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Abstract

In this paper we prove the Morse inequalities in the non-degenerate and degenerate cases. Like
the approach of J.-M. Bismut, ours is based on the idea suggested by Witten. In fact, if anything, our
approach is closer to Witten’s original idea than Bismut’s.
 2005 Elsevier Inc. All rights reserved.
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0. Introduction

Let M be a d-dimensional compact manifold and h :M → R a Morse function. Set indc ,
the index of h at the critical point c to be the number of negative eigenvalues of hessc h.
If mk is the number of critical points of index k and bk is the kth Betti number, i.e., the
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dimension of the kth cohomology group with real coefficients, the statement of the Morse
inequalities in the non-degenerate case is

mk − mk−1 + · · · + (−1)km0 ! bk − bk−1 + · · · + (−1)kb0, 0 " k " d, (0.1)

with equality for k = d .
We describe now our analytic approach for proving this result. By the Morse lemma one

can find a local coordinate chart around each critical point so that h is quadratic in each of
these. We choose a metric on M which is flat in these coordinate charts. Following Witten
[11], we define for α > 0 the operators

dαh = e−αhdeαh, δαh = eαhδe−αh, (0.2)

!α = dαhδαh + δαhdαh, (0.3)

where d is the usual exterior differential operator and δ its dual.
We consider pα

k (t, x, y) the kernel of the operator e−t!α/2 acting on k-forms and take

Qα
k (t) =

∫

M

Tr pα
k (t, x, x) dx, (0.4)

where Tr stands for the trace on
∧k(M) and dx is the volume measure on M .

The starting point in the proving Morse inequalities is the following inequality due to
Bismut [1, Theorem 1.3]

Qα
k (t) − Qα

k−1(t) + · · · + (−1)kQα
0 (t) ! bk − bk−1 + · · · + (−1)kb0 (0.5)

for t > 0,α > 0, with equality for k = d .
Our main result is the following:

lim
α→∞Qα

k (t) = mk for 0 " k " d, and all t > 0. (0.6)

This and (0.5) imply (0.1).
Before discussing the general case, let us show how one can prove this in the simple

situation when the manifold M is Rd and h(x) = − 1
2 (x2

1 +· · ·+ x2
s )+ 1

2 (x2
s+1 +· · ·+ x2

d).
The only critical point is 0 and its index is s. Using Mehler formula, and performing simple
computations, one gets

∫

Rd

Trpα
k (x, x) dx =

∑

k1+k2=k
0!k1!d−s

0!k2!s

exp
(
−αt (k1 + s − k2)

)
.
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Therefore

lim
α→∞

∫

Rd

Trpα
k (x, x) dx =

{
1 if k = s,

0 otherwise,

which is the proof of (0.6) for this basic model.
In the general case, we try to localize the proof of (0.6) to ones similar to the above for

each critical point.
Our approach is based on a function space representation of pα

k (t, x, x). We write
pα

k (t, x, x) via the Malliavin calculus and we analyze separately the cases for x away from
the critical points and for x close to the critical points.

• When x stays away from the critical set, pα
k (t, x, x) is exponentially decaying to 0 as

α → ∞. Using elementary analysis, the Markov property and estimates on exit times
from balls of M , we reduce the analysis to one involving an integral over paths in an
Euclidean ball. Finally, the estimate of this last integral comes down to estimates on
the solution to a linear PDE problem (cf. (2.14) and (2.16)) in balls of Rd , which is
done in Section 2.2.

• When x is close to the critical set, pα
k (t, x, x) is, up to an exponentially decaying term

in α, an integral over paths staying up to time t inside a small neighborhood of the
critical set. Finally, replacing the manifold M by Rd and reversing the localization
procedure described above, the computation of limα→∞ Qα

k (t) is reduced to one de-
scribed above for the case of Rd .

The degenerate case is more involved because the geometry near the critical set is in
general non-trivial.

Let h be a Bott–Morse function on the compact manifold M with critical connected
sub-manifolds N1,N2, . . . ,Nl . The degenerate Morse lemma says that there are disjoint
tubular neighborhoods B1,B2, . . . ,Bl of N1,N2, . . . ,Nl in M , open sets V1,V2, . . . ,Vl ,
Ni ⊂ Vi ⊂ Bi , i = 1, . . . , l, and Euclidean bundles B±

i of dimensions ν±
i , such that Bi =

B+
i ⊕ B−

i with the property that h restricted to Vi is given by

h(z) = h # Ni + 1
2

(∣∣y+∣∣2 −
∣∣y−∣∣2)

, (0.7)

where y± are the E±
i components of z seen as a vector in (Ei)ρi (z), and ρi :Bi → Ni the

canonical projection.
The statement of the degenerate Morse inequalities is

mk − mk−1 + · · · + (−1)km0 ! bk − bk−1 + · · · (−1)kb0, 0 " k " d, (0.8)

with equality for k = d , where

mk =
l∑

i=1

dimHk−ν−
i
(
Ni;o

(
B−

i

))
, (0.9)
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and Hk(Ni;o(B−
i )) is the kth cohomology group of Ni twisted by the orientation bundle

of B−
i .

In order to do analysis we need a metric on M . Using standard procedures, in Section 3.1
we construct a metric and a compatible connection, called the Bismut connection, on each
T (Bi). Once this is done, we take any metric on M whose restriction to Vi is the metric
on Bi .

We point out that in the non-degenerate case, the only connection we work with is
the Levi-Civita connection. In the degenerate framework, the Bismut connection on Bi

fits better for computational purposes than the Levi-Civita connection. For example, the
parallel transport along paths in Bi with respect to the Bismut connection sends fibers into
fibers, while the Levi-Civita connection does not. This is one feature that makes the Bismut
connection more appropriate for fiberwise computations. On the other hand the Bismut and
the Levi-Civita share a number of important features. For instance with respect to either
connection, the Laplacians on functions coincide and the Hessian of the function h is the
same.

The Brownian motion on the bundle Bi is given as the parallel transport of the Brownian
paths in the fiber along the Brownian paths on the basis. This appears in Bismut’s paper [1],
and we discuss it in Section 3.3.

With the same definitions and notations as in the non-degenerate case (cf. (0.2), (0.3)
and (0.4)), the inequality (0.5) holds. Our main result in this context is

lim
t→∞ lim

α→∞Qα
k (t) = mk for 0 " k " d, (0.10)

with mk defined in (0.9). Then, (0.8) follows from this and (0.5).
The program of proving (0.10) is the same as the one in the non-degenerate case. That

is, we estimate pα
k (t, x, x) for x away or near the critical set.

• For x away from the critical set, one can prove that pα
k (t, x, x) is decaying exponen-

tially fast to 0 as α → ∞. The idea is basically the same as in the degenerate case
outlined above. The only technical issue is due to the fact that one needs to use the
representation of the Brownian motion on Bi we mentioned above. With this one can
reduce the analysis to a PDE estimate on a ball in the fibers of Bi .

• Following the same route as in the non-degenerate case for x near the critical set,
say near Ni , leads one to a comparison between pα

k (t, x, x) and the heat kernel of the
operator !α on Bi . We would like to reduce the computations to computations for
harmonic oscillator in fibers of Bi , but the operator !α does not preserve horizontal
and vertical forms on Bi . Nevertheless, comparing the heat kernel pα

k (t, x, x) on M

with the heat kernel of various other operators (based on the Bismut connection on Bi ,
which does preserve the horizontal and vertical forms), we show how one can reduce
the computations to one for harmonic oscillators in fibers. This comparison analysis is
done in two parts of Section 3.4. The first part consists in proving that the heat kernel
of a more general class of operators is bounded by a quantity which is based on the
harmonic oscillator in fibers. The second part is carried out in Theorem (3.42) and uses
the first part to compare the heat kernels of various operators.

Given this analysis, the proof of (0.10) is given in Section 3.5 and is straightforward.
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We mention here one technical subtlety which appears in the degenerate case. Integra-
tion by parts on the path space over a compact manifold or in Euclidean space is well
known, but in our case the vector bundles Bi are non-compact manifolds. Nonetheless,
the Ricci curvature is bounded from below and from above in terms of the square of the
distance function, and this turns out to be enough to prove the integration by parts on the
path space.

The paper is organized as follows. In Section 1, we describe various facts from geome-
try, probability, and estimates on the exit time from balls on Riemannian manifolds.

Section 2 is the analysis of the non-degenerate case. The main theme of the paper is
in Section 2.1, which shows how one can estimate the heat kernel pα

k (t, x, x) for x away
from the critical case. The heart of the matter is Section 2.2 which is dedicated to proving
Theorem 2.14, achieved by constructing a super-solution to the PDE (2.16). In Section 2.3
we analyze pα

k (t, x, x) when x is close to the critical case, and in Section 2.4 we give the
proof of the Morse inequalities.

Section 3 deals with the degenerate case. Section 3.1 discusses the metric and the Bis-
mut connection on a vector bundle over a compact manifold. Section 3.2 contains the
representation of the Brownian motion on a vector bundle. Section 3.4 is the backbone of
the degenerate case. First we analyze the boundedness of the heat kernel of a general oper-
ator described in (3.28). In Theorem 3.42 we show that the traces of the heat kernels of the
two operators we are primarily interested in are close to each other. The degenerate Morse
inequalities are proved in Section 3.5.

The first part of the appendix is about geometric computations needed in the degenerate
case. The second part is a general discussion on the existence, representation and basic
estimates of heat kernels of operators acting on forms. The third part is the justification of
integration by parts on the path space of a Riemannian manifold with the Ricci curvature
satisfying bounds given by (B.1), and the applications we use in the degenerate case.

1. General facts

Differential geometry

Given a d-dimensional compact Riemannian manifold M and a function h :M → R,
we denote by Crit the set of critical points and set

dαh = e−αhdeαh, δαh = eαhδe−αh, !α = dαhδαh + δαhdαh, (1.1)

where d is the usual exterior differential operator on smooth forms and δ its adjoint.
We consider the kernel pα

k (t, x, y) :
∧k

y(M) → ∧k
x(M) of the operator e−t!α/2 acting

on k-forms, and take

Qα
k (t) =

∫

M

Tr pα
k (t, x, x) dx, (1.2)

where Tr stands for the trace on
∧k(M) and dx for the volume measure on M .
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Bismut, [1, Theorem 1.3] proved the following basic fact.

Theorem 1.3 (The basic inequality). For any α > 0, t > 0 we have

Qα
k (t) − Qα

k−1(t) + · · · + (−1)kQα
0 (t) ! bk − bk−1 + · · · + (−1)kb0, 0 " k " d,

with equality for k = d .

Definition 1.4. (1) If ∇ is a connection on M and X ∈ T (M), define ∇X to be the derivation
on

∧
(M) so that

(a) if f is a function, ∇Xf = Xf ;
(b) if ω is a 1-form, ∇Xω is the 1-form given by

(∇Xω)(Y ) = X
(
ω(Y )

)
− ω(∇XY) for any Y ∈ T (M).

(2) Given a connection ∇ on M , we define &∇ , the corresponding Laplacian on forms
by

(
&∇ω

)
(x) =

d∑

j=1

(∇(Ej )x ∇Ej ω − ∇∇(Ej )x Ej ω),

where ω, (Ej )
d
j=1 are, respectively, a smooth form and a smooth local orthonormal basis

defined in a neighborhood of x.
(3) If S is a 2k-tensor, we define D∗S, its action on

∧
(M), by

D∗Sx =
d∑

j1,...,j2k=1

Sx(Ej1,Ej2, . . . ,Ej2k )
(
E∗

j1
∧ iEj2

)
◦ · · · ◦

(
E∗

j2k−1
∧ iEj2k

)
,

where (Ej )
d
j=1 is any orthonormal basis in Tx(M), and for X ∈ Tx(M), iX is the usual

contraction operator determined by X. We call a tensor S̄ even if S̄ = S1 + · · · + Sr , where
Si is a 2ki tensor for i = 1, . . . , r . We denote by D∗S̄ its extension to forms by linearity.

(4) If S is a (2k + 1)-tensor, we define (D∗S)x :Tx(M) → End(
∧

x(M)) by

(
D∗S

)
x
(Xx) =

d∑

j1,...,j2k=1

Sx(Xx,Ej1,Ej2, . . . ,Ej2k )
(
E∗

j1
∧ iEj2

)
◦ · · · ◦

(
E∗

j2k−1
∧ iEj2k

)

where (Ej )
d
j=1 is any orthonormal basis in Tx(M). We call a tensor S̄ odd if S̄ = S1 +

· · · + Sr , where Si is a 2ki + 1 tensor for i = 1, . . . , r . D∗S̄ denotes its extension to forms
by linearity.
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For the remainder of this section we work only with the Levi-Civita connection and &

is its associated Laplacian.
The Hessian of h is the 2-form given by

hessx h(Xx,Yx) = 〈∇Xx gradh,Yx〉,

for any Xx,Yx ∈ Tx(M). D∗ hessh and D∗R are the extensions to
∧

(M) of the Hessian
hessh and the curvature tensor R.

With these notations, we have the following decomposition (cf. (A.5))

!α = −& + α2|gradh|2 − α&h + 2αD∗ hessh − D∗R. (1.5)

Probabilistic preliminaries

For a detailed discussion of things presented here, we refer the reader to [8], especially
to Chapter 8 in there. However for the reader’s convenience we present here the main ideas.

