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THE ONE DIMENSIONAL FREE POINCARÉ INEQUALITY

MICHEL LEDOUX AND IONEL POPESCU

Abstract. In this paper we discuss the natural candidate for the one dimen-
sional free Poincaré inequality. Two main strong points sustain this candidacy.
One is the random matrix heuristic and the other the relations with the other
free functional inequalities, namely, the free transportation and Log-Sobolev
inequalities. As in the classical case the Poincaré is implied by the others. This
investigation is driven by a nice lemma of Haagerup which relates logarith-
mic potentials and Chebyshev polynomials. The Poincaré inequality revolves
around the counting number operator for the Chebyshev polynomials of the
first kind with respect to the arcsine law on [−2, 2]. This counting number
operator appears naturally in a representation of the minimum of the logarith-
mic energy with external fields discovered in Analyticity of the planar limit
of a matrix model by S. Garoufalidis and the second author as well as in the
perturbation of logarithmic energy with external fields, which is the essential
connection between all these inequalities.

Classically, Poincaré’s inequality for a probability measure μ on R
d states that

there is a constant ρ > 0 such that for any compactly supported smooth function
f ,

(0.1) ρVarμ(f) ≤
∫

|∇f |2dμ,

with the notation Varμ(f) =
∫
f2 dμ− (

∫
f dμ)2. This is in fact a statement about

the spectral gap of the operator L, whose Dirichlet form is Γ(f, f) =
∫
|∇f |2 dμ

(and invariant measure μ). This inequality is actually one member of a family
of functional inequalities which are connected by implications among them. For
example, among others, the transportation and Log-Sobolev inequalities always
imply the Poincaré with the same constant (see e.g. [1, 17, 4, 20]).

With the boom in the interest of large dimensional phenomena, one natural
question is to ask what happens with the functional inequalities in the limit. This
was studied in various forms for various measures in infinite dimensions, as for
example the Wiener measures with a few samples [11], [9], [21], [8], [14]. The
important part in dealing with these infinite dimensional objects was due to the
dimension independent constants in the finite dimensional approximations.

Important interesting limiting objects are obtained in free probability by consid-
ering random matrices. It is well known that properly normalized, the eigenvalue
distribution of the Gaussian Unitary Ensemble converges (in mean and almost
surely) to the semicircular law. On the other hand, applying classical functional
inequalities to the distribution of random matrices in dimension n and taking their
limits, one obtains various functional inequalities for the semicircular law. This
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4812 MICHEL LEDOUX AND IONEL POPESCU

was done in a more general situation for the Log-Sobolev by Biane [2] and the
transportation inequality by Hiai, Petz and Ueda [13] and [15].

The interesting part of this limiting procedure is that the obtained functional
inequalities in the framework of free probability have a life of their own. As such,
the goal is then to understand them from a perspective which does not appeal to
their finite dimensional approximation. There are indeed some cases where the
approximation seems hard or very unnatural. This was the main theme of the
paper [16] where several techniques from mass transportation were introduced to
deal with the (one dimensional) free Log-Sobolev, transportation, HWI and Brunn-
Minkowski inequalities.

Using random matrix heuristics one can add a new member to the family already
described. This is a free Poincaré inequality, the natural limit of the Poincaré
inequality applied to random matrices, which was discussed in [16]. The statement

for such an inequality in the case of the semicircular law α(dx) = �[−2,2](x)
√
4−x2dx
2π

is that for any smooth function f on the interval [−2, 2],

(0.2)

∫∫ (
f(x)− f(y)

x− y

)2

ω(dx dy) ≤
∫
(f ′)2 dα,

where

ω(dx dy) = �[−2,2](x)�[−2,2](y)
(4− xy)dxdy

4π2
√
(4− x2)(4− y2)

.

Notice here that this statement has a different flavor from its classical counterpart.
In the case of the standard Gaussian measure for example, inequality (0.1) is the
expression of the spectral gap of the Ornstein-Uhlenbeck operator. In the free case,
it was shown in [16] that (0.2) is equivalent to

N ≤ L,
where (Lf)(x) = −(4 − x2)f ′′(x) + xf ′(x) and N are respectively the Jacobi op-
erator and the counting number operator for the orthonormal basis of Chebyshev
polynomials Tn(x/2) of L2(β), where β is the arcsine law �[−2,2](dx)

dx
π
√
4−x2

. At

least at a first look, we are not comparing a second order operator with a projection,
as in the classical case, but with an integro-dfferential operator. However, for this
particular case, it is true that L = N 2, and thus the above comparison is essentially
the spectral gap for N .

Another natural interpretation of (0.2) is that the L2 norm of the classical deriv-
ative f ′ with respect to α is greater than the L2 norm of the non-commutative deriv-

ative Df = f(x)−f(y)
x−y with respect to a suitable measure ω. This non-commutative

derivative is very natural in free probability theory, and it is not the first time it ap-
pears in some form of Poincaré’s inequality. In fact, Biane in [2] sets up a Poincaré
inequality in several non-commuting variables which in the one dimensional case
amounts to

(0.3) Varα(f) ≤
∫∫ (

f(x)− f(y)

x− y

)2

α(dx)α(dy)

for any C1 function f on [−2, 2]. This is more in the classical spirit, with the role of

the derivative played by the non-commutative derivative f(x)−f(y)
x−y . At any rate this

inequality can be translated into the spectral gap for the counting number operator
M associated to the scaled Chebyshev polynomials of the second kind for the
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THE ONE DIMENSIONAL FREE POINCARÉ INEQUALITY 4813

semicircular law α. This fact makes (0.2) and (0.3) formally the same. However,
this argument does not show a more structural tie between the two versions of
Poincaré. A more organic appearance of the counting number operator M in the
life of (0.2) is revealed in Section 3. However, the only spectral property of M
which contributes is the mere non-negativity.

The main investigation of this work is actually to demonstrate that the operator
point of view emphasized towards the description of the Poincaré inequalities (0.2)
and (0.3) and their relationships may be pushed forward to similarly study Poincaré
inequalities for large classes of equilibrium measures and not only the semicircular
law. In particular, this analysis reveals the suitable Poincaré inequality in the free
context and allows for the connections with the other functional inequalities.

It is well known that (0.1) is valid for measures μ(dx) = e−V (x)dx, where V is
strong convex. In fact, if V is strong convex, say V ′′(x) ≥ ρ for some ρ > 0 and
all x ∈ R, applying Poincaré’s inequality (0.1) to the measure e−nTrV (X)dX on
Hermitian n× n matrices and functions of the form Φ(X) = Tr(φ(X)) (for details
see [16]) leads to

(0.4) 2ρc2
∫∫ (

f(x)− f(y)

x− y

)2

ωb,c(dx dy) ≤
∫
(f ′)2dμV

for any C1 function on the support [−2c+b, 2c+b] of μV . Here μV is the equilibrium
measure (i.e. the minimizer) of

(0.5) EV (μ) =

∫
V dμ−

∫∫
log |x− y|μ(dx)μ(dy)

over the sef of all probability measures on R. It is well known (see for example [19])
that the support of μV is one interval in the case where V is convex. The measure
ωb,c on the left hand side of (0.4) is just a linear rescaling of the measure ω defined
above, precisely

(0.6)

ωb,c(dx dy) = �[−2c+b,2c+b](x)�[−2c+b,2c+b](y)

× (4c2 − (x− b)(y − b))dxdy

4c2π2
√
(4c2 − (x− b)2)(4c2 − (y − b)2)

.

The point is now that (0.4) is a well-defined notion on its own for any given prob-
ability measure μ on the interval [−2c + b, 2c + b]. It defines the canonical free
Poincaré inequality which will be investigated in this work. As it is in the case of
(0.2) for the semicircular law, this inequality gravitates around the counting num-
ber operator N . The investigation is driven by a lemma of Haagerup which was
extensively used in [10] to deal with the minimization of the logarithmic energy
with external fields, providing an analytic description of the number operator N as

(Nφ)(x) =

∫
yφ′(y)β(dy) + x

∫
φ′(y)β(dy)− (4− x2)

∫
φ′(x)− φ′(y)

x− y
β(dy),

which connects with free derivatives. In particular, this description produces concise
and efficient interpretations of the equilibrium measure μV and logarithmic energy
EV associated to an external field V of independent interest. With these tools, the
free Poincaré inequality for a measure μ may then be described at the operator
level as the comparison of N with the operator with Dirichlet form

∫
(f ′)2dμ.
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4814 MICHEL LEDOUX AND IONEL POPESCU

In [16], another version of Poincaré’s inequality inspired by Biane’s version of
(0.3) was presented, which states that for μ with compact support, there is a con-
stant ρ > 0 such that

(0.7) ρVarμ(f) ≤
∫∫ (

f(x)− f(y)

x− y

)2

μ(dx)μ(dy)

as long as f is C1(R). Besides the example of the semicircular law, we do not
know however if there is any (interesting) connection between the two Poincaré
inequalities (0.4) and (0.7). As we will show, Poincaré inequality (0.4) will be
justified by its connection with the transportation and Log-Sobolev inequalities
(which does not seem of the same nature for (0.7)).

Indeed, once the proper free Poincaré inequality (0.4) has been identified, the
next purpose is to investigate its relationships with the traditional free functional
inequalities such as transportation and Log-Sobolev inequalities. The free trans-
portation inequality associated to a potential V claims that there is a ρ > 0 with
the property that

(0.8) ρW 2
2 (ν, μV ) ≤ EV (ν)− EV (μV )

for any other probability measure ν on the real line. Free Log-Sobolev states that
there is a ρ > 0 so that for any other (sufficiently nice) probability measure ν,

(0.9) EV (ν)− EV (μV ) ≤
1

4ρ

∫
(Hν − V ′)2dν,

whereHν = p.v.
∫

2
x−yν(dy) is the Hilbert transform of the measure ν. In this paper

we show that under some mild assumptions, the transportation and Log-Sobolev
inequalities imply the free Poincaré inequality (0.4). It should be pointed out that
these implications are easy or standard in the classical case. That the Poincaré
inequality follows from the Log-Sobolev is obtained by a simple Taylor expansion
on (classical) entropy (see e.g. [1, 20]). The implication from the transportation
inequality is a bit more involved, the simplest argument going through Hamilton-
Jacobi equations ([4, 20]). Actually, what the classical case puts forward is the
necessity of suitable perturbation properties of both the logarithmic energy and
equilibrium measure in the free context. This will be achieved in the second part
of this paper. At the heart of the argument is a perturbation argument for the
logarithmic energy EV , which is given by the counting number operator N , the
same one which plays the key role in understanding the free Poincaré inequality.
Again, this perturbation property might be of independent interest.

Here is how the paper is organized. In Section 1 we introduce the preliminary
material, namely, the logarithmic potentials and Chebyshev polynomials, and we
briefly discuss Haagerup’s Lemma. We also introduce and study several related
operators, the most important one being the counting number operator N and its
analytic description.

Section 2 is the one introducing the Poincaré inequality (0.4) and several associ-
ated properties, while Section 3 investigates various equivalent characterizations of
this. The main ones are equivalent via some sort of duality, which is somewhat rem-
iniscent of the duality associated to the Monge-Kantorovich distance in the theory
of mass transportation.
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THE ONE DIMENSIONAL FREE POINCARÉ INEQUALITY 4815

In Section 4 we give the perturbation results which are the backbone for the con-
nection between the other functional inequalities and Poincaré. This last connec-
tion is discussed in Section 5 together with a discussion about why the perturbation
used in the classical case to go from the Log-Sobolev and why transportation is not
enough.

1. Preliminaries

In this section we introduce some basic notions we are going to use in this paper.
A potential on a closed subset S of the real line is simply a function V : S → R.

For our investigation of the logarithmic potentials with external fields, we will
assume that V is of class C3 on the interior of S and that if S is unbounded,

lim
|x|→∞

V (x)− 2 log |x| = +∞.

We will call such a potential admissible.
For a probability measure μ the logarithmic energy with external field V is given

by

(1.1) EV (μ) =

∫
V dμ−

∫∫
log |x− y|μ(dx)μ(dy).

It is known that given a closed subset S and an admissible potential V (see [19]
or [6]), there is a unique minimizer μV in the set of probability measures on S.
In addition, this measure also has compact support. We will denote for simplicity
EV = EV (μV ). The support of the measure μ is denoted by suppμ.

The equilibrium measure μV of (1.1) on the set S (cf. [19, Thm. I.1.3]) is
characterized by

V (x) ≥ 2

∫
log |x− y|μ(dy) + C quasi-everywhere on S,

V (x) = 2

∫
log |x− y|μ(dy) + C quasi-everywhere on suppμ.

