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ABSTRACT. In this paper we introduce three Markovian couplings of Brownian motions on smooth Rie-
mannian manifolds without boundary which sit at the crossroad of two concepts. The first concept is the one
of shy coupling put forward in [3] and the second concept is the lower bound on the Ricci curvature and the
connection with couplings made in [28].

The first construction is the shy coupling, the second one is a fixed-distance coupling and the third is a
coupling in which the distance between the processes is a deterministic exponentially function of time.

The simplest nontrivial manifold is the 2-dimensional sphere in R3, and in this case we give the explicit
construction of all three types of couplings mentioned above and at first we use an extrinsic approach. Next,
we construct part of these couplings on manifolds of constant curvature, this time using the intrinsic geom-
etry.

Then we prove a full result which shows that an arbitrary Riemannian manifold satisfying some technical
conditions supports shy couplings. Moreover, if in addition the Ricci curvature is non-negative, there exist
fixed-distance couplings. Furthermore, if the Ricci curvature is bounded below by a positive constant, then
there exists a coupling of Brownian motions for which the distance between the processes is deterministic
and exponentially decaying. The constructions use the intrinsic geometry, and relies on an extension of the
notion of frames which plays an important role for even dimensional manifolds.

As an application of the fixed-distance coupling we derive a maximum principle for the gradient of har-
monic functions on manifolds with non-negative Ricci curvature.

1. INTRODUCTION

A first motivation of the present work is the following (stochastic) modification of the classical Lion
and Man problem of Rado ([21]) on manifolds. Consider a Brownian Lion Xt and a Brownian Man Yt
running on a d-dimensional Riemannian manifold M (for instance the unit sphere in R3).

We consider the following two versions of the classical Lion and Man problem.

Problem 1 (Fast/Finite Time Coupling). Can the Lion capture the Man?
More precisely, given two distinct starting points x, y ∈ M and a Brownian motion Yt on M starting at y,

can one find a Brownian motion Xt on M starting at x such that τ = inf {t ≥ 0 : Xt = Yt} is almost surely
finite (or almost surely bounded)? A weaker version of this problem is whether for a given ε > 0 and a given
Brownian motion Yt on M starting at y one can find a Brownian motion Xt on M starting at x such that
τ = inf {t ≥ 0 : d(Xt, Yt) = ε} is almost surely finite (or almost surely bounded). Here d(x, y) stands for the
Riemannian distance on M .

Problem 2 (Strong Shy Coupling). Can the Man avoid being eaten by the Lion indefinitely?
More precisely, given two distinct starting points x, y ∈ M and a Brownian motion Xt on M starting at x,

can one find a Brownian motion Yt on M starting at y such that almost surely Xt 6= Yt for all t ≥ 0? A stronger
version of the question is whether the Brownian motion Yt can be chosen in such a way that there exists an ε > 0
such that almost surely d (Xt, Yt) ≥ ε for all t ≥ 0.

The notion of shy coupling of Brownian motions was introduced in [3] and subsequently studied in [4]
and [16] and is a coupling for which, with positive probability, the distance between the two processes
stays positive for all times. A stronger version of shyness (ε-shyness, ε > 0) asserts that with positive
probability the distance between the processes is greater than ε. In this paper we use this latter version of
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shyness, in the stronger sense where the distance between the processes is greater than εwith probability
1.

To set up the terminology, we mention that all couplings in the present paper are Markovian couplings
in the sense of [3] and introduced in Section 2.

We note that on the unit sphere S2, there is an immediate affirmative answer to Problem 1: one can
define Xt as the symmetric of Yt with respect to the plane of symmetry of x and y. Since the Brownian
motion Yt hits this plane in finite time, τ is finite almost surely, so the Lion is sure to capture the Man in
finite time.

The above mentioned coupling is known in the literature as the mirror coupling, and it was introduced
by Lindvall and Rogers [20] for processes defined on Euclidean spaces, and by Cranston in [9] and
Kendall [15] in the case of processes defined on manifolds, the so-called Cranston-Kendall mirror coupling.
It turns out that this coupling is a very useful and versatile construction when it comes to various geo-
metric and analytic properties on manifolds. For instance, it was shown in [15], for the case of manifolds
with Ricci curvature bounded uniformly from below by a positive constant, that the Man and the Lion
must meet in finite time under this mirror coupling.

Geometrically, the mirror coupling makes the motions Xt, Yt move toward each other in the geodesic
direction. Closely related coupling is the synchronous coupling in which the Brownian motions Xt, Yt
move parallel to each other in the geodesic direction and was used for example in [2]. On a different
note, continuous versions of couplings of Brownian motions are constructed in [1] and [25].

A synthetic notion of a lower bound on the Ricci curvature was settled in [22, 26, 27] and is a very
useful tool in analysis on measure metric spaces. On the other hand, the notion of couplings and lower
bound on Ricci curvature was pioneered in [23] and is particularly good for defining lower bounds on
Ricci curvature in discrete spaces as it is for instance pointed out in [8, 19].

In this spirit, a second motivation of our work comes from [28, Corollary 1.4] which states the follow-
ing.

Corollary 3. On a complete Riemannian manifold M the Ricci tensor satisfies Ric ≥ k if and only if there exits a
conservative Markov process (Ω,A,Pz, Zt)z∈M×M,t≥0 with values in M ×M such that the coordinate processes
(Xt)t≥0 and (Yt)t≥0 are Brownian motions on M and such that for all z = (x, y) and all t ≥ 0,

(1.1) d(Xt, Yt) ≤ e−kt/2d(x, y), Pz − a.s.

The coupling that is used in [28] under the hypothesis that Ric ≥ k is the synchronous coupling
alluded above.

A natural question, and one of our interests in the present paper, is to see if one can find couplings
of Brownian motions Xt, Yt such that (1.1) is saturated. For instance, if k = 0 this amounts to finding a
fixed-distance coupling which is in fact a strong version of a shy coupling.

Here is an outline of the paper. Section 2 is about notations and basic results and notions. Then,
Section 3, as a warm up, is about the existence of fixed-distance couplings on Rn. Here we show that the
only fixed-distance coupling is the trivial one, namely the translation coupling. In fact, we show a little
more, namely that there is no distance-decreasing coupling in Rn. This is to be contrasted to the fact that
on S2 it is possible to construct distance-decreasing couplings.

In Section 4 we prove the existence of the fast approaching, the repulsive, and the fixed-distance
couplings on S2, the two dimensional sphere. The construction is carried out using two ingredients:
Stroock’s representation of spherical Brownian motion and Kendall’s characterization of co-adapted cou-
plings of Brownian motions in Euclidean spaces (see [16]). From a differential geometric perspective this
construction is extrinsic, in the sense that the sphere S2 is seen as a submanifold of R3, and we take ad-
vantage of this in order to reduce the problem at hand to that of finding unitary matrices in R3 satisfying
certain conditions. The intriguing part about this construction is that the same argument does not extend
to higher dimensional spheres.

The above results raise the natural question whether this is the end of the story. Are the couplings
obtained in the particular case of the sphere (or the Euclidean space) something accidental? What is
really responsible for the existence of these couplings? Phrased differently, is it important that the sphere
has so many symmetries or is it not? We answer this question from a differential geometric perspective,
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by proving that the existence of these couplings is in fact related to the intrinsic geometry of the sphere
rather than the extrinsic one. Though this is not our main theme here, it is put forward in [17, 18] that in
the context of maximality of couplings of Brownian motions the symmetries play an essential role.

We address the above questions in Section 5 in the case of manifolds of constant curvature (in any
dimension), and treat the case of distance increasing/decreasing couplings. We switch from the extrinsic
approach used in Section 4 to the intrinsic approach, and we prove that manifolds of constant negative
curvature support shy couplings. In the particular case of the hyperbolic space this shows that we can
construct couplings of Brownian motions which get away from each other exponentially fast (nothing
very surprising after all). Interestingly enough, on manifolds of constant positive curvature we can
construct shy couplings as well as couplings in which the processes get exponentially close to each
other, but do not touch each other. In the particular case of spheres (in any dimension) we construct
the exponentially decreasing/increasing couplings, which in the case of S2, coincide with the ones from
Section 4. We could have included here the construction of fixed-distance couplings on manifolds of
constant curvature, but technically this is very much what we do later on, so we postponed this for
Section 6. The reason for including these calculations on constant curvature manifolds is that on one
hand this is an intrinsic approach and on the other hand the computation for the distance functions is
instructive, relatively standard and simple.

In Section 6 we get a very general result. This states that on a complete d-dimensional Riemannian
manifold M with positive injectivity radius, the Ricci curvature uniformly bounded from below and the
sectional curvature uniformly bounded from above we can construct shy couplings. This existence result
of shy coupling on manifolds is also stated in Kendall [16] without proof but with a hint on how to do
it. Our approach is a bit different. Moreover, if the Ricci curvature is in addition non-negative, we can
also construct fixed-distance couplings. Finally, we show that if the Ricci curvature is actually bounded
from below by a positive constant, then we can find fast approaching couplings, for which the distance
between processes decays exponentially fast to 0.

We want to point a few details about the techniques. In the first place we treat separately the cases
when d is odd, respectively even. In the case of odd dimensional manifolds we can carry out the proof
based on the orthonormal frame bundle. For even dimensional manifolds we introduce the notion of
N -frames at a point x ∈M which is an embedding of the tangent space TxM into RN . As it turns out, it
suffices to use this construction for the particular case N = d + 1, however, for the general N this may
be of independent interest by itself. This is somewhat reminiscent of works on stochastic flows given for
example in [10, 11].

Here is a brief exposition of the idea. Suppose we have Xt a Brownian motions and want to exhibit
another one Yt which is driven in some sense by Xt. From a loose point of view what we do first is to
split the orthogonal to the tangent space at Xt into orthogonal planes. This splitting is possible only
if the dimension d is odd. If this is the case, using the parallel transport along the geodesic, we can
transport these planes at Xt into orthogonal planes at Yt. Next we want the components of driving
Euclidean Brownian motion at Xt in these planes to be transported at Yt using parallel transport along
the geodesic joining Xt and Yt and then rotated by the same angle (chosen appropriately) in each of the
transported planes at Yt. This is how we construct all three couplings first locally and then by patching
them together to a global one. In the even dimensional case using the d + 1-frames we essentially add
one more dimension to the tangent space and carry out the same program.

In Section 7 we discuss some geometric aspects related to the main result in the previous section
(Theorem 12), and we present a localized version of the shy coupling, which is used in Section 8 in
order to give some applications of the fixed-distance coupling to the maximum principle of norms of the
gradient of harmonic functions and solutions to heat equations on manifolds with non-negative Ricci
curvature. We end this section with a coming back to the motivations of the paper.

2. PRELIMINARIES

We identify the vectors in R3 with the corresponding 3 × 1 column matrices, and for a vector x ∈ R3

we denote by x′ the transpose of x. The dot product of two vectors x, y ∈ R3 can be written in terms of
matrix multiplication as x · y = x′y. The Euclidian length of a vector x ∈ R3 is ‖x‖ =

√
x′x.
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We denote by S 2 =
{
x ∈ R3 : ‖x‖ = 1

}
the unit sphere in R3, and for x, y ∈ S 2 we let d (x, y) be the

length of the geodesic joining x and y on S 2 (the length of the smaller of the two arcs of a great circle

containing x and y, that is d (x, y) = arcsin

√
1− (x′y)

2
= 2 arcsin

(
1
2‖x− y‖

)
).

There are various ways of describing the spherical Brownian motion on S 2, that is the Brownian
motion on S2 (see for example [5]). In what follows we exploit the Stroock’s representation of spherical
Brownian motion ([24]), as the solution Xt of the Itô stochastic differential equation

(2.1) Xt = X0 +

∫ t

0

(
I −XsX

′
s

)
dBs −

∫ t

0
Xsds,

where Bt is a 3-dimensional Brownian motion. The last term above may be thought as the pull needed
in order to keep Xt on the surface of S 2.