In order to describe our representation of pα
k (t, x, y), we first introduce the Wiener

measure Wd on P(Rd) and describe the map w ∈ P(Rd) → p(·, x,w) ∈ P(M), whose
distribution is the Wiener measure on M based at x. Here and elsewhere, for a manifold N ,
we set P(N) := C([0,∞);N).

The measure Wd is the measure on P(Rd) with the following properties:

• Wd(w(0) = 0) = 1;
• if Πt (w) = w(t), then for 0 " s < t , the Wd -distribution of Πt − Πs is a centered

normal (i.e., Gaussian) with covariance (t − s)Id ;
• if 0 " t1 < t2 < · · · < tn, the random variables Πt1,Πt2 − Πt1, . . . ,Πtn − Πtn−1 are

Wd -independent.

Consider the orthonormal frame bundle over M given by

O(M) =
{
f =

(
x, (Ej )

d
j=1

)
: (Ej )

d
j=1 orthonormal basis in Tx(M)

}

with the canonical projection π :O(M) → M , π(f) = x. Fixing an orthonormal basis
(ej )

d
j=1 in Rd , one can naturally interpret f as an isometry from Rd to Tx(M) which sends

ej to Ej . Using parallel transport one can define the horizontal lift of a vector Xx ∈ Tx(M)

to a vector Xf ∈ Tf(O(M)) with π(f) = x. For ξ ∈ Rd , we define the canonical vector field
E(ξ)f to be the lift of the vector fξ ∈ Tπ(f)(M).

We explain now the construction of w ∈ P(Rd) → p(·, x,w) ∈ P(M). First, for f ∈
O(M) and a piecewise smooth w ∈ P(Rd), we construct the path p(·, f,w) by the following
prescription

ṗ(t, f,w) = E
(
ẇ(t)

)
p(t,f,w)

with p(0, f,w) = f. (1.6)
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To extend this map to any Wd -almost every path w, consider wn, the piecewise linear path
on each interval [k/2n, (k +1)/2n] with wn(k/2n) = w(k/2n), k ! 0 integer. Then, for any
Wd -almost every path w,

p(·, f,wn) → p(·, f,w)

uniformly on any interval [0, T ]. Set

p(t, x,w) = πp(t, f,w) for f ∈ π−1x, (1.7)

and µM
x , the Wiener measure on M based at x, the Wd -distribution of w ∈ P(Rd) →

p(·, x,w) ∈ P(M). There is a natural notion of parallel transport along p(·, x,w) given
by τp(·,x,w)"[0,t] = p(t, f,w)f−1. Therefore, the parallel transport τp"[0,t] is well defined for
µM

x -almost any path p ∈P(M).
Theorem C.3 gives the representation of the heat kernel of !α acting on k forms by

pα
k (t, x, y) = EWd

[

exp

(

−α2

2

t∫

0

∣∣gradh
(
p(v, x,w)

)∣∣2
dv + α

2

t∫

0

&h
(
p(v, x,w)

)
dv

)

× V α
k

(
t, p(·, x,w)

)
τp(·,x,w)"[t,0]δy

(
p(t, x,w)

)
]

, (1.8)

where the integration is interpreted via a repeated integration by parts on path space, and
for µM

x -almost any path p ∈P(M), V α
k is the solution to the ODE on End(

∧k
p(0)(M))

{
V̇ α

k (t,p) = V α
k (t,p)(τp"[t,0](−αD∗ hessp(t) h + 1

2D∗Rp(t))τp"[0,t]),
V α

k (0,p) = Id∧k
p(0)(M)

.
(1.9)

About exit times

We record here some estimates on the exit times from balls useful in various situations.
The following result follows easily from [8, Theorem 8.62].

Theorem 1.10. Let M be a complete Riemannian manifold, and assume that for a fixed
point o and some γ ! 0,

〈Ricx Xx,Xx〉 ! −γ
(
1 + dist(x, o)2)|Xx |2 for x ∈ M, Xx ∈ Tx(M).

Then, for each compact set K ⊂ M , there exists a constant C = C(K,γ ) > 0 such that

sup
x∈K

µM
x (ζr " t) " C exp

(
− r2

4teCt

)
for any r, t > 0 (1.11)

where ζr is the first exit time from the ball B(x, r).
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If M is a compact manifold or Rd , there is a constant C > 0 so that

µM
x (ζr " t) " C exp

(
− r2

4t

)
for any r, t > 0, x ∈ M. (1.12)

What we will need is the following.

Corollary 1.13. Let M be a complete Riemannian manifold so that for a fixed point o and
γ ! 0,

〈Ricx Xx,Xx〉 ! −γ
(
1 + dist(x, o)2)|Xx |2 for x ∈ M, Xx ∈ Tx(M).

Then, for each compact set K ⊂ M , there exists a constant C = C(K) such that

sup
x∈K

EµM
x

[
e−β(t∧ζr )

]
" exp(−tβ) + C exp

(
−re−Ct

√
β/2

)
for all r, t,β > 0. (1.14)

If M is a compact manifold or Rd , there is a constant C > 0 so that

EµM
x

[
e−β(t∧ζr )

]
" exp(−tβ) + C exp

(
−r

√
β/2

)
for all r, t,β > 0, x ∈ M. (1.15)

Proof. First,

EµM
x

[
e−β(t∧ζr )

]
= e−βtµM

x (ζr > t) + EµM
x

[
e−βζr , ζr " t

]

= e−βt + β

t∫

0

e−βσ µM
x (ζr " σ ) dσ.

By (1.11),

t∫

0

e−βσ µM
x (ζr " σ ) dσ " C

t∫

0

exp
(

−βσ − r2

4σeCσ

)
dσ

" C

∞∫

0

exp
(

−βσ − r2e−Ct

4σ

)
dσ.
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For given a, b > 0, use the change of variable ξ = aσ 1/2 − bσ−1/2 to justify that

∞∫

0

e−a2σ− b2
σ dσ = e−2ab

2a2

∞∫

−∞

(√
ξ2 + 4ab + ξ2

√
ξ2 + 4ab

)
e−ξ2

dξ

" e−2ab

a2

∞∫

−∞

(√
ξ2 + 4ab

)
e−ξ2

dξ

" e−2ab

a2

∞∫

−∞

(
|ξ | + 2

√
ab

)
e−ξ2

dξ

" 2
(
1 +

√
ab

)e−2ab

a2 . (∗)

Taking a = √
β and b = 1

2 re−Ct/2, for another constant C, we get (1.14). For the second
part, by (1.12),

t∫

0

e−βσ µM
x (ζr " σ ) dσ " C

∞∫

0

exp
(

−βσ − r2

4σ

)
dσ.

Taking, a = √
β and b = r/2 in (∗), we get (1.15). !

2. Non-degenerate Morse inequalities

In this section M is a d-dimensional compact manifold and h : M → R a Morse function
with the critical set Crit = {c1, . . . , cl}. For each c ∈ Crit, by the Morse lemma, one can
find coordinate charts (Uc,ϕc), with c ∈ Uc such that ϕc(c) = 0 and

h
(
ϕ−1

c (x1, . . . , xd)
)
= h(c) − 1

2

ind(c)∑

j=1

x2
j + 1

2

d∑

k=ind(c)+1

x2
k ,

where ind(c) is the index of c. Using these coordinate charts we choose a metric on M

which is flat in each Uc.
For r > 0, set Critr = {x ∈ M, dist(x,Crit) < r} and Λr = {x ∈ M, dist(x,Crit) > r}.

We fix r > 0, small enough so that B(c,5r) ⊂ Uc, the balls {B(c,5r); c ∈ Crit} are disjoint
and the metric on each of them is flat. All the constants appearing in this section may
depend on this fixed r .

Although for the purpose of this section it suffices to analyze the heat kernel for t = 1,
for further study we will analyze this for arbitrary t > 0.
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2.1. Away from the critical set

Our goal here is to prove the following.

Theorem 2.1 (The away case). There exist constants C1,C2,C3 > 0 so that for t > 0 and
α ! C1e

C1t ,

∥∥pα
k (t, x, y)

∥∥ " t−d/2αC3
(
exp

(
−C2tα

2) + exp(−C2α)
)

for (x, y) ∈ Λr × M,

where the norm ‖ · ‖ is the Hilbert–Schmidt norm on the space Hom(
∧

y(M),
∧

x(M)) of
linear maps from

∧
y(M) to

∧
x(M).

The first step is to estimate the contribution of V α
k (cf. (1.9)). Choose a smooth function

fk so that,

fk(x) = ind(c) for c ∈ Crit and x ∈ B(c,4r),

−D∗ hessx h " fk(x) Id∧k
x(M)

for all x ∈ M. (2.2)

By Lemma B.24 and Proposition C.5 we know there is a constant C > 0, depending on the
size of the curvature, so that,

∥∥pα
k (t, x, y)

∥∥ " etCEWd

[

exp

( t∫

0

Hα
k

(
p(v, x,w)

)
dv

)

δy

(
p(t, x,w)

)
]

, (2.3)

where

Hα
k (y) =

(
−α2

2

∣∣gradh(y)
∣∣2 + α

2
&h(y) + αfk(y)

)
. (2.4)

Now we need to estimate the expectation in (2.3).

Proposition 2.5. Given 0 < η " 1, set

H
α,η
k (y) = (1 + η)

(
−α2

2

∣∣gradh(y)
∣∣2 + α

2
&h(y) + αfk(y)

)
. (2.6)

Then, there is a polynomial P(α, t) so that for t,α > 0

∥∥pα
k (t, x, y)

∥∥ " eCtP (α, t)

ηd td/2

{

EµM
x

[

exp

( t∫

0

H
α,η
k

(
p(v)

)
dv

)]}1/(1+η)

, (2.7)

uniformly on M in x, y.
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Proof. By repeated application of integration by parts (see Corollary B.26 and Theo-
rem B.19 for details) we have

EWd

[

exp

( t∫

0

Hα
k

(
p(v, x,w)

)
dv

)

δy

(
p(t, x,w)

)
]

"
d∑

i=0

t−dαiEWd

[
∥∥Ai(t, x, y,w)

∥∥ exp

( t∫

0

Hα
k

(
p(v, x,w)

)
dv

)]

,

each Ai(t, x, y,w) being a linear combination of products of End(
∧

x(M))-valued iterated
Itô or Riemann integrals. Using Hölder’s inequality (see for instance [9, Exercise 7.2.15]
for precise constants), (2.7) follows. !

Set

q
α,η
k (t, x) = EµM

x

[

exp

( t∫

0

H
α,η
k

(
p(v)

)
dv

)]

.

As (2.7) makes clear, estimates on pα
k (t, x, y) will follow from estimates on q

α,η
k (t, x). If

the path is staying in Λr/2, then the quadratic term in α in the expression of H
α,η
k (v,p)

dominates. Thus the contribution of these paths to the integral should be exponentially
small. On the other hand, the contribution of the paths that are getting close to the critical
points requires a more careful analysis.

To carry out this heuristic argument, we first define the following sequences of stopping
times. Set σ1 = σ to be the first exit time from Λr/2, ζ = ζ1 the first exit time from Critr
and

ζn(p) = inf
{
t ! σn(p) | p(t) ∈ Λr

}
,

σn+1(p) = inf
{
t ! ζn(p) | p(t) ∈ Critr/2

}
. (2.8)

Using the continuity of paths, we have σn ↗ ∞, and therefore,

q
α,η
k (t, x) = lim

n→∞ EµM
x

[

exp

( t∧σn∫

0

H
α,η
k

(
p(v)

)
dv

)]

.

The following theorem shows that the expectation in the above expression is non-increasing
as n increases.
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Theorem 2.9. There exists C > 0 such that, for t > 0, e−Ct ! η ! 0, α > CeCt and n ! 1,
if x ∈ Λr ,

EµM
x

[

exp

( t∧σn+1∫

0

H
α,η
k

(
p(v)

)
dv

)]

" EµM
x

[

exp

( t∧σn∫

0

H
α,η
k

(
p(v)

)
dv

)]

, (2.10)

and if x ∈ Critr/2,

EµM
x

[

exp

( t∧ζn+1∫

0

H
α,η
k

(
p(v)

)
dv

)

,Γ

]

" EµM
x

[

exp

( t∧ζn∫

0

H
α,η
k

(
p(v)

)
dv

)

,Γ

]

, (2.11)

for Γ ∈ Fζ = {Γ ; Γ ∩ {ζ < t} ∈ Ft for any t > 0} where Ft is the sigma-algebra gener-
ated by {p # [0, t], p ∈ P(M)}.

Before proving these, we will show how Theorem 2.1 follows from them.

Proof of Theorem 2.1. There is a constant c1 > 0 so that |gradx h| ! 4c1 dist(x,Crit) for
all x ∈ M . On the other hand, if p(0) ∈ Λr/2, then

H
α,η
k

(
p(v)

)
" −2c2

1r
2α2 + c2α " −c2

1r
2α2

for 0 " v " σ (p) and α ! c2

r2c2
1

, 0 < η " 1, (2.12)

with c2 a constant depending only on the bounds of the Hessian and the Laplacian of h

on M . Hence, by (2.8) and (2.10),

q
α,η
k (t, x) " EµM

x

[

exp

( t∧σ (p)∫

0

H
α,η
k

(
p(v)

)
dv

)]

" EµM
x

[
exp

(
−r2c2

1α
2(t ∧ σ )

)]
.