(1.2)

For the definition of the notion of quasi-everywhere, we refer the reader to [19].
What we will need from this is in particular that the equality on suppμ is almost

surely with respect to any probability measure of finite logarithmic energy.
If (X,X ), (Y,Y) are two measurable spaces, μ is a measure on X and φ : X → Y

is a measurable map, we set φ#μ to stand for the push forward measure

(φ#μ)(A) = μ(φ−1(A))

for any A ∈ Y .
It is easy to verify that changing the variable of integration to x → cx + b and

y → cy + b with c �= 0 and by setting 	b,c(x) = (x − b)/c and μc,b = (	b,c)#μ, the
following holds:

(1.3)
EV (μ) =

∫
V (cx+ b)μb,c(dx)−

∫∫
log |cx− cy|μb,c(dx)μb,c(dy)

= EV (�−1
b,c)−log(c)(μb,c) = EV (�−1

b,c)
(μb,c)− log c,

which in turn results in

EV = EV (�−1
b,c)−log(c) = EV (�−1

b,c)
− log(c).
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4816 MICHEL LEDOUX AND IONEL POPESCU

1.1. Connection with Chebyshev polynomials. Recall that the Chebychev
polynomials of the first kind Tn(x) are defined by

(1.4) Tn(cos θ) = cos(nθ).

Alternatively, they are given by the recursion relation

Tn+1(x) = 2xTn(x)− Tn−1(x), T0(x) = 1, T1(x) = x

with the generating function

(1.5)

∞∑
n=0

rnTn(x) =
1− rx

1− 2rx+ r2
, r ∈ (−1, 1).

If we take T̃0 = T0 and T̃n(x) =
√
2Tn(x), then {T̃n}n≥0 is the sequence of orthog-

onal polynomials for the arcsine law �(−1,1)(x)
dx

π
√
1−x2 .

The Chebyshev polynomials of the second kind Un are defined by

(1.6) Un(cos θ) =
sin(n+ 1)θ

sin θ
.

These satisfy the recurrence

Un+1(x) = 2xUn(x)− Un−1(x), U0 = 1, U1 = 2x,

and the generating function is

(1.7)
∞∑

n=0

rnUn(x) =
1

1− 2rx+ r2
, r ∈ (−1, 1).

These are the orthogonal polynomials for the semicircular distribution

�[−1,1](x)
2
√
1−x2dx
π .

The main connection between the Chebyshev polynomials of the first and second
kind is given by

(1.8) T ′
n(x) = nUn−1(x).

In the sequel we will use the notation

φn(x) = Tn

(x
2

)
and ψn(x) = Un

(x
2

)
for n ≥ 0.

We mention that these are the orthogonal polynomials for the arcsine and semicir-
cular on [−2, 2].

It is easy to check the following relations between φn and ψn:

2φn(x)φm(x) = φ|n−m|(x) + φn+m(x), n,m ≥ 0,

2ψn(x)φm(x) = sign(n+ 1−m)ψ|n+1−m|−1(x) + ψn+m(x), n,m ≥ 0,

(4− x2)

2
ψn(x)ψm(x) = φ|n−m|(x)− φn+m+2(x), n,m ≥ 0,

(1.9)

where here and throughout this paper, sign(x) = 1 for x > 0, sign(x) = −1 for
x < 0 and sign(x) = 0 for x = 0.

The following lemma, which will play an important role in the subsequent anal-
ysis, appears in some seminar notes of Haagerup [12].
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Lemma 1 (Haagerup). (1) For any real x, y ∈ [−2, 2], x �= y, we have

(1.10) log |x− y| = −
∞∑

n=1

2

n
φn(x)φn(y),

where the series here are convergent on x �= y.
(2) For x > 2 and y ∈ [−2, 2], a similar expansion takes place,

log |x− y| = log

∣∣∣∣∣x+
√
x2 − 4

2

∣∣∣∣∣−
∞∑

n=1

2

n

(
x−

√
x2 − 4

2

)n

φn(y),

where the series is absolutely convergent.
(3) The logarithmic potential of a probability measure μ on [−2, 2] is given by

(1.11)

∫
log |x− y|μ(dx) = −

∞∑
n=1

2

n
φn(x)

∫
φn(y)μ(dy),

where this series makes sense pointwise. Therefore, the logarithmic energy
of the measure μ is given by

(1.12)

∫∫
log |x− y|μ(dx)μ(dy) = −

∞∑
n=1

2

n

(∫
φn(x)μ(dx)

)2

.

In particular,
∫∫

log |x − y|μ(dx)μ(dy) is finite if and only if∑∞
n=1

2
n

(∫
φn(x)μ(dx)

)2
is finite.

Proof. A full scale proof is given in [10]; here we only outline the main calculation
leading to (1.10). Write x = 2 cosu and y = 2 cos v, and observe

x− y = 2(cosu− cos v) = 4 sin

(
u+ v

2

)
sin

(
u− v

2

)
.

Hence

log |x− y| = log

∣∣∣∣2 sin
(
u+ v

2

)∣∣∣∣+ log

∣∣∣∣2 sin
(
u− v

2

)∣∣∣∣
= log |1− ei(u+v)|+ log |1− ei(u−v)|

= Re
(
log(1− ei(u+v)) + log(1− ei(u−v))

)

= −
∞∑
n=1

1

n
Re
(
ein(u+v) + ein(u−v)

)

= −
∞∑
n=1

1

n
(cos(n(u+ v)) + cos(n(u− v)))

= −
∞∑
n=1

2

n
cos(nu) cos(nv)

= −
∞∑
n=1

2

n
φn(x)φn(y).

Notice that in the middle of this we used the fact that for a complex number z,
with |z| = 1, z �= 1, the usual logarithmic formula which computes the logarithm is
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4818 MICHEL LEDOUX AND IONEL POPESCU

still valid:

log(1− z) = −
∑
k≥1

zk

k
.

�
It is this simple lemma which gives the theme of dealing with logarithmic energies

of measures by reducing them via rescaling to measures on the interval [−2, 2]. The
next statement is a simple consequence.

Corollary 1. If β(dx) = �[−2,2](x)
dx

π
√
4−x2

is the arcsine law of the interval [−2, 2],

then

(1.13)

∫
log |x− y|β(dy) =

{
0, |x| ≤ 2,

log |x|+
√
x2−4

2 , |x| > 2.

If μ is a signed measure on [−2, 2] with finite total variation and finite logarithmic
energy, then

(1.14)

∫
log |x− y|μ(dy) = c almost everywhere for all x ∈ [−2, 2]

if and only if μ(dx) = β(dx). Here, “almost everywhere” is understood with respect
to the Lebesgue measure. Additionally, the constant c must be 0.

We define the following probability measures related to the interval [−2c+b, 2c+
b] which are used throughout this note:

αb,c(dx) = �[−2c+b,2c+b](x)

√
4c2 − (x− b)2dx

2πc2
,

βb,c(dx) = �[−2c+b,2c+b](x)
dx

π
√
4c2 − (x− b)2

,

ωb,c(dx dy) = �[−2c+b,2c+b](x)�[−2c+b,2c+b](y)

× (4c2 − (x− b)(y − b))dxdy

4c2π2
√
(4c2 − (x− b)2)(4c2 − (y − b)2)

.

(1.15)

We mention that αb,c, respectively βb,c, is semicircular, respectively arcsine, on
[−2c+ b, 2c+ b]. To be completely consistent, αb,c is defined on the closed interval
[−2c + b, 2c + b], while βb,c and ωb,c are properly defined on the open sets (−2c +
b, 2c + b) and (−2c + b, 2c + b) × (−2c + b, 2c + b), respectively. On the other
hand, as we will integrate functions on [−2c + b, 2c + b], and all these measures
are absolutely continuous with respect to the Lebesgue measure on the real axis,
it does not matter if the integrals are on the open or closed intervals (or products
of such). Henceforth, we set the scene for all these measures to be defined on the
closed interval [−2c+ b, 2c+ b] (or [−2c+ b, 2c+ b]× [−2c+ b, 2c+ b] for ωb,c).

For simplicity set α = α0,1, β = β0,1 and ω = ω0,1, which are probabilities on

[−2, 2] or [−2, 2] × [−2, 2]. Notice the simple rescaling shows that αb,c = (	−1
b,c )#α

and similarly βb,c = (	−1
b,c )#β, while ((	2b,c)

−1)#ωb,c = ω with 	2b,c : R
2 → R

2,

	2b,c(x, y) = (	b,c(x), 	b,c(y)).

Throughout this paper we use 〈·, ·〉γ to denote the scalar product in L2(γ) and
reserve 〈·, ·〉 for the inner product in L2(β).

Using Lemma 1 we prove the first result of this note which appears partially in
[10]. It will naturally lead to the operator formulation of the Poincaré inequality.
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Theorem 1. Assume that V is a C3 function on [−2, 2] and A ∈ R a constant.
Then, there is a unique signed measure μ on [−2, 2] of finite total variation which
solves

(1.16)

{
2
∫
log |x− y|μ(dy) = V (x) + C almost everywhere for x ∈ [−2, 2],

μ([−2, 2]) = A,

where almost everywhere is with respect to the Lebesgue measure on [−2, 2]. The
solution μ is given by μ(dx) = u(x)β(dx), where
(1.17)

u(x) = A−1

2

∫ 2

−2

yV ′(y)β(dy)−x

2

∫ 2

−2

V ′(y)β(dy)+
4− x2

2

∫ 2

−2

V ′(x)− V ′(y)

x− y
β(dy).

In addition, the constant C must be given by C = −
∫ 2
−2

V (x) β(dx).

Moreover, for any C1 function φ on [−2, 2] we have that
(1.18)∫

φ(x)μ(dx) = A

∫
φ(x)β(dx)−

∫∫
(V (x)− V (y))(φ(x)− φ(y))

(x− y)2
ω(dx dy).

Proof. In the first place, the uniqueness is clear. To prove the rest we first write
the function V in terms of Chebysev polynomials of the first kind:

V (x) =

∫
V (y)β(dy) + 2

∞∑
n=1

(∫
V (y)φn(y)β(dy)

)
φn(x).

Assuming (μ, V ) solves (1.16) and invoking Haagerup’s representation now results
in

− 2
∞∑

n=1

2

n

(∫
φn(y)μ(dy)

)
φn(x)

= C +

∫
V (y)β(dy) + 2

∞∑
n=1

(∫
V (y)φn(y)β(dy)

)
φn(x).

Thus, equating the coefficients, we must have C = −
∫
V (y)β(dy) and∫

φn(x)μ(dx) = −n

2

∫
V (x)φn(x)β(dx) n ≥ 1,

which means that μ(dx) = u(x)β(dx) with

u(x) = A−
∞∑

n=1

n

(∫
V (y)φn(y)β(dy)

)
φn(x).

To prove equality (1.17), our task is therefore to show that

−
∞∑

n=1

n

(∫
V (y)φn(y)β(dy)

)
φn(x) = −1

2

∫ 2

−2

yV ′(y)β(dy)− x

2

∫ 2

−2

V ′(y)β(dy)

+
4− x2

2

∫ 2

−2

V ′(x)− V ′(y)

x− y
β(dy).

(1.19)

Notice that both sides of this equation are linear functions of V , and thus by a
simple approximation argument it suffices to check it for the case of V (x) = φn(x)
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for some n ≥ 1, which boils down to
(1.20)

nφn(x) =

∫ 2

−2

yφ′
n(y) β(dy)+x

∫ 2

−2

φ′
n(y) β(dy)− (4−x2)

∫ 2

−2

φ′
n(x)− φ′

n(y)

x− y
β(dy).

There are several ways of doing this. The straightforward way is to look at the
generating functions of both sides and use (1.5). We now pause and give a more
general statement which will be used later.

Lemma 2. Define the operator Ub,c, which for a C1 function f on [−2c+ b, 2c+ b]
outputs the function Ub,cf ,

(Ub,cf)(x) =

∫
f(x)− f(y)

x− y
βb,c(dy).

As usual, for simplicity we denote U = U0,1. Then

(1.21)

Uφn =
1

2
ψn−1, n ≥ 1, and

(Uψn)(x) =
1

4− x2

{
2− 2φn+1(x), n odd,

x− 2φn+1(x), n even,
n ≥ 0.