Given two non-parallel vectors x, y ∈ S2 (i.e. y 6= ±x), we denote byRx,y the 3×3 rotation matrix with
axis u = x× y (the cross product of the vectors x and y) and angle θ ∈ (0, π) equal to the angle between
the vectors x and y, so in particular Rx,yu = u and Rx,yx = y. It is known that Rx,y is an orthogonal
matrix (R−1 = R′) and the following (Rodrigues’ rotation) formula holds

(2.2) Rx,y = cos θI + [u]× +
1

1 + cos θ
u⊗ u,

where [u]× = yx′−xy′ is the cross-product matrix of u = x×y,⊗ denotes the tensor product (u⊗u = uu′)
and I denotes the 3× 3 identity matrix. Note that the above formula differs slightly from the usual one,
due to the fact that we do not require the axis u to be a unit vector.

When y = ±x, the cross product u = x × y is the zero vector, so the rotation matrix Rx,±x is not well
defined in this case. However, if we define Rx,±x = ±I we see that the Rx,±x is still a unitary matrix
and satisfies Rx,±xx = ±x. Moreover, taking the limit as θ → 0 (or π, depending on whether y = x or
y = −x), we see that (2.2) still holds.

By M we denote Riemannian manifold. In this paper all Riemannian manifolds are assumed to be
complete. For a given d-dimensional Riemannian manifold M , we use the standard notations from [12]
or [25] to denote by O(M) the orthonormal frame bundle. For a given orthonormal frame U at a point
x ∈ M and ξ ∈ Rd, Hξ(U) is the horizontal lift of Uξ ∈ TxM at the point U ∈ O(M). We will use the
simpler notation of Hi for Hei , with {ei}i=1,...,n denoting the standard basis of Rd.

We collect here some notions from differential geometry which will be used in the sequel. The reader
is referred to [6] or [7] for basic notions and results. The curvature tensor Rx at x is Rx(X,Y ) =

∇X∇Y − ∇Y∇X − ∇[X,Y ] and the Ricci tensor is the contraction Ricx(X,Y ) =
∑d

i=1〈Rx(X,Ei)Ei, Y 〉,
where {Ei}i=1,...,d is any orthonormal basis at x and X,Y ∈ TxM . This definition of the Ricci tensor
does not depend on the choice of orthonormal basis, and in the particular case of surfaces it simplifies to
Ricx(X,Y ) = Kx〈X,Y 〉, where K is the Gauss curvature.

We denote by d(x, y) the Riemannian distance between x and y.
A geodesic on M is a smooth curve γ : [a, b] → M such that γ̈(s) = 0 for each s ∈ [a, b], where the

dot represents the covariant derivative along γ. Throughout the paper we assume that the geodesics
are running at unit speed. For a point x ∈ M , we define Cx to be the cutlocus of x, that is the set of
points y ∈ M for which there is more then one minimizing geodesic between x and y. We will also use
the notation Cut ⊂ M ×M , defined as the set of all points (x, y) which are at each other’s cut-locus.
For points x, y ∈ M which are not at each other’s cut-locus, we define γx,y to be the unique unit speed
minimizing curve joining x and y.

The injectivity radius is the smallest number i(M) such that any point x ∈M , the exponential map at
x is a diffeomorphism on the ball of radius i(M) in the tangent space TxM .

Given a geodesic γ, a Jacobi field along γ is a vector field J(s) such that

(2.3) J̈(s) +Rγ(s)(J(s), γ̇(s))γ̇(s) = 0,

where the dot represents the derivative along γ.
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Given a vector field V along a geodesic γ defined on [a, b], the index form I associated to it is defined
as

(2.4) I(V, V ) =

∫ b

a
(|V̇ (s)|2 − 〈Rγ(s)(V (s), γ̇(s))γ̇(s), V (s)〉)ds,

and using polarization I can be extended to a bilinear form on the space of vector fields along the
geodesic γ. In the particular case when J is a Jacobi field, an integration by parts formula shows that

(2.5) I(J, J) = 〈J̇(b), J(b)〉 − 〈J̇(a), J(a)〉

where [a, b] is the definition interval of γ.
A manifold has constant curvature r if the sectional curvature is r for all choices of the two dimen-

sional plane, that is 〈Rx(X,Y )Y,X〉 = r for any x ∈ M and any ortogonal unit vectors X,Y ∈ TxM .
In this case the Ricci curvature simplifies as well as the Jacobi field equation (2.3). We record here the
calculation, as it will be used later on. Assume that γx,y is the minimal geodesic between the points
x, y ∈ M which are not at each other’s cut-locus, ρ = d(x, y) and let ξ ∈ TxM and η ∈ TyM be two unit
vectors. Consider ξ(s) the extension of ξ by parallel transport along γ from x to y, and similarly let η(s)
be the extension of η by parallel transport from y to x. The Jacobi field Jξ,η whose value at x is ξ and η at
y can be computed as follows

(2.6) Jξ,η(s) = w1(s)ξ(s) + w2(s)η(s)

where w1, w2 solve the boundary value problems
ẅ1 + rw1 = 0

w1(0) = 1

w1(ρ) = 0

and


ẅ2 + rw2 = 0

w2(0) = 0

w2(ρ) = 1

,

whose solutions are

(2.7) w1(s) =

{
sin(
√
r(ρ−s))

sin(
√
rρ)

, r 6= 0
ρ−s
ρ , r = 0

and w2(s) =

{
sin(
√
rs)

sin(
√
rρ)
, r 6= 0

s
ρ , r = 0

.

Next, we introduce the main notions regarding couplings. Recall that in general by a coupling we
understand a pair of processes (Xt, Yt) defined on the same probability space, which are separately
Markov, that is

P (Xs+t ∈ A|Xs = z,Xu : 0 ≤ u ≤ s) = P z (Xt ∈ A)

P (Ys+t ∈ A|Ys = z, Yu : 0 ≤ u ≤ s) = P z (Yt ∈ A)

for any measurable set A in the state space of the processes.
The notion of Markovian coupling as used in [3] requires that in addition to the above, the joint process

(Xt, Yt) is Markov and

P (Xs+t ∈ A|Xs = z,Xu, Yu : 0 ≤ u ≤ s) = P z (Xt ∈ A)

P (Ys+t ∈ A|Ys = z,Xu, Yu : 0 ≤ u ≤ s) = P z (Yt ∈ A)
(2.8)

for any measurable set A in the state space of the processes.
The notion of co-adapted coupling (introduced by Kendall, [16]) is the same as the above but without

the Markov property of (Xt, Yt).
The Markovian couplings are easily obtained for instance in the case when the process (Xt, Yt) is

actually a diffusion on the manifold. This would be the ideal case, but we still get a Markovian coupling
if we patch together diffusion process in a nice way. For example this will be the case of the main
construction on manifolds, where we start the coupling following a diffusion up to a certain stopping
time, then, from the point it stopped we run it independently according to another diffusion and then
stop this at another stopping time and so on. We do this quietly without further details.
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3. DISTANCE-DECREASING COUPLINGS IN Rd

In this section we first examine the distance-decreasing couplings in the Euclidean space Rd. To be
precise, we want to find all possible co-adapted couplings (Xt, Yt) of d -dimensional Brownian motions,
for which the distance ‖Xt − Yt‖ is a (deterministic) non-increasing function of t ≥ 0.

By a result on co-adapted couplings (Lemma 6 in [16]), a co-adapted coupling (Xt, Yt) of Brownian
motions in Rd can be represented as

Yt = Y0 +

∫ t

0
JtdXt +

∫ t

0
KtdZt,

where Z is a d-dimensional Brownian motion independent of X (on a possibly larger filtration), and
J,K ∈Md×d are matrix-valued predictable random processes, satisfying the identity

(3.1) JtJ
′
t +KtK

′
t = I,

with I denoting the d× d identity matrix.
Setting Wt = Xt − Yt and using Itô’s formula we obtain

d ‖Wt‖2 = 2W ′tdWt +

d∑
i=1

d〈W i〉t = 2 (Xt − Yt)′ (I − Jt) dXt − 2 (Xt − Yt)′KtdZt +

d∑
i=1

d〈W i〉t.

Using the independence of X and Z, and the relation 3.1 we obtain
d∑
i=1

d〈W i〉t = tr
(
(I − Jt)′ (I − Jt) +K ′tKt

)
dt

= tr
(
I − Jt − J ′t + J ′tJt +K ′tKt

)
dt

= 2 (tr (I)− tr (Jt)) dt

= 2 (d− tr (Jt)) dt.

From the last two equations we arrive at

d ‖Wt‖2 = 2 (Xt − Yt)′ (I − Jt) dXt − 2 (Xt − Yt)′KtdZt + 2 (d− tr (Jt)) dt,

so the differential of the quadratic variation of the martingale part of ‖Wt‖2 is given by((
2 (Xt − Yt)′ (I − Jt)

) (
2 (Xt − Yt)′ (I − Jt)

)′
+
(
2 (Xt − Yt)′Kt

) (
2 (Xt − Yt)′Kt

)′)
dt

= 4 (Xt − Yt)′
(
I − Jt − J ′t + JtJ

′
t +KtK

′
t

)
(Xt − Yt) dt

= 4 (Xt − Yt)′
(
2I − Jt − J ′t

)
(Xt − Yt) dt

= 8 (Xt − Yt)′ (I − Jt) (Xt − Yt) dt,

and the differential of the bounded variation part of ‖Wt‖2 is given by

2 (d− tr (Jt)) dt.

If ‖Wt‖ is a (deterministic) non-increasing function of t, we must have

tr (Jt) ≥ d and (Xt − Yt)′ (I − Jt) (Xt − Yt) = 0

for all t ≥ 0.
Denoting by aij = aij (t) the entries of Jt, observe that

tr
(
JtJ
′
t

)
=

d∑
i,j=1

a2ij ≥
d∑
i=1

a2ii ≥

(∑d
i=1 aii

)2
d

=
tr2 (Jt)

d
≥ d,

with equality if and only if Jt = I .
On the other hand, from (3.1) it follows that 0 ≤ x′J ′tJtx ≤ x′x for all x ∈ Rd, so the eigenvalues

λi = λi (t) of JtJ ′t satisfy 0 ≤ λi ≤ 1, and therefore tr (J ′tJt) =
∑d

i=1 λi ≤ d. Combining with the above
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we conclude that tr (J ′tJt) = d, and therefore Jt = I for all t ≥ 0. Equivalently, this shows that dYt = dXt

for all t ≥ 0, or Yt = Y0 −X0 +Xt, and we arrive at the following.

Theorem 4. In the Euclidean space Rd, d ≥ 1, the only co-adapted coupling of Brownian motions with determin-
istic non-increasing distance is the translation coupling.

As we will see later on in Theorem 10 there are distance increasing couplings on Rd.

4. THE 2-DIMENSIONAL SPHERE CASE, THE EXTRINSIC APPROACH

In this section we study the couplings of Brownian motions on the unit sphere S2. The primary
interest is the construction of couplings for which the distance between the processes is deterministic.
Using Stroock’s representation of the spherical Brownian motion, we construct three different couplings,
as mentioned in the introduction. In the first one the distance is decaying at an exponential rate, in the
second one the distance is increasing to the diameter of the sphere S2 at an exponential rate, and in the
third one, which is the most interesting and intriguing, the distance is constant in time.

We collect the results on the first two couplings mentioned above in the following result, and then
treat separately the latter one.

Theorem 5. Fix two points x, y ∈ S 2 with y 6= ±x, and consider the spherical Brownian motion Xt on S 2 given
by (2.1) with X0 = x.

a) Let Yt be the solution to

(4.1) Yt = y +

∫ t

0
RsdXs

where Rs = RXs,Ys is the rotation matrix with axis us = Xs×Ys and angle θs equal to the angle between
Xs and Ys (and Rs = ±I if Ys = ±Xs). Then Yt is a spherical Brownian motion on S 2, and

(4.2) ‖Xt − Yt‖ = ‖y − x‖ e−t/2, t ≥ 0.