Theorem 2.1 follows from this, (1.15) and (2.7). !

Now we return to

Proof of Theorem 2.9. We prove only (2.10), since the proof of (2.11) is similar.

Step 1. Here we show that

EµM
x

[

exp

( t∧σn+1(p)∫

0

H
α,η
k

(
p(v)

)
dv

)]

" EµM
x

[

exp

( t∧ζn(p)∫

0

H
α,η
k

(
p(v)

)
dv

)]

. (#)
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To see this, first apply the Markov property to justify that

EµM
x

[

exp

( t∧σn+1(p)∫

0

H
α,η
k

(
p(v)

)
dv

)]

=
∫ (∫

exp

( σ (ψ)∧(t−t∧ζn(p))∫

0

H
α,η
k

(
ψ(v)

)
dv

)

µM
p(ζn)(dψ)

)

× exp

( t∧ζn(p)∫

0

H
α,η
k

(
p(v)

)
dv

)

µM
x (dp).

Now we remark that the path ψ starts at p(ζn) and runs till σ (ψ) ∧ (t − t ∧ ζn(p)), thus it
stays in Λr/2. By (2.12) we get that H

α,η
k (ψ(v)) " 0 for 0 " v " σ (ψ) ∧ (t − t ∧ ζn(p))

and α ! c2
r2c2

1
, 0 < η " 1. This shows that the inside integral in the double integral is less

than 1 and so (#) follows.

Step 2. Now we show that

EµM
x

[

exp

( t∧ζn(p)∫

0

H
α,η
k

(
p(v)

)
dv

)]

" EµM
x

[

exp

( t∧σn(p)∫

0

H
α,η
k

(
p(v)

)
dv

)]

. (##)

To this end, use the Markov property to justify that

EµM
x

[

exp

( t∧ζn∫

0

H
α,η
k

(
p(v)

)
dv

)]

=
∫ (∫

exp

( ζ(ψ)∧(t−t∧σn(p))∫

0

H
α,η
k

(
ψ(v)

)
dv

)

µM
p(σn)(dψ)

)

× exp

( t∧σn(p)∫

0

H
α,η
k

(
p(v)

)
dv

)

µM
x (dp). (∗)

Notice now that the point p(σn) is on one of the spheres {S(c, r/2); c ∈ Crit}. Also notice
that each of the balls B(c, r) is just an Euclidean ball with the corresponding Euclidean
metric on it and H

α,η
k (ψ(v)) = ((1 + η)αd − (1 + η)α2|ψ(v)|2)/2 if ψ(v) ∈ B(c, r). Let’s

fix a critical point c ∈ Crit. Because the inside integral in (∗) runs up to the exit time from
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the ball, the translation invariance of Brownian motion in the Euclidean space allows us to
take c = 0. Now define the function uα

η : [0,∞) × B(0, r) → R

uα
η (s, y) =

∫
exp

(
1
2

ζ(ψ)∧s∫

0

(1 + η)αd − (1 + η)α2∣∣y + ψ(v)
∣∣2

dv

)

Wd(dψ). (2.13)

At this stage, what we need is the following estimate, which will be proved in the next
section.

Theorem 2.14. There exists C > 0 such that for any t > 0,

sup
s∈[0,t], r/2!|y|!r

uα
η (s, y) " 1 for α ! CeCt , e−Ct ! η ! 0.

Clearly Theorem 2.14 is all that we need to complete the proof of (##) and consequently
of (2.11). !

2.2. The proof of Theorem 2.14

The following is a standard result in stochastic analysis.

Proposition 2.15. uα
η is the solution u = uα

η to the initial-boundary problem on [0,∞) ×
B(0, r)






∂su(s, x) = 1
2&u(s, x) + 1

2 ((1 + η)αd − (1 + η)α2|x|2)u(s, x),

u(0, x) = 1 if x ∈ B(0, r),

u(s, y) = 1 if s > 0, y ∈ ∂B(0, r).

(2.16)

Next we want to get estimates on the solution to Eq. (2.16). We will do this by construct-
ing a supersolution. The bound of the solution in terms of a supersolution is contained in
the following result, which is an extension of the classical comparison for the heat equa-
tion.

Proposition 2.17. Let V ∈ C(B(0, r)) be a continuous function which is bounded above,
A ⊂ B(0, r) a closed set, and two functions

u ∈ C1,2((0, t] × B(0, r)
)
∩ C

((
[0, t] × B(0, r)

)
∪

(
(0, t] × ∂B(0, r)

))
,

v ∈ C1,2((0, t] ×
(
B(0, r) \ A

))
∩ C

((
[0, t] × B(0, r)

)
∪

(
(0, t] × ∂B(0, r)

))
,

be given. Assume that
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(1) for any a ∈ A there exists a unit vector wa such that for any s ∈ (0, t], the function
σ → κ(σ ) = v(s, a + σwa) defined around 0 has left and right derivatives and

κ ′
l (0) > κ ′

r (0); (∗)

(2) on (0, t] × B(0, r) \ A,

∂su = 1
2
&u + V u, ∂sv ! 1

2
&v + V v; (∗∗)

(3) for any x ∈ B(0, r) and (s, y) ∈ (0, t] × ∂B(0, r)

u(0, x) " v(0, x), u(s, y) " v(s, y). (∗∗∗)

Then, u " v on [0, t] × B(0, r).

Proof. By taking the difference v − u, we may assume u = 0. After taking v̄(s, x) =
eCsv(s, x) with C > supx∈B(0,r) V (x), we may also assume, without loss of generality,
that supx∈B(0,r) V (x) < 0. Now we prove that v ! 0 on [0, t] × B(0, r − ε) for small ε.
The idea is the same as the proof of classical minimum principle given in [3, Theorem 9,
Chapter 7].

Replacing v(s, x) by v(s, x) + δs, δ > 0, we may assume that

∂sv(s, x) >
1
2
&v(s, x) + V (x)v(s, x) for all (s, x) ∈ [0, t] × B(0, r) \ A. (#)

For ε > 0, choose a point (sε, xε) to be a minimum point of v on the set [0, t]×B(0, r − ε).
We claim that

v(sε, xε) ! min
([0,t]×∂B(0,r−ε))∪(0×B(0,r−ε))

(v ∧ 0). (##)

If this were not the case, then from (##), v(sε, xε) < 0 and we would be in one of the
following three cases:

(1) (sε, xε) ∈ (0, t) × B(0, r − ε) \ A. In this case, ∂sv(sε, xε) = 0 and &v(sε, xε) ! 0
which contradicts (#).

(2) (sε, xε) ∈ {t}×B(0, r −ε)\A. We have that ∂sv(sε, xε) " 0 and &v(sε, xε) ! 0, again
contradicts (#).

(3) If xε ∈ A ∩ B(0, r − ε) then certainly the point (sε, xε) cannot be a local minimum
because, if it were, then the function κ associated with (sε, xε) would have a local
minimum at 0 and then

κ ′
r ! 0 ! κ ′

l

in contradiction with the assumption made in (∗∗∗).
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To end the proof, we let ε tend to 0 in (##) to get that v ! 0 in [0, t] × B(0, r). !

We are now prepared to begin the proof of Theorem 2.14 which will be done in two
separate lemmas. In order to simplify the notation, remark that, by rescaling, it suffices to
deal with the case r = 1. Also, for the following two lemmas we will replace α by α

√
1 + η

and will take ε = √
1 + η − 1.

Lemma 2.18. Let ū = ūα
ε be the solution in (0,∞) × B(0,1) to






∂s ū(s, x) = 1
2&ū(s, x) + 1

2 (d(1 + ε)α − α2|x|2)ū(s, x),

ū(0, x) = 1 − exp
( (α−73d)(|x|2−1)

2

)
for |x| < 1,

ū(s, y) = 0 for s > 0, |y| = 1.

(2.19)

Then, for any t > 0, 1 ∧ 1
4dt ! ε ! 0, and α ! 156d ,

sup
s∈[0,t]

ūα
ε (s, x) " 1 − exp

(
(α − 73d)(|x|2 − 1)

2

)
for 1/2 " |x| " 1. (2.20)

Proof. For simplicity of calculations we set β = α − 73d . Consider the following func-
tions:

k(x)=1 − exp
(

β(|x|2 − 1)

2

)
and w(s, x)=

(
2eεαs

1 + e−2αs

)d/2

exp
(

−α tanhαs

2
|x|2

)
.

A simple computation shows that w is the solution on [0,∞) × Rd to the equation

∂sw(s, x) = 1
2
&w(s, x) + 1

2

(
d(1 + ε)α − α2|x|2

)
w(s, x), (∗)

with the initial condition w(0, x) = 1.
Let tα be the unique solution of tanhαt = d+β

2α . The idea is to show that for the time
interval [0, tα], ū is bounded above by kw and for the time interval [tα, t], ū is bounded
above by w itself.

Claim 1. For s ∈ [0, tα] and x ∈ B(0,1)

ū(s, x) " k(x)w(s, x). (i)

Proof. We check that the right-hand side of (i) is a supersolution on [0, tα]×B(0,1). This
comes down to checking

∂s(kw)(s, x) ! 1
2
&(kw)(s, x) + 1

2

(
d(1 + ε)α − α2|x|2

)
k(x)w(s, x)
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which, because of (∗), becomes

(&k)(x)w(s, x) + 2
〈
∇k(x),∇w(s, x)

〉
" 0 or |x|2

(
2α tanh(αs) − β

)
" d,

which is true for |x| " 1 and 0 " s " tα . Since both ū and kw have the same initial-
boundary values, the claim follows by a simple application of the classical maximum
principle. !

Claim 2. For s ∈ [tα, t] and x ∈ B(0,1) we have

ū(s, x) " w(s, x). (ii)

Proof. Because w satisfies (∗) and on the parabolic boundary it dominates ū, this is again
a simple application of the classical maximum principle. !

With these two claims at hand, we now check (2.20).

Case (s ∈ [0, tα]). By Claim 1, we need to verify that for 1/2 " |x| " 1, k(x)w(s, x) "
k(x) or equivalently, w(s, x) " 1. In view of the expression for w, what we need to check
is

(
2eεαs

1 + e−2αs

)d/2

exp
(

−α tanh(αs)

8

)
" 1 for s ∈ [0, tα]. (∗∗)

Because s ∈ [0, tα] and tanh(αtα) = d+β
2α , we know tanh(αs) " 1

2 . We claim that for 1 !
ε ! 0 and α ! 10d , (∗∗) is true. To see this, take σ = tanh(αs). Then e−2αs = 1−σ

1+σ and the
expression on the left-hand side in (∗∗) is

7(σ ) = (1 + σ )d(ε+2)/4

(1 − σ )dε/4 e−ασ/8.

Now,

7′(σ ) =
(

−α

8
+ d(ε + 2)

4(1 + σ )
+ dε

4(1 − σ )

)
7(σ )

and for σ ∈ [0, 1
2 ] this is negative for 1 ! ε ! 0 and α ! 10d . Therefore 7(σ ) " 7(0) = 1

which proves (∗∗).

Case (s ∈ [tα, t]). Claim 2 says ū " w. At the same time, for |x| ∈ [1/2,1], 1
4dt ! ε ! 0,

and α ! 156d

w(s, x) "
(

2eεαs

1 + e−2αs

)d/2

exp
(

−α tanhαs

8

)

" 2d/2 exp
(

dαεt

2
− d + β

4

)
" exp

(
−α − 148d

8

)
" e−1,
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and further,

e−1 < 1 − e−1 " 1 − e−3β/8 " k(x),

which implies ū(s, x) " k(x) for s ∈ [tα, t]. !

Lemma 2.21. Let u = uα
ε be the solution in (0,∞) × B(0,1) to






∂su(s, x) = 1
2&u(s, x) + 1

2 (d(1 + ε)α − α2|x|2)u(s, x),

u(0, x) = exp
( (α−73d)(|x|2−1)

2

)
for |x| < 1,

u(s, y) = 1 for s > 0, |y| = 1.

(2.22)

Then, for any t > 0, e−72dt ! ε ! 0 and α ! 190de72td ,

sup
s∈[0,t]

uα
ε (s, x) " exp

(
(α − 73d)(|x|2 − 1)

2

)
, for 1/2 " |x| " 1, (2.23)

and

sup
s∈[0,t]

uα
ε (s, x) " exp

(
−α|x|2

2
− α

2

)
, for 0 " |x| " 1/2. (2.24)

Proof. The strategy for proving this lemma is to make use of Corollary 2.17 and to con-
struct the supersolution on subregions of the ball B(0,1).

To simplify the writing, we set β = α − 73d . Take δ > 0 a small number and the set A

in Corollary 2.17 to be {x ∈ B(0,1), |x| = 1/2} ∪ {x ∈ B(0,1), |x| = 1/6}.

Region 1 ({x: 1/2 " |x| " 1}). In this region we take

v1(s, x) = exp
(

(β − 2δ)(|x|2 − 1)

2

)
.