Proof. The idea is to use the generating functions (1.5) and (1.7) and compute the
operator U of these generating functions. To carry this out, let

(1.22) gr(x) :=
1− rx/2

1− rx+ r2
and hr(x) :=

1

1− rx+ r2
,

which are the generating functions of φn, respectively ψn. Then it is easy to com-
pute

(1.23) (Ugr)(x) =
r

2(1− rx+ r2)
=

rhr(x)

2
,

which immediately implies the first half of (1.21). On the other hand,

(Uhr)(x) =
r

(1− r2)(1− rx+ r2)
=

1

4− x2

(
2r

1− r2
+

x

1− r2
−

(
2−rx

1−rx+r2 − 2
)

r

)

=
1

4− x2

(
2r

1− r2
+

x

1− r2
− 2(gr(x)− 1)

r

)
,

(1.24)

which clearly resolves the other half of (1.21). �

Coming back to the proof of Theorem 1 and armed with (1.21) and (1.8) and
the simple fact that

∫ 2

−2

yφ′
n(y)β(dy) =

{
n (n = even),

0 (n = odd)
and

∫ 2

−2

φ′
n(y)β(dy) =

{
0 (n = even),

n/2 (n = odd),
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it is now an easy task to verify (1.20), and in turn (1.19). To prove equality (1.18),
we need to check that

(1.25)

∞∑
n=1

n

∫
V (y)φn(y)β(dy)

∫
φ(x)φn(x)β(dx)

=
1

4

∫ 2

−2

∫ 2

−2

(V (x)− V (y))(φ(x)− φ(y))

(x− y)2
(4− xy)dxdy

π2
√
4− x2

√
4− y2

.

To this end, notice that for −1 < r < 1,
(1.26)

∞∑
n=1

nrn−1

∫
V (y)φn(y)β(dy)

∫
φ(x)φn(x)β(dx)

=

∫ 2

−2

∫ 2

−2

∞∑
n=1

nrn−1φn(x)φn(y)
φ(x)V (y)dxdy

π2
√
4− x2

√
4− y2

= −1

2

∫ 2

−2

∫ 2

−2

∞∑
n=1

nrn−1φn(x)φn(y)
(V (x)− V (y))(φ(x)− φ(y))dxdy

π2
√
4− x2

√
4− y2

.

Now to compute the kernel inside the integration, notice that (here we inspire from
[5]) with x = 2 cosu and y = 2 cos v,

∞∑
n=1

rnφn(x)φn(y)

=

∞∑
n=1

rn cos(nu) cos(nv) =

∞∑
n=1

rn

2
(cos(n(u+ v)) + cos(n(u− v)))

=

∞∑
n=1

rn

4

(
ein(u+v) + e−in(u+v) + ein(u−v) + e−in(u−v)

)

=
1

4

(
1

1− rei(u+v)
+

1

1− re−i(u+v)
+

1

1− rei(u−v)
+

1

1− re−i(u−v)

)
.

Taking the derivative with respect to r gives

∞∑
n=1

nrn−1φn(x)φn(y)

=
1

4

(
ei(u+v)

(1− rei(u+v))2
+

e−i(u+v)

(1− re−i(u+v))2
+

ei(u−v)

(1− rei(u−v))2
+

e−i(u−v)

(1− re−i(u−v))2

)
.

Using Lebesgue’s dominated convergence combined with (1.26), after letting r ↑ 1,
the rest follows from

1

4

(
ei(u+v)

(1− ei(u+v))2
+

e−i(u+v)

(1− e−i(u+v))2
+

ei(u−v)

(1− ei(u−v))2
+

e−i(u−v)

(1− e−i(u−v))2

)

= − 1− cosu cos v

2(cosu− cos v)2
= − 4− xy

2(x− y)2
. �

Theorem 1 motivates the introduction of the following operators.
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Definition 1. For a C2 function φ : [−2, 2] → R, set

(Eφ)(x) = −
∫

log |x− y|φ(y)β(dy),

(Nφ)(x) =

∫
yφ′(y)β(dy) + x

∫
φ′(y)β(dy)− (4− x2)

∫
φ′(x)− φ′(y)

x− y
β(dy).

(1.27)

Using the above theorem it is clear that Nφ is the unique solution ψ which
satisfies{∫

log |x− y|ψ(y)β(dy) = −φ(x) +
∫
φ dβ almost everywhere for x ∈ [−2, 2],∫

ψ dβ = 0,

where almost everywhere is with respect to the Lebesgue measure on [−2, 2].
We collect the main properties of the operators E and N in the following.

Proposition 1. The inner product 〈·, ·〉 is the one of L2(β), where β is the arcsine
law on [−2, 2] (see (1.15)).

(1) For any C2 function φ on [−2, 2],

ENφ = φ−
∫

φ dβ,

NEφ = φ−
∫

φ dβ.

(1.28)

(2) One has Eφ0 = 0, while for n ≥ 1, Eφn = 1
nφn and Nφn = nφn for

any n ≥ 0. In other words, N is the counting number operator for the
Chebyshev basis in L2(β).

(3) For any, φ, ψ, C1 functions on [−2, 2],

(1.29) 〈Nφ, ψ〉 = 2

∫∫
(φ(x)− φ(y))(ψ(x)− ψ(y))

(x− y)2
ω(dx dy).

In particular, 〈Nφ, ψ〉 = 〈φ,Nψ〉.
(4) If we take Lφ = N 2φ for C2 functions, then

(1.30) 〈Lφ, ψ〉 = 2

∫
φ′ψ′dα.

The operator L is actually the Jacobi operator

(Lφ)(x) = −(4− x2)φ′′(x) + xφ′(x)

with invariant measure the arcsine law β. Moreover, L has a unique self-
adjoint extension, still denoted by L and defined on

H = {φ : [−2, 2] → R, φ ∈ L2(β) and φ(x) =

∫ x

−2

ψ(y)dy,

for β − a.s. x ∈ [−2, 2] with ψ ∈ L2(α)}.

(5) For a C3 potential V on [−2, 2], the solution μ to (1.16) is

μV (dx) =

(
A− 1

2
NV (x)

)
β(dx).

Licensed to Georgia Inst of Tech. Prepared on Thu Aug  1 02:46:18 EDT 2013 for download from IP 130.207.50.37.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



THE ONE DIMENSIONAL FREE POINCARÉ INEQUALITY 4823

(6) If the minimizer of EV on [−2, 2] has full support, then

(1.31) EV =

∫
V dβ − 1

4
〈NV, V 〉 =

∫
V dβ − 1

2

∫∫ (
V (x)− V (y)

x− y

)2

ω(dx dy).

Proof. (1) We need to settle the fact that if φ is C2 on [−2, 2], then Eφ is
again C2 on [−2, 2]. This is needed to give consistency to the second line
of (1.28). To this end, we try to remove the singularity in E by invoking
(1.13) and (1.11) for the measure μ(dy) = yβ(dy) to justify the following:

Eφ(x) = −
∫

log |x− y|(φ(y)− φ(x)− φ′(x)(y − x)) β(dy)

− φ′(x)

∫
y log |x− y|β(dy)

= −
∫

log |x− y|(φ(y)− φ(x)− φ′(x)(y − x)) β(dy)

+ xφ′(x), for all x ∈ [−2, 2].

It is obvious from this writing and Lebesgue’s dominated convergence that
Eφ is actually a continuous function on [−2, 2]. Taking the derivative with
respect to x it is straightforward to deduce (again using (1.13) and (1.11)
and dominated convergence) that(
d

dx
Eφ
)
(x) = φ′′(x)

∫
(y − x) log |x− y|β(dy)

+

∫
φ(y)− φ(x)− φ′(x)(y − x)

y − x
β(dy) + φ′(x) + xφ′′(x)

=

∫
φ(y)− φ(x)− φ′(x)(y − x)

y − x
β(dy) + φ′(x).

Again taking the derivative with respect to x reveals that(
d2

dx2
Eφ
)
(x) =

∫
φ(y)− φ(x)− φ′(x)(y − x)

(y − x)2
β(dy),

which shows that Eφ is actually C2 if φ is C2. The rest now follows from
Definition 1 and Theorem 1.

(2) It is an easy consequence of Lemma 1 and (1.20).
(3) This is infered from (1.18).
(4) Equivalently,

〈Nφ,Nψ〉 = 2

∫
φ′ψ′dα.

In turn, it is sufficient to do this for φ = φn, ψ = φm. Thus we need only
show that using (1.8),∫

Un

(x
2

)
Um

(x
2

)
α(dx) = δmn,

which is just the orthogonality of the polynomials Un

(
x
2

)
with respect to

α. The formula for L is just an integration by parts.
The selfadjoint extension can be easily demonstrated by the fact that L

has the eigenvalues {n2}n≥0 with eigenfunctions φn. Indeed, it is easy to
see that there is an isometry A : L2(β) → 	2(N) = {(an)n≥0 :

∑
n≥0 |an|2 <
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∞}, which sends φ =
∑

n≥0 anφn into (an)n≥0. This isometry sends the
operator L defined on the linear span of φn into the multiplication operator
R(an)n≥0 = (n2an)n≥0 on the space of sequences with finitely many non-
zero entries. Since the operator R has a unique selfadjoint extension, the
same is true for L. The domain of R is pushed back by the inverse of A
into H.

(5) Just a rewriting of (1.17).
(6) Since

EV =

∫
V dμV −

∫∫
log |x− y|μV (dx)μV (dy),

where μV =
(
1− 1

2NV
)
dβ, it follows that

EV =

∫
V dβ − 1

2
〈NV, V 〉+

〈
E
(
1− 1

2
NV
)
,
(
1− 1

2
NV
)〉

=

∫
V dβ − 1

2
〈NV, V 〉 − 1

2

〈(
V −

∫
V dβ
)
,
(
1− 1

2
NV
)〉

=

∫
V dβ − 1

4
〈NV, V 〉,

which combined with (1.29) gives (1.31). �

Here we collect some integration by parts properties of the operator N which
will be used later.

Theorem 2. If N is the operator defined in (1.27), then for any two C2 functions
φ, ψ : [−2, 2] → R

〈Nφ, ψ′〉+ 〈Nψ, φ′〉 = Π(φ′)Π(xψ′) + Π(xφ′)Π(ψ′),

〈Nφ, xψ′〉+ 〈Nψ, xφ′〉 = Π(xφ′)Π(xψ′) + 4Π(φ′)Π(ψ′).
(1.32)

Here we use the notation Π(φ) =
∫
φ dβ and the convention that xkφ is a shortcut

for the function f(x) = xkφ(x). In addition,

(1.33)

2〈N (φ′), ψ′〉+ 〈Nψ, φ′′〉+ 〈Nφ, ψ′′〉
= Π(φ′′)Π(xψ′) + Π(xφ′′)Π(ψ′) + Π(φ′)Π(xψ′′) + Π(xφ′)Π(ψ′′),

2〈N (xφ′), xψ′〉+ 〈Nψ, x2φ′′〉+ 〈Nφ, x2ψ′′〉
= Π(xφ′)Π(xψ′) + Π(φ′)Π(ψ′) + Π(x2φ′′)Π(xψ′) + 4Π(xφ′′)Π(ψ′)

+ Π(xφ′)Π(x2ψ′′) + 4Π(φ′)Π(xψ′′),

〈Nφ, xψ′′〉+ 〈Nψ, xφ′′〉+ 〈N (φ′), xψ′〉+ 〈N (ψ′), xφ′〉
= Π(xφ′′)Π(xψ′) + 4Π(φ′′)Π(ψ′) + Π(xφ′)Π(xψ′′) + 4Π(φ′)Π(ψ′′).

The relation between N and U is that, for any C2 function f on [−2, 2],

(1.34) (Nf)(x) = −
√
4− x2

d

dx

[√
4− x2(Uf)(x)

]
.

Proof. It is clear that it is enough to check (1.32) for φ = φn, ψ = φm, in which
case the first part becomes

nm〈ψn−1, φm〉+mn〈φn, ψm−1〉 =
mn

2
Π(ψn−1)Π(xψm−1)+

mn

2
Π(xψn−1)Π(ψm−1).
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This easily follows from

(1.35) 〈φn, ψm〉 =
{
0 if n > m or n−m = 1 (mod 2),

1 if n ≤ m and n−m = 0 (mod 2).