In particular, d (Xt, Yt) = 2 arcsin
(
1
2 ‖y − x‖ e

−t/2) decreases exponentially fast to 0 as t→∞.
b) Let Ỹt be the solution to

(4.3) Ỹt = y −
∫ t

0
RsdXs

where Rs = R
Xs,−Ỹs is the rotation matrix with axis us = −Xs × Ỹs and angle θs equal to the angle

between Xs and −Ỹs (and Rs = ∓I if Ỹs = ±Xs). Then Ỹt is a spherical Brownian motion on S 2, and

(4.4)
∥∥∥Xt − Ỹt

∥∥∥ =

√
4− ‖y + x‖2 e−t, t ≥ 0.

In particular, d
(
Xt, Ỹt

)
= π − 2 arcsin

(
1
2 ‖y + x‖ e−t/2

)
increases exponentially fast to π as t→∞.

Notice that both (Xt, Yt) and
(
Xt, Ỹt

)
are both Markovian couplings. In fact they are diffusions on S2 × S2.

Proof. Using (2.1), we first write

dYt = RtdXt = Rt
(
I −XtX

′
t

)
dBt −RtXtdt.

By definition, Rt is a unitary matrix and RtXt = Yt all t ≥ 0, from which we obtain

dYt =
(
Rt −RtXtX

′
t

)
dBt −RtXtdt =

(
I − (RtXt) (RtXt)

′)RtdBt −RtXtdt =
(
I − YtY ′t

)
RtdBt − Ytdt

=
(
I − YtY ′t

)
dB̃t − Ytdt,

where B̃t =
∫ t
0 RsdBs is readily seen to be a 3-dimensional Brownian motion. Using again Stroock’s

characterization of spherical Brownian motion, the first claim follows.
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To prove the second claim, we apply the Itô formula to the function f (z) = z′z and to the process
Zt = Yt −Xt. We get

d ‖Zt‖2 = 2Z ′tdZt +
3∑
i=1

d〈Zi〉t.

Next, we’ll show that ‖Zt‖2 is a process of bounded variation. To do this, we write

dZt = d (Yt −Xt) = (Rt − I) dXt = (Rt − I)
(
I −XtX

′
t

)
dBt − (Rt − I)Xtdt

=
(
Rt −RtXtX

′
t − I +XtX

′
t

)
dBt − (Yt −Xt) dt = MtdBt − Ztdt,

where Mt = Rt −RtXtX
′
t − I +XtX

′
t. Combining with the above, we get

(4.5) d ‖Zt‖2 = 2Z ′tMtdBt − 2Z ′tZtdt+
3∑
i=1

d〈Zi〉t,

and in order to prove the claim it suffices to show that Z ′tMt ≡ 0. Notice that

Z ′tMt = (RtXt −Xt)
′ (Rt −RtXtX

′
t − I +XtX

′
t

)
= X ′tR

′
tRt −X ′tR′tRtXtX

′
t −X ′tR′t +X ′tR

′
tXtX

′
t −X ′tRt +X ′tRtXtX

′
t +X ′t −X ′tXtX

′
t

= X ′t −X ′t −X ′tR′t +X ′tR
′
tXtX

′
t −X ′tRt +X ′tRtXtX

′
t +X ′t −X ′t = X ′t

(
Rt +R′t

) (
XtX

′
t − I

)
.

Using the representation in (2.2) for Rt, since
(
[ut]×

)′
= (YtX

′
t −XtY

′
t )′ = − [ut]× and (ut ⊗ ut)′ =

(utu
′
t)
′ = ut ⊗ ut, we obtain:

Z ′tMt = 2X ′t

(
cos θtI +

1

1 + cos θt
(Xt × Yt) (Xt × Yt)′

)(
XtX

′
t − I

)
= 2 cos θt

(
X ′tXtX

′
t −X ′t

)
+

2

1 + cos θt
X ′t (Xt × Yt) (Xt × Yt)′

(
XtX

′
t − I

)
= 0,

where in the last equality we used X ′tXt = ‖Xt‖2 = 1 and X ′t (Xt × Yt) ≡ 0 (the vector Xt × Yt being
orthogonal to Xt). It thus follows that Z ′tMt ≡ 0 as we claimed, and therefore ‖Zt‖2 is a process of
bounded variation, given by

(4.6) d ‖Zt‖2 = −2 ‖Zt‖2 dt+
3∑
i=1

d〈Zi〉t.

Finally, note that by using (4.5) we can write the last term in the above equation as

3∑
i=1

d〈Zi〉t = tr
(
MtM

′
t

)
dt,

and since Xt is on the unit sphere (so X ′tXt = 1 and (I −XtX
′
t)
2 = I −XtX

′
t), we can continue with

tr(MtM
′
t) = tr((Rt − I)(I −XtX

′
t)
2(R′t − I)) = tr((R′t − I)(Rt − I)(I −XtX

′
t))

= tr((2I −R′t −Rt)(I −XtX
′
t)) = 2tr(I −XtX

′
t)− tr((R′t +Rt)(I −XtX

′
t))

= 6− 2X ′tXt − 2tr(Rt(I −XtX
′
t)) = 4− 2tr(Rt) + 2tr(RtXtX

′
t) = 4− 2tr(Rt) + 2Y ′tXt,

(4.7)

where in passing to the last line we used that RtXt = Yt. Using the fact that the trace of the rotation
matrix Rt equals the sum 1+2 cos θt of its eigenvalues (recall that by construction the angle θt of rotation
of Rt is the angle between Xt and Yt), we can conclude that

tr(MtM
′
t) = 4− 2(1 + 2Y ′tXt) + 2Y ′tXt = 2− 2Y ′tXt = ‖Xt − Yt‖2 = ‖Zt‖2.

Wrapping things up, we obtained

d ‖Zt‖2 = −‖Zt‖2 dt, t ≥ 0.
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Setting τ = inf {t ≥ 0 : Zt = 0}, the above can be solved as an ordinary differential equation for t <
τ = τ (ω) for any path ω ∈ Ω, and we obtain the solution

(4.8) ‖Zt‖ = ‖Yt −Xt‖ = ‖y − x‖ e−t/2, t < τ.

In particular we see that for any x 6= y we have Zt 6= 0 a.s. for all t ≥ 0, and therefore τ =∞ a.s. This
shows that

‖Yt −Xt‖ = ‖y − x‖ e−t/2, t ≥ 0,

which concludes the proof of the first part of the theorem.
To prove the second part of the theorem, note that if Ỹt solves (4.3), then Yt := −Ỹt solves (4.1) with

y replaced by −y (the process Yt starts at −y instead of y). If Ct denotes the circle on S 2 of radius 1 and
passing through Xt and Yt (since x 6= −y, by the previous proof we have that Xt 6= Yt for all t ≥ 0,
and thus Ct is well defined), it follows that Ỹt = −Yt ∈ Ct for all t ≥ 0. The second part of the theorem
follows now easily from the first part using simple geometric considerations. �

We now proceed to showing the existence of a fixed-distance coupling of Brownian motions on S2,
that is a Markovian coupling (Xt, Yt) of spherical Brownian motions for which the distance d(Xt, Yt) is
constant for all times t ≥ 0.

Assume such a coupling exists, and that Xt and Yt are given by

(4.9) dXt =
(
I −XtX

′
t

)
dBt −Xtdt and dYt =

(
I − YtY ′t

)
dWt − Ytdt,

where Bt and Wt are the driving 3-dimensional Brownian motions, and X0 = x, Y0 = y ∈ S2.
By a result on co-adapted couplings of free Brownian motions (assuming that the coupling is co-

adapted, see Lemma 6 in [16]), there exist 3× 3 matrices Jt and Kt with

(4.10) JtJ
′
t +KtK

′
t = I

and a 3-dimensional Brownian motion Ct independent of Bt such that

(4.11) dWt = JtdBt +KtdCt.

The idea is now very simple. We want to find the matrix-valued processes Jt and Kt such that the dis-
tance between Xt and Yt does not change with time. The theorem below shows that such a construction
is possible, and that in fact the resulting coupling is not only co-adapted, but also a Markovian coupling.

Theorem 6. For any points x, y ∈ S2, there exists a fixed-distance Markovian coupling of Brownian motions on
the 2-dimensional unit sphere S2 starting at x and y. As it turns out, the process (Xt, Yt) is actually a diffusion
on S2 × S2.

Proof. The claim is trivial if x = ±y, so we may assume x 6= ±y.
Denoting Zt = Xt − Yt, Ut = I −XtX

′
t and Vt = I − YtY ′t (note that Ut and Vt are symmetric matrices,

with U2
t = Ut and V 2

t = Vt), and using the above equations we obtain

dZt = UtdBt − VtdWt − Ztdt = (Ut − VtJt) dBt − VtKtdCt − Ztdt.

Ito’s formula gives after expansion and rearrangements that

d ‖Zt‖2 = 2Z ′tdZt +
3∑
i=1

d〈Zi〉t = 2MtdBt + 2NtdCt − 2 ‖Xt − Yt‖2 dt+
3∑
i=1

d〈Zi〉t

with Mt = −X ′tVtJt − Y ′tUt and Nt = −X ′tVtKt.
The fact that Bt and Ct are independent Brownian motions allows us to compute the quadratic varia-

tion of ‖Zt‖2 as follows:

1

4
d
〈
‖Z‖2

〉
t

=
(
MtM

′
t +NtN

′
t

)
dt =

(
X ′tVt

(
JtJ
′
t +KtK

′
t

)
V ′tXt +X ′tVtJtU

′
tYt + Y ′tUtJ

′
tV
′
tXt + Y ′tUtYt

)
dt

=
(
X ′tVtXt +X ′tVtJtUtYt + Y ′tUtJ

′
tVtXt + Y ′tUtYt

)
dt.
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Note that X ′tVtXt = X ′t(I − YtY ′t )Xt = X ′tXt − X ′tYtY ′tXt = 1 − c2t , where ct = Y ′tXt, and similarly
Y ′t VtYt = 1− c2t . Since X ′tVtJtUtYt is a real number, it equals its transpose which is Y ′tUtJ ′tVtXt. Keeping
in mind that X ′tYt = Y ′tXt = ct, we also get

X ′tVtJtUtYt = X ′t(I − YtY ′t )Jt(I −XtX
′
t)Yt = (X ′t − ctY ′t )Jt(Yt − ctXt)

= X ′tJtYt − ctX ′tJtXt − ctY ′t JtYt + c2tY
′
t JtXt,

and therefore
1

4
d
〈
‖Z‖2

〉
t

= 2(1− c2t +X ′tJtYt − ctX ′tJtXt − ctY ′t JtYt + c2tY
′
t JtXt)dt.

If ‖Zt‖2 is to be a constant process, then its quadratic variation must be identically zero, or

(4.12) 1− c2t +X ′tJtYt − ctX ′tJtXt − ctY ′t JtYt + c2tY
′
t JtXt = 0,

and its bounded variation part must also be identically zero. To see what the latter equation is, from
(4.12) we gain

−2 ‖Xt − Yt‖2 dt+
3∑
i=1

d〈Zi〉t =
(
−2 ‖Xt − Yt‖2 + tr

(
(Ut − VtJt) (Ut − VtJt)′ + (VtKt) (VtKt)

′)) dt
=

(
−4 (1− ct) + tr

(
Ut − UtJ ′tV ′t − VtJtU ′t + Vt

(
JtJ
′
t +KtK

′
t

)
V ′t
))
dt

= (4ct − 2tr (VtJtUt)) dt,

which continues with

tr (VtJtUt) = tr (JtUtVt) = tr
(
Jt
(
I −XtX

′
t

) (
I − YtY ′t

))
= tr

(
Jt − JtXtX

′
t − JtYtY ′t + ctJtXtY

′
t

)
= tr (Jt)− tr

(
JtXtX

′
t

)
− tr

(
JtYtY

′
t

)
+ cttr

(
JtXtY

′
t

)
= tr (Jt)−X ′tJtXt − Y ′t JtYt + ctY

′
t JtXt,

finally arriving at

(4.13) X ′tJtXt + Y ′t JtYt − ctY ′t JtXt = tr (Jt)− 2ct.

The above shows that we can construct a co-adapted fixed-distance coupling of Brownian motions on
S2 iff we can find matrices satisfying (4.10), (4.12) and (4.13).

We can go one step further and simplify (4.12). Indeed, because of (4.13), it is easy to see that equation
(4.12) is equivalent to

1− c2t +X ′tJtYt − ct (tr (Jt)− 2ct) = 0.