(1) Checking ∂sv1(s, x) ! 1
2&v1(s, x)+ 1

2 (d(1 + ε)α −α2|x|2)v1(s, x) is equivalent to
checking

(α − β + 2δ)(α + β − 2δ)|x|2 ! d
(
(1 + ε)α + β − 2δ

)
for 1/2 " |x| " 1.

This is true for any 1/2 " |x| " 1 iff

1
4

! d(2 + ε)α − d(73d + 2δ)

2(73d + 2δ)α − (73d + 2δ)2 ,

which is certainly the case for 1 > δ > 0, 1 ! ε > 0, and α ! 40d .
(2) The initial-boundary condition is satisfied for s = 0, 1/2 " |x| " 1 and also for any

s > 0 and |x| = 1.
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Region 2 ({x: 1/6 " |x| " 1/2}). In this region we take

v2(s, x) = exp
(

(β − δ)|x|
(

|x| − 1
2

))
exp

(
−3(β − 2δ)

8

)
.

(1) Checking ∂sv2(s, x) ! 1
2&v2(s, x)+ 1

2 (d(1 + ε)α −α2|x|2)v2(s, x) is equivalent to

0 ! (β − δ)

(
2d − (d − 1)

2|x|

)
+ (β − δ)2

(
2|x| − 1

2

)2

+ dα(1 + ε) − α2|x|2

which will be fulfilled if

0 ! 8d(β − δ) + (β − δ)2(4|x| − 1
)2 + 4dα(1 + ε) − 4α2|x|2 for 1/6 " |x| " 1/2.

Observe that the right-hand side of this is quadratic in |x| with dominant coefficient 16(β −
δ)2 − 4α2. Hence, for α ! 148d , this coefficient is positive and so it suffices to check that
the expression is less than 0 for |x| = 1/2 and |x| = 1/6. This comes down to verifying the
following inequalities:

• For |x| = 1/2: 0 ! 8d(β − δ) + (β − δ)2 + 4dα(1 + ε) − α2 which is equivalent to

1
4

! d(3 + ε)α − d(146d + 2δ)

2(73d + δ)α − (73d + δ)2 .

This is true for 1 ! δ > 0, 1 ! ε ! 0 and α ! 148d .
• For |x| = 1/6: 0 ! 72d(β − δ) + (β − δ)2 + 36dα(1 + ε) − α2 is equivalent to

1
36

! d(3 + ε)α − d(146d + 2δ)

2(73d + δ)α − (73d + δ)2

which is again true for 1 ! δ > 0, 1 ! ε ! 0 and α ! 148d .

(2) The boundary condition reduces here to checking that

v2(0, x) ! exp
(

β(|x|2 − 1)

2

)
for 1/6 " |x| " 1/2, (∗)

which comes down to

4(β − δ)|x|
(
2|x| − 1

)
− 3(β − 2δ) ! 4β

(
|x|2 − 1

)
, or

β
(
2|x| − 1

)2 ! 4δ
(
|x|

(
2|x| − 1

)
− 1/2

)
,

and is certainly satisfied for any α ! 73d , δ ! 0, 0 " |x| " 1/2.
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(3) We need to check the conditions required in Proposition 2.17. We start by pointing
out that v2(s, x) = v1(s, x) for any s ! 0 and x with |x| = 1/2. For a with |a| = 1/2, we
choose wa = a

|a| and

κ(σ ) =
{

v1(s, a + σwa) if σ ! 0,

v2(s, a + σwa) if σ < 0.

Then

κ ′
l (0) =

〈
∇v2(s, a),wa

〉
= (1/2)(β − δ)v2(s, a),

κ ′
r (0) =

〈
∇v1(s, a),wa

〉
= (1/2)(β − 2δ)v1(s, a)

which shows that κ ′
l (0) > κ ′

r (0).

Region 3 ({x: 0 " |x| " 1/6}). In this region we take the function

v3(s, x) = exp
(

α

2

(
1 − e−72ds

)( 1
36

− |x|2
))

v2(s,1/6).

(1) Checking ∂sv3(s, x) ! 1
2&v3(s, x)+ 1

2 (d(1 + ε)α −α2|x|2)v3(s, x) is equivalent to

de−72ds − 72d|x|2e−72ds ! dε − 2α|x|2e−72ds + α|x|2e−144ds .

If e−72dt ! ε, the above inequality is satisfied if the following is true:

α
(
2 − e−72ds

)
− 72d ! 0 for all 0 " s " t,

which is indeed the case if α ! 73d .
(2) The initial-boundary comparison in this case is

v3(0, x) ! exp
(

β(|x|2 − 1)

2

)
for 0 " |x| " 1/6,

and is fulfilled because (cf. (∗))

v3(0, x) = v2(0,1/6) ! exp
(

β( 1
36 − 1)

2

)
! exp

(
β(|x|2 − 1)

2

)
.

(3) We now verify the conditions of Proposition 2.17. Observe that v3(s, x) = v2(s, x)

for s ∈ [0, t] and x with |x| = 1/6. Now for a given a with |a| = 1/6 we choose wa = a
|a|

and the function

κ(σ ) =
{

v2(s, a + σwa) if σ ! 0,

v3(s, a + σwa) if σ < 0.
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Then

κ ′
l (0) =

〈
∇v3(s, a),wa

〉
= −(1/6)α

(
1 − e−72ds

)
v2(s, a),

κ ′
r (0) =

〈
∇v2(s, a),wa

〉
= −(1/6)(β − δ)v2(s, a).

Thus κ ′
l (0) > κ ′

r (0) iff α(1 − e−72ds) < β − δ for all s ∈ [0, t]. This last one is true if
α > (1 + 73d)e72ds for s ∈ [0, t], which is obviously the case if α ! 74de72dt .

Now define

v(s, x) =






v1(s, x) if 1/2 " |x| " 1,

v2(s, x) if 1/6 " |x| " 1/2,

v3(s, x) if |x| " 1/6.

Then v satisfies all the requirements in Proposition 2.17, and this gives an upper bound
on u. Because this is true for all small δ > 0, we finally get for 0 " s " t

u(s, x) "






exp
(β(|x|2−1)

2

)
if 1/2 " |x| " 1,

exp
(β

8 (8|x|2 − 8|x| − 3)
)

if 1/6 " |x| " 1/2,

exp
(

α
72 (1 − e−72ds)(1 − 36|x|2) − 37β

72

)
if 0 " |x| " 1/6.

From this, (2.23) and (2.24) follow easily. !

2.3. Near the critical set

In this section we analyze the heat kernel pα
k (t, x, x) for x close to the critical set. We

show here that the heat kernel is exponentially close to the heat kernel of an harmonic
oscillator type operator on Rd described in the introduction. Since the analysis is based
on the same ideas as in the away case, we will only point out the basic steps, leaving the
details to the reader.

Using integration by parts on the path space (see Corollary B.26 and Theorem B.19 for
details), we can write

pα
k (t, x, y) = EWd

[
Φα(t, x, y,w)

]
, (2.25)

where Φα(t, x, y, ·) is Hom(
∧

y(M),
∧

x(M))-valued Wiener functional with the prop-
erty that there exist a measurable map (t,w) ∈ [0,∞) × P(Rd) → Rα

x,y(t,w) ∈ R and a
polynomial P(t,α) so that with Hα

k given by (2.4),

∥∥Φα(t, x, y,w)
∥∥

H.S
" Rα

x,y(t,w) exp

( t∫

0

Hα
k

(
p(v, x,w)

)
dv

)

and

∥∥Rα
x,y(t,w)

∥∥
Lp(Wd )

" pdP (t,α)

td/2 for all p ! 1, t > 0, x, y ∈ M. (2.26)
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Moreover, if ζΓ (w) = inf{t > 0: p(t, x,w) ∈ Γ }, x ∈ Γ and Γ ⊂ M an open set, then
the map Φα(t, x, y, ·) on {ζΓ ! t} depends only on the curvature, its derivatives and h

inside Γ .
We now fix c ∈ Crit, take ζ to be the first exit time from B(c,2r), and set

I ext
x,y(t,α) = EWd

[
Φα(t, x, y,w), ζ

(
p(·, x,w)

)
< t

]
,

I int
x,y(t,α) = EWd

[
Φα(t, x, y,w), ζ

(
p(·, x,w)

)
! t

]
.

The next result describes the behavior of I ext
x,y(t,α).

Theorem 2.27. There exist constants C1,C2,N > 0 so that for t > 0 and α ! C1e
C1t ,

I ext
x,y(t,α) " t−d/2αN exp

(
−C2α − α|x|2

2

)
for all x ∈ B(c, r), y ∈ M. (2.28)

Proof. We follow the same route as we did in proving Theorem 2.1. First, from (2.26),
a simple application of Hölder’s inequality shows that for another polynomial P(t,α) and
0 < η < 1,

I ext
x,y(t,α) " P(t,α)

ηd td/2

{

EµM
x

[

exp

( t∫

0

H
α,η
k

(
p(v)

)
dv

)

, ζ(p) < t

]}1/(1+η)

,

where H
α,η
k is defined by (2.6). By (2.11),

EµM
x

[

exp

( t∫

0

H
α,η
k

(
p(v)

)
dv

)

, ζ(p) < t

]

" u(t, x) for any x ∈ B(c, r),

where

u(s, x) = EµM
x

[

exp

( ζ(p)∫

0

H
α,η
k

(
p(v)

)
dv

)

, ζ(p) < s

]

.

Using a coordinate chart to identify B(c,2r) with the Euclidean ball B(0,2r), we have

H
α,η
k

(
p(v)

)
= (1 + η)αd − (1 + η)α2∣∣p(v)

∣∣2 for v " ζ(p),

and u is the solution to the initial-boundary problem in (0,∞) × B(0,2r):





∂su(s, x) = 1
2&u(s, x) + 1

2 (1 + η)(αd − α2|x|2)u(s, x),

u(0, x) = 0 for x ∈ B(0,2r),

u(s, y) = 1 for s > 0, y ∈ ∂B(0,2r).

Rescaling and using (2.24), one gets (2.28). !
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We now turn to the integral I int
x,y(t,α), with x ∈ B(c, r). Using a coordinate chart near c,

we can identify B(c,2r) with the ball B(0,2r) in Rd and the metric with the Euclidean
metric on Rd . Define hc : Rd → R by

hc(x) = −1
2

ind(c)∑

j=1

x2
j + 1

2

d∑

k=ind(c)+1

x2
k .

Notice that the function h on M coincides with hc on B(c,2r). The main point here is the
fact that the expression for I int

x,y(t,α) depends only on the curvature, its derivatives and the
function h inside the ball B(c,2r). Now, we take the starting manifold to be Rd , the Morse
function hc , the operator !α

c on
∧

(Rd) given by

!α
c = −& + α2|x|2 − α

(
d − 2 ind(c)

)
+ 2D∗ hesshc,

and denote its heat kernel by p̄α
c,k(t, x, y). In estimating the heat kernel on the compact

manifold M we needed two important ingredients. One was the boundedness of the curva-
ture to justify (2.3), and the other was the exit time estimates (1.15) used in the proof of
Theorem 2.1. Both these key ingredients are available if we replace the manifold M by Rd .
Indeed, the curvature is 0 and the estimates on the exit time in (1.15) are valid. Running
the same argument for the heat kernel p̄α

c,k(t, x, y) we see that the results in Theorems 2.1
and 2.27 hold true. Moreover, if x, y ∈ B(0, r), the integral Ī int

x,y(t,α) corresponding to
p̄α

c,k(t, x, y) is exactly I int
x,y(t,α). Consequently, we have

Theorem 2.29. There exist C1, C2 > 0 such that for t > 0, α > C2e
C2t ,

∥∥pα
k (t, x, y) − p̄α

c,k(t, x, y)
∥∥ " t−d/2 exp

(
−C1α − α|x|2

2

)
for x, y ∈ B(c, r). (2.30)

Therefore, (cf. (1.2) and (2.1)) there are K1, K2 > 0, so that for t > 0, α ! K2e
K2t ,

∣∣∣∣Q
α
k (t) −

∑

c∈Crit

∫

B(c,r)

Tr p̄α
c,k(t, x, x) dx

∣∣∣∣ " K2t
−d/2(exp

(
−K1tα

2) + exp(−K1α)
)
.

2.4. The proof of the non-degenerate Morse inequalities

We are now ready to give the proof of the Morse inequalities.
Because

∧k(
Rd

)
=

⊕

k1+k2=k
0!k1!d−ind(c),0!k2!ind(c)

∧k1(Rd−ind(c)
)
∧

∧k2(Rind(c)
)
,
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and the Hessians of hc is diagonal, the representation in (1.8) yields

Tr p̄α
c,k(t, x, x)

=
∑

k1+k2=k
0!k1!d−ind(c)

0!k2!ind(c)

etα(−k1+k2−ind(c))EWd

[

exp

(

−α2

2

t∫

0

∣∣x + ϕ(σ )
∣∣2

dσ

)

δ
(
ϕ(t)

)
]

,

where δ is the delta function at 0. The integral above can be identified with the heat kernel
of the operator 1

2&− α2

2 |x|2 on L2(Rd), which, by Mehler’s formula, makes the expression
above equal to

∑

k1+k2=k
0!k1!d−ind(c)

0!k2!ind(c)

(
α

π(1 − e−2tα)

)d/2

e−α tanh(tα/2)|x|2+tα(−k1+k2−ind(c)).