To quickly see this, take the generating functions (here 0 < r,w < 1) gr and hw

already introduced in the proof of Lemma 2 in (1.22) and observe that

gr(x)hw(x) =
(1− rx/2)

rw(a− x)(b− x)
=

A

a− x
+

B

b− x

with

a =
1 + r2

r
, b =

1 + w2

w
,

A = − 1− r2

2 (w + r2w − r (1 + w2))
, B =

r − 2w + rw2

2w (r − w − r2w + rw2)

combined with the derivative of (1.13) and a little algebra gives

∞∑
n,m=0

rnwm〈φn, ψm〉 =
∫

grhwdβ =
A√

a2 − 4
+

B√
b2 − 4

=
rA

1− r2
+

wB

1− w2

=
1

(1− rw)(1− w2)
=

∞∑
n,k=0

rnwn+2k,

which yields (1.35).
For the second line of (1.32), it is again sufficient to look at φ = φn and ψ = φm,

in which case we need to check that

nm〈ψn−1, xφm〉+mn〈xφn, ψm−1〉

=
mn

2
Π(xψn−1)Π(xψm−1) + 2mnΠ(ψn−1)Π(ψm−1).

This also follows from (1.35) by observing that φ1(x) = x/2 and xφn = φn+1+φn−1.
To get the rest of the proof, notice that if we set

J(u, v) := 2

∫∫
[φ(ux+ v)− φ(uy + v)][ψ(ux+ v)− ψ(uy + v)]

(x− y)2
ω(dx dy),

then a simple scaling argument together with (1.29) and (1.32) imply

(1.36)

∂J

∂v
= u

[(∫
φ′(ux+ v)β(dx)

)(∫
xψ′(ux+ v)β(dx)

)

+

(∫
xφ′(ux+ v)β(dx)

)(∫
ψ′(ux+ v)β(dx)

)]
,

∂J

∂u
= u

[(∫
xφ′(ux+ v)β(dx)

)(∫
xψ′(ux+ v)β(dx)

)

+4

(∫
φ′(ux+ v)β(dx)

)(∫
ψ′(ux+ v)β(dx)

)]
.

Now differentiation with respect to v at (u, v) = (1, 0) of the first equation gives the
first line of (1.33), while the other two lines follow by differentiating with respect
to u and v of the second equation above and setting u = 1, v = 0.
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To deal with (1.34), it suffices to do this for f = φn, and in fact in order to
check the identity for each n, we take the generating functions instead of the left
and right hand sides. Thus we need only check the following:

(N gr)(x) = −
√
4− x2

d

dx

[√
4− x2 (Ugr)(x)

]
.

Now, since N is the counting number generator for φn, the left hand side is actually
equal to ∂rgr(x), while the right hand side, from (1.23), gives Ugr = rhr(x)/2, in

which case both sides give the same answer, namely − 4r2−rx(1+r2)
2(1+rx+r2)2 . This completes

the proof of Theorem 2. �

2. Poincaré inequality, general properties

This section introduces the natural candidate for the free Poincaré inequality
which is investigated throughout this note.

Definition 2. A probability measure μ on [−2c+ b, 2c+ b] is said to satisfy a free
Poincaré inequality with constant ρ > 0, denoted P (ρ), if

(2.1) 2ρc2
∫∫ (

f(x)− f(y)

x− y

)2

ωb,c(dx dy) ≤
∫
(f ′)2dμ

holds for any smooth f on [−2c+ b, 2c+ b].

It should be observed that the left hand side in (2.1) only depends on the measure
μ through its support. Actually, the first assertion of Proposition 2 below shows
that μ has support [−2c+ b, 2c+ b].

The next statement collects some of the properties of this free Poincaré inequal-
ity.

Proposition 2. Assume μ satisfies P (ρ) on [−2c + b, 2c + b]. The following are
true:

(1) μ has support [−2c+b, 2c+b]. Moreover, if dμ = w dα, with w ∈ C2([−2c+
b, 2c+ b]), then w(x) > 0 for all x ∈ [−2c+ b, 2c+ b].

(2) The constant ρ in (2.1) satisfies

ρ ≤ 1

2c2

with equality if and only if μ = αb,c.
(3) For any C1 function f : [−2c+ b, 2c+ b] → R,

(2.2)
1

2
Varβb,c

(f) ≤
∫∫ (

f(x)− f(y)

x− y

)2

ωb,c(dx dy).

In fact, this inequality is equivalent to P (1/2) for the semicircular αb,c

with equality in (2.2) or (2.1) only for linear functions f .
(4) If dμ = w dαb,c, with w ≥ ρ on [−2c+ b, 2c+ b], then μ satisfies P ( ρ

2c2 ).

Remark 1. (2.2) is actually a classical Poincaré inequality (spectral gap) for the
operator N on L2(β), and it is equivalent (by item (3)) to the free Poincaré for the
semicircular.
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Proof. (1) It is pretty obvious that if J is an interval with the property that
μ(J) = 0, then choosing a function f such that f is constant outside the
interval J and is equal to x on some smaller subinterval K ⊂ J leads to a
contradiction.

One cannot conclude that there is a density of μ with respect to the
Lebesgue measure or for that matter with respect to the semicircular. In-
deed, for instance if we take μ = 1

2αb,c+
1
2γ, with γ a singular measure with

respect to αb,c, then μ still satisfies a free Poincaré and it is not absolutely
continuous with respect to αb,c.

Thus assume that μ = wαb,c with w a continuous function. We assume
that b = 0, c = 1. In order to show that w(a) > 0, for any a ∈ (−2, 2), we
assume on the contrary that w(a) = 0 for some a ∈ (−2, 2). Since w(x) ≥ 0
it follows that a is a minimum point and thus, from the smoothness of w,
w(x) = w′′(a)(x− a)2 +O((x− a)2).

Now we choose an approximation of the identity constructed as follows.
First consider

φ(x) =

{
e
− 1

1−x2 , x ∈ [−1, 1],

0, otherwise.

Then apply the free Poincaré inequality to the function f(x) = φ((x−a)/δ)
to obtain that

ρ

∫
|x−a|<δ
|y−a|<δ

(
φ((x− a)/δ)− φ((y − a)/δ)

x− y

)2

ω(dx dy)

≤ ρ

∫ (
φ((x− a)/δ)− φ((y − a)/δ)

x− y

)2

ω(dx dy)

≤ 1

δ2

∫
(φ′((x− a)/δ))2w(x)α(dx).

Now, changing the variable x = a+ δx′ and y = a+ δy′, for small enough
δ, results with

Ca

∫∫
[−1,1]2

(
φ(x)− φ(y)

x− y

)2

dxdy ≤ 1

δ

∫ 1

−1

(φ′(x))2w(a+ δx)dx

≤ O(δ)

∫ 1

−1

(φ′(x))2dx,

where Ca > 0 is a constant depending on a and ρ. Hence we get a con-
tradiction as we let δ → 0. Therefore on (−2, 2), the density w must be
positive.

Now we deal with the behavior at the edge. Assume w(−2) = 0. The
vanishing of w near −2 is no longer of order 2, but of order 1. Thus
w(x) = (x + 2)w′(−2) + o((x + 2)2). Again take f(x) = φ((x + 2)/δ) and
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apply the free Poincaré to obtain

ρ

∫
−2<x<−2+δ
−2<y<−2+δ

(
φ((x+ 2)/δ)− φ((y + 2)/δ)

x− y

)2

ω(dx dy)

≤ ρ

∫ (
φ((x+ 2)/δ)− φ((y + 2)/δ)

x− y

)2

ω(dx dy)

≤ 1

δ2

∫
(φ′((x+ 2)/δ))2w(x)α(dx).

Make the change of variables x = −2 + δx′, y = −2 + δy′ and deduce that
for a constant C > 0,

C

∫∫
[0,1]2

(
φ(x)− φ(y)

x− y

)2

dxdy ≤ O(
√
δ)

∫ 1

0

(φ′(x))2dx,

where we used the fact that

4− (−2 + δx′)(−2 + δy′)√
(4− (−2 + δx′)2)(4− (−2 + δy′)2)

≥ C > 0

uniformly for x′, y′ ∈ [0, 1] and small δ. Consequently, letting δ → 0, we
arrive at a contradiction.

(2) Taking in (2.1) f(x) = x, it is immediate that 2ρc2 ≤ 1. Now, conversely,
assume that ρ = 1/(2c2). We may assume that b = 0, c = 1, ρ = 1/2 and
that the measure μ is supported on [−2, 2]. Take f(x) = rx+ φ(x). Then
the Poincaré implies that for any r ∈ R,∫∫ (

φ(x)− φ(y)

x− y

)2

ω(dx dy) + r

∫∫
φ(x)− φ(y)

x− y
ω(dx dy) + r2

≤
∫
(φ′)2dμ+ 2r

∫
φ′(x)μ(dx) + r2.

Consequently,∫∫
φ(x)− φ(y)

x− y
ω(dx dy) = 2

∫
φ′(x)μ(dx).

In particular, we can rewrite this in terms of the operators N and L and
the notation from Proposition 1:

〈Nφ, φ1〉 = 2

∫
φ′dμ.

On the other hand, since Nφ1 = φ1 combined with (1.30) gives∫
φ′dμ =

∫
φ′dα,

this shows that μ = α.
(3) It suffices to do this for the case of b = 0, c = 1. From Lemma 2 we know

that Uφn = 1
2ψn, and then writing f =

∑∞
n=1 anφn and keeping in mind

(1.29), (2.2) becomes equivalent to

∞∑
n=1

a2n ≤
∞∑

n=1

na2n,
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which is obviously true. Written in terms of the operator N , (2.2) is equiv-
alent to

Varβ(f) ≤ 〈Nf, f〉
for all f ∈ C2([−2, 2]), or this is just the spectral gap of N . Equality is
attained in (2.2) only for f linear. The free Poincaré is actually equivalent
to the statement N ≤ N 2. As N is a non-negative operator, this is in fact
equivalent to (2.2).

(4) Follows from P (1/2) for α. �
Remark 2. Poincaré’s inequality and the C2 condition on the density w imply that
w must be positive. Also, if w is positive everywhere and continuous, then P (ρ)
holds for some ρ. It is interesting to see what happens if the C2 condition on w is
dropped. Is it still true that there is a Poincaré inequality satisfied for some ρ > 0?
If so, under what are the regularity conditions on w?

Remark 3. A natural question in this context is about the extension of the Poincaré
to the case where the measure μ has more than one interval support. These arise
naturally as equilibrium measures μV for potentials V with several wells. Indeed,
it was shown in [18] that if V is analytic near the support of μV , then the support
of μV must be a finite union of intervals. If a probability measure μ is supported
on a finite number of intervals, say I1 ∪ I2 ∪ · · · ∪ Ik, and satisfies

c

∫ (
f(x)− f(y)

x− y

)2

γ(dx dy) ≤
∫
(f ′)2dμ

for all smooth functions on R, then it can be shown that each restriction of μm to
each connected component Im satisfies an inequality of the form

c

∫ (
f(x)− f(y)

x− y

)2

γm(dx dy) ≤
∫
(f ′)2dμm

with γm supported on Im × Im.

3. Equivalent forms of Poincaré’s inequality

In this section we discuss the various equivalent forms of the free Poincaré in-
equality (2.1). Before we do this, let us introduce some operators.

For a given measure μ = w dα, with w ∈ C1([−2, 2]), let Lw be the operator
acting on L2(β) with the Dirichlet form given by 2

∫
(f ′)2μ. Then an integration

by parts gives

〈Lwφ, ψ〉 = 2

∫
φ′ψ′wdα = − 1

π

∫ 2

−2

ψ
d

dx

(
φ′w
√

4− x2
)
dx

=

∫ (
−(4− x2)wφ′′ + (xw − (4− x2)w′)φ′)ψ β(dx),

from which
Lwφ = −(4− x2)wφ′′ + (xw − (4− x2)w′)φ′.

Notice that for the case w = 1, the operator Lw becomes L given in part (4) of
Proposition 1.

Here is a statement which will be used in the sequel.

Proposition 3. If w > 0 on [−2, 2] and in C2([−2, 2]), the operator Lw extends to
a selfadjoint operator on L2(β) with domain H, defined in part (4) of Proposition 1.
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Proof. It is clear that Lw sends the constant functions to 0, and thus we restrict
our attention to the restriction of Lw on the orthogonal to constants in L2(β)0,
which is the set of functions in L2(β) of mean 0.

There is another way of representing this operator as

Lwf = LAwf

with

(Awf)(x) =

∫ x

−2

f ′(y)w(y)dy −
∫ 2

−2

∫ x

−2

f ′(y)w(y)dy β(dx)

for any C2 function f on [−2, 2]. It is not hard to check that the operator Aw

can be extended to a bounded operator on L2
0(β) due to the fact that w is C1. In

addition, it maps H0 = H∩L2
0(β) into itself and has the inverse on L2

0(β) given by
A1/w. In particular, we can use this to extend the operator Lw to H0.