Consequently, the existence of a fixed-distance co-adapted coupling of Brownian motions on S2 is equiv-
alent to solving for Jt and Kt from the following system X ′tJtYt = −c2t + cttr (Jt)− 1 (or X ′tVtJtUtYt = c2t − 1)

X ′tJtXt + Y ′t JtYt − ctY ′t JtXt = tr (Jt)− 2ct (or tr (VtJtUt) = 2ct)
JtJ
′
t +KtK

′
t = I.

To find a solution of this system, we are easing a little bit the notations by dropping for the moment the
dependence on t. Hence, given two vectors X,Y on the unit sphere we want to find two 3 × 3 matrices
J and K such that

(4.14)


X ′JY = c tr(J)− 1− c2

X ′JX + Y ′JY − cY ′JX = tr(J)− 2c

JJ ′ +KK ′ = I

where c = X ′Y . The first two equations above involve only J . Assuming that we can determine J
which satisfies these equations, from the third equation of the system we can find the matrixK such that
KK ′ = I − JJ ′ if and only if JJ ′ ≤ I in the operator sense, i.e. ξ′JJ ′ξ ≤ 1 for any unit vector ξ ∈ R3,
or equivalently ‖J ′ξ‖ ≤ 1. The latter condition is the same as the operator norm of J ′ is less than 1, or
‖J‖ ≤ 1, since the operator norm of J and J ′ are the same.
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Assume now that X,Y ∈ S2 with X 6= ±Y are fixed. We can find an orthogonal matrix OX,Y such
that

OX,Y e1 = X and OX,Y (ce1 +
√

1− c2e2) = Y

where here (ei)i=1,2,3 is the standard basis in R3,

e1 =

 1
0
0

 , e2 =

 0
1
0

 , and e3 =

 0
0
1

 .
One way of choosing such a matrix OX,Y is for example by taking

OX,Y [e1, ce1 +
√

1− c2e2,
√

1− c2e3] = [X,Y,X × Y ],

where [X,Y, Z] denotes the matrix whose columns are the vectors X,Y, Z. It is worth mentioning that
if the matrix OX,Y is to be orthogonal, then it has to map e3 into an unitary vector which is collinear to
X × Y , which in this case gives OX,Y e3 = ± 1√

1−c2X × Y , so there are essentially two choices for the
matrix OX,Y .

Computing the inverse

[e1, ce1 +
√

1− c2e2,
√

1− c2e3]−1 =

 1 − c√
1−c2 0

0 1√
1−c2 0

0 0 1√
1−c2

 ,
we obtain an explicit formula for OX,Y

(4.15) OX,Y =

 x1 y1 x2y3 − y2x3
x2 y2 x3y1 − y3x1
x3 y3 x1y2 − y1x2


 1 − c√

1−c2 0

0 1√
1−c2 0

0 0 1√
1−c2

 =

 x1
−cx1+y1√

1−c2
x2y3−y2x3√

1−c2
x2

−cx2+y2√
1−c2

x3y1−y3x1√
1−c2

x3
−cx3+y3√

1−c2
x1y2−y1x2√

1−c2

 .
Note that since X 6= ±Y , c 6= ±1, so the matrix OX,Y is well defined.

Finding a solution J to the system (4.14) is equivalent to finding a solution

J̃ = O′X,Y JOX,Y and K̃ = O′X,YKOX,Y

to the system obtained from (4.14) by replacing X by e1, and Y by ce1 +
√

1− c2e2, which becomes
ce′1J̃e1 +

√
1− c2e′1J̃e2 = c tr(J̃)− 1− c2

e′1J̃e1 + c
√

1− c2e′1J̃e2 + (1− c2)e′2J̃e2 = tr(J̃)− 2c

J̃ J̃ ′ + K̃K̃ ′ = I.

Now let

J̃ =

 α1 α2 α3

β1 β2 β3
γ1 γ2 γ3

 ,
which turns the first two equations of the above system into

(4.16)

{√
1− c2α2 − cβ2 − cγ3 = −1− c2

c
√

1− c2α2 − c2β2 − γ3 = −2c.

This is a system of two equations with three unknown which can be reduced to{
β2 =

√
1−c2α2+1

c

γ3 = c.

Of course the case c = 0 needs to be treated separately, in which case, it is obvious that α2 = −1 and
γ3 = 0.



12 MIHAI N. PASCU AND IONEL POPESCU

In the case c 6= 0, the simplest matrix J̃ which satisfies the above conditions is the one whose entries
are all 0 except for α2, β2, and γ3, so we may try

J̃ =

 0 α2 0

0
√
1−c2α2+1

c 0
0 0 c

 .
The main restriction now is that we want the operator norm of J̃ to be at most 1. Because of the block
diagonal structure, this is equivalent to

α2
2 +

(
√

1− c2α2 + 1)2

c2
≤ 1

or
(α2 +

√
1− c2)2 ≤ 0,

whose solution is α2 = −
√

1− c2, and consequently

J̃ =

 0 −
√

1− c2 0
0 c 0
0 0 c

 .
This matrix now is well defined also for c = 0 and is consistent with the solutions provided by the system
(4.16).

For the above choice of J̃ we need to find K̃ such that

J̃ J̃ ′ + K̃K̃ ′ = I,

which reduces to

K̃K̃ ′ =

 c2 c
√

1− c2 0

c
√

1− c2 1− c2 0
0 0 1− c2

 .
There are several possible choices here, one of them being

K̃ =

 0 c 0

0
√

1− c2 0

0 0
√

1− c2

 .
Going back to initial problem, we obtain the solution

J = OX,Y J̃O
′
X,Y and K = OX,Y K̃O

′
X,Y .

The only possible problem with this choice of the matrices J and K is that when the particles X and
Y get close or antipodal (X = ±Y ), the above matrices are undefined because OX,Y does not. However,
this does not happen, since by hypothesis x 6= ±y, and with the above choices of J and K the Brownian
motions Xt and Yt are at a fixed-distance (the initial distance).

Finally, since (Xt, Yt) solves a stochastic differential equation and the matrices Jt and Kt are actually
functions of (Xt, Yt), this means that the process (Xt, Yt) is in fact a diffusion on S2 × S2. This is in fact
stronger than mere Markovianity. �

Remark 7. It is tempting to extend this argument to higher dimensional spheres. If we follow the same argument
we do not have to change anything up to (4.14). The attempt on solving (4.14) was based on arranging the vectors
X,Y in a certain position, in other words, make X for instance to be e1 and Y a linear combination of e1 and e2.
Since there is essentially (up to a sign choice) a unique perpendicular unit vector to both X and Y , the condition
thatOX,Y sends this into e3 determines the matrixOX,Y perfectly well. In higher dimensions this becomes an issue
because there is no canonical choice of the matrix OX,Y . Indeed, given two vectors X,Y it is not clear that one can
produce a number of vectors which depend smoothly on X,Y and be a basis of the orthogonal complement of the
span of X,Y . In more abstract terms, if Vk,n is the Stiefel manifold of k orthogonal frames (k ≥ 2) in Rn, then our
problem becomes equivalent to the problem of finding a cross section of the projection Vk,n → V2,n. The projection
used here is sending the frame f1, f2, . . . , fk into f1, f2. It is know that this is possible (cf. [14, Theorem 1.7])
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if and only if n = 3 and k = 3, and this shows that the proof above works essentially only for the 2-dimensional
sphere.

For the higher dimensional spheres, we are going to use a different approach. So far, we have only used the
extrinsic approach which is very versatile in the present context, but could become a weakness when one wants to
extend it to other manifolds.

Remark 8. Without much extra work one can refine the result in Theorem 6 and show that for any 0 ≤ k ≤ 1 and
x, y ∈ S2, there is a Markovian coupling (Xt, Yt) starting at (x, y) such that ‖Xt − Yt‖ = e−kt/2‖x− y‖ for all
t ≥ 0.

If k < 0, then there is a coupling (Xt, Yt) initiated at (x, y) such that ‖Xt − Yt‖ = e−kt/2‖x− y‖ but only for
0 ≤ t ≤ δ where δ is a constant determined by k and ‖x− y‖. Notice that the distance increases exponentially fast
in the case k < 0, and because of the compactness of S2 this coupling exists only for short time.

The proof is just a straightforward refinement of the one of Theorem 6 and is left to the reader. An interesting
feature of the proof is that the upper limit of k for which we can get the exponential distance is k = 1. This is
perhaps a reflection of the fact that the curvature of S2 is actually 1.

Remark 9. After we wrote this paper, the second author talked to Thierry Léve who gave us a different and nice
construction of the fixed-distance coupling which we briefly describe now. ConsiderO(3), the set of 3×3 orthogonal
matrices, and denote for each point x ∈ S2 the map πx : O(3) → S2 given by πx(A) = Ax. On O(3) we take
the standard left-right invariant metric and the Riemannian structure associated to this. Now, if ∆O(3) and ∆S2

denote the Laplacians on O(3) and S2 respectively, it turns out that ∆O(3)(f ◦ πx) = ∆S2
(f) whose consequence

is that if Zt is a Brownian motion on O(3), then Ztx is a Brownian motion on S2. In this way, if we pick two
points x, y on S2, then Xt = Ztx and Yt = Zty is a fixed distance coupling on S2.

5. AN INTRINSIC APPROACH ON MANIFOLDS OF CONSTANT CURVATURE

From the geometric point of view, the constructions in the previous sections are extrinsic, which means
that the manifold in discussion (S2) is imbedded into another manifold (R3). The intrinsic point of view
is to study the manifold with reference to its own Riemannian structure and not by embedding it into
another one. Since the Brownian motion on a manifold is essentially an intrinsic object, it is natural to try
to find couplings which are defined in terms of the intrinsic structure. This is what we want to achieve
in this section.

We start with a d-dimensional Riemannian manifold M and we will use the notations introduced
in Section 4. On M , one can construct the Brownian motion as the solution to a martingale problem
associated to the Laplacian. For more details, we refer the reader to [12] and [25].

What we intend to construct is a coupling following the line of ideas from [12, Section 6.5] where
the mirror coupling is discussed. Keeping the notation from [12], we want to define the coupling as
a solution to a certain stochastic differential system at the level of orthonormal frame bundle. If U0 is
a given orthonormal frame bundle at x0 and V0 = Ox0,y0U0 is an orthonormal frame bundle at y0, the
system we consider is

(5.1)



dUt =
∑d

i=1Hi(Ut) ◦ dW i
t

dVt =
∑d

i=1Hi(Vt) ◦ dBi
t

dBt = V −1t OXtYtUtdWt

Xt = πUt

Yt = πVt

where Ox,y is an isometry from TxM into TyM to be chosen later. Notice that in order to ensure that Bt
is also a Brownian motion on Rn, we need to make sure that the map Ox,y is actually an isometry. This
in turn guarantees that Xt and Yt are Brownian motions on the base manifold M starting at x0 and y0. In
what follows we use the notation

(5.2) ei(t) = π∗Hi(Ut)
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which is the projection of the vector Hi(Ut) onto the base tangent space TXtM whose common interpre-
tation is as the parallel transport of U0ei along the Brownian path X from Tx0M to TXtM .

The generator of the diffusion (Xt, Yt) up to the first time t for which OXt,Yt becomes undefined is
given by

Lx,y = ∆x + ∆y + 2〈Ox,yEi, Fj〉EiFj ,
where Ei is an orthonormal basis at x and Fi is an orthonormal basis at y. As one can check this is
consistent because the definition of Lx,y does not depend on the choices of the orthonormal basis Ei and
Fj . Perhaps a little better suited to Itô’s formula is the writing

Lx,y =

n∑
i=1

(Ei +Ox,yEi)
2

with the understanding that the action of Ei on a function f(x, y) is with respect to the variable x, while
Ox,yEi acts on f as the derivative with respect to y.