Taking the integral over B(0, r), and changing x → 1√
α tanh(tα/2)

x, we get that

∫

B(0,r)

Tr p̄α
c,k(t, x, x) dx =

∑

k1+k2=k
0!k1!d−ind(c)

0!k2!ind(c)

exp
(
−αtk1 − αt

(
ind(c) − k2

))
A(α)

where

A(α) =
(

1
π(1 − e−tα)2

)d/2 ∫

B(0,r
√

α tanh(tα/2))

e−|x|2 dx.

Because limα→∞ A(α) = 1, the integral above tends either to 0 or 1. It tends to 1 only in
the case k1 = 0 and k2 = ind(c) which is equivalent to k = ind(c). Taking the sum over all
critical points we arrive at the following theorem.

Theorem 2.31. For t > 0, limα→∞ Qα
k (t) = mk .

From this and Theorem 1.3 we get

Theorem 2.32 (Non-degenerate Morse inequalities). For 0 " k " d ,

mk − mk−1 + · · · + (−1)km0 ! bk − bk−1 + · · · + (−1)kb0, (2.33)

with equality for k = d .
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3. Degenerate Morse inequalities

Let h be a Bott–Morse function on the d-dimensional compact manifold M with criti-
cal connected submanifolds {Ni : 1 " i " l} such that Crit = ⋃l

i=1 Ni . By the degenerate
Morse lemma, for each i = 1, . . . , l, there are νi -dimensional embedded vector bundles Bi

in M endowed with a metric on fibers, ν±
i -dimensional vector sub-bundles B±

i ⊂ Bi so that
B+

i and B−
i are orthogonal to each other, and open sets Vi ⊂ M , such that Ni ⊂ Vi ⊂ Bi

and

h(zi) = h # Ni + 1
2

(∣∣y+
i

∣∣2 −
∣∣y−

i

∣∣2) for zi ∈ Vi .

For each i = 1, . . . , l, and z ∈ Bi , Tz(Bi) has a natural vertical subspace T V
z (Bi), which

is identified with the fiber (Bi)x , where x is the projection of z onto Ni . Naturally, one can
move the metric from (Bi)x to T V

z (Bi). We will define also a horizontal subspace T H
z (Bi)

which is constructed by a standard procedure using a vertical connection (i.e., a connection
on sections of Bi which is compatible with the metric). Once this is done, we choose a
metric on Ni and lift it to the horizontal subspaces T H(Bi), therefore, by declaring the
vertical and the horizontal spaces orthogonal, we get a well-defined metric on T (Bi).

Given the metric on T (Bi), the Levi-Civita connection is a natural connection to work
with. Unfortunately the parallel transport with respect to this connection along curves in
Bi does not preserve the horizontal and vertical subspaces. For this reason, we will define
the Bismut connection, whose parallel transport does preserve the horizontal and vertical
components and is more useful for fiberwise computations.

We choose a metric on T (M), so that on each T (Vi ) it is the metric on T (Bi). For r > 0,
set Critr = {x ∈ M, dist(x,Crit) < r} and Λr = {x ∈ M, dist(x,Crit) > r}.

In Section 3.2 we show that the Brownian motion on Bi has a representation as the
parallel transport of the vertical Brownian motion along the Brownian paths on Ni . In
Section 3.4 we discuss the heat kernel estimates, and give a comparison between the heat
kernel of the operators !α and another operator computed in terms of the Bismut connec-
tion. Section 3.5 is dedicated to proving the Morse inequalities in the degenerate case.

3.1. Bismut’s connection on a vector bundle

In this section we will construct and analyze Bismut’s connection, as defined in [1], on
a vector bundle over a Riemannian manifold.

Let B be a ν-dimensional vector bundle over a Riemannian manifold N of dimension
m with the projection map ρ :B → N .

Convention. We will use z to denote a generic point on B , x a generic point on N , and y

a generic point in a fiber of B . Thus, the point z will be identified with its corresponding
coordinates (x, y), where x = ρ(z), and y its identification as a vector in the fiber Bx .

Assume that the bundle B has a smooth metric on fibers and a compatible connection
∇V :T (N)×Γ (N,B) → Γ (N,B), where Γ (N,B) is the set of sections in B . ∇V defines
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the notion of parallel transport τV of fibers along curves in N . Given a smooth curve
c : [0, a] → N and a point y ∈ Bc(0) we define its lift, c : [0, a] → B starting at y by the
prescription

c(t) =
(
c(t), τV

c"[0,t]y
)
.

Using this lift we define the lift of vectors in T (N) to vectors in T (B). For Xx ∈ Tx(N)

take a curve such that c(0) = x, ċ(0) = Xx and its lift c starting at y ∈ Bx . Then the lift of
Xx is defined to be

XH
z = ċ(0),

and is called the horizontal lift of Xx . In fact if we choose a local coordinate system
{xi : i = 1, . . . ,m} on U ⊂ N and {yj : j = 1, . . . ,ν} a trivialization of B over U and
determine 9

q
i,j by

∇V
( ∂

∂xi
)x

∂

∂yj
= 9

q
i,j (x)

∂

∂yq
, (3.1)

where we used Einstein’s summation convention, then

(
∂

∂xi

)H

z

=
(

∂

∂xi

)

x

− yj9
p
i,j (x)

∂

∂yp
. (3.2)

Denote by T H
z (B) the space of all horizontal lifts from Tx(N) to Tz(B) and by T V

z (B)

the space of vertical vectors at z in Tz(B), i.e., the set of vectors in Tz(B) tangent to the
fiber Bx . Then

Tz(B) = T H
z (B) ⊕ T V

z (B). (3.3)

For a vector X ∈ Tz(B), we use XH and XV to denote its horizontal and vertical com-
ponents and we will identify these vectors with vectors in Tx(N), respectively Bx . For a
vector X which is already in either (Bi)x or Tx(Ni) we will drop the superscript V or H
for their identifications with vertical or horizontal vectors.

Using the decomposition (3.3), we construct the metric on Tz(B) by lifting the metric
from Tx(N) to a metric on T H

z (B), the metric on the fiber Bx to one on T V
z (B), and

declaring the spaces T H
z (B) and T V

z (B) orthogonal to each other.
We describe Bismut’s connection by describing the associated parallel transport. For a

curve c : [0, a] → B and X0 ∈ Tc(0)(B), take c(t) = ρ(c(t)) and XH
0 , XV

0 the horizontal
and vertical components of X0. The parallel transport Xt of X0 along c is the vector
whose components XH

t , XV
t are obtained by parallel transport in N along c, respectively

by vertical parallel transport along c. We set τB
c"[0,t]X0 = Xt . We will use the notation

τB
c"[t,0] for the parallel transport along the curve c from c(t) to c(0).
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Definition 3.4 (Bismut’s connection on T (B)). For Xz ∈ Tz(B), a curve c such that
c(0) = z, ċ(0) = Xz, and Y a vector field along c, we define

∇B
Xz

Y = d

dt
τB

c"[t,0]Yc(t).

Proposition 3.5. If Y is a smooth vector field defined in a neighborhood of z, {(Fj )x : j =
1, . . . ,ν} is any basis in Bx , Y V

x = ∑ν
j=1 fj (Fj )x is the representation of the vector Y V

restricted to Bx , then,

∇B
Xz

Y = ∇H
XH

x
Y H + ∇V

XH
x
Y V + XV

z

(
Y V)

, (3.6)

where XV
z (Y V) = ∑ν

j=1 XV
z (fj )Fj . Moreover, ∇B is a covariant derivative which is com-

patible with the metric on T (B).

Proof. Using the definition of the parallel transport we have

τB
c"[t,0]Yc(t) = τH

c"[t,0]Y
H
c(t) + τV

c"[t,0]Y
V
c(t), (∗)

with c = ρ ◦ c. Fix a geodesic ball B(x, r) in N and an orthonormal basis (Ei)x , i =
1, . . . ,m in Tx(N). We identify the fibers of B over B(r, x) with the fiber Bx by using
parallel transport along geodesics radiating from x. In particular the basis (Fj )x is naturally
extended to a section Fj in the bundle B defined on B(x, r). Now we extend each (Ei)x
to a vector field Ei defined on B(r, x) by parallel transport with respect to the Levi-Civita
connection along geodesics starting from x. Notice that we can write Y = ∑m

i=1 giEi +∑ν
j=1 fjFj , for some functions gi :B(x, r) → R and fj :B(x, r)×Bx → R. Thus we can

write c(t) = (c(t),γ (t)), where γ is the curve in Bx with γ̇ (0) = [ċ(0)]V and

τB
c"[t,0]Yc(t) =

m∑

i=1

gi

(
c(t)

)
(Ei)c(t) +

ν∑

j=1

fj

(
c(t),γ (t)

)
(Fj )c(t).

From this, taking derivative with respect to t at 0, one gets (3.6). The compatibility with
the metric on B follows from (∗) and the fact that both horizontal and vertical parallel
transports preserve the length of vectors transported. !

Define the vertical curvature by RV(X,Y )Z = ∇V
X∇V

Y Z − ∇V
X∇V

Y Z − ∇V
[X,Y ]Z for

X,Y ∈ T (N) and Z ∈ Γ (N,B). Set RH for the curvature of the Levi-Civita connection
∇H on N .

Theorem 3.7.

(1) The torsion of the connection ∇B at z = (x, y) is given by

T B(X,Y ) = RV(
XH, Y H)

y for X,Y ∈ Tz(B), (3.8)

where y is interpreted as a vector in T V
z (B).
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(2) The curvature of ∇B is given by

RB(X,Y )Z = RH(
XH, Y H)

ZH + RV(
XH, Y H)

ZV for X,Y,Z ∈ Tz(B). (3.9)

(3) If N is compact and RLC is the curvature of the Levi-Civita connection ∇LC on B ,
then, there is a constant C ! 0 such that

∣∣RLC
z (X,Y )Z

∣∣
z
" C

(
1 + |y|2

)
|X|z|Y |z|Z|z for X,Y,Z ∈ Tz(B). (3.10)

Moreover, for each n ! 1, there is a constant Cn ! 0 so that for any X1, . . . ,Xn,X,Y,

Z ∈ Tz(B),

∣∣(∇LC
X1

. . .
(
∇LC

Xn−1

(
∇LC

Xn
RLC)

(X,Y )Z
)
. . .

)∣∣
z

" Cn

(
1 + |y|

)2+n|X1|z . . . |Xn−1|z|Xn|z|X|z|Y |z|Z|z. (3.11)

(4) The Laplacians (cf. Definition 1.4) on functions with respect to ∇B and ∇LC on B are
the same.

(5) If h :B → R is given by h(z) = |y|2, then its Hessian (cf. Definition A.2) with respect
to either connection ∇B or ∇LC is

(hessz h)Xz = 2XV
z for Xz ∈ Tz(B). (3.12)

On forms (cf. Definition 1.4)

(
D∗ hessz h

)
ωH

z ∧ ωV
z = 2 deg

(
ωV

z

)
ωH

z ∧ ωV
z ((3.12)′)

for any horizontal form ωH
z and any vertical form ωV

z , where deg stands for the degree
of the form.

Proof. (1) and (2). It suffices to prove these for vertical and horizontal vector fields. For
this purpose, take local coordinates in U ⊂ N , a trivialization of the vector bundle over U

and the vectors ∂
∂yj

, j = 1, . . . ,ν, and ( ∂
∂xi

)H, i = 1, . . . ,m, given by (3.2). The rest is a
straightforward computation and is left to the reader.

(3) First we show that for any coordinate system on N and a corresponding trivialization
of B there is a constant CU such that

∣∣RLC
z (X,Y )Z

∣∣ " CU

(
1 + |y|2

)
|X|z|Y |z|Z|z for z ∈ ρ−1(U), X,Y,Z ∈ Tz(B).

Given a coordinate system on N , we take the vectors ( ∂
∂xi

)H
z , i = 1, . . . ,m, ∂

∂yj
, j =

1, . . . ,ν, as the basis vectors for the space Tz(B). To simplify the writing we will index
them as Zα , α = 1, . . . ,m + ν. Consider 9̄

γ
α,β , the Christoffel coefficients of the Levi-

Civita connection given by

∇LC
Zα

Zβ = 9̄
γ
αβZγ .



