T ∈ C∗

r (G). The image π(C∗
r (G)) in L(l2(Λ)) is exactly the

algebra E . Indeed, a basis for the topology of the groupoid G is given by (Y,w)
where 1Y is a projection in E ∩ l∞(Λ) and v is a finite word in lλ, l

−1
λ , rλ, r

−1
λ

such that v−1 is a homeomorphism on Y . Therefore, π(1(Y,w)) = 1Y w ∈ E ,
where w is the word in Lλ, L

∗
λ, Rλ, R

∗
λ obtained by replacing l and r with L

and R. Therefore, the image of the representation π is contained in E and it
is clear that Lλ, Rλ are in this image so π(C∗

r (G)) = E . �

We want now to identify the morphism T ⊗r ⊗ C∗(Λ) → E ⊗ C∗(Λ),
Si →Wi and sλ → Vλ. In the following proposition we give the main properties
of X. The continuous map σ defined on Xl and Xr is the extended shape given
in Example 2.2(i).

Proposition 6.2. (i) There are canonical continuous surjective maps pl,
pr and σ such that the diagram

Xl

σ

  B
BB

BB
BB

B

X

pl

>>}}}}}}}}

pr   A
AA

AA
AA

A Nr

Xr

σ

>>||||||||

is commutative where pl(λ) = pr(λ) = λ and σ extends the shape on Λ.
(ii) The source and terminal maps s and t on Λ extends to continuous

maps on X.
(iii) X has the factorization property: if x ∈ X, σ(x) ≥ k + p, k, p ∈ Nr

then there exists unique λ, µ ∈ Λ with σ(λ) = k, σ(µ) = p and y ∈ X with
σ(y) = σ(x)− k − p such that x = λyµ.

(iv) Jk = π(C∗
r (G|Xk

)) where Xk = {x ∈ X : σ(x)k <∞}.
(v) Let Z = {(x, y) ∈ X × Λ∞ : s(x) = t(y)}. Then the map

φ = (σ, ψ) : (Λ× Λ∞) ∩ Z 3 (x, y) 7→ (σ(x), xy) ∈ Nn × Λ∞

extends to a continuous surjective map φ : Z → Nn × Λ∞.

Proof. (i) We have the inclusion of algebras El ∩ l∞(Λ) ⊂ E ∩ l∞(Λ),
that is C(Xl) ⊂ C(X), with identity on C0(Λ) hence there is a continuous
surjection X → Xl which is the identity on the set Λ. Similarly, there is a
continuous surjection X → Xr which is the identity on the set Λ. The diagram
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is commutative because σpl = σpr on Λ which is a dense set. We denote by σ
the shape extended to Xl, Xr or X.

(ii) X is a disjoint union of dom(la) so we can define s(x) = a if x ∈
dom(la) and t(x) = a if x ∈ dom(ra). s and t are continuous since s−1({a}) =
dom(la) and t−1({a}) = dom(ra).

(iii) We have a disjoint union

X =
⋃

σ(λ)=k

dom(lλ) =
⋃

σ(λ)=k

dom(rλ).

Therefore, there is one and only one λ with σ(λ) = k such that x ∈ dom(lλ).
We can take x′ = l−1

λ (x) and then x = λx′. Moreover, σ(x′) = σ(x)− k. This
can be checked on the set {λµ : µ ∈ Λ} which is a dense set in dom(l∗λ) =
ran(lλ). We repeat now this reason for right factorization of x′.

(iv) The projection Pk corresponds to the open set {x ∈ X : σ(x)k = 0}
which generates the open G-invariant set Pk is {x ∈ X : σ(x)k <∞}.