The first natural thing to look at in the context of couplings is the distance function between the pro-
cesses. Thinking of d(x, y) as a function of two variables and using Ito’s formula for the semimartingale
decomposition of ρt = d(Xt, Yt), one obtains

(5.3) dρt = ((ei(t) +OXt,Ytei(t))ρ)(Xt, Yt)dB
i
t +

1

2
(Lρ)(Xt, Yt)dt

which is well defined up to the first time twhen eitherXt, Yt get at each other’s cut-locus orOXt,Yt ceases
to be defined. As it is known, e.g. [12, Theorem 6.6.2], for the mirror coupling we have a better result,
namely,

dρt = ((ei(t) +OXt,Ytei(t))ρ)(Xt, Yt)dB
i
t +

1

2
(Lρ)(Xt, Yt)dt− dLt

where the process Lt is a positive non-decreasing process which increases only at the cut-locus.
In our framework this should follow in a similar manner as the argument of the proof of [12, Theorem

6.6.2] for the mirror coupling. However, instead of appealing to an extension of this argument, we want
to use a soft version of that argument for the construction of the coupling here. Assume that we have a
smooth choice of Ox,y for all x, y which are not at each other cut-locus.

The key step in the definition of the process Lt above is the following. Take a small ε > 0 and let
Cε be the ε-neighborhood of the cut-locus Cut. Then, if we start the coupling from two points which
are within the injectivity radius and run it until it hits Cε, and then we continue the process with two
independent copies until the joint process exits C2ε. At this point we resume the coupling given above
until it hits again Cε, at which point we switch again to two independent Brownian motions until the
joint process leaves C2ε, and so on. The main point in the proof of the existence of Lt is to show that one
can let ε go to zero and that the time spent in C2ε goes to 0. We do not need this refined result here, we
just need a process which continues to have the marginals as Brownian motions, and outside of a small
neighborhood of the cut-locus runs according to (5.1). This extension is discussed by Cranston in [9].

We will refer to this construction here as the extension beyond the cut-locus and we will use it from now
on as soon as the rotation matrix Ox,y is defined up to a complement of Cε for some ε > 0. Notice that
with this construction we do not need to define Ox,y for (x, y) ∈ Cε. Also, it can be shown that this
construction is well defined for all times t ≥ 0 if Ox,y depends smoothly on x, y outside Cε. For instance,
the Brownian motion spends a certain amount of time inside Cε due to the curvature condition, and
also the coupling spends a certain amount of time outside Cε, and such it is not hard to check that the
coupling does not explode in finite time. This is relatively standard and some of these arguments are
outlined in Subsection 6.4.

Going back to the equation (5.3), we notice that the first variation formula provides us with a way of
computing the martingale part via

(5.4) ((ei(t) +OXt,Ytei(t))ρ)(Xt, Yt) = 〈OXt,Ytei(t), γ̇t(ρt)〉 − 〈ei(t), γ̇t(0)〉,

where γt is the minimizing geodesic curve joining Xt to Yt and running at unit speed. If we want the
coupling to have a deterministic distance, we need the martingale part to be 0 and thus we need to
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enforce that

(5.5) 〈OXt,Ytei(t), γ̇t(ρt)〉 − 〈ei(t), γ̇t(0)〉 = 0.

Since ei(t) is an orthonormal basis at TXtM , this means that the orthogonal transformation OXt,Yt pre-
serves the tangential and vertical spaces in the geodesic direction along γt.

The identification of the bounded variation part of (5.4) is also pretty standard and follows the same
proof as the one in [12]. The result is that

(5.6) (Lρ)(Xt, Yt) =

d∑
i=1

I(Ji, Ji),

where I is the index form defined in (2.4) and Ji is the Jacobi field along the geodesic γt with the bound-
ary conditions ei(t) at γ(0) and OXt,Ytei(t) at γ(ρt).

In fact, the sum in (5.6) is based on the initial values of the Jacobi fields Ji which are given in terms
of ei. It turns out that if we pick any orthonormal basis at TXtM , say Ei, and let Ji be the Jacobi field Ji
determined by the condition that at the endpoints equals Ei, respectively OXt,YtEi, then the sum in (5.6)
does not change. This observation is useful for later computations.

Among the candidates to the role of the isometry Ox,y one is the parallel transport along the minimiz-
ing geodesic from x to y, and the resulting coupling is called synchronous coupling.

The other choice which fits into the picture is the one when Ox,y preserves the tangential component
of the geodesic from x to y, but changes the sign of the vertical component after performing the parallel
transport. Geometrically this is a version of perverse coupling and we will refer it so. With this choice,
perpendicular to the geodesic the particles move in opposite directions.

More precisely, let τx,y be the parallel transport of TxM into TyM along the minimizing geodesic γ
and let TxM = Rγ̇(0) + T⊥xy be the orthogonal decomposition of TxM into the geodesic direction and
the perpendicular direction. Similarly let Ty = Rγ̇(ρ) + T⊥yx with ρ = d(x, y). The two choices described
above are given by

(5.7) Ox,yγ̇(0) = γ̇(ρ) and Ox,yξ = τx,yξ,

respectively by

(5.8) Ox,yγ̇(0) = γ̇(ρ) and Ox,yξ = −τx,yξ,
for any ξ ∈ T⊥xy.

The first result of this section summarizes the main properties of the coupling in the case of constant
curvature manifolds, as follows.

Theorem 10. Let M be a complete d-dimensional Riemannian manifold of constant sectional curvature r. For
simplicity consider only the cases r = −1, 0 or 1, the general case following by a scaling argument.

If the starting points x0, y0 are chosen such that ρ0 < i(M)/2, then the following hold.
a) For the choice of Ox,y as in (5.7), the coupling of the Brownian motions satisfies the property that

(5.9)


if r = −1, ρt ≥ ρ0 for all t ≥ 0

if r = 0, ρt = ρ0 for all t ≥ 0

if r = 1, 0 < ρt ≤ Ce−(d−1)t/2 for all t ≥ 0 and some constant C > 0.

b) For the choice of Ox,y as in (5.8), in all cases,

(5.10) ρt ≥ ρ0 for all t ≥ 0.

Moreover, in the case of the model spaces, namely the hyperbolic space (r = −1), the sphere (r = 1), and the
plane (r = 0), for any starting points x0 6= y0 which are not at each other’s cut-locus, the following hold true.

c) For the choice of Ox,y as in (5.7),

(5.11)


if r = −1, ρt = 2arcsinh(e(d−1)/2 sinh(ρ0/2)) for all t ≥ 0

if r = 0, ρt = ρ0 for all t ≥ 0

if r = 1, ρt = 2 arcsin(e−(d−1)t/2 sin(ρ0/2)) for all t ≥ 0.
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d) For the choice of Ox,y as in (5.8),

(5.12)


if r = −1, ρt = 2arccosh(e(d−1)t/2 cosh(ρ0/2)) for all t ≥ 0

if r = 0, ρt =
√
ρ20 + 4(d− 1)t for all t ≥ 0

if r = 1, ρt = 2 arccos(e−(d−1)t/2 cos(ρ0/2)) for all t ≥ 0.

Remark 11. In the case of the sphere S2, the construction in the above theorem matches the one in Theorem 5, but
also covers the case of spheres in all dimensions, and has the virtue of being intrinsic.

Proof. We need to compute the expression from (5.6), which is ultimately reduced to the computation of
the index forms. Fix two points x 6= y which are not at each other cut-locus.

Take a choice of an orthonormal basis Ei, i = 1 . . . , d at x with E1 = γ̇(0) and use the parallel transla-
tion along the geodesic joining x to y to extend it to each point of the geodesic. Then from (2.6) and the
formulae following this in Section 4, plus some straightforward computations, reveal that the equation
for the distance becomes

(5.13) dρt = −(d− 1)
√
r tan(

√
rρt/2)dt,

which is valid for times t up to the time when (Xt, Yt) hits the set Cε, for ε > 0 chosen sufficiently small.
In the case r = 0, this implies that ρt is constant for all times. In the case of r = −1, we have that up to

the time when (Xt, Yt) hits Cε,
dρt = (d− 1) tanh(ρt/2)dt.

In the case of the hyperbolic space there is no cut locus, so this equation solves as in (5.11).
In the case of other manifolds of curvature−1, we may still have to deal with the fact that the cut-locus

is non-trivial, and we reason as follows. First, equation (5.13) shows that ρt increases until the time when
(Xt, Yt) enters Cε (ε small enough). Then the motion moves independently until (Xt, Yt) leaves C2ε, and
all this time the distance is certainly greater than half the injectivity radius, and thus is larger than ρ0.
Then the processes resume the coupling and the equation above shows that the distance increases again.
Overall, in both cases the distance stays greater than ρ0.

In the curvature r = 1 regime, the equation (5.13) becomes

(5.14) dρt = −(d− 1) tan(ρt/2)dt.

The solution is given by (5.11), at least up to the time when the processes get very close to each other’s
cut-locus. In the sphere case it is clear that Xt and Yt never get at each other’s cut locus, so we do not
have to worry about the cut-locus. In other cases of constant curvature r = 1, by Mayer’s theorem the
diameter of M is no greater than π, so the tangent in the above formula is always non-negative, and thus
the distance is decreasing and so we do not have to worry about getting close to the cut-locus. Then the
equality dρt = −(d− 1) tan(ρt/2)dt implies that ρt ≤ Ce−(d−1)t/2 and also that ρt 6= 0.

Now we move one to the second choice of Ox,y from (5.8). The changes are that the index form is
computed (again from (2.6)) as

I(Ji, Ji) =

{
2
√
r cot(

√
rρt/2), r 6= 0

4
ρt
, r = 0

,

which give in turn the equation for ρt as

dρt =

{
(d− 1)

√
r cot(

√
rρt/2)dt, r 6= 0

2(d−1)
ρt

dt, r = 0,

up to the time when (Xt, Yt) get close to the cut-locus.
When r = 0, in the particular Euclidean case we get

ρt =
√
ρ20 + 4(d− 1)t.

In the case when there is a cut locus and the points Xt, Yt get at each other’s cut locus, we can argue as
before that the distance ρt increases, and then eventually we have to switch to the independent Brownian
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motions inside C2ε, and then resume the coupling. At any rate, as soon as the distance becomes less than
i(M), ρt starts increasing again, so it will never be less than the initial value ρ0.

In the case of negative curvature r = −1, we obtain

dρt = (d− 1) coth(ρt/2)dt,

and in the hyperbolic case the solution is given in (5.12). If the cut locus is not empty, then we argue as
we already did for the flat case.

Finally, for r = 1 the equation is
dρt = (d− 1) cot(ρt/2)dt,

and the solution is given by (5.12) in the case of the sphere, and in the general case we can argue as in
the flat case. �

6. SHY AND FIXED-DISTANCE COUPLINGS ON RIEMANNIAN MANIFOLDS

In this section we prove a general result about the existence of shy coupling on Riemannian manifolds.
Before we launch into various technical details, we state the main result of this section.

Theorem 12. Let M be a complete d-dimensional Riemannian manifold with positive injectivity radius and such
that for some real number k:

(6.1) k ≤ Ricx for all x ∈M and sup
x∈M

Kx <∞,

where Ric is the Ricci tensor and Kx stands for the maximum of the sectional curvatures at x ∈M .
(1) For k < 0, there exists ε, δ > 0 such that for any points x0, y0 ∈ M with d(x0, y0) < ε we can find a

Markovian coupling of Brownian motions Xt, Yt starting at x0, y0 such that d(Xt, Yt) ≥ d(x0, y0) for all
t ≥ 0 and d(Xt, Yt) = e−kt/2d(x0, y0) for 0 ≤ t ≤ δ.

(2) If k ≥ 0, then there exists ε > 0 such that for any x0, y0 ∈M with d(x0, y0) < ε, there exists a Markovian
coupling of Brownian motions Xt, Yt starting at x0, y0 with d(Xt, Yt) = d(x0, y0) for all t ≥ 0.

(3) Moreover, if k > 0, then there exists ε > 0 such that for any x0, y0 ∈ M with d(x0, y0) < ε, there exists
a Markovian coupling of Brownian motions Xt, Yt starting at x0, y0 with d(Xt, Yt) = d(x0, y0)e

−kt/2 for
all t ≥ 0.