30 I. Popescu / Journal of Functional Analysis 235 (2006) 1–68

We study how these coefficients depend on y. For this purpose remember that

〈
∇LC

Zα
Zβ ,Zγ

〉
= 1

2

{
Zα〈Zβ ,Zγ 〉 + Zβ〈Zγ ,Zα〉 − Zγ 〈Zα,Zβ〉

+
〈
[Zα,Zβ ],Zγ

〉
−

〈
[Zβ ,Zγ ],Zα

〉
+

〈
[Zγ ,Zα],Zβ

〉}
,

and so

9̄δ
αβ = 1

2

{
Zαgβ,γ + Zβgγ ,α − Zγ gα,β

+
〈
[Zα,Zβ ],Zγ

〉
−

〈
[Zβ ,Zγ ],Zα

〉
+

〈
[Zγ ,Zα],Zβ

〉}
gγ δ,

where gαβ = 〈Zα,Zβ〉 and (gαβ)m+ν
α,β=1 is the inverse of the matrix (gαβ)m+ν

α,β=1. We look at
the dependence on y of each term in the above sum. In the first place, one has to notice that
by construction, gαβ does not depend on y, and is a smooth function of x, thus the same
is true for gαβ . Secondly, by (3.2), the vector field Zα is at most a first order polynomial
in y. Hence, if we write [Zα,Zβ ] = Al

αβZl , then, by, each coefficient Al
αβ depends linearly

on y. Hence, all 9̄δ
αβ are first degree polynomials in y. Now,

RLC(Zα,Zβ)Zγ

= ∇LC
Zα

∇LC
Zβ

Zγ − ∇LC
Zβ

∇LC
Zα

Zγ − ∇LC
[Zα,Zβ ]Zγ

= ∇LC
Zα

9̄m
βγ Zm − ∇LC

Zβ
9̄m

αγ Zm − Al
αβ∇LC

Zl
Zγ

= Zα

(
9̄m

βγ

)
Zm + 9̄m

βγ ∇LC
Zα

Zm − Zβ

(
9̄m

αγ

)
Zm − 9̄m

αγ ∇LC
Zβ

Zm − Al
αβ9̄δ

lγ Zδ

= Zα

(
9̄m

βγ

)
Zm + 9̄m

βγ 9̄δ
αmZδ − Zβ

(
9̄m

αγ

)
Zm − 9̄m

αγ 9̄δ
βmZδ − Al

αβ9̄δ
lγ Zδ, (∗)

which shows that 〈RLC(Zα,Zβ)Zγ ,Zδ〉 is a second order polynomial in y with smooth
coefficients in x. Hence, there exists a constant CU ! 0 such that,

∣∣〈RLC
z (Zα,Zβ)Zγ ,Zδ

〉∣∣ " CU

(
1 + |y|2

)
.

Since N is compact, this implies (3.10). To deal with the estimates on the derivatives, first
observe that again, by compactness, it suffices to do this locally. We do this when the Xi ’s
are Zα . To carry this out, we apply induction and to pass from step n to n+1 we take n+1
derivatives in (∗) and use the estimates from step n.

(4) On functions, we have &∇B
f = ∑d

j=1 EjEjf − (∇B
Ej

Ej )f , for any local ortho-
normal basis {Ej : j = 1, . . . , d} in T (B). Therefore, in order to prove that the Laplacians
are the same on functions, it suffices to check it for a particular choice of Ej . Take a
basis consisting of either vertical or horizontal vectors. For such a choice we have that
∇B

Ej
Ej = ∇LC

Ej
Ej , j = 1, . . . ,m + ν. Indeed, because of

〈(
∇B

X − ∇LC
X

)
Y,Z

〉
= 1

2

{〈
T B(X,Y ),Z

〉
−

〈
T B(Y,Z),X

〉
+

〈
T B(Z,X),Y

〉}
, (3.13)
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and (3.8), we get

〈(
∇B

Ej
− ∇LC

Ej

)
Ej ,Ek

〉
=

〈
T B(Ek,Ej ),Ej

〉
= 0 for k = 1, . . . ,m + ν.

(5) We start by computing the gradient of the function h(z) = |y|2 as

gradz h = 2y. (3.14)

If X is a horizontal vector field at z, then 〈gradz h,X〉 = 0. Indeed, if c is a curve on N

starting at x such that ċ(0) = ρ∗X, and c its lift starting at y, then

〈gradz h,X〉 = Xh = d

dt
h
(
c(t)

)∣∣∣∣
t=0

= d

dt

∣∣c(t)
∣∣2

∣∣∣∣
t=0

= 0

since c(t) is obtained by parallel transport and is of constant length in fibers. If X is a
vertical vector at z, then take its identification as a v ∈ Bx and consider the curve c(t) =
y + tv. Then,

〈gradz h,X〉 = Xh = d

dt
h
(
c(t)

)∣∣∣∣
t=0

= d

dt
|y + tv|2

∣∣∣∣
t=0

= 2〈y, v〉 = 2〈y,X〉,

hence (3.14). Returning to the Hessian, we have by definition,

〈(
hess∇B

h
)
X,Y

〉
=

〈
∇B

X gradh,Y
〉

and
〈(

hess∇LC
h
)
X,Y

〉
=

〈
∇LC

X gradh,Y
〉

and by (3.13), the difference between these is

1
2

〈
T B(X,Y ),gradh

〉
− 1

2

〈
T B(Y,gradh),X

〉
+ 1

2

〈
T B(gradh,X),Y

〉
.

Since gradh is vertical, the last two expressions are zero. Now 〈T B(X,Y ),gradh〉 =
〈RV(XH, Y H)y, y〉 which is 0 because of the skew-symmetry of RV. Moreover, by
∇V

XH
z
y = 0 and (3.6) we get

〈(
hess∇B

h
)
z
Xz,Yz

〉
=

〈
∇B

Xz
gradh,Yz

〉
= 2

〈
∇B

Xz
y,Yz

〉
= 2

〈
XV

z (y), Yz

〉
= 2

〈
XV

z , Yz

〉
.

The rest is straightforward. !

3.2. Frame bundle and Brownian motion

3.2.1. Orthonormal frame bundle
In this section we first discuss the orthonormal frame bundle over a complete Rie-

mannian manifold endowed with a compatible connection. We then specialize to the vector
bundle case and show how the Bismut connection is manifested there, in particular we
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prove Proposition 3.21, which is the key ingredient in the representation of the Brownian
motion given in 3.24.

Assume M is a d-dimensional complete Riemannian manifold endowed with a compat-
ible connection ∇ . The orthonormal frame bundle is given by

O(M) =
{
f =

(
x, e(x)

)
, e(x) = (e1, . . . , ed) orthonormal basis of Tx(M)

}
.

π :O(M) → M stands for the canonical projection given by π((x, e(x))) = x. Fixing an
orthonormal basis in Rd , we can naturally identify f with the isometry from Rd onto
Tπ(f )(M) sending the basis from Rd into the basis {ei : i = 1, . . . , d} in Tπ(f)(M). For
O ∈ O(d), we define RO :O(M) → O(M) by

(RO f)(ξ) = f(Oξ), f ∈O(M), ξ ∈ Rd .

For a in the Lie algebra o(d) of O(d), we define λ(a) ∈ TfO(M) by

λ(a)f = d

dt
Rexp(ta)f

∣∣∣∣
t=0

.

Set VfO(M) = {λ(a)f; a ∈ o(d)}, the vertical subspace of TO(M). This subspace is
canonically defined and is independent of any connection.

Given a compatible connection ∇ , we construct a complement of the vertical subspace
in TO(M). For the case of the Levi-Civita connection this is described in [8, Chapter 8].

Using the parallel transport with respect to ∇ , one can define the horizontal lift to
f ∈ π−1(c(a)) of the smooth curve t ∈ [a, b] → c(t) ∈ M to the smooth curve t ∈ [a, b] →
c(t) = (c(t), e(c(t))) ∈O(M) starting at f such that the frame e(c(t)) is obtained by paral-
lel transport of e(c(a)) along c # [0, t]. For a vector Xx ∈ Tx(M), take a curve c such that
c(0) = x, ċ(0) = Xx , c its lift to f ∈ π−1(x), and set HfXx = ċ(0). This is a well-defined
notion, in the sense that the lift of Xx depends only on Xx and not on the curve c. Now
define H∇

f O(M), the subspace of horizontal lifts at f. The following decomposition holds

TfO(M) = H∇
f O(M) ⊕ VfO(M).

We denote by XH and XV the horizontal and vertical components of the vector X given by
this decomposition.

The canonical vector field E∇(ξ)f is the horizontal lift to f of fξ . The ∇-Bochner Lapla-
cian is

&∇
b =

d∑

j=1

E∇(ej )
2,

for any orthonormal basis {ej : j = 1, . . . , d} in Rd . For f ∈ C2(M) we have

&∇f = &∇
b (f ◦ π). (3.15)
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Orthonormal frame sub-bundle. An interesting situation arises when we take the mani-
fold to be the bundle B with the Bismut connection ∇B constructed in Section 3.1. In this
case we define the sub-bundle Oh,v(B) of O(B) by

Oh,v(B) =
{
f =

(
z, e′(z), e′′(z)

)}
,

with e′(z) = (e′
1, . . . , e

′
m), an orthonormal basis of T H

z (B) and e′′(z) = (e′′
1 , . . . , e′′

ν ) or-
thonormal basis of T V

z (B). Recall that m is the dimension of the base space N and ν is
the dimension of the fibers of B . Taking orthonormal bases in Rm and Rν and the corre-
sponding natural orthonormal basis in Rd = Rm × Rν , one can interpret f ∈Oh,v(B) as an
isometry from Rd into Tz(B) which sends the orthonormal basis of Rm into an orthonormal
basis of T H

z (B) and the orthonormal basis of Rν into an orthonormal basis of T V
z (B).

In terms of principal bundles, the structure subgroup of Oh,v(B) is the subgroup
o(m) × o(ν) of o(d), and so the vertical subspace VfOh,v(B) is the subspace {λ(a)f; a ∈
o(m)×o(ν)}. Due to the fact that the parallel transport with respect to Bismut’s connection
preserves the horizontal and vertical subspaces T H(B) and T V(B), the horizontal subspace
H∇B

f Oh,v(B) is the same as the horizontal subspace H∇B

f O(B) at any f ∈ Oh,v(B). Thus,

TfOh,v(B) = H∇B

f O(B) ⊕ VfOh,v(B).

We denote XH, XV the horizontal and vertical components of the vector X given by this
decomposition.

The canonical vector field E∇(ξ) is given at f by the horizontal lift to f ∈Oh,v(B) of fξ .
The o(m) × o(ν)-valued canonical 1-form ω :TOh,v(B) → o(m) × o(ν) is given by the
prescription

ω(Xf) = a,

where a ∈ o(m)×o(ν) with λ(a)f = XV
f . Otherwise stated, this is completely characterized

by the relations

ω
(
λ(a)f

)
= a and ω

(
E∇(ξ)f

)
= 0 for a ∈ o(m) × o(ν), ξ ∈ Rm.

The Rd -valued canonical 1-form θ : TOh,v(B) → Rd is given by

θ(Xf) = f−1(π∗Xf).

We have for any vector X ∈ TfOh,v(B)

X = E∇(
θ(X)

)
f + λ

(
ω(X)

)
f. (3.16)

For X,Y ∈ TOh,v(B) the torsion form is defined by

T (X,Y) = XHθ
(
YH)

− YHθ
(
XH)

− θ
([

XH,YH])
(3.17)
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and the curvature form by

R(X,Y) = −ω
([

XH,YH])
. (3.18)

Note that these definitions depend only on the values of X,Y at f.
The relationship with the usual torsion and curvature tensors on B is the following. If

X,Y ∈ TfOh,v(B), and Z ∈ Tπ(f)(B), then

T B(π∗X,π∗Y) = f
(
T (X,Y)

)
(3.19)

where T B is the torsion of the connection ∇B,

RB(π∗X,π∗Y)Z = f
(
R(X,Y)f−1Z

)
(3.20)

where RB is the curvature of the connection ∇B. For a proof of these, see [4, Chapter 3,
Theorem 5.1].

Proposition 3.21. If ξ ∈ Rm, η ∈ Rν , then [E∇B
(ξ),E∇B

(η)] = 0.

Proof. Using (3.19) (3.20), (3.8) and (3.9), one gets that T (E∇B
(ξ),E∇B

(η)) = 0 and
R(E∇B

(ξ),E∇B
(η)) = 0. By (3.17), (3.18) and the fact that θ(EB(ξ)) = ξ , θ(EB(η)) = η,

one obtains

θ
([

E∇B
(ξ),E∇B

(η)
])

= −T
(
E∇B

(ξ),E∇B
(η)

)
= 0.

In the same way,

ω
([

E∇B
(ξ),E∇B

(η)
])

= −R
(
E∇B

(ξ),E∇B
(η)

)
= 0,

and the conclusion follows from (3.16). !

3.3. Parallel transport and Brownian motion

In this section we discuss parallel transport notions along Brownian paths. The first
case is for a complete Riemannian manifold with a compatible connection which has the
same Laplacian as the Levi-Civita connection. We specialize this to the case of a vector
bundle endowed with the Bismut connection and prove the representation of the Brownian
motion given in Proposition 3.24, as the parallel transport of the vertical motion along the
horizontal motion.

The general setup is the following. The manifold M is a complete Riemannian manifold
with the growth condition on the Ricci curvature of the Levi-Civita connection

〈
RicLC

x Xx,Xx

〉
! −C

(
1 + dist(x, o)2)|Xx |2 for Xx ∈ Tx(M), (3.22)
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where o is a fixed reference point and C > 0 is a constant. We choose a connection ∇ which
is compatible with the metric on M . Our main assumption about ∇ is that on functions, the
Laplacian &∇ is the same as the Laplacian &LC for the Levi-Civita connection.

When the connection ∇ is the Levi-Civita connection, in Section 1 we defined
w ∈ P(Rd) → p(·, f,w) ∈ P(O(M)), and its projection p(t, x,w) = πp(t, f,w), where
f ∈ π−1x. The distribution of w → p(·, x,w) is the Wiener measure on M and the parallel
transport along Brownian paths is given by

τp(·,x,w)"[0,t] = p(t, f,w)f−1.