The claim is now that this operator is actually selfadjoint. Indeed, if ψ ∈ L2
0(β),

which is in the domain of L∗
w, then by definition, φ → 〈LAwφ, ψ〉 extends to a

bounded functional from L2
0(β) into R. Thus, there is a constant C > 0 such that

〈LAwφ, ψ〉 ≤ C‖φ‖, say, for any C2 function φ ∈ C2([−2, 2]) ∩ L2
0(β), and then

replacing φ by A1/wφ and the fact that this is bounded, we obtain that 〈Lφ, ψ〉 ≤
C‖A1/w‖‖φ‖ for any C1 function φ on [−2, 2] in L2

0(β). Hence ψ is in the domain
of L∗, which is H0 by the fourth item of Proposition 1. In particular, this means
that the domain of L∗

w is H0.
On the other hand, since Lw on H0 is the closure of the same operator restricted

to C2([−2, 2])∩H0, it follows that Lw and L∗
w have the same domain of definition,

namely H0 and thus Lw on H0 is selfadjoint. �

Recall the operator U , which is defined in Lemma 1 and for which Uφn = 1
2ψn−1.

It is natural to look at this operator between L2(β) and L2(α). In this form,

‖Uf‖2α =
1

2
Varβ(f).

Now we define the inverse operator of U by

(3.1) Vψn = 2φn+1 for n ≥ 0.

It is clear in this case that

‖Vf‖2β = 2‖f‖2α
or, equivalently,

〈Vφ,Vψ〉β = 2〈φ, ψ〉α.

Also we have

UV = I and VU = I −Π,

where Π is as above the projection on constant functions in L2(β).
On smooth functions φ, the operator V has an explicit form as

(Vφ)(x) = Π(yφ) + xΠ(φ)− (4− x2)(Uφ)(x).
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It is easy to see that one has to check this on the generating function of ψn, which
is hr(x) =

1
1−rx+r2 , 0 < r < 1. For such a particular function (cf. (1.24)),

xΠ(hr) = x

∫
hrdβ =

x

1− r2
,

Π(yhr) =

∫
yhr(y) β(dy) =

2r

1− r2
,

(4− x2)(Uhr)(x) =
2r

1− r2
+

x

1− r2
− 2(gr(x)− 1)

r
,

which gives the formula. The point of the formula is that for a C2 function f on
[−2, 2], Vf is at least C1.

Now take

M = UNV − I,

where I is the identity operator. It is very easy to check that M is the counting
number operator for the {ψn}n≥0 basis of L2(α) for the semicircle law. Indeed, on
the basis ψn, both sides give nψn. With this definition, it is easy to check that

(3.2) NV = V(M+ I).

We also have

(3.3) 〈Mg, g〉α =

∫∫ (
g(x)− g(y)

x− y

)2

α(dx)α(dy),

which stems from the fact that

ψn(x)− ψn(y)

x− y
=

n−1∑
k=0

ψk(x)ψn−k−1(y)

(a consequence of the generating function for ψn’s), used in conjunction with the
orthogonality of {ψn}n≥0 with respect to the measure α.

The next theorem describes an equivalent description of the free Poincaré in-
equality P (ρ) which follows from the preceding operator-theoretic tools. Recall
that Ub,c appearing below is the one defined in Lemma 2.

Theorem 3. Assume that μ = wαb,c with w ∈ C2([−2c + b, 2c + b]) and ρ > 0.
Then the following are equivalent:

(1) P (ρ) for μ ( (2.1)).
(2) For any f ∈ C2[−2c+ b, 2c+ b],

(3.4) 2ρ

∫
(Ub,cf)

2

w
dαb,c ≤

∫∫ (
f(x)− f(y)

x− y

)2

ωb,c(dx dy).

We call this alternative version P2(ρ).

(3) For any f ∈ C2[−2c+ b, 2c+ b],
∫ (Ub,cf)

2

w dαb,c < ∞ and

(3.5)

c2
∫∫ (

f(x)− f(y)

x− y

)2

ωb,c(dx dy)

≤ 2

√∫
(f ′)2 dμ

√∫
(Ub,cf)2

w
dαb,c − 2ρ

∫
(Ub,cf)

2

w
dαb,c.

We call this inequality P3(ρ).
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(4) For any g ∈ C1([−2c+ b, 2c+ b]),

(3.6) 2ρ

∫
g2

w
dαb,c ≤ c2

∫∫ (
g(x)− g(y)

x− y

)2

αb,c(dx)αb,c(dy) +

∫
g2dαb,c,

which is referred to as P4(ρ).

Proof. We prove that (1) implies (2) implies (3) implies (1) and that (2) is equivalent
to (4). In addition, even though it is not needed, we will also prove that (2) implies
(1) with the duality argument which shows (1) implies (2). This last implication
makes more transparent the duality behind P (ρ) and P2(ρ). By scaling, it can be
assumed that b = 0, c = 1.

(1) =⇒ (2) From Proposition 2 we learn that w > 0 on [−2, 2]. Write P (ρ) in
the equivalent form

2ρN ≤ Lw

as (unbounded) selfadjoint operators on L2(β). Since w > 0, then we can find two
positive constants c1, c2 > 0 such that

c1L ≤ Lw ≤ c2L.
Notice that the kernel of both N and Lw is the space of constant functions and
therefore the restrictions of N ,Lw to L2

0(β), the orthogonal to constant functions,
are invertible. We will assume for the rest of this implication that the operators
N ,Lw are taken on L2

0(β). As the inverse of N is E and this is bounded, it follows
that L−1

w is also bounded.
After these preliminaries, we use some sort of duality. More precisely, the main

idea is that for each fixed f ∈ L2
0(β) ∩ C2([−2, 2]),

sup
g∈L2

0(β)∩C2([−2,2])

{〈Nf, g〉 − ρ 〈N g, g〉} =
1

4ρ
〈Nf, f〉,

sup
g∈L2

0(β)∩C2([−2,2])

{
〈Nf, g〉 − 1

2
〈Lwg, g〉

}
=

1

2
〈NL−1

w Nf, f〉.
(3.7)

Indeed, the first equality is a consequence of 〈N (f − 2ρg), f − 2ρg〉 ≥ 0 for each
f, g ∈ L2

0(β) ∩ C2([−2, 2]), while the second follows from 〈L−1
w N (f − ELwg),

N (f − ELwg)〉 ≥ 0, with equality for g = L−1
w Nf . This last equality may not

be attained for g ∈ L2
0(β) ∩ C2([−2, 2]), but L−1

w Nf can be approximated by such
functions.

Poincaré’s inequality P (ρ) implies in this case that

2ρ〈NL−1
w Nf, f〉 ≤ 〈Nf, f〉.

A simpler argument of this inequality was suggested by the reviewer of this paper
and is based on the fact that from 2ρN ≤ Lw on L2

0(β), we first get 2ρL−1
w ≤ N−1

and then 2ρNL−1
w N ≤ NN−1N = N .

To get to (3.4), it suffices to observe that for f ∈ C2([−2, 2]) ∩ L2
0(β),∫

(Uf)2
w

dα =
〈
Uf, 1

w
Uf
〉
α
=

1

2

〈
V 1

w
Uf, f

〉
β

.

It now remains to show that NL−1
w N = V 1

wU on C2([−2, 2]) ∩ L2
0(β). Passing to

the inverses, this follows from the following result which is remarkable enough to
be called a lemma.
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Lemma 3. For any w ∈ C2([−2, 2]),

(3.8) VwU = ELwE on C2([−2, 2]) ∩ L2
0(β).

Proof. It suffices to do this for w = φn. Therefore we need to check that

VφnUφm = ELφn
Eφm

for all m ≥ 1 and n ≥ 0. It is clear that

Lφn
φ = φnLφ− n(4− x2)

2
ψn−1φ

′.

Now we can continue with

VφnUφm = ELφn
Eφm

or
1

2
Vφnψm−1 =

1

m
ELφn

φm =
1

m
EφnLφm − nE(4− x2)ψn−1ψm−1

= mEφnφm − nE (4− x2)

4
ψn−1ψm−1.

From (1.9), this is equivalent to

1

4
V(sign(m−n)ψ|m−n|−1+ψn+m−1)=

m

2
E(φ|n−m|+φn+m)− n

2
E(φ|n−m|−φn+m),

which becomes obvious based on (3.1) and part (2) of Proposition 1. Just as a
clarification, sign(x) is −1 for x < 0, 0 for x = 0 and 1 for x > 0. �

(2) =⇒ (1) We present two proofs for this implication. The first one is a duality
argument such as the one used in the previous implication, and the second one is
based on (1.34) and integration by parts.

Before we launch into the proofs, let us point out that if
∫ (Uf)2

w dα is finite

for any C2 function f , then w(a) > 0 for a ∈ (−2, 2) and either w(−2) > 0 or
w(−2) = 0 and w′(−2) > 0. Similarly, w(2) > 0 or w(2) = 0 and w′(2) > 0.
Indeed, if w(a) = 0 for some interior point a ∈ (−2, 2), then, since w ≥ 0 and in
C2, it means that w(x) = O((x − a)2) near a. On the other hand we can find an
n such that Uφn = ψn−1/2 is non-zero in a neighborhood of a. To see this, recall
that ψn(2 cos θ) = sin((n+1)θ)/ sin(θ); thus for any θ ∈ (0, π), there is n such that
sin((n + 1)θ) �= 0. Combining these two facts, it easily leads to a contradiction
of (3.4). If w′(−2) = 0, then w vanishes quadratically near −2 and, for instance,
picking f(x) = x leads to a contradiction.

The first proof is based on the following duality similar to (3.7). For any f ∈
L2
0(β) ∩ C2([−2, 2]),

sup
g∈L2

0(β)∩C2([−2,2])

{
〈Nf, g〉 − 1

4ρ
〈N g, g〉

}
= ρ 〈Nf, f〉,

sup
g∈L2

0(β)∩C2([−2,2])

{
〈Nf, g〉 − 1

2
〈NL−1

w N g, g〉
}
=

1

2
〈Lwf, f〉,

sup
g∈L2

0(β)∩C2([−2,2])

{
〈Nf, g〉 − 1

2
〈V 1

w
Ug, g〉

}
=

1

2
〈Lwf, f〉.

(3.9)

The first two equalities can be justified as in the previous proof, the last line being
just the consequence of the above lemma. As the second form in Theorem 3 is
written as 2ρ〈V 1

wUg, g〉 ≤ 〈N g, g〉, P (ρ) is immediate.
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The second proof is based on the idea that from (1.29) and (1.34), a simple
integration by parts yields

2

∫∫ (
f(x)− f(y)

x− y

)2

ω(dx dy) = 〈Nf, f〉 = 2

∫
f ′Uf dα.

Therefore, (3.4) implies P (ρ) from the sequence

(3.10)

∫∫ (
f(x)− f(y)

x− y

)2

ω(dx dy) ≤ 2

∫
f ′Uf dα− 2ρ

∫
(Uf)2
w

dα

≤ 1

2ρ

∫
(f ′)2wdα =

1

2ρ

∫
(f ′)2dμ,

where the second inequality is justified by 2ab ≤ a2 + b2 with a = f ′/
√
ρ and

b = 2
√
ρUf/√w. Notice here that we need to know that w does not vanish on

(−2, 2) and we have the suitable integrability of 1/w at ±2 to ensure the integrals
are well defined.

(2) =⇒ (3) The first inequality of (3.10) gives, after an application of the
integral Cauchy-Schwarz inequality,∫∫ (

f(x)− f(y)

x− y

)2

ω(dx dy) ≤ 2

∫
f ′Uf dα− 2ρ

∫
(Uf)2
w

dα

≤ 2

√∫
(f ′)2dμ

√∫
(Uf)2
w

dα− 2ρ

∫
(Uf)2
w

dα.

(3) =⇒ (1) It is just an application of the Cauchy-Schwarz inequality. More

precisely, in 2
√
ab ≤ a + b, a, b ≥ 0, take a = 1

2ρ

∫
(f ′)2dμ and b = 2ρ

∫ (Uf)2

w dα.

We need to point out here that for all C2 functions f ,
∫ (Uf)2

w dα < ∞, hence, as it
was shown in the implication (2) =⇒ (1), w must be positive inside (−2, 2) and
is such that 1/w is α-integrable.