The plan of the proof is as follows. First we set up an extension of the orthonormal frame bundle
(which will be used in the case of even dimensional manifolds). Then we define the equation of the
coupling at the level of this frame bundle and we seek a local solution. Once we show the local existence
of the coupling, we use patching in order to prove the global existence of the coupling.

We split the proof into several subsections.

6.1. N -frames and the associated bundle. One of the constructions of the Brownian motion on a d-
dimensional Riemannian manifold uses the notion of orthonormal frame bundle. We first extend this
notion by introducing the following.

Definition 13. Let N ≥ d be an integer number. An N -frame U in TxM is a map U : RN → TxM such that
UU ′ = Id. Alternatively, U is an N -frame at TxM if the map U ′ is an isometric imbedding of TxM into RN .

Using an abuse of language we often say that U is an N -frame at x rather than in TxM .
Another way of describing U is via the vectors Xi = Uei, i = 1 . . . N , where ei are the standard basis

vectors in RN . The condition that U is an N -frame is actually equivalent to the condition that

(6.2)
N∑
i=1

〈ξ,Xi〉Xi = ξ for all ξ ∈ TxM.

Indeed, if Xi = Uei, then
N∑
i=1

〈ξ,Xi〉Xi = U

N∑
i=1

〈U ′ξ, ei〉ei = UU ′ξ = ξ for all ξ ∈ TxM.
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Conversely, the condition (6.2) determines an N -frame U : RN → TxM by prescribing

Uη =

N∑
i=1

〈η, ei〉Xi,

noting that

U ′ξ =

N∑
i=1

〈ξ,Xi〉ei,

which under (6.2) gives UU ′ = Id, as needed.
Hence we have different characterizations of an N -frame, as a projection, as an isometric embedding

and as a set of vectors Uei.
Suppose we have two points x, y ∈ M , an N -frame {Xi}Ni=1 at x, and an isometry A : TxM → TyM .

Then {AXi}Ni=1 is certainly an N -frame at y because
N∑
i=1

〈ξ, AXi〉AXi = A
N∑
i=1

〈A′ξ,Xi〉Xi = AA′ξ = ξ.

Also, it is easy to see that if O is an orthogonal transformation of RN and U is an N -frame, then UO
is also an N -frame. This in fact defines the action of O(N) on the fiber O(M)x, which is the set of all
N -frames at x. Now we can construct the bundle of N -frames denoted byON (M), and for simplicity we
will drop the superscript N . It is clear that O(M) is a smooth bundle over M and π : O(M)→M which
assigns to each N -frame U in TxM its base point x (i.e. πU = x) is a smooth map.

In the terminology of differential geometry, O(M) is actually a fiber bundle with the fiber being the
Stiefel manifold Vd,N constructed from the trivial principal bundle M ×O(N) over M .

For each fixed U at TxM , the tangent space TUO(M) splits into the horizontal part THU O(M) obtained
by lifting tangent vectors from TxM and the vertical part T VU O(M) which contains a special class of tan-
gent vectors obtained by differentiating curves which are determined by the action of O(N) in the fiber.
For references the reader can consult [12] or [25] (the discussion there is intended for the orthonormal
frame bundle, but nevertheless most of it extends naturally to this context).

Now, we define the fundamental vector fields Hi onO(M) by the prescription that at each U , (Hi)U is
the lift of the vector Uei from TπUM . The main property here is that the associated Bochner Laplacian

∆B =
N∑
i=1

H2
i

projects down onto M as the Laplace operator. The proof is as in [25, Section 8.1.3], and for simplicity
we just point out the main difference. For a vector ξ ∈ RN , let (Hξ)U be the horizontal lift of Uξ at U .
Then with the same proof as [25, Equation 8.30], for any smooth function f on M we have

(Hξ)U ◦Hη(f ◦ π) = 〈(Hessf)πUUξ, Uη〉,
where Hessf is the Hessian of f on M . Once this is established, we can continue with

N∑
i=1

(Hi)UHi(f ◦ π) =

N∑
i=1

〈(Hessf)πUUei, Uei〉 =

N∑
i=1

〈U ′(Hessf)πUUei, ei〉

= tr(U ′(Hessf)πUU) = tr((Hessf)πUU U
′) = tr((Hessf)πU )

= (∆Mf)(πU),

where we used that the Laplacian on M is simply the trace of the Hessian. Thus

(6.3) π∗∆B = ∆M .

Under the assumptions in (6.1), the Ricci curvature is bounded from below from which we learn that
the Brownian motion on M does not explode. Thus the Brownian motion constructed on O(M) (more
appropriately the solution to the martingale problem for ∆B) projects down into the Brownian motion
on M and exists for all times.
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6.2. The Coupling SDE. Now we want to couple Brownian motions on M , and for this matter we
consider couplings of a similar form to the one in the previous section. More precisely, for given points
x0, y0 ∈M and N -frames U0 at x0 and V0 at y0, consider the system

(6.4)



dUt =
∑N

i=1Hi(Ut) ◦ dW i
t

dVt =
∑N

i=1Hi(Vt) ◦ dBi
t

dBt = OUt,VtdWt

Xt = πUt

Yt = πVt.

Here Wt is an N -dimensional Brownian motion and OU,V is an orthogonal N ×N matrix which depends
smoothly on U, V , at least on a subset ofO(M)×O(M) which will be specified later on. This insures that
Bt is also an N -dimensional Brownian motion. We do not impose additional conditions on the matrix
OUt,Vt yet.

The same arguments as in [12, Section 6.5] show that the generator of the diffusion (Ut, Vt) is given by

∆c = ∆B,1 + ∆B,2 + 2
N∑
i=1

He∗i ,2
Hi,1

where the subscript 1 or 2 represents the action with respect to the first or the second variable, and
e∗i = OU,V ei.

Let ρt = d(Xt, Yt) be the distance function between the processes Xt and Yt and let ρ̃(t) = d(πUt, πVt).
Also let d̃(U, V ) = d(πU, πV ) be the lift of the distance function from M into O(M). Using Itô’s formula
we have that

(6.5) dρ̃t =
(

(Hi,1 +He∗i ,2
)d̃
)

(Ut, Vt)dWt +
1

2

(
∆cd̃

)
(Ut, Vt)dt,

which is certainly valid in the region where πUt and πVt are not at each other’s cut-locus.
The first variation formula gives

(Hi,1 +He∗i ,2
)d̃(U, V ) = 〈Uei, γX,Y 〉πV − 〈V OU,V ei, γX,Y 〉πU ,

where X = πU , Y = πV , and γX,Y is the minimizing geodesic joining X to Y , run at unit speed. The
bounded variation part comes from the second variation formula and produces

(6.6) (∆cd̃)(U, V ) =
N∑
i=1

I(Ji, Ji),

where Ji is the Jacobi field along the geodesic joining πU to πV , with values Uei, V OU,V ei at the end-
points.

In order to cancel the martingale part from (6.5), we need to impose the condition

〈Uei, γ̇X,Y 〉πV − 〈V OU,V ei, γ̇X,Y 〉πU = 0.

6.3. Local Construction. This part of the proof consists in showing that there exists η > 0 sufficiently
small such that for any x, y ∈ M with d(x, y) < η there is a smooth choice of OU,V on Nη(x, y) =
π−1(B(x, η))× π−1(B(y, η)) for which

(6.7) 〈Uei, γ̇πU,πV 〉πU − 〈V OU,V ei, γ̇πU,πV 〉πV = 0 for (U, V ) ∈ Nη(x, y)

and

(6.8)
N∑
i=1

I(Ji, Ji) = −kd(x, y), for (U, V ) ∈ Nη(x, y),

where Ji are the Jacobi fields with boundary values Uei and V OU,V ei at the endpoints of the geodesic
joining πU and πV . Note here that for small η, there is a unique geodesic joining πU and πV , so every-
thing is well defined in this case.
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Take η < i(M)/3, where i(M) is the injectivity radius of M . In fact we are going to choose possibly
smaller values of η later in the construction, but for now assume that it is smaller than i(M)/3.

Now, assume that x0, y0 ∈ M are two fixed starting points with distance d(x0, y0) < η. We will
construct the coupling (Ut, Vt) in Nη(x0, y0).

We can choose an orthonormal basis E1, E2, . . . , Ed at x such that E1 = γ̇x,y(0) and such that each Ej
depends smoothly on (x, y) ∈ B(x0, η) × B(y0, η). We can extend this basis E1, . . . , Ed along γx,y and
continue to call it E1, . . . , Ed. Now, condition (6.7) becomes

(6.9) U ′γ̇x,y = O′U,V V
′γ̇x,y.

Next, let us denote J1,j the Jacobi field along the minimizing geodesic joining πU to πV such that it
equals Ej at πU and 0 at πV . Similarly let J2,j be the Jacobi field which is 0 at πU and Ej at πV . Then,
since

Ji =

d∑
j=1

〈Uei, Ej〉J1,j +

d∑
j=1

〈V OU,V ei, Ej〉J2,j

it follows that

(6.10)
N∑
i=1

I(Ji, Ji) =

d∑
j=2

I(J1,j , J1,j) +

d∑
j=2

I(J2,j , J2,j) + 2

d∑
j,k=2

〈O′U,V V ′Ej , U ′Ek〉I(J1,j , J2,k).

The expression given by the last sum can be simplified as follows. Let τx,y stand for the parallel transport
map from TxM to TyM along the minimizing geodesic γx,y. Consider the bilinear map Λx,y : TxM ×
TxM → R defined by

Λx,y(ξ, η) = I(J1,ξ, J2,η),

where J1,ξ is the Jacobi field along γx,y which is ξ at x and 0 at y, and J2,η is 0 at x and τx,yη at y. Another
way of looking at this is as a linear map from TxM into itself, map which we still call Λx,y. We can see
this map also as a linear transformation preserving the orthogonal to γ̇x,y at x and we will denote this
restriction also by Λx,y. In fact the actions of Λx,y and its transpose on γ̇x,y are zero.

With this notation, it is not hard to see that for N -frames U and V at x, respectively at y, we have

(6.11)
d∑

j,k=2

〈O′U,V V ′Ej , U ′Ek〉I(J1,j , J2,k) = tr(UO′U,V V
′τx,yΛx,y).

For the first part of the theorem we want to find a map OU,V such that the quantity in (6.10) equals
−kd(x, y) =. For simplicity of notations, we are going to denote d(x, y) = ρ.

To carry this task through, we are going to use the following standard comparison result, whose proof
can be found for instance in [6, pp. 216-217].

Lemma 14. Assume that M and M̃ are two manifolds and γ, γ̃ are two normalized geodesics defined on [0, ρ]

such that γ̃ does not have conjugate points. Assume that Jt and J̃t are two Jacobi vector fields along γ, respectively
γ̃, such that J0 = J̃0 = 0, |Jρ| = |J̃ρ|, and

K+(γ(t)) ≤ K̃−(γ̃(t)),

whereK+(x) is the maximum of the sectional curvature at x and K̃−(x̃) is the minimum of the sectional curvature
at x̃. Then we have

(6.12) I(J̃ , J̃) ≤ I(J, J).

Since the sectional curvature is bounded from above, Kx ≤ 1/r2 for all x ∈ M for a small enough r,
and for reasons which will become apparent immediately we take r < (1/4)1/3. In turn, this shows that
the injectivity radius is at least rπ (see [6, p. 218]).

With this, for points x, y ∈ M at distance ρ = d(x, y) < πr, comparing the index form of the manifold
M with the index form of a sphere of radius r, for geodesics of length ρ < πr, we obtain

I(J̃ , J̃) ≤ I(J, J),
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where J, J̃ are as in the Lemma 14. On the other hand, for the d-dimensional sphere Sd we have J̃(s) =

w2(s)Ẽ(s), where w2 is given by (2.6) and Ẽ is the parallel transport of Ẽ0 ∈ Tγ̃(0)Sd along γ̃. From (2.5)
we conclude that

I(J̃ , J̃) = ẇ2(ρ) =
√
r cot(

√
rρ)

and consequently, because we choose r < (1/4)1/3, we obtain

(6.13) 0 <
√
r cot(

√
rρ) = I(J̃ , J̃) ≤ I(J, J).