(v) We have to show that the maps (Λ× Λ∞) ∩ Z 3 (x, y) 7→ σ(x) ∈ Nr

and (Λ× Λ∞) ∩ Z 3 (x, y) 7→ xy ∈ Λ∞ extend to continuous maps. The first
claim is proven in (i) above. To prove the second let (λn, yn) be a convergent
sequence in Z. We have to prove that (λnyn)(0,m) is eventually constant.
Since yn is convergent in Λ∞ we know that yn(0,m) is eventually constant so
we can suppose it is µ. We know that the sequence (λnµ)n converges in X since
Rµ is continuous so it converges also in Xl. This implies that (λnµ)(0,m) =
(λnyn)(0,m) is eventually constant. For the surjectivity of φ we use the density
of the set Nr × Λ∞ in Nr × Λ∞. This dense set is in the image of φ which is
closed since Z is compact. �

From the factorization in (iii) of the proposition above, we can define
commuting left and right semigroups of shifts (L,R) on X with dom(Lk) =
dom(Rk) = {x ∈ X : σ(x) ≥ k}

Lkx = x′, Rk = x′′ where x = λx′ = x′′µ with σ(λ) = σ(µ) = k.

These shifts are continuous since their restrictions to dom(lλ) respectively
dom(rλ) are l−1

λ and r−1
λ . We believe that our desired conceptual description

of the groupoid G comes from these two shifts but we have not been able to
find it.

Of particular interest is the set X∞ = X \
⋃r

j=1Xj .

Lemma 6.3. We have X∞ ⊂ Λ∞ × (Λop)∞ and G|X∞ ⊂ Germ(Λ∞ ×
Λop, T1 × T2) where T1 and T2 are the MGDS on Λ∞ and (Λop)∞ given in
Example 2.2 (i).

Proof. From the previous proposition (iv), we have

C(X∞) = E ∩ l∞(Λ)
/

((J1 + . . .+ Jr) ∩ l∞(Λ)).
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From [20], Theorem 2.2 the left and right creations and their adjoints com-
mute modulo J1 + . . . + Jr. Therefore the algebra C(X∞) is generated by
LλL

∗
λRµR

∗
µ

/
(J1 + . . .+ Jr). There is a surjection C∗(sλs

∗
λ ⊗ 1, 1 ⊗ tλt∗λ) →

C(X∞), which sends

sλs
∗
λ ⊗ 1 to LλL

∗
λ

/
J1 + . . .+ Jr and 1⊗ tλt∗λ to RµR

∗
µ

/
J1 + . . .+ Jr.

By Gelfand duality this map gives rise to an injective map from X∞ to Λ∞×
(Λop)∞. Moreover, the restrictions to X∞ of lλ and rλ is in the restriction to
X∞ of the pseudogroup generated by T1 and T2 on Λ∞ × (Λop)∞. �

Proposition 6.4. (i) The maps

Tm : {(x, y) ∈ Z : x = x′x′′, σ(x′′) = m} 3 (x, y) 7→ (x′, x′′y′′) ∈ Z
Vm : Z → Z, Vm(x, y) = (Lm(x(y(0,m))), Lm(y))

define a MGDS (T, V ) on Z which satisfies the condition (DC).
(ii)The exit time map σ defined in Section 2 is the same as the map σ in

Proposition 6.2.

Proof. (i) We note that dom(Tm) = {(x, y) ∈ Z : σ(x) ≥ m} and
dom(Vm) = Z so dom(TmVk) = dom(VkTm) = dom(Tm). Tm is a local homeo-
morphism from Z ∩ (RλR

∗
λ × Λ∞) to Z ∩ (X × sλs

∗
λ) and Vm is a homeo-

morphism from {(x, y) ∈ Z : xy(0,m) ∈ LλL
∗
λ} to {(x, y) ∈ Z : t(x) = s(λ)}
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with σ(λ) = m. Using the map φ from Proposition 6.2, we can see the map
(Tm, Vk) as a homeomorphism from the set φ−1({(p, x) : p ≥ m,x ∈ dom(lλ)})
to φ−1({(p, x) : p ≥ 0, x ∈ dom(ls(λ))}). The semigroup condition of T and
V is easily verified. We prove now that TmVk = VkTm. Let (x, y) ∈ Z with
σ(x) ≥ m. Write x = x′x′′, y = y′y′′, x′′y′ = αβ with σ(x′′) = σ(β) = m,
σ(y′) = σ(α) = k.