(2) =⇒ (4) Now take g = Uf , with f = Vg. Therefore, if we replace f in (3.4)
by Vg, then

4ρ

∫
g2

w
dα ≤ 〈NVg,Vg〉β = 〈V(M+ I)g,Vg〉β = 2〈(M+ I)g, g〉α,

which is exactly (3.6).
(4) =⇒ (2) Take g = Uf in (3.6), and from the last equation and VU = I −Π,

2〈NVUf,VUf〉 = 2〈Nf, f〉 = 〈(M+ I)g, g〉α,

where we used the fact that Π is the projection onto the constant functions which
is also the kernel of N , thus NΠ = ΠN = 0. �

Remark 4. It is interesting that the equivalence of the first and second parts of
Theorem 3 can be seen as some sort of duality.

As we will see in Theorem 7, the second form of Poincaré P2(ρ) is naturally
derived from the transportation inequality, and this is the reason why we discuss
this equivalent form. At first we arrived from the transportation inequality to

(3.11)

∫∫ (
f(x)− f(y)

x− y

)2

ω(dx dy) ≤ 2

∫
f ′Uf dα − 2ρ

∫
(Uf)2
w

dα,
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which is a rewriting of P2(ρ) from which a straightforward application of the Cauchy
inequality implies P (ρ). This makes one believe that the second form is actually
stronger than P (ρ), but the above theorem says that they are equivalent.

The third form is (3.11) plus Cauchy-Schwarz. This actually appears naturally
from the HWI inequality discussed in Section 5.

The fourth form is closer in spirit to the classical form of Poincaré as a spectral
gap, though a little different. For example, in the case of the semicircular on [−2, 2],
w = 1, and this inequality becomes

‖g‖22 ≤ 〈Mg, g〉α + ‖g‖22,

which is nothing but non-negativity of M on L2(α). This is to be put in contrast
with Biane’s version (0.3) of Poincaré, which is actually a measure of the spectral
gap of M.

Remark 5 (The optimality of the constant ρ in P (ρ)). P (ρ) becomes 2ρN ≤ Lw.
This inequality gives in particular that if 0 = λ0 < λ1 ≤ λ2 . . . are the eigenvalues
of Lw ordered non-decreasingly, then 2ρn ≤ λn. The optimal ρ is the infimum
of λn/n over n ≥ 1. On the other hand, if inf w > 0, then λn grows at least
quadratically and as such, there is a finite n, for which λn = 2ρn, λm > 2ρm for
m = 1, 2, . . . , n− 1 and λm ≥ 2ρm for all m ≥ n+1. In some sense, the optimality
constant is fitting the best linear growth for the spectrum of Lw.

From the point of view of P2(ρ), we are looking at the best constant of something
which resembles a classical Poincaré inequality, as the left hand side of (3.4) is some
sort of variance. However, unless w is constant, the isometric property of U between
L2(β) and L2(α) is disturbed.

P4(ρ) is comparing M+ I with respect to the identity on a different L2.

4. Perturbation of logarithmic potentials

In this section we provide some results related to logarithmic potentials which
are the building blocks for the connection of transportation and Poincaré. The goal
is to study the result of a perturbation of V on EV . First recall the following result
from [10] which gives an expression for EV , rewritten here within the notation
introduced so far.

Theorem 4. Assume V is a C3 potential. Then the equilibrium measure on R

associated to V has support the interval [−2c+ b, 2c+ b] if and only if (c, b) is the
unique absolute maximizer of

(4.1) H(c, b) := log c− 1

2

∫
V (x) βb,c(dx)

and

(4.2) Ub,c(V
′) > 0 on a dense subset of [−2c+ b, 2c+ b].

The equilibrium measure in this case is dμV = Ub,c(V
′)dαb,c.

If this is the case, (b, c) is a solution of

(4.3)

{∫
cxV ′(cx+ b)β(dx) = 2,∫
V ′(cx+ b)β(dx) = 0

Licensed to Georgia Inst of Tech. Prepared on Thu Aug  1 02:46:18 EDT 2013 for download from IP 130.207.50.37.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



4836 MICHEL LEDOUX AND IONEL POPESCU

and

EV = − log c+

∫
V (x)βb,c(dx)−

c2

2

∫∫ (
V (x)− V (y)

x− y

)2

ωb,c(dx dy).(4.4)

The first part of the theorem is well known and can be seen for example in [19,
Theorems 1.10 and 1.11, Chapter IV], while (4.4) is a combination of (1.3) and
(1.31).

For the rest of this paper we will use the perturbation result for which the
following assumptions on the potential V suffice.

Assumption 1. (1) V is C3.
(2) There is a unique maximizer (c, b) ∈ (0,∞)× R of the function H defined

by (4.1).
(3) Ub,c(V

′) > 0, on [−2c+ b, 2c+ b].

Remark 6. The first two conditions plus (4.2) are part of the existence of a single
interval for the support of the equilibrium measure μV as we presented here, while
the third assumption is an improved version of (4.2). Moreover, in order to obtain
a Poincaré inequality, we must have this third condition satisfied as was shown in
Proposition 2. Thus what is written here is just the minimal conditions in order to
assure the well-posedness of the Poincaré inequality.

Under the conditions of Assumption 1, if we perturb the potential V by Vt =
V + tf + t2g+o(t2) (uniformly on R), where f, g are C3 functions with all bounded
derivatives, then Vt itself, for small t, satisfies the conditions in Assumption 1, and
thus its equilibrium measure has a one interval support [−2ct + bt, 2ct + bt], where
ct and bt are of C2 class in t.

The fact that the support of the equilibrium measure for the perturbed potential
is still one interval follows roughly from the fact that the associatedHt in Theorem 4
does not change much with t, and thus it still has a unique maximum which is close
to the one at time t = 0. Also, the positivity condition (4.2) with V replaced by Vt

is satisfied for small t.
The fact that the endpoints of the support of the equilibrium measure, or oth-

erwise stated, ct and bt are C2, follows from the implicit function theorem applied
to the system (4.3) with V replaced by Vt. For a detailed argument on this pertur-
bation, the reader is referred to the perturbation section in [10].

The main result in this section is the following description of how EV behaves
under perturbations.

Theorem 5. Let V : R → R be a potential on R such that the equilibrium measure
μV has support [−2c+b, 2c+b]. In addition, assume Vt, t ∈ (−ε, ε), is a perturbation
of V such that

Vt = V + tf(x) + t2g(x) + o(t2),

where f, g : R → R are C3 on R with bounded derivatives and o(t2) is uniform on
R. If Et = EVt

, then
(4.5)

Et = E0 + t

∫
fdμV + t2

(∫
gdμV − c2

2

∫∫ (
f(x)− f(y)

x− y

)2

ωb,c(dx dy)

)
+ o(t2).
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Proof. Assume for simplicity (without loss of generality) that c = 1, b = 0. The
critical point system (4.3) reads as{∫

xV ′(x) β(dx) = 2,∫
V ′(x) β(dx) = 0.

To simplify the writing in this proof, for any smooth functions h, k : [−2, 2] → R,
set Π(h) =

∫
h dβ as in Theorem 2 and

(4.6) Ω(h, k) =
1

2
〈Nh, k〉 =

∫∫
(h(x)− h(y))(k(x)− k(y))

(x− y)2
ω(dx dy).

Recast the critical point system in this notation as

(4.7)

{
Π(xV ′) = 2,

Π(V ′) = 0.

Now, we notice that for small t, the equilibrium measure of Vt has support [−2ct +
bt, 2ct + bt], where ct and bt depend C2 on t. Thus we can write

ct = 1 + tc1 + t2c2 + o(t2), bt = tb1 + t2b2 + o(t2).

Continuing, from (4.4),

Et := − log ct+

∫
Vt(ctx+bt)β(dx)−

1

2

∫∫ (
Vt(ctx+ bt)− Vt(cty + bt)

x− y

)2

ω(dx dy).

Next, a simple Taylor expansion gives

Vt(ctx+ bt) = V (ctx+ bt) + tf(ctx+ bt) + t2g(ctx+ bt) + o(t2)

= V (x) + t
(
c1x+ b1 + t(c2x+ b2)

)
V ′(x) + t2(c1x+ b1)

2V ′′(x)/2

+ tf(x) + t2
(
c1x+ b1 + t(c2x+ b2)

)
f ′(x) + t2g(x) + o(t2)

= V (x) + t
[
(c1x+ b1)V

′(x) + f(x)
]

+ t2
[
(c2x+ b2)V

′(x) + (c1x+ b1)
2V ′′(x)/2+(c1x+ b1)f

′(x)+g(x)
]

+ o(t2).

Expanding Et to second order yields

Et =E0 − tc1 − (c2 − c21/2)t
2 + tc1Π(xV ′) + tb1Π(V ′) + tΠ(f)

+ t2
[
c2Π(xV ′) + b2Π(V ′) + c21Π(x2V ′′)/2 + b1c1Π(xV ′′) + b21Π(V ′′)/2

+ c1Π(xf ′) + b1Π(f ′) + Π(g)
]

− t
[
c1Ω(V, xV

′) + b1Ω(V, V
′) + Ω(V, f)

]
− t2
[
Ω((c1x+ b1)V

′, (c1x+ b1)V
′)/2 + Ω((c1x+ b1)V

′, f) + Ω(f, f)/2

+ Ω(V, (c2x+ b2)V
′) + Ω(V, (c1x+ b1)

2V ′′)/2 + Ω(V, (c1x+ b1)f
′)

+ Ω(V, g)
]
+ o(t2),
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and after regrouping the terms according to the power of t, it becomes
(4.8)
Et =E0 + t

[
Π(f)− Ω(V, f)

]
+ t2
[
Π(g)− Ω(V, g)− Ω(f, f)/2

]
+ t
[
c1(Π(xV ′)− 1− Ω(V, xV ′)) + b1(Π(V ′)− Ω(V, V ′))

]
+ t2
[
c2(Π(xV ′)− 1− Ω(V, xV ′)) + b2(Π(V ′)− Ω(V, V ′))

]
+ t2
[
c21(1 + Π(x2V ′′)− Ω(xV ′, xV ′)− Ω(V, x2V ′′))

+ b21(Π(V ′′)− Ω(V ′, V ′)− Ω(V, V ′′))

+ 2c1b1(Π(xV ′′)− Ω(V ′, xV ′)− Ω(V, xV ′′))
]
/2

+ t2
[
c1(Π(xf ′)− Ω(xV ′, f)− Ω(V, xf ′)) + b1(Π(f ′)− Ω(V ′, f)− Ω(V, f ′))

]
+ o(t2).

Equation (1.18) gives

Π(f)− Ω(V, f) =

∫
fdμV and Π(g)− Ω(V, g) =

∫
gdμV ,

and thus the first line of (4.8) is precisely (4.5) modulo o(t2). Our remaining task
is to prove that the rest of (4.8) is zero (up to o(t2)).

Taking φ = ψ = V in the second line of (1.32), together with (4.7), leads to
Ω(V, xV ′) = 1 and thus Π(xV ′) − 1 − Ω(V, xV ′) = 0. Now using the first line of
(1.32) with φ = ψ = V leads to Ω(V, V ′) = 0 which, combined with (4.7), leads to
the conclusion that the second and the third lines of (4.8) are 0.

For the fourth line, take φ = ψ = V in the second equality of (1.33) plus (4.7)
to conclude that

Ω(xV ′, xV ′) + Ω(V, x2V ′′) = 1 + Π(x2V ′′).

Similarly, using the third line of (1.33) with φ = ψ = V in addition to (4.7), yields

Ω(V ′, xV ′) + Ω(V, xV ′′) = Π(xV ′′),

while using the first equality in (1.32) for φ = V ′ and ψ = V , combined with (4.7),
provides

Ω(V ′, V ′) + Ω(V, V ′′) = Π(V ′′).

These show that the fourth and fifth lines of (4.8) are 0.
Finally, using (1.32) for φ = V and ψ = f together with (4.7) yields that

(4.9) Ω(V ′, f) + Ω(V, f ′) = Π(f ′) and Ω(xV ′, f) + Ω(V, xf ′) = Π(xf ′),

which concludes that the last line in (4.8) is o(t2). This completes the proof. �

Remark 7. Notice that Theorem 5 has a simpler proof in the case where the equi-
librium measure of Vt has a support which is independent of t. Assuming b = 0,
c = 1, and conforming to (4.3), this amounts to

(4.10)

{∫
f ′(x) β(dx) = 0,∫
xf ′(x) β(dx) = 0

and

{∫
g′(x) β(dx) = 0,∫
xg′(x) β(dx) = 0.