Given the connection ∇ on M , we can define a map w ∈ P(Rd) → p∇(·, f,w) ∈
P(O(M)) so that for any piecewise smooth path w ∈ P(Rd),

ṗ∇(t, f,w) = E∇(
ẇ(t)

)
p∇ (t,f,w)

with p∇(0, f,w) = f. (3.23)

As in the Levi-Civita case, one can extend p∇(·, f,w) to almost any Wd path w ∈ P(Rd).
The only concern is the explosion.

We show that almost sure there no explosion. To this end, first define p∇(t, x,w) =
πp∇(t, f,w) if x = π(f). The distribution of the map w → p∇(·, f,w) is the solution to the
martingale problem of &∇

b starting at f. From (3.15), one deduces that the distribution of
the map w → p∇(·, x,w) is the solution to the martingale problem starting at x associated
to the operator &∇ . Since &∇ = &LC, it follows, from the uniqueness of the solution to
the martingale problem and the non-explosion of p(·, x,w), that the distribution of w →
p∇(·, x,w) is µM

x , hence, p∇(·, x,w) does not explode.
Therefore, p∇(t, f,w) is well defined for all t ! 0. We define the parallel transport along

the path p∇(·, x,w) by

τ∇
p∇ (·,x,w)"[0,t] = p∇(t, f,w)f−1.

Since the distribution of w → p∇(·, x,w) is µM
x , this shows that the parallel transport is

well defined along µM
x almost any path p ∈P(M).

For the case of a vector bundle B endowed with the Bismut connection ∇B, we point
out that for any f ∈ Oh,v(B), and any piecewise smooth w ∈ P(Rd), the uniqueness of
ordinary differential equations guarantees that p∇B

(t, f,w) lives in the sub-bundle Oh,v(B).
Hence, p∇B

(t, f,w) lives in Oh,v(B) for any f ∈ Oh,v(B), t ! 0 and Wd -almost any path
w ∈P(Rd).

For a given f ∈ Oh,v(B) and a piecewise smooth path w = (w′,w′′) ∈P(Rm) ×P(Rν),
where m is the dimension of the base manifold N and ν is the dimension of the fiber of B ,
we set

ph(·, f,w′) = p∇B(
·, f, (w′,0)

)
and pv(·, f,w′′) = p∇B(

·, f, (0,w′′)
)
.

Notice that ph(·, f,w′) is the solution to a differential equation involving only the canon-
ical vector fields E∇B

(ξ), ξ ∈ Rm and pv(·, f,w′′) is a solution to a differential equation
involving only the canonical vector fields E∇B

(η), η ∈ Rν .
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Now, invoking Proposition 3.21, and the non-explosion of p∇B
(·, f,w), one can prove

that ([8, Section 3.4.2] for a more detailed discussion)

ph(·, f,w′
n) → ph(·, f,w′) and pv(·, f,w′′

n) → ph(·, f,w′′)

and

p∇B(
t, f, (w′,w′′)

)
= ph(t,pv(t, f,w′′),w′) = pv(t,ph(t, f,w′),w′′).

If f ∈ π−1(z) ⊂ Oh,v(B), we set

p∇B
(·, z,w) = πp∇B

(·, f,w), ph(·, z,w′) = πph(·, f,w′),

pv(·, z,w′′) = πpv(·, f,w′′).

We say that p∇B
(t, z,w) is the Wiener process or the Brownian motion on B starting at z,

while ph(t, z,w′) and pv(t, z,w′′) are the horizontal and the vertical Brownian motions on
B starting at z.

Next we want to identify the horizontal and vertical motions. Given the horizontal
and vertical motions, we can define the parallel transport along them. For f ∈ π−1(z) ⊂
Oh,v(B), the natural choice is the following

τB
ph(·,z,w′)"[0,t] = ph(t, f,w′)f−1 and τB

pv(·,z,w′′)"[0,t] = pv(t, f,w′′)f−1.

As the name suggests, the horizontal Brownian motion ph(·, z,w′) should be the Brownian
motion on the base manifold N if z ∈ N . And this is indeed the case since for a piecewise
smooth w′ ∈ P(Rm),

ṗh(t, x,w′) = τB
ph(·,x,w′)"[0,t]fẇ

′(t) with ph(0, x,w′) = x,

ṗN(t, x,w′) = τpN(·,x,w′)"[0,t]fẇ′(t) with pN(0, x,w′) = x,

where pN(·, x,w′) is the corresponding map constructed for the manifold N and τ stands
for the parallel transport with respect to the Levi-Civita connection there. Because of the
definition of the parallel transport with respect to the Bismut connection and uniqueness
of the solution to ODE’s, it follows that ph(t, x,w′

n) = pN(t, x,w′
n) and ph(t, x,w′) =

pN(t, x,w′) for Wm-almost any path w′.
A similar argument works for the vertical direction. Namely, given a point z = (x, y),

identify the fiber Bx with Rν using f ∈ π−1(z) ⊂ Oh,v(B). Then, one can prove that
pv(t, z,w′′) = y + w′′ for Wν -almost any path w′′.

The next step is to elucidate what happens with the horizontal motion which does not
start at a point on the base manifold N . For this purpose, for a given vector XV ∈ Bx we
define the vertical parallel transport of XV along the Brownian motion on the base by

τV
pN(·,x,w′)"[0,t]X

V = τB
ph(·,x,w′)"[0,t]X

V.
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Notice that this is consistent with the definition for the case w′ is a piecewise smooth path.
At this point one can check that

ph(t, z,w′) = τV
pN(·,x,w′)"[0,t]y for z = (x, y),

where y is interpreted here as a vertical vector. This can be seen by first checking it for
piecewise smooth paths and, by approximation, for almost any path. This representation of
ph(t, z,w′) says that the horizontal Brownian paths starting at z are obtained by vertical
parallel transport of y along the Brownian paths on N .

We summarize in the following proposition.

Proposition 3.24. The distribution of w → p∇B
(·, z,w) is µB

z . Moreover, using f ∈
π−1(z) ⊂ Oh,v(B) to identify Bx with Rν , then we have

p∇B
(t, z,w) =

(
pN(·, x,w′), τV

pN(·,x,w′)"[0,t]
(
y + w′′(t)

))
.

3.4. Heat kernel estimates

In this section we turn to the analysis of the heat kernel of operator !α . In the non-
degenerate case, the main idea was to show that the heat kernel of !α is close to the heat
kernel of an harmonic oscillator operator. The situation here is complicated by the fact
that the geometry near the critical submanifolds is not flat as it was in the non-degenerate
case. Thus, the flat Euclidean space, where the harmonic oscillator was defined, must be
replaced here by the non-compact bundles Bi near each Ni .

Recall that

!α = −& + α2|gradh|2 − α&h + 2αD∗ hessh − D∗R, (3.25)

where R is the curvature of the Levi-Civita connection on M . The first step is to show that
the heat kernel pα

k (t, z1, z2) decays exponentially as α → ∞ when z1 or z2 is away from
the critical set.

Now on each
∧

(Bi) we define the operator

!α
i = −&B + α2|y|2 − α

(
ν+
i − ν−

i

)
+ 2αD∗ hess h̄ − D∗RH (3.26)

where &B is the Laplacian on forms on Bi with respect to the Bismut connection ∇B, RH

is (see (3.9)) the curvature of the Levi-Civita connection on Ni extended to T H(Bi) and

h̄(z) = 1
2

(∣∣y+∣∣2 −
∣∣y−∣∣2)

, (3.27)

pi,α
k (t, z1, z2) will be the heat kernel of 1

2!α
i on k-forms. For z1, z2 near Ni , our main goal

is to compare pα
k (t, z1, z2) with pi,α

k (t, z1, z2).
Set B(Ni, r) = {z = (x, y) ∈ Bi : |y| < r} ⊂ Bi , the ball bundle of radius r around the

critical submanifold Ni .
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In this section, the manifold we are working on is either the original manifold M , or one
of the bundles Bi , and the function h considered is either the original function on M or the
function h̄ defined by (3.27). To deal with both situations at the same time, we introduce
and study operators of the form

Lα = −&∇ + α2|gradh|2 − α&h + 2αD∗ hessh +
d∑

j=1

A1(Ej )∇Ej + A2, (3.28)

where the obvious components satisfy:

(1) The connection ∇:
(a) compatibility with the metric of the manifold;
(b) ∇-Laplacian on functions is the same as the Levi-Civita Laplacian;
(c) the Hessian of the function h with respect to the connection ∇ (cf. Definition A.2)

is the same as the Hessian with respect to the Levi-Civita connection.
(2) In the notation introduced in (3) of Definition 1.4

A1 = D∗S and A2 = D∗T

where S is an odd tensor and T is an even tensor with the condition that (A1)z(Xz) is
skew-symmetric for z ∈ M , Xz ∈ Tz(M).

Denote by pL
α

k (t, z1, z2) :
∧k

z2
(M) → ∧k

z1
(M) the heat kernel of the operator 1

2L
α act-

ing on k-forms. Using Proposition C.5 and Lemma B.24, one knows that there is a constant
C > 0 depending on A1 and A2 so that for any t > 0, α > 0,

∥∥pL
α

k (t, z1, z2)
∥∥ " eCtEWd

[

exp

( t∫

0

Hα
(
p(v, z1,w)

)
dv

)

δz2

(
p(t, z1,w)

)
]

, (3.29)

where

Hα(y) = −α2

2

∣∣gradh(y)
∣∣2 + α

2
&h(y) + αf (y)

and f is a smooth function satisfying

f (z) = ν−
i for z close to the critical submanifold Ni,

−hessz h|∧k
z (M)

" f (z) Id∧k
z (M)

for any z ∈ M, k = 1, . . . , d. (3.30)

If the manifold is Bi , we can choose this function to be f (z) = ν−
i .
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Set

Pα(t, z1, z2) = EWd

[

exp

( t∫

0

Hα
(
p(v, z1,w)

)
)

δz2

(
p(t, z1,w)

)
]

. (3.31)

The first result of this section is the following.

Theorem 3.32. For small enough r > 0, there exist C1 = C1(r) > 0, C2 = C2(r) > 0 and
C3 > 0, such that for t > 0 and α ! C1e

C1t ,

Pα(t, z1, z2) " t−d/2αC3
(
exp

(
−C2tα

2) + exp(−C2α)
)
, for (z1, z2) ∈ Λr × M.

Proof. Because the proof is just a repetition of the argument we gave in the non-degenerate
case, we will only point out the main steps. Using integration by parts on pathspace and
Hölder’s inequality, one can show that there is a polynomial in P(α, t), such that for 0 <

η " 1, for (z1, z2) ∈ Λr × M

Pα(t, z1, z2) " P(α, t)

ηd td/2

{

EµM
z1

[

exp

( t∫

0

(1 + η)Hα
(
p(v)

)
dv

)]}1/(1+η)

.

Next, we need to estimate

qα,η(t, z) = EµM
z

[

exp

( t∫

0

(1 + η)Hα
(
p(v)

)
dv

)]

. (3.33)

As in the non-degenerate case (cf. Theorem 2.9 and its proof), we use the Markov property
to segregate the contribution from the paths which stay away from the critical set from that
of paths which stay close to the critical set. The only difference from the non-degenerate
case comes from the contribution of the paths staying inside a neighborhood of a critical
submanifold Ni . We replace here the balls around the critical points used in the proof of
Theorem 2.9 with the ball bundles B(Ni, r), and the corresponding function u there with
u : [0,∞) × B(Ni, r) → R given by

uα
η (s, z) =

∫
exp

( ζ(p)∧s∫

0

(1 + η)Hα
(
p(v)

)
dv

)

µM
z (dp),

with ζ the exit time from the ball bundle B(Ni, r). Since when r is small enough, for any
z ∈ B(Ni, r), h(z) = 1

2 (|y+|2 − |y−|2), we get (cf. (3.12))

Hα
(
p(v)

)
=

(
−α2

2

∣∣pV(v)
∣∣2 + ανi

2

)
for v " ζ(p).



40 I. Popescu / Journal of Functional Analysis 235 (2006) 1–68

At this point, we identify the fiber (Bi)x1 with Rνi , and then use the representation of
the Brownian motion on the bundle Bi given by Proposition 3.24, which, because parallel
transport is an isometry in fibers, yields

uα
η (s, z) = uα

η (s, y) = EWνi

[

exp

( ζ(w′′)∧s∫

0

(1 + η)

(
−α2

2

∣∣y + w′′(v)
∣∣2 + ανi

2

)
dv

)]

,

where ζ becomes the exit time from the ball of radius r in Rνi . From here, the argument
runs the way it did in the non-degenerate case. !

This result gives the exponential decay of P in α when one of the points z1 or z2 is
away from the critical set.

When z1 and z2 are both close to one of the critical submanifold Ni , set

P̄α
i (t, z1, z2) = EWd

[

exp

(

−α2

2

t∫

0

∣∣y1 + w′′(s)
∣∣2

ds + αtνi

2

)

δz2

(
p(t, z1,w)

)
]

(3.34)

where w′′ stands for the Brownian motion starting at 0 on the fiber (Bi)x1 identified
with Rνi . Then we have the following result.