σ(x′′) = m

x′

x′′

x :

oo�� ��

oo ��ooy :
y′

y′′

σ(y′) = k

x′′

y′

=
α

β

σ(α) = k
σ(β) = m

One has

TmVk(x, y) = Tm(Lk(x′x′′y′), y′′) = Tm(Lk(x′αβ), y′′)

= Tm(Lk(x′α)β, y′′)) = (Lk(x′α), βy′′),

VkTm(x, y) = VkTm(x′x′′, y′y′′) = Vk(x′, x′′y′y′′)

= Vk(x′, αβy′′) = (Lk(x′α), βy′′).

The (DC) condition is satisfied since dom(TmVk)∩dom(Tm′Vk′) = dom(Tm)∩
dom(Tm′) = {(x, y) ∈ Z : σ(x) ≥ m ∨m′} = dom(Tm∨m′).

(ii) Recall that the map σ in Section 2 was σ(x) = sup{m : x ∈
dom(Tm)}. In our case this supremum is sup{m : m ≤ σ(x)} = σ(x). �

There is a natural equivariant map between MGDS (Z, (T, V )) and the
MGDS which gives the algebra T ⊗r ⊗ C∗(Λ). Here, an equivariant map be-
tween two MGDS (X,T ) and (Y, S) means a map φ : X → Y such that
φ ◦ Tm = Sm ◦ φ.

Proposition 6.5. Let (Nr
, S), (Λ∞,W ) be the MGDS of Example 2.2 (i),

(ii). The map φ of Proposition 6.2 is an equivariant map between (Z, (T, V ))
and (Nn × Λ∞, S ×W )

Proof. Regarding domains, it is enough to check that dom(Skφ) =
dom(φTk) since Wk and Vk are everywhere defined. We have

φ(dom(Tk) = φ({(x, y) ∈ Z; σ(x) ≥ k}) = {(n, x); n ≥ k} = dom(Sk)φ.

Now, it remains to to check that Skφ(x, y) = φTk(x, y) and Wkφ(x, y) =
φVk(x, y) for (x, y) ∈ Z with σ(x) ∈ Nn since Λ is a dense set in X. If
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x = x′x′′ with σ(x′′) = k one has

Sk(φ(x, y)) = Sk(σ(x), xy) = (σ(x)− k, xy)

= (σ(x′), x′x′′y) = φ(x′, x′′y) = φ(T k(x, y)).

If y = y′y′′ and xy′ = αβ with σ(y′) = σ(α) = k (so σ(x) = σ(β) = k) one has

Wk(φ(x, y)) = Wk(σ(x), xy′y′′) = Wk(σ(x), αβy′′)

= (σ(x), βy′′) = (σ(β), βy′′) = φ(β, y′′) = φ(Vk(x, y)). �

The next theorem gives a condition for a morphism of r-discrete groupoids
to induce a morphism of the corresponding reduced algebras.

Lemma 6.6. Let φ : G1 → G2 be a proper morphism of two r-discrete
groupoids such that φ : Gx

1 → G
φ(x)
1 is a bijection for any x ∈ G0

1. Then the
map Cc(G1) 3 f 7→ f ◦ φ ∈ Cc(G2) extends to a morphism φ̃ : C∗

r (G2) →
C∗

r (G1).

Proof. We have to show that the map Cc(G2) 3 f 7→ L(f ◦ φ) ∈
L(L2(G1)) is a bounded representation, where L2(G1) is the Hilbert module
given by the field of Hilbert spaces G0

1, l
2(Gx

1). Indeed,

f̃ ? g(t) = f ? g(φ(t)) =
∑

s∈G
φ(s(t))
2

f(φ(t)s)g(s−1).