We now choose η sufficiently small, for instance smaller than r above, and therefore also less than a
third of the injectivity radius of M .

Now we want to choose OU,V so that

U ′γ̇x,y = O′U,V V
′γ̇x,y

and

(6.14) tr(UO′U,V V
′τx,yΛx,y) = −1

2

 d∑
j=2

I(J1,j , J1,j) +

d∑
j=2

I(J2,j , J2,j)− kρ

 .

To show this, we recall another standard result in Riemannian geometry.

Lemma 15. Assume γ is a normalized geodesic on [0, ρ] without conjugate points on it. If J and V are two vector
fields with the same boundary values, and J is also a Jacobi field, then

(6.15) I(J, J) ≤ I(V, V ).

This result can be easily deduced from [6, Lemma 2.2, Chapter 10] which is the above statements for
the case both J and V cancel at one end of the geodesic. However, if J and V have the same values at
the endpoints, then due to the equation of the Jacobi field and an integration by parts, we have

I(J, V ) = 〈J̇(ρ), V (ρ)〉 − 〈J̇(0), V (0)〉 = 〈J̇(ρ), J(ρ)〉 − 〈J̇(0), J(0)〉 = I(J, J),

so using the index lemma for the vector field V − J and the trivial Jacobi field 0, we obtain

0 ≤ I(V − J, V − J) = I(V, V )− 2I(V, J) + I(J, J) = I(V, V )− I(J, J).

Now,
d∑
j=2

I(J1,j , J1,j) +
d∑
j=2

I(J2,j , J2,j) + 2
d∑
j=2

I(J1,j , J2,j) =
d∑
j=2

I(J1,j + J2,j , J1,j + J2,j).

On the other hand, using the above comparison theorem with the vectors Ej in place of V and J1,j +J2,j
as the Jacobi field J , we obtain

d∑
j=2

I(J1,j + J2,j , J1,j + J2,j) ≤
d∑
j=2

I(Ej , Ej) =
d∑
j=2

∫ ρ

0

(
|Ėj(s)|2 − 〈R(γ̇(s), Ej(s))Ej(s), γ̇(s)〉

)
ds

= −
∫ ρ

0
Ricγ(s)(γ̇(s), γ̇(s))ds ≤ −kρ

where ρ = d(x, y), and therefore

(6.16) 2
d∑
j=2

I(J1,j , J2,j) ≤ −(
d∑
j=2

I(J1,j , J1,j) +
d∑
j=2

I(J2,j , J2,j))− kρ.

In the basis E1 = γ̇x,y, E2, . . . , Ed we can take

fj = U ′Ej and hj = V ′Ej , j = 1, . . . , d.

To choose the matrix ∆x,y as in (6.14) we treat separately the cases of odd and even dimensional
manifolds, as follows.
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Case I: d is odd. In this case we take N = d, so we are back to the classical situation of the orthonormal
frame bundle. Let AU and AV be the (unique) orthogonal matrices which send ej into fj , respectively ej
into hj , j = 1, . . . , d. We will choose the matrix OU,V such that, in addition to (6.14) we also have

A′UO
′
U,VAV e1 = e1.

This is done as follows. Pick an orthogonal matrix Bx,y such that

Bx,ye1 = e1 and tr(Bx,y∆x,y) = 0,

and with this we take
OU,V = AVB

′
x,yA

′
U .

To get to terms with the matrix Bx,y, we choose it to be given in matrix form by

(6.17) Bx,y =



1 0 0 0 0 0 0 0
0 cosα sinα 0 0 0 0 0
0 − sinα cosα 0 0 0 0 0
0 0 0 cosα sinα 0 0 0
0 0 0 − sinα cosα 0 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 0 0 0 cosα sinα
0 0 0 0 0 0 − sinα cosα


.

This is where we actually use the fact that the dimension d is odd: in the above representation we use
on the diagonal (d− 1)/2 blocks of 2× 2 unitary matrices. With this choice, we clearly have Bx,ye1 = e1,
and it remains to pick α ∈ [0, 2π] such that

2 cos(α)tr (∆x,y) + 2 sin(α)Fx,y = −

(
d∑
j=2

I(J1,j , J1,j) +
d∑
j=2

I(J2,j , J2,j)

)
− kρ,

where Fx,y =
∑d−1

i=2 〈∆x,yei, ei+1〉 −
∑d

i=3〈∆x,yei, ei−1〉. The key is that (6.16) is nothing but the statement
that

2tr (∆x,y) ≤ −

(
d∑
j=2

I(J1,j , J1,j) +
d∑
j=2

I(J2,j , J2,j)

)
− kρ.

Now, inequality (6.13) gives that for any fixed real number k,

−

(
d∑
j=2

I(J1,j , J1,j) +

d∑
j=2

I(J2,j , J2,j)

)
− kρ < −2

√
r cot(

√
rρ)− kρ < 0

for small enough ρ. Finally, simple trigonometry shows that for any a < c < 0 and any b, the equation

cos(α)a+ sin(α)b = c

has the solution

α = arccos

(
a√

a2 + b2

)
+ arccos

(
c√

a2 + b2

)
.

Case II: d is even. In this case we use N = d + 1. The difference from the previous case is that this
time we consider the matrix AU which sends ej into fj , j = 1, . . . , d, and the vector ed+1 into the exterior
product of f1, . . . , fd, and we define the matrix AV in a similar fashion. Note that with this choice, AU
and AV are orthogonal matrices. The rest of the argument is now the same argument as in the case when
d is odd, with the choice of BU,V as a (d+ 1)× (d+ 1) matrix such as the one in (6.17).

Let’s wrap up the main findings of this subsection. We showed that there exists a matrix OU,V which
depends smoothly on (U, V ) ∈ Nη(x0, y0) such that (6.7) and (6.8) are satisfied. In fact we proved that for
small enough η > 0, as long as the distance between x0 and y0 is less than η/2 and the process (Xt, Yt)
stays inside B(x0, η)×B(y0, η), the distance function satisfies

(6.18) ρt = e−kt/2ρ0,
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6.4. The construction of the coupling. Consider first two independent N -dimensional Brownian mo-
tions Wt and W̃t. For a given stopping time τ , we denote Wt,τ = Wt −Wτ .

We have proved that for a small enough η > 0 and any x, y with d(x, y) < η there exists a smooth
choice OU,V on Nη(x, y). We will now use this to give a construction of the coupling as indicated in the
statement of the theorem.

For any η > 0 we define the η-neighborhood of the diagonal in M ×M by

Dη = {(x, y) : d(x, y) ≤ η},
and we also set

Dη = {(U, V ) ∈ O(M)×O(M) : (πU, πV ) ∈ Dη}.
For a fixed pair of points (x0, y0) ∈ Dη/4 and frames U0, V0 at x0, respectively at y0, we consider an

orthonormal basis E1, . . . Ed at x0 with E1 = γ̇x0,y0(0) and extend this to a local orthonormal basis on
B(x0, 2η) and then by parallel transport also to B(y0, 2η). Using the local recipe outlined above we can
construct a coupling with ρt = e−kt/2ρ0 up to the first time t when the base process (Xt, Yt) hits the
boundary of the set B(x0, η) × B(y0, η). Let’s call this exit time τ1. At (x1, y1) = (Xτ1 , Yτ1) we have the
orthogonal basisE1, . . . , Ed used in the local construction, which at x1 satisfiesE1 = γ̇x1,y1 , andU1 := Uτ1
and V1 := Vτ1 are the frames obtained from (6.4).

The next step is to extend the construction of the coupling beyond time τ1. There are two cases to be
considered here.

If the point (x1, y1) lies inside Dη/2, we can use the starting point (x1, y1) and continue to run (Ut, Vt)
following (6.4) using now the Brownian motion Wt,τ1 with the time range t ≥ τ1. As above we let τ2 be
the first time the process (Xt+τ1 , Yt+τ1) hits the boundary of B(x1, η) × B(y1, η), and we set (x2, y2) =
(Xτ1+τ2 , Yτ1+τ2) and also U2 = Uτ1+τ2 and V2 = Vτ1+τ2 .

On the other hand, if the point (x1, y1) lands outsideDη/2, then we run the motions Ut and Vt for t ≥ τ1
with the system 

dUt =
∑N

i=1Hi(Ut) ◦ dW i
t,τ1

dVt =
∑N

i=1Hi(Vt) ◦ dW̃ i
t,τ1

Xt = πUt

Yt = πVt.

In other words, Ut, Vt run as independent Brownian motions on O(M) × O(M), and Xt, Yt run as
independent Brownian motions on the base manifold M . We continue with this construction for time t
in the interval [τ1, τ1 + τ2], where the terminal time τ1 + τ2 is the first time the process (Xt, Yt) lands in
Dη/4, and we denote (x2, y2) = (Xτ1+τ2 , Yτ1+τ2).

In both cases above we constructed the processes Ut, Vt defined up to the time τ1 + τ2, and (x2, y2)
is either in Dη/2 or outside it. Inductively, we can now repeat the construction above, to show that we
can extend the construction of the processes for another τ3 units of time, and so on. If for a certain n,
τn = +∞, then we certainly take all other stopping times τm = 0 for m > n.

One of the main problems is to show that the construction can be extended for all times t ≥ 0, in other
words that ∑

n≥1
τn = +∞.

We are going to do this separately for the first part of the theorem, and argue differently for the second
and third part.

In the first case, where k < 0, the idea is that as long as the process (Xt, Yt) stays inside Dη/2, from
(6.18) we have that the distance process ρt satisfies

ρt = e−kt/2ρ0,

thus increasing. This means that if η is small enough, then in finite (deterministic) time the process
(Xt, Yt) exits Dη/2. Once the process (Xt, Yt) exits the set Dη/2, Xt and Yt run independently until they
hit the set Dη/4, and then they stay in Dη/2 for at most a finite (deterministic) amount of time, after
which they exit again Dη/2. In particular we see that the processes Xt, Yt have to run independently
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infinitely many times, and it is this fact that allows us to show that
∑

n≥1 τn = +∞. This is done using
the Borel-Cantelli’s lemma.

For the moment assume that we have two independent Brownian motionsXt, Yt starting at x0, y0 with
d(x0, y0) = η/2. If τ is the first time when Xt, Yt are within distance η/4 to each other, we want to get an
estimate on P(τ > δ) for some δ > 0. To do this, we use the following inclusion

{ζX,η/16 > δ} ∩ {ζY,η/16 > δ} ⊂ {τ > δ}

where ζX,η/16 is the first exit time of Xt from the ball B(x0, η/16) and similarly ζY,η/16 is the first time
Yt exits the ball B(y0, η/16). This inclusion can be stated in words as follows. If Xt and Yt stay inside
B(x0, η/16), respectively B(y0, η/16), up to time δ, and since x0, y0 are distance η/2 apart, it follows that
Xt and Yt are not within η/4 of each other in the time interval [0, δ]. The conclusion we draw from this is
that

P(τ > δ) ≥ P(ζX,η/16 > δ)P(ζY,η/16 > δ).

Finally, since the the Ricci curvature is bounded below, we can invoke now the estimate on the exit times
from balls, for instance [12, Theorem 3.6.1], to obtain that for any point x on M we have

Px(ζη/16 ≤ δ) ≤ e−Cr
2/δ,

where the constant C > 0 depends only on the lower bound on the Ricci curvature and the dimension
of the manifold. Thus for a fixed η > 0 we obtain that

(6.19) Px(ζη/16 > δ) > 1− e−Cη2/δ := C2 > 0,

for a certain constant C > 0, and therefore

P(τ > δ) ≥ C2
2 .

With this at hand we get that ∑
n≥1

P(τn > δ) = +∞,

and using Borel-Cantelli’s lemma we conclude that
∑

n≥1 τn = +∞, which shows that the construction
of the coupling extends for all times t ≥ 0.

For the other case of fixed or decreasing distance coupling, the point is complementary to the previous
one. More precisely, in the above proof it was the independent motions which played the main role,
while here the main role is played by the coupling. To get to terms, note that if we start the coupling
with points x0, y0 such that d(x0, y0) < η/4, then, since the distance between the processes does not
increase, the process (Xt, Yt) stays in Dη/2 up to the time

∑
n≥1 τn. The issue is to show that this sum is

always infinite. What we want to do is to find a lower bound on P(τ1 > δ). Using the same notation as
above, we have

(6.20) {ζX,η/16 > δ} ⊂ {τ1 > δ}.