Theorem 3.35. For small enough r > 0, there exist C1 = C1(r) > 0, C2 = C2(r) > 0,
C3 > 0, such that for t > 0, α ! C1e

C1t , and z1, z2 ∈ B(Ni, r) (cf. (3.31)),

∣∣Pα(t, z1, z2) − P̄α
i (t, z1, z2)

∣∣ " t−d/2αC3 exp
(

−αC2 − α
|y1|2

2

)
. (3.36)

Proof. The proof is based on the same idea outlined in Section 2.3. Using integration by
parts on the path space (cf. (B.26)), write

Pα(t, z1, z2) = EWd
[
Φα(t, z1, z2,w)

]
,

where Φα(t, z1, z2, ·) is Hom(
∧

z2
(M),

∧
z1

(M))-valued Wiener functional with the prop-
erty that there exist a measurable map (t,w) ∈ [0,∞) ×P(Rd) → Rα

z1,z2
(t,w) ∈ R and a

polynomial P(t,α) so that

∥∥Φα(t, z1, z2,w)
∥∥

H.S
" Rα

z1,z2
(t,w) exp

( t∫

0

Hα
(
p(v, x,w)

)
dv

)

and

∥∥Rα
z1,z2

(t,w)
∥∥

Ls(Wd )
" sdPs(t,α)

td/2 for all s > 1, t > 0, z1, z2 ∈ M.

Take ζ the first exit time from B(Ni,2r) and set
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I ext
z1,z2

(t,α) = EWd
[
Φα(t, z1, z2,w), ζ

(
p(·, z1,w)

)
< t

]
,

I int
z1,z2

(t,α) = EWd
[
Φα(t, z1, z2,w), ζ

(
p(·, z1,w)

)
! t

]
.

As in Theorem 2.27, there are constants C1 = C1(r),C2 = C2(r) > 0 so that for any
t > 0, α > C2e

C2t ,

I ext
z1,z2

(t,α) " t−d/2 exp
(

−C1α − α|y1|2
2

)
. (∗)

The proof of this is basically the same as the one for Theorem 2.27, the only differ-
ence is that we replace the ball B(c,2r) there with B(Ni,2r) here and the corresponding
function u there has to be replaced here with

uα
η (s, z) = EµM

z

[

exp

( ζ(p)∫

0

(1 + η)Hα
(
p(v)

)
dv

)

, ζ(p) < s

]

.

Identifying the fiber (Bi)x with Rνi and using the representation of the Brownian motion
on the bundle Bi given by Proposition 3.24, and the fact that the parallel transport is an
isometry on fibers, we get that uα

η (s, z) = uα
η (s, y), with

uα
η (s, y) = EWνi

[

exp

( ζ(w′′)∫

0

(1 + η)

(
−α2

2

∣∣y + w′′(v)
∣∣2 + ανi

2

)
dv

)

, ζ(w′′) < s

]

,

where now ζ is the exit time from the ball of radius 2r in Rνi . From here, the rest goes as
in the proof of Theorem 2.27.

Now, we turn to the integral I int
z (α). The main point is that this integral can be computed

also as the integral coming from the quantity P̄α
i (cf. (3.34)). One can see this by replacing

the manifold M with the manifold Bi , the function h with the function h̄, and write P̄α as
the sum of Ī int

z1,z2
(t,α) and Ī ext

z1,z2
(t,α). The same exponential decay holds for Ī ext

z1,z2
(t,α) as

in (∗), while the factors Φα(t, z1, z2,w)’s in the expressions of I int
z1,z2

(t,α) and Ī int
z1,z2

(t,α),
are equal (cf. (B.19)). The rest follows. !

Next we want to estimate P̄α
i (t, z1, z2).

Proposition 3.37. If pNi (t, x1, x2) is the heat kernel of the Laplacian acting on functions
on the submanifold Ni , then

P̄α
i (t, z1, z2) " pNi (t, x1, x2)

(
α

π(1 − e−2tα)

)νi /2

× exp
(

−α coth(tα)

2

(
|y1|2 − |y1||y2|

cosh(tα)
+ |y2|2

))
. (3.38)
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In particular, there is a constant C(t,Ni) depending only on t and the submanifold Ni so
that for all α > 0,

∫

B(Ni,r)

P̄α
i (t, z, z) dz " C(t,Ni). (3.39)

Proof. Recalling the representation of the Brownian motion given by Proposition 3.24,
one can prove that for a compactly supported function f :Bi → R,

∫

Bi

P̄α
i (t, z1, u)f (u)du

= EWd
[
e− α2

2
∫ t

0 |y1+w′′(s)|2 ds+ αtνi
2 f

(
pNi (t, x1,w′), τV

pNi
(·,x1,w′)"[0,t]

(
y1 + w′′(t)

))]

= EWd−νi

[ ∫

(Bi)x1

Qα
i (t, y1, ξ)f

(
pNi (t, x1,w′), τV

pNi
(·,x1,w′)"[0,t](ξ)

)
dξ

]

where Qα
i (t, ζ, ξ) is the heat kernel for the Hermite like operator 1

2& − α2

2 |y|2 + ανi
2 on

Rνi . To get the estimate for P̄α
i (t, z1, z2), we will estimate Qα

i (t, ζ, ξ) when ξ is near y2
and then we will replace f with an approximation of δz2 .

We can use the formula (see for example [10, p. 390])

Qα
i (t, ζ, ξ) =

(
α

π(1 − e−2tα)

)νi /2

exp
(

−α coth(tα)

2

(
|ζ |2 − 2〈ζ, ξ 〉

cosh(tα)
+ |ξ |2

))
, (3.40)

to show that, for any ξ ∈ B(y2, ε),

Qα
i (t, y1, ξ) "

(
α

π(1 − e−2tα)

)νi /2

× exp
(

−α coth(tα)

2

(
|y1|2 − 2|y1|(|y2| + ε)

cosh(tα)
+ |y2|2 − ε|y2| − ε2

))
.

In particular, if f ! 0 has support in B(z2, ε), then, by the fact that the parallel transport is
an isometry in fibers, we have the inequality

∫

Bi

P̄α
i (t, z1, u)f (u)du

" EWd−νi

[ ∫

(Bi)x1

f
(
pNi (t, x1,w′), τV

pNi
(·,x1,w′)"[0,t](ξ)

)
dξ

](
α

π(1 − e−2tα)

)νi /2

× exp
(

−α coth(tα)

2

(
|y1|2 − 2|y1|(|y2| + ε)

cosh(tα)
+ |y2|2 − ε|y2| − ε2

))
.
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Now, we choose a geodesic ball centered at x2 in Ni and identify the fibers of Bi with
(Bi)x2 by parallel transport along geodesics in Ni radiating from x2. Then, we can choose
a smooth compactly supported approximation f v

n of δy2 in the fiber (Bi)x2 and we extend
this in an obvious way to nearby fibers. Next we choose an approximation f h

n with support
in a small neighborhood of x2 for δx2 on Ni . Finally, if one takes fn(x, y) = f h

n (x)f v
n (y)

in the above inequality, after letting n tend to infinity and then ε to 0, one gets (3.38). To
prove (3.39), one has to integrate (3.38) and make a change of variable. !

Now we will carry out the program outlined at the beginning of this section, namely the
comparison of the heat kernels of !α and !α

i . Before stating the next result, we introduce
the following notation. We define

∧q,q+,q−

z
(Bi) =

∧q(
T (Bi)

H
z

)
∧

∧q+

x

(
B+

i

)
∧

∧q−

x

(
B−

i

)
,

and observe that there exists the following natural decomposition

∧k

z
(Bi) =

⊕

q+q++q−=k
0!q!dim(Ni)

0!q+!ν+
i ,0!q−!ν−

i

∧q,q+,q−

z
(Bi). (3.41)

Since Bi = B+
i ⊕ B−

i , the Bismut connection on Bi is the direct sum of the Bismut
connections of B+

i and B−
i . Moreover, because the Bismut connection of Bi preserves

the horizontal and vertical subspaces of T (Bi), the operator !α
i , and consequently its

heat kernel, preserve the spaces
∧q,q+,q−

z (Bi). If k = q + q+ + q−, we will denote by

pi,α
(q,q+,q−)

(t, z1, z2) the restriction of the heat kernel pi,α
k (t, z1, z2) to

∧q,q+,q−
z (Bi).

The main result is contained in the following theorem.

Theorem 3.42. For every t > 0, there exist constants C1 = C1(r) > 0 and C2(t) > 0, such
that for α ! C1e

C1t ,

∣∣∣∣∣

∫

M

Tr pα
k (t, z, z) dz −

l∑

i=1

∫

B(Ni,r)

Tr pi,α

(k−ν−
i ,0,ν−

i )
(t, z, z) dz

∣∣∣∣∣ " rC2(t). (3.43)

Proof. The proof of this result in given in several steps, and each step will involve a com-
parison of heat kernels of various operators.

Assume r0 is a number so that B(Ni,4r0) ⊂ Vi . Choose a cut-off function ϕ :M →
[0,1] on M which is 0 outside

⋃l
i=1 B(Ni, r0), i = 1, . . . , l, and 1 on

⋃l
i=1 B(Ni, r0/2).

For small enough r > 0, define

ϕr (zi) = ϕ

(
xi,

yi

r

)
for zi close to Ni, (3.44)
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and the connection ∇r on M by

∇r = ϕr∇B
i + (1 − ϕr )∇LC. (3.45)

Notice that (cf. Theorem 3.7(4)), the Laplacian on functions of this connection is the same
as the Laplacian on functions of the Levi-Civita connection and (cf. (3.12)), the Hessian
of the function h is the same as the Hessian computed with respect to the Levi-Civita
connection. Now set

"α,r = d∇r ,αhδ∇r ,αh + δ∇r ,αhd∇r ,αh,

where the operators d∇r ,αh and δ∇r ,αh are defined in (A.0). From (A.5), we have

"α,r = −&∇r + α2|gradh|2 − α&h + 2α hessh + D∗R∇r

+ ϕr

d∑

j,k,l

〈
T B(Ej ,Ek),El

〉
E∗

j ∧ iEk∇r
El

,

where R∇r
is the curvature of the connection ∇r and T B is the torsion of the Bismut

connection.
The next observation is that, by combining (A.1), (3.13) and (3.8), one can prove that

there is a constant C > 0 such that for any form ω and α > 0,

∣∣(d∇r ,αh − dαh
)
ω

∣∣ " rCϕr |ω| and
∣∣(δ∇r ,αh − δαh

)
ω

∣∣ " rCϕr |ω|. (3.46)

Now we define "α
i on Bi by

"α
i = −&B + α2|gradh|2 − α&h + 2α hessh

+ D∗RB + ϕ

d∑

j,k,l

〈
T B(Ej ,Ek),El

〉
E∗

j ∧ iEk∇B
El

, (3.47)

where &B, T B and RB are the Laplacian on forms, the torsion, respectively the curvature
of the Bismut connection on Bi . Notice that both of "α,r and "α

i are in the form (3.28),
therefore inequality (3.29) holds (eventually with a different constant C) and one can get
upper bounds on their heat kernels on forms using Theorems 3.32, 3.35, and 3.37. Because
the operator "α

i leaves the spaces
∧q,q+,q−

z (Bi) invariant, so does its heat kernel. We

will denote by p
"α

i

(q,q+,q−)
(t, z1, z2), the restriction of p

"α
i

k (t, z1, z2) to
∧q,q+,q−

z (Bi) if k =
q + q+ + q−.

The proof of the theorem will be given in three steps. First, we compare the integral
of the traces of the heat kernels for !α and "α,r . Second, near the submanifold Ni , we
compare the heat kernels of "α,r with the one of "α

i . At last, we compare the heat kernel
of "α

i and !i on Bi .
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Claim 1. For every t > 0, there are constants C1 = C1(r) > 0 and C2(t) > 0 so that for
α ! C1e

C1t ,
∣∣∣∣

∫

M

Tr pα
k (t, z, z) dz −

∫

M

Tr p"α,r

k (t, z, z) dz

∣∣∣∣ " rC(t). (3.48)

Proof of Claim 1. Using standard arguments, one can show that

∫

M

Tr pα
k (t, z, z) dz = Tr e−t!α

k /2 =
∞∑

j=0

e−tλj (α)/2,

∫

M

Tr p"α,r

k (t, z, z) dz = Tr e−t ("α,r )k/2 =
∞∑

j=0

e
−tλr

j (α)/2
,

where λj (α) and λr
j (α) are the eigenvalues, arranged in non-decreasing order, of the

operators "α,r and !α acting on H 2
k , the completion of

∧k(M) in the norm ‖u‖2,k =√
‖du‖2

L2 + ‖u‖2
L2 .

For any operator which is bounded bellow, the min–max formula gives

λj (L) = inf
V ⊂H 2

k
dim(V )=j

max
{∫

M

〈
(Lu)(z), u(z)

〉
dz

∣∣∣ u ∈ V, ‖u‖ = 1
}
, (∗)

where ‖ · ‖ is the L2 norm of sections in L2(
∧k(M)). From

〈
!αu,u

〉
=

∣∣dαhu
∣∣2 +

∣∣δαhu
∣∣2 and

〈
"α,ru, u

〉
=

∣∣d∇r ,αhu
∣∣2 +

∣∣δ∇r ,αhu
∣∣2

,

and the elementary inequality,