We use now the assumption that φ : Gx
1 → G

φ(x)
1 is a bijection and we get

f̃ ? g(t) =
∑

v∈G
s(t)
1

f(φ(t)φ(v))g(φ(v)−1) = f̃ ? g̃(t). �

Proposition 6.7. The previews lemma holds if G1 = G(Z, (T, V )) and
G2 = G(Nn × Λ∞, S ×W ).

Proof. First let us prove that the lemma holds for the map σ and the
pairs of groupoids G1 = G(Z, T ) and G2 = G(Nn

, S). To prove the surjec-
tivity let (λ, x) ∈ Z, (σ(λ), n −m, k) ∈ G(Nr

, S) such that n ≤ σ(λ), m ≤ k
and σ(λ) − n = k − m. We construct (λ′, x′) ∈ Z such that σ(λ′) = k
and Tn(λ, x) = Tm(λ′, x′). Since n ≤ σ(λ) one can decompose λ = αβ
with σ(β) = n. Then λ′ = α((βx)(0,m))) and x′ = (βx)(m,∞) have the
properties required To prove the injectivity let (λ, x) ∈ Z, (λ′, x′) ∈ Z,
(λ′′, x′′) ∈ Z, n,m, p, q ∈ Nr such that n − m = p − q, σ(λ′) = σ(λ′′)
Tn(λ, x) = Tm(λ′, x′) and Tp(λ, x) = Tq(λ′′, x′′). Because of the condition (DC)
of T we have Tn∨p(λ, x) = Tm+n∨p−n(λ′, x′) and Tn∨p(λ, x) = Tq+n∨p−p(λ′′, x′′)
so Tk(λ′, x′) = Tk(λ′′, x′′) where k = m + n ∨ p − n = q + n ∨ p − p, hence
λ′ = αβ′, λ′′ = αβ′′ with σ(β′) = σ(β) = k and β′x′ = β′′x′′. The uniqueness
of the factorization of a word in Λ∞ implies that λ′ = λ′′ and x′ = x′′.
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We prove now that the above lemma is true for ψ, G1 = G(Z, V ) and
G2 = G(Λ∞,W ). To prove the surjectivity, let (λx, n − m, y) ∈ G(Λ∞,W )
with σ(α) = n, σ(β) = m, λx = αz, y = βz. One has λx(0, n) = αγ so
Tn(λ, x) = (γ, x(n,∞)). Let λ′ be given by the factorization βγ = λ′β′ with
σ(β)′ = m and x′ = β′x(n,∞). Then Tm(λ′, x′) = (γ, x(n,∞)) = Tn(λ, x) so
((λ, x), n−m, (λ′, x′)) ∈ G(Z, V ) and λ′x′ = λ′β′x(n,∞) = βγx(n,∞) = βz =
y. To prove the injectivity let ((λ, x), n−m, (λ′, x′)), ((λ, x), p− q, (λ′′, x′′)) ∈
G(Z, V ) such that n − m = p − q, λ′x′ = λ′′x′′. As for G(Z, T ) we have
Vk(λ′, x′) = Vk(λ′′, x′′) where k = m + n ∨ p − n = q + n ∨ p − p. From the
definition of V one has the factorizations λ′α = α′γ, λ′′β = β′γ, x′ = αy,
x′′ = βy where σ(α) = σ(α′) = σ(β) = σ(β′) = k. Then we have α′γy = β′γy,
hence α′ = β′ and x′ = x′′. We also have λ′α = λ′′β = α′γ so λ′ = λ′′.