To see this, we follow the construction until either X or Y hit the ball of radius η centered at x0, respec-
tively y0. Now, if X stays inside B(x0, η/16) on the time interval [0, δ], since d(x0, y0) < η/4 and the
processes remain at fixed or non-increasing distance, an application of the triangle inequality shows that
Y remains inside B(y0, 9δ/16) on the time interval [0, δ], which in turn implies (6.20). Using again (6.19)
we get that

P(τ1 > δ) ≥ C3 > 0

for a constant C3 which is independent of the starting points. Since this is applicable to all stopping
times τn, we learn again from Borel-Cantelli’s lemma that

∑
n≥1 τn = +∞.
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6.5. Finishing off. In the previous section we constructed the coupling and we proved that it is defined
for all times. We want now to show that the construction actually does what the Theorem asks for. This
is already spelled out in the previous subsection in a certain form.

For the first part (k < 0), on each of the regions where the coupling is insideDη/2, due to (6.18), we see
that the distance is non-decreasing, and therefore it is larger than the starting distance which is at most
η/4. On the other hand, if the coupling exits Dη/2, then it runs as independent Brownian motions until
it hits again Dη/4, and consequently the distance is at least η/4 apart. In both regimes the distance does
not get smaller than the starting distance and this concludes the proof of the first part of the theorem.

For the second part, the process never leaves Dη/2 and for all times it remains at a fixed distance. The
last case, when the distance decays exponentially, being similar, we omit it. This concludes the proof of
Theorem 12.

7. REFINEMENTS AND COMMENTS

The proof of Theorem 12 spreads on several pages, and some comments on it are in order. The first
observation is that the conditions imposed are essential for the construction. For example the positivity
of the injectivity radius is needed for the local construction. The Ricci curvature bounded from below
insures the non-explosion of the Brownian motion on one hand, and on the other hand it is important in
the estimate of the exit times employed in the proof of the global existence of the coupling.

That the scalar curvature is bounded from above does not seem to be optimal even though it is an
important piece in the proof of the existence of the coupling via the index form comparison on M with
the index form of a sphere. Geometrically, we certainly need to make sure that the Brownian motions
we try to couple do not get trapped in regions of extremely high scalar curvature where the Brownian
motions tend to get close to one another. It seems though that the optimal condition would be that the
injectivity radius of the manifold is positive. However this certainly requires a different argument from
the one provided here.

Another aspect is that the global existence of the choice of the map OU,V is tied to the existence of a
smooth choice of an orthonormal frame on M . On an arbitrary Riemannian manifold this can be done
only locally and this is why we had to go one more step, from the local existence of the coupling to its
global existence. There are though a few cases when the existence can be proved globally, one of which
is the case of surfaces. In this case, for any two points x, y not at each other cut-locus, there is a single
perpendicular direction to the geodesic joining x and y. Using this we can show that there is a global
choice of OU,V as long as πU, πV are not at each other cut-locus.

Another case in which we can construct a global version ofOU,V is the one in whichM is parallelizable,
namely the tangent bundle is trivializable, or otherwise put, there exist vector fieldsX1, X2, . . . Xd which
are independent at each point. This amounts to the existence of a global orthonormal frame bundle. It is
for instance the case of S3 and S7 and also of any Lie group with the left or right invariant metric.

The couplings we constructed in Theorem 12 are defined for all times t ≥ 0, and the conditions in
(6.1) were necessary in the proof. There is however a case when the injectivity and upper bound on the
sectional condition can be dispensed of if one only needs the coupling to be defined up to the first exit
time of the coupling from a relatively compact set. For completeness we record the result here and use it
in the next section. The proof is the same as the one given above adjusted with a stopping time.

Theorem 16. Let M be a complete d-dimensional Riemannian manifold and D ⊂ M a relatively compact open
set of M with a smooth boundary. Then, there exists ε > 0 such that for any x, y ∈ D with d(x, y) < ε, there exist
a shy coupling of two Brownian motions on M starting at x and y, defined up to the first exit time of either of the
processes from D.

If in addition Ric ≥ 0, there also exists a fixed-distance coupling Brownian motions on M starting at x and y,
defined up to the first exit time of either of the processes from D.

The suggestion given by Kendall in [16] for the construction of the shy coupling is to use the same
orthogonal transformation as in (5.8) which is a form of perverse coupling (in the terminology of [16]).
However, this is not sufficient to get the fixed distance coupling. Particularly this is very clearly illus-
trated in the case of surfaces. Indeed, since the dimension is 2, we have just one dimension left in the
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orthogonal to the geodesic joining Xt and Yt and then there are essentially only two choices of an or-
thogonal map from Tx to Ty (for x, y not at each other cut-locus) which preserves the geodesic direction.
These are the ones in (5.7) and (5.8). At least in the constant curvature case manifolds as we showed in
Theorem 10 we do not get a fixed distance coupling.

We want to point out that one can get a shy coupling using stochastic flows. In short, the idea is to
impose conditions such that the flow stays a Brownian motion and this can be done if the direction in the
Cameron-Martin space satisfies a certain ode. If the initial value of this direction is non-zero everywhere
then we obtains weak form of a shy coupling. See for details [12, 13].

At last, it would be very interesting to see a construction of the fixed-distance coupling in the same
spirit as the one pointed in Remark 9. This would probably work only in special cases as for example
homogeneous manifolds.

8. APPLICATIONS

As an application of the fixed-distance coupling we present a proof of the following maximum prin-
ciple for the gradient of harmonic functions.

Theorem 17. Let M be a Riemannian manifold with non-negative Ricci curvature and let u : M → R be a
harmonic function on M . Then, for any relatively compact open set D with smooth boundary we have

(8.1) max
x∈D
|∇u(x)| = max

x∈∂D
|∇u(x)|.

Proof. Fix an arbitrary point x ∈ D. Then there is a geodesic γ such that γ(0) = x and

v(x) := |∇u(x)| = lim
h→0

u(γ(h))− u(x)

h
.

In particular, for a small enough h > 0, we can consider the fixed distance coupling from Theorem 16
started at γ(h) and x, and run it up until the stopping time ζ, defined as the first time when either of the
processes Xt or Yt hit the boundary of D. On the other hand, since the function u is harmonic, u(Xt) and
u(Yt) are local martingales, and in fact, since u is bounded on D, we can write

u(γ(h))− u(x) = E[u(Xζ)− u(Yζ)].

The upshot of this equality is that there must be an ω in the probability space where the processes Xt

and Yt are defined, such that

u(γ(h))− u(x) ≤ u(Xζ(ω))− u(Yζ(ω))

Since d(Xζ , Yζ) = d(γ(h), x) = h, we can find a point ξ on the geodesic joining Xζ with Yζ such that

u(γ(h))− u(x) ≤ u(Xζ(ω))− u(Yζ(ω)) ≤ |∇u(ξ)|h.
Since eitherXt or Yt are on the boundary ofD, we conclude that ξ is distance h or less from the boundary
∂D.

Thus, as h goes to 0, from the compactness of ∂D, we can find a point α ∈ ∂D such that

v(x) = |∇u(x)| ≤ |∇u(α)| ≤ max
x∈∂D

v(x),

which concludes the proof. �

Another application with a similar flavor is to the gradient of a solution to the heat equation.

Theorem 18. Let M be a Riemannian manifold with non-negative Ricci curvature, D ⊂M a relatively compact
open set with smooth boundary, and u a classical smooth solution to the heat equation ∂tu = 1

2∆u on an open
relatively compact set Ω containing the closure of D. For x ∈ D, let µx,D be the distribution of the hitting time ζ
of ∂D for a Brownian motion started at x. Then, for each x ∈ D and 0 < s < t

(8.2) |∇ut(x)| ≤
∫ s

0
|∇ut−σ|∂Dµx,D(dσ) + µx,D((s,∞))|∇ut−s|D,

where for a bounded set K and a continuous function w on K, we denoted |w|K = supx∈K |w(x)|.
Note that in the case when u is harmonic, (8.2) implies (8.1).
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Proof. As in the previous proof, consider a point x and let γ be a geodesic such that γ(0) = x and

|∇ut(x)| = lim
h→0

ut(γ(h))− ut(x)

h

Using the fixed distance coupling started at γ(h) and x given by Theorem 12, and with ζ the first time
either Xt or Yt hit ∂D, and combinining with the fact that ut−s(Xs) and ut−s(Ys) are local martingales,
we get for h > 0,

ut(γ(h))− ut(x) = E[ut−s∧ζ(Xs∧ζ)− ut−s∧ζ(Ys∧ζ)]
= E[ut−ζ(Xζ)− ut−ζ(Yζ), ζ ≤ s] + E[ut−s(Xs)− ut−s(Ys), s < ζ]

≤ hE[|∇ut−ζ |(∂D)h , ζ ≤ s] + hE[|∇ut−s|D, s < ζ]

where Kh denotes the set of points of M at distance at most h from K. Dividing by h and letting h go to
0, the first part follows.

For the second part, if u is a harmonic function and the maximum of u on D is attained at a point
x ∈ D, then taking this point in (8.2) gives (8.1) �

8.1. The Brownian Lion and the Man. We started this paper with the Lion and the Man and we close it
with a simple interpretation of the results in this language. Assume we have a Riemannian manifold M
satisfying the condition in Theorem 12. Then, given a Brownian Lion running onM , Theorem 12 assures
that there is a strategy for the Brownian Man which keeps him at the safe positive distance from the Lion
for all times.

In addition, if the Ricci is non-negative, then the Brownian Man can choose a strategy which keeps him
at fixed distance from the Brownian Lion. This must be particularly frustrating for the Lion especially if
they start relatively close to each other.

Theorem 12 also shows that if the Ricci curvature is bounded below by a positive constant, then given
a Brownian Man, the Brownian Lion has a strategy which will bring him arbitrarily close to its meal.

8.2. Lower Bounds on Ricci Curvature. As we pointed out in the introduction, [28, Corollary 1.4] shows
that one can characterize the condition Ric ≥ k in terms of couplings. We can strengthen this a little bit
in the following form.

Corollary 19. Assume M is a complete Riemannian manifold. Then the following two statements are equivalent.
(1) Ricx ≥ k for all x ∈M .
(2) For any point z ∈ M , there exist rz, δz > 0 such that for any x, y ∈ B(z, rz) we can find a Markovian

coupling of Brownian motions Xt, Yt starting at x, y with the property that

d(Xt, Yt) = e−kt/2d(x, y) for 0 ≤ t ≤ δz ∧ ζz
where ζz is the first time either Xt or Yt exit the ball B(z, rz).

As a clarification, Xt, Yt need to be defined up to the exit time from the ball B(z, rz) or up to δz ,
whichever comes up first.

Proof. The implication 1) =⇒ 2) follows from Theorem 16. The reverse implication we follow the same
lines as in [28], particularly the implication x=⇒ and we will sketch only the main differences.

Instead of considering the heat kernel of the Laplacian on the manifold we consider the heat kernel
pt(x, y) of half the Laplacian on B(z, rz) with the Dirichlet boundary conditions and its corresponding
action (ptf)(x) =

∫
B(z,rz)

pt(x, y)f(y)dy. Using this we can prove that condition 2) implies for any points
x, y ∈ B(z, rz) and any compactly supported function f on B(z, rz),

ptf(x)− ptf(y) = E[f(Xt∧ζz)− f(Yt∧ζz)] ≤ |∇f |B(z,rz)d(x, y)E[e−k(t∧ζz)/2]

from which one immediately gets by letting y approach x that

|∇ptf(x)| ≤ |∇f |B(z,rz)E[e−k(t∧ζz)/2].
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Now, with very little changes in the argument of the implication v=⇒i from [28], if Ricz(v, v) < k at
some point z for some v we arrive at the following conclusion

kE
[
1− t ∧ ζz

t

]
≥ ε+ o(1)

for some ε > 0. This certainly leads to a contradiction as we let t→ 0. �
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