The simpler proof alluded to in this case follows directly from formula (1.31) with
V replaced by Vt plus an expansion in t.
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The content of this theorem says that in fact the same formula holds true even
without the constraints from (4.10), but one has to go through a careful examination
of the dependence on the coefficients c1, c2, b1 and b2 in (4.8) and notice that their
contributions disappear due to some remarkable and non-trivial cancellations.

Next we study how the equilibrium measure changes under perturbation of the
potential.

Theorem 6. Let V satisfy Assumption 1 and let f ∈ C3
b (R). Then, in the sense

of distributions,

dμV +tf = dμV + tdνf +O(t2),

where νf is the (unique) signed measure on [−2c+ b, 2c+ b] which solves{
2
∫
log |x− y|νf (dy) = f(x) + C for almost every x ∈ [−2c+ b, 2c+ b],

νf ([−2c+ b, 2c+ b]) = 0,

where “almost every” is with respect to the Lebesgue measure. If b = 0, c = 1, this
can be written in simpler terms as

(4.11) dμV +tf = dμV − t

2
(Nf) dβ +O(t2).

In addition, for x ∈ [−2c+ b, 2c+ b],

(4.12)

Ψf (x) :=

∫ x

−∞
νf (dy) =

√
4c2 − (x− b)2

2π
(Ub,cf)(x)

=

√
4c2 − (x− b)2

2π

∫
f(x)− f(y)

x− y
dβb,c(dy).

Proof. As in the proof of Theorem 5, for small t, the equilibrium measure of V + tf
has a one interval support [−2ct + bt, 2ct + bt] and ct, bt both depend C3 on t.
In addition, assuming for simplicity that c0 = 1 and b0 = 0, then we know that
ct = 1 + c1t+O(t2) and bt = tb1 +O(t2), for some c1, b1 ∈ R.

For a smooth function, φ, using equation (1.18), one gets∫
φdμV +tf =

∫
φ(ctx+ bt) β(dx)

−
∫∫

(V (ctx+ bt)− V (cty + bt))(φ(ctx+ bt)− φ(cty + bt))

(x− y)2
ω(dx dy)

− t

∫∫
(f(ctx+ bt)− f(ctx+ bt))(φ(ctx+ bt)− φ(cty + bt))

(x− y)2
ω(dx dy).

Using Taylor’s expansion in t, after a little calculation and with the notation from
(4.6) we continue the above identity with∫

φ dμV+tf = Π(φ)− Ω(V, φ)

+ t
[
c1(Π(xφ′)− Ω(xV ′, φ)− Ω(V, xφ′)) + b1(Π(φ′)− Ω(V ′, φ)

− Ω(V, φ′))− Ω(f, φ)
]
+O(t2).

After using (1.18), (1.36) and (4.9) the latter can be simplified further into∫
φdμV+tf =

∫
φ dμV + t

∫
φ dνf +O(t2).
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Furthermore, from (1.17), we have

νf (dx) = −1

2
Nf(x) β(dx).

Now, (4.12) follows from (1.34). The proof of the theorem is complete. �

5. Poincaré’s inequality and other functional inequalities

This section is devoted to the relationship of the free Poincaré inequality with the
transportation and Log-Sobolev inequalities on the basis of the perturbation prop-
erties developed in the preceding section. As mentioned in the Introduction, the
implications from the transportation and Log-Sobolev inequalities to the Poincaré
inequality in the classical case are standard (cf. [1, 17, 4, 20]). Their analogues in
the free case are surprisingly more involved.

First recall the main functional inequalities to be compared with the free Poincaré
inequality (see [16]).

Definition 3. (1) The probability measure μV , or more appropriately, V , sat-
isfies a transportation inequality with parameter ρ > 0, if for any other
measure μ,

(5.1) ρW 2
2 (ν, μV ) ≤ EV (ν)− EV (μV ),

where W2(ν, μ) is the Wasserstein distance defined as

W2(ν, μ)
2 = inf

{∫
|x− y|2π(dx dy)

}
,

where the infimum is taken over all probability measures π, with marginals
μ and ν (i.e. π(dx,R) = ν(dx) and π(R, dy) = μ(dy)). In short we refer to
the inequality (5.1) as T (ρ), which was introduced by Biane and Voiculescu
[3] for the semicircular and in this form by [13].

(2) Similarly we say that μV satisfies a Log-Sobolev, for short LSI(ρ), ρ > 0,
if for any other (sufficiently nice) probability measure ν,

(5.2) 4ρ(EV (ν)− EV (μV )) ≤ IV (ν|μV ),

where

IV (ν|μV ) =

∫
(Hν − V ′)2dν

with

(5.3) Hν(x) = p.v.

∫
2

x− y
ν(dy)

taken in the principal value sense. This inequality was introduced in this
form by Biane [2].

(3) At last we say that μV satisfies an HWI(ρ), ρ ∈ R, if for all sufficiently
nice probability measures ν,

(5.4) E(μ)− E(μV ) ≤
√
IV (μ|μV )W2(μ, μV )− ρW 2

2 (μ, μV ).

We should mention that Log-Sobolev implies transportation [15] and that HWI
implies Log-Sobolev for ρ > 0. In particular, although the theorem below pro-
vides independent proofs, one main implication is the one from the transportation
inequality to the Poincaré inequality.
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A short description of the transportation map is in place here. For any prob-
ability measures, μ, ν on the real line, with μ absolutely continuous with respect
to the Lebesgue, then W 2

2 (μ, ν) =
∫
(θ(x)− x)2μ(dx) with θ being the unique non-

decreasing transportation map of μ into ν. In addition, if μ and ν have densities
gμ and gν , then

(5.5) θ′(x)gν(θ(x)) = gμ(x) for all x ∈ supp(μ).

Before we proceed to the proof of the main theorem, we want to give a result
about the behavior of the transport map of the equilibrium measure of a perturbed
potential.

Proposition 4. Assume that V is a potential satisfying Assumption 1, let Vt =
V + tf , where f is a C3 function with all bounded derivatives, and let μV , μt be
the equilibrium measures of V , respectively Vt. If θt is the transport map from μV

into μt, then there is a C1 function ζ on the support of μV such that

(5.6) θt(x) = x+ tζ(x) + o(t)

uniformly in x on the support of μV .

Proof. By rescaling, we may assume that the support of μV is [−2, 2]. As we
pointed out in the remark following Assumption 1, the support of the measure μt

is [−2ct + bt, 2ct + bt], where ct and bt are of C2 class in t.
From the above presentation of the transportation map, it is clear that θt maps

[−2, 2] into [−2ct + bt, 2ct + bt] with θt(−2) = −2ct + bt and θt(2) = 2ct + bt. In
order to remove the varying endpoints, we rescale θt(x) = 2ctψt(x) + bt, and with
the help of (5.5), Assumption 1 and Theorem 4 we learn that

(5.7) ψ′
t(x)w(t, ψt(x))

√
4− ψ2

t (x) = w(0, x)
√
4− x2 for x ∈ (−2, 2),

where w(t, ·) is the density of the equilibrium measure of V (ctx+ bt) with respect
to the semicircular law. The important fact to be spelled out here is that w :
[−t0, t0]× [−2, 2] → (0,∞) is of C2 class for some small enough t0.

Now, if we set Ψt(x) = ∂tψt(x), then

(5.8) ψt(x) = ψ0(x) +

∫ t

0

Ψs(x)ds = x+ tΨ0(x) +

∫ t

0

(Ψs(x)−Ψ0(x))ds,

and we get the claimed expansion as soon as we prove that Ψ0 can be extended to a
continuous function on [−2, 2] and also that supx∈(−2,2) |Ψs(x)−Ψ0(x)| converges
to 0 when s converges to 0.

If we take the behavior of the solution ψt to (5.7) at points x ∈ (−2, 2), then
standard results of perturbation of ordinary differential equations tell us that the
perturbation with respect to t is of class C2. However, at the endpoints ±2 this
becomes problematic, and for this case, one needs a separate analysis. At least we
know that ∂tψt(x)|t=0 is well defined and uniformly continuous on compact sets of
(−2, 2). In particular this justifies the writing of (5.6) uniformly on any compact
interval in (−2, 2) for some continuous function ζ on (−2, 2).

To deal with the behavior at the endpoint −2, the other endpoint, 2, must begin
to be treated similarly. To this end, we want to remove the square root behavior
at −2, and for this purpose, we consider φ : [0,∞] → [−2, 2], given by

(*) φ(u) =
2(u2 − 1)

u2 + 1
.
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Its inverse is φ−1(x) = 2+x
2−x , and one of the main reasons for introducing φ is that

(**)
√
4− φ2(u) =

4u

1 + u2
and φ′(u) =

4u

(1 + u2)2
.

Now we take the function ξt = φ−1 ◦ψt ◦φ, and hence ψt = φ ◦ ξt ◦φ−1, which then
gives

ψ′
t(φ(u)) = φ′(ξt(u))ξ

′
t(u)

1

φ′(u)
= ξ′t(u)

ξt(u)

u

(1 + u2)2

(1 + ξ2t (u))
2
.

This, plugged into (5.7) with x = φ(u), yields

(5.9) ξ′t(u) =
u2

ξ2t (u)
F (t, u, ξt(u))

where

F (t, u, y) =
w(0, φ(u))(1 + y2)3

w(t, φ(y))(1 + u2)3
.

Notice that F is a nice positive and C2 function in all variables t, u, y. In particular,
standard results in ordinary differential equations guarantee that (t, u) → ξt(u) is
a C2 function in both (t, x) on [−t0, t0]× (0, 1].

With this ξt replacing ψt it suffices to show that the writing (5.6) holds true
uniformly for u in the interval [0, 1]. To do this, set ηt(x) = ∂tξt(x) and write as in
(5.8)

ξt(u) = ξ0(u) + tη0(u) +

∫ t

0

(ηs(u)− η0(u))ds.

Therefore it now suffices to prove that η0 extends to a continuous function on [0, 1]
and supu∈(0,1] |ηs(u)− η0(u)| converges to 0 as s goes to 0.

We know that ξt is a continuous function on [0, 1] for any small t with ξt(0) = 0.
From (5.9),

(5.10) ξt(u) =

(∫ u

0

v2F (t, v, ξt(v))dv

)1/3

,

whose first consequence is that ξt(u)/u has a limit as u converges to 0. Otherwise
stated, the derivative ξ′t is well defined at 0 (for any t ∈ [−t0, t0]) and in particular
can be computed as

ξ′t(0) = (F (t, 0, 0))
1/3

.

What this gives in terms of ξt is that from (5.9) and the F (0, 0, 0) = 1, there is a
positive constant C > 0 such that for any t ∈ [−t0, t0] and u ∈ [0, 1], C−1 ≤ ξ′t(u) <

C and also C−1 ≤ ξt(u)
u ≤ C.

Now we look at our main interest, the derivative ηt(u) = ∂tξt(u). Observe that
from (5.9), it is easy to deduce that

η′t(u) = − 2u2

ξ3t (u)
ηt(u)F (t, u, ξt(u)) + ∂yF (t, u, ξt(u))ηt(u) + ∂tF (t, u, ξt(u))

for all u ∈ (0, 1), t ∈ [−t0, t0],
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and, due to (5.9), we can rewrite this in the form

η′t(u) = −2ξ′t(u)

ξt(u)
ηt(u) + ∂yF (t, u, ξt(u))ηt(u) + ∂tF (t, u, ξt(u))

= −
(
2ξ′t(u)

ξt(u)
+ at(u)

)
ηt(u) + bt(u),

with at(u) = ∂yF (t, u, ξt(u)) and bt(u) = ∂tF (t, u, ξt(u)). This implies that there
is a constant Lt with the property that for t ∈ [−t0, t0] and u ∈ (0, 1),

ηt(u)ξ
2
t (u)e

At(u) −
∫ u

0

bt(v)ξ
2
t (v)e

At(v)dv = Lt

with At(u) =
∫ u
0
at(σ)dσ. Since for any fixed u > 0 the left hand side is continuous

in t, it follows that Lt is also a continuous function of t.
Setting Bt(u) =

∫ u
0
bt(v)ξ

2
t (v)e

At(v)dv, we now write

ξt(u) = ξ0(u) +

∫ t

0

ηs(u)ds = u+

∫ t

0

Ls

ξ2s (u)e
As(u)

ds+

∫ t

0

Bs(u)

ξ2s (u)e
As(u)

ds,

from which multiplication by u2 and passing to the limit u → 0 with the help of
(5.10) yields ∫ t

0

Ls

(F (s, 0, 0))2/3
ds = 0

for all small t, which in return yields that Lt = 0 for all t small enough. Hence, it
is now pretty clear that

ηt(u) =
1

ξ2t (u)e
At(u)

∫ u

0

bt(v)ξ
2
t (v)e

At(v)dv

can be extended to a continuous function at 0 for each t ∈ [−t0, t0]. In particular,
η0 is continuous on the interval [0, 1]. In fact a stronger statement holds true here,
namely, that

sup
t∈[−t0,t0]

|ηt(u)| −−−→
u→0

0,

which follows from the fact that there is a constant C > 0 such that

C−1 ≤ sup
t∈[−t0,t0]

ξt(u)

u
≤ C and sup

t∈[−t0,t0],u∈[0,1]

(|at(u)|+ |bt(u)|) ≤ C,

which in turn yields that for some K > 0,

(5.11) sup
t∈[−t0,t0]

|ηt(u)| ≤ K
1

u2

∫ u

0

v2dv ≤ Ku/3.