We show now that lemma holds for φ, G1 = G(Z, (T, V )) and G2 =
G(Nn×Λ∞, S×W ). First we show the injectivity. Let (λ, x), (λ′, x′), (λ′′, x′′) ∈
Z, n,m, n′,m′, p′q, p′, q′ ∈ Nr such that Vn(Tm(λ, x)) = Vn′(Tm′(λ′, x′)),
Vp(Tq(λ, x)) = Vp′(Tq′(λ′′, x′′)), n−n′ = p−p′, m−m′ = q−q′, σ(λ′) = σ(λ′′),
λ′x′ = λ′′x′′. As before we have Vn(Tm∨q(λ, x)) = Vn′(Tm′+m∨q−m(λ′, x′)) and
Vp(Tm∨q(λ, x)) = Vp′(Tq′+m∨q−q(λ′, x′)) so Vn(Tm∨q(λ, x)) = Vn′(Tk(λ′, x′))
and Vp(Tm∨q(λ, x)) = Vp′(Tk(λ′′, x′′)) with k = m′+m∨q−m = q′+m∨q−q.
As ψ(Tk(λ, x)) = ψ(λ, x) the injectivity result proven above for ψ, G(Z, V ) and
G(Λ∞,×W ) shows that Tk(λ′, x′) = Tk(λ′′, x′′). Now we apply the injectivity
result for σ, G(Z, T ) and G(Nn

, S) to get (λ′, x′) = (λ′′, x′′).
To prove the surjectivity let (λ, x) ∈ Z and ((σ(λ), λx), (n − n′,m −

m′), (k, y)) ∈ G(Nn×Λ∞, S×W ). We apply the surjectivity proven above for
ψ, G(Z, V ) and G(Λ∞,×W ) in the point Tm(λ, x). There is (α, β) ∈ Z such
that αβ = y and Vn(Tm(λ, x)) = Vn′(α, β). It follows that σ(α) = σ(λ)−m =
k−m′. We define now λ′ = αβ(0,m′) and x′ = β(m′,∞). One has σ(λ′) = k,
λ′x′ = y and Tm′(λ′, x′) = (α, β) so VnTm(λ, x) = Vn′Tm′(λ′, x′). �

From Lemma 6.6 we have an induced homomorphism φ̃ : T ⊗n⊗C∗(Λ)→
C∗(Z, (T, V )). Proposition 2.9 gives a homomorphism π̃ : T ⊗n ⊗ C∗(Λ)
to Germ(Z, (T, V )). But Germ(Z, (T, V )) is an open subgroupoid of G ×
Germ(Λ∞,W ). The MGDS (Λ∞,W ) is essentially free so by Proposition 2.7
we have a map from C∗(Germ(Z, (T, V ))) to E ⊗C∗(Λ). Composing these ho-
momorphisms we get the map from T ⊗n⊗C∗(Λ) to E ⊗C∗(Λ). Schematically,
we view this in terms of groupoids by the diagram

G(Z, (T, V ))→φ

π

��

G(Nr × Λ∞, S ×W )

Germ(Z, (T, V )) ⊂open G×Germ(Λ∞),W
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φ restricted to the set Ω × Λ∞ gives an identification between G(Z, (T,
V ))|{Ω}×Λ∞ and G(Nr × Λ∞, S × W )|{0}×Λ∞ , so an isomorphism between
full corners.

7. CONCLUSIONS

As a conclusion we want to draw the attention to the results in [9, 10].
Our groupoid approach to the duality between higher rank graph algebras can
lead to a notion of higher rank hyperbolic groups. The higher rank version
of a tree is a Euclidean building so the Ãn-groups in [5] and [6] have to fall
into this class. One can then think of the one-sided and two-sided Toeplitz
algebras as subalgebras of L(l2(Γ)), where Γ is such a group. For example the
left-sided Toeplitz algebra associated to the free group Fn is C(Fn)oFn where
Fn is a compactification of Fn using the left-sided distance dl(α, β) = l(α−1β),
l the word length. Then the right-sided Toeplitz algebras is given by the
same algebra C(∂Fn)oFn but the compactification is given by the right-sided
distance dr(α, β) = l(αβ−1). The two-sided Toeplitz algebra is the algebra
generated by these two in their canonical representation on L(l2(Fn)).
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