What is left to prove here is that supu∈(0,1] |ηs(u) − η0(u)| converges to 0 as s
converges to 0. If this were not the case, then there would be ε > 0, sn −−−−→

n→∞
0

and un ∈ [0, 1] such that |ηsn(un)− η0(un)| ≥ ε. Without loss of generality we may
assume that un is convergent to some v ∈ [0, 1] and then if v = 0 contradicts (5.11),
while v �= 0 contradicts the continuity of η at (0, v). �

The following theorem, showing that the free Poincaré inequality is implied by
the transportation or Log-Sobolev inequalities, is one main conclusion of this work.
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Theorem 7. Let V satisfy Assumption 1 and the support of μV be [−2c+b, 2c+b].
Then for the measure μV , and ρ ≥ 0,

(5.12) T (ρ) =⇒ P (ρ) and P2(ρ)

and

(5.13) LSI(ρ) =⇒ P (ρ),

where P2,3,4(ρ) are defined in Theorem 3 and P (ρ) by (2.1). Now, if ρ ∈ R, then

(5.14) HWI(ρ) =⇒ P3(ρ).

In particular, if ρ > 0, then (cf. Theorem 3) HWI(ρ) =⇒ P (ρ).

Proof. If ρ = 0, then (5.12) and (5.13) are trivial so that we assume below that
ρ > 0. Assume furthermore that b = 0, c = 1. Here we will give two proofs of (5.12).
One is inspired by the classical case and uses the Hamilton-Jacobi semigroup and
the dual formulation of the Wasserstein distance, while the other is based directly
on the perturbation of the potential.

For the first proof, we employ the tools from the infimum convolution semigroup
used in [4] for the classical case. More precisely, take an arbitrary smooth function
f : [−2, 2] → R and extend it to a smooth compactly supported function on the
whole R. Now use the dual formulation of the Wasserstein distance, which now
makes the transportation inequality equivalent to

ρ

(∫
gdν −

∫
fdμV

)
≤ EV (ν)− EV (μV )

for any pair of functions with g(x) − f(y) ≤ (x − y)2. For a given f , the optimal
choice of g is given by g = Qf , where

(5.15) (Qf)(x) = inf
y∈R

{f(y) + (x− y)2}.

Then

−ρ

∫
fdμV ≤

∫
(V − ρQf)dν −

∫∫
log |x− y|ν(dx)ν(dy)− EV

for any measure ν. In particular, minimizing over all measures ν, one obtains that

−ρ

∫
fdμV ≤ EV−ρQf − EV .

Next, we point out that if we set

(Qtf)(x) = inf
y∈R

{
f(y) +

(x− y)2

t

}
,

then (cf. [7, Chapter 3]) h(t, x) = (Qtf)(x) satisfies the Hamilton-Jacobi equation

(5.16) ∂th+
1

4
(h′)

2
= 0.

Replacing f by tf and using the fact that Q(tf) = tQtf = tf − t2

4 (f
′)2 + o(t2)

combined with the result of Theorem 5, one is led to

(5.17) 2ρ

∫∫ (
f(x)− f(y)

x− y

)2

ω(dx dy) ≤
∫
(f ′)2dμV ,

which is exactly P (ρ) from (2.1) for μV .
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Now we turn to the second proof. We apply the transportation inequality (5.1)
with μ replaced by μV+tf and write it as follows:

(5.18) t

∫
fdμV +tf + ρW 2

2 (μV+tf , μV ) ≤ EV+tf − EV .

Now if θt denotes the transportation map of μV into μV+tf , using Proposition 4
we learn that θt(x) = x + tζ(x) + o(t), and from here, for any C1 function φ on
[−2, 2], ∫

φ(θt(x))μV (dx) =

∫
φ(x)μV+tf ,

whose expansion in t near 0 and Theorem 6 gives∫
φ′(x)ζ(x)μV (dx) = −

∫
φ(x)νf (dx) = −

∫
φ′(x)Ψf (x)dx.

Since ζ is C1, this means that there is a constant C ∈ R such that ζ(x)gV (x) =
C − Ψf (x) for all x ∈ [−2, 2]. This equality at x = ±2 and the continuity of ζ at
±2 yields that C = 0. Hence

ζ(x) = −Ψf (x)

gV (x)
= − Uf

U(V ′)
.

This means that

(5.19) W 2
2 (μV+tf , μV ) = t2

∫
(Uf)2
U(V ′)

dα + o(t2).

Now invoking (4.11) and (4.5), the result is

t2ρ

∫
(Uf)2
U(V ′)

dα + t2
∫

fdνf ≤ − t2

2

∫∫ (
f(x)− f(y)

x− y

)2

ω(dx dy) + o(t2).

Finally, since (cf. (4.12))∫
fdνf = −1

2

∫
fNf dβ = −

∫∫ (
f(x)− f(y)

x− y

)2

ω(dx dy),

we arrive at

(5.20) 2ρ

∫
(Uf)2
U(V ′)

dα ≤
∫∫ (

f(x)− f(y)

x− y

)2

ω(dx dy),

which is actually the second equivalent form of P (ρ) from Theorem 3.
Now, to prove (5.13), we proceed in the same vein. Take the measure μt, the

equilibrium measure associated to the potential V +tf , apply (5.2) to it and rewrite
it, for small enough t, in the following way:

4ρ

(
EV+tf − EV − t

∫
fdμt

)
≤ t2

∫
(f ′)2dμt,

where here we used the fact that for small t,

(5.21) Hμt(x) = V ′(x) + tf ′(x) for x in the support of μt.

Therefore, invoking (4.5) and (4.11), we obtain

t2

2

∫
fNf dβ − t2

2

∫∫ (
f(x)− f(y)

x− y

)2

ω(dx dy) + o(t2) ≤ t2

4ρ

∫
(f ′)2μV (dx),

which, combined with (1.29), gives (5.13).
Now, from HWI(ρ), (5.19) and (5.21), (5.14) follows at once. �
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Remark 8. It is interesting to point out that the dual formulation of the trans-
portation implies P (ρ), while working with the transportation itself (basically the
Wasserstein distance) yields P2(ρ) which, as we noticed after the proof of Theo-
rem 3, is in some sense the dual form of P (ρ). This is reminiscent of the discussion of
Otto-Villani [17] regarding the Poincaré inequality in the classical case. We should
also mention that HWI(ρ) for a real ρ gives some sort of “defective” version of
Poincaré.

Remark 9. We know that the transportation and the Log-Sobolev are satisfied in
the case of potentials V which are convex. The natural question is to see other
cases where these functional inequalities are satisfied. As was pointed out in [2],
there are examples of double well potentials V for which the Log-Sobolev does not
hold. These are cases where the equilibrium measure is supported on two intervals.
It is not clear (at least we do not have any example) if the functional inequalities
hold for cases where the measures are supported on several intervals.

Remark 10. Note that in [17], the linearization of classical HWI(ρ) with ρ > 0
implies a seemingly stronger inequality than Poincaré’s with constant ρ > 0. Even
though Otto and Villani do not point this out, this is in fact equivalent to Poincaré’s
with constant ρ > 0.

Remark 11. We pointed out in [16, Theorem 2] that if the potential V is such that
V (x)− ρ|x|p for some p > 1, then the following transportation inequality holds:

(5.22) cpρW
p
p (μ, μV ) ≤ E(μ)− E(μV ),

where cp = infx∈R

(
|1 + x|p − |x|p − p sign(x)|x|p−1

)
. Unfortunately, it turns out

that for 1 < p < 2, cp = 0, and thus this inequality does not say anything. On the
other hand, for p > 2 it implies Poincaré’s inequality with ρ = 0. Indeed, due to
the fact that W p

p (μV+tf , μV ) = o(tp), for p > 2 this order is higher than 2, thus
nothing interesting is seen from this inequality as t goes to 0.

The reader might wonder why the classical perturbation argument does not work.
This is what we discuss in the remainder of this section.

The standard perturbation used in the classical case to linearize the Log-Sobolev
or the transportation inequalities in order to reach the Poincaré inequality is νt =
(1 + tF )μV for small t and a function F with

∫
F dμV = 0. We show here that

while this gives the free Poincaré’s for a large class of functions, it is not the whole
story.

For simplicity we will assume that b = 0, c = 1. Take a continuous function
F on [−2, 2] such that

∫
FdμV = 0. This in particular means that for small t,

νt = (1+tF )dμV is again a probability measure. Thus applying the transportation,
we get

ρW 2
2 (νt, μV ) ≤ t

∫
V FdμV − 2t

∫∫
log |x− y|fμ(dx)μV (dy)

− t2
∫∫

log |x− y|F (x)F (y)μV (dx)μV (dy)

which, after the use of the fact that V (x) = 2
∫
log |x−y|μV (dy)+C on the support

of μV , leads to

(5.23) ρ

∫
(ζF (x))

2μV (dx) ≤ −
∫∫

log |x− y|F (x)F (y)μV (dx)μV (dy).
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Here in between we used that θt, the transport map of μV into μt, is given by

θt(x) = x+ tζ(x) + o(t),

using essentially the same proof as in Proposition 4. Now we proceed as in the
second proof of TCI(ρ) =⇒ P (ρ) from Theorem 7 to deduce that for any C2

function on [−2, 2],∫
φ(θt(x))μV (dx) =

∫
φ(x)(1 + tF (x))μV (dx),

and so expansion in t produces∫
φ′(x)ζ(x)μV (dx) =

∫
φ(x)F (x)μV (dx) = −

∫
φ′(x)G(x)dx

with G(x) =
∫ x
−2

F (y)μV (dy). Consequently, ζ(x)gV (x) = C + G(x), from which
at −2 and the continuity of ζ, we produce C = 0. Thus,

ζ = ζF (x) = −
∫ x
−2

F (y)μV (dy)

gV (x)
,

where here gV =
√
(4− x2)U(V ′) is the density of μV with respect to the Lebesgue

measure.
In order to make this look like (3.4) (P2(ρ)), we should now take F such that

FdμV = νf = Nf
2 β or, equivalently,

(5.24) F (x) =
(Nf)(x)

(4− x2)(UV ′)(x)
.

Hence, for those F which can be represented in this form, the right hand side of
(5.23) becomes

〈ENf,Nf〉 = 〈f,Nf〉,
where we used the first equation of Proposition 1. Furthermore, now appealing to
(1.29) and (1.34), it results with

(5.25) 2ρ

∫
(Uf)2
U(V ′)

dα ≤
∫∫ (

f(x)− f(y)

x− y

)2

ω(dx dy),

which is (3.4).
However, in order to make sure that F with the choice (5.24) is continuous, we

need to guarantee that Nf(±2) = 0, which otherwise stated (cf. Definition 1) is
the same as

(5.26)

∫
f ′(x) β(dx) = 0 and

∫
xf ′(x) β(dx) = 0.

This means that we obtain Poincaré’s inequality, however, on a set of functions f
satisfying two constraints. It is not clear to us how to extend (5.25) from functions
obeying (5.26) to any C1 function.

Perhaps a more interesting remark here is that the obstructions from (5.26)
guarantee that the potential Vt = V + tf satisfies∫

V ′
t (x) β(dx) = 0 and

∫
xV ′

t (x) β(dx) = 2.

These two equations ensure that (cf. (4.3)) the endpoints of the equilibrium mea-
sure of Vt are −2 and 2; in other words, we are just in the situation discussed in
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4848 MICHEL LEDOUX AND IONEL POPESCU

Remark 7. It seems that in order to overcome this obstruction, a non-trivial argu-
ment is needed, and this is to some extent the content of Theorem 5, which is also
reflected in the different perturbation we used in Section 4.

A similar argument applies to the implication of free Poincaré by the free Log-
Sobolev.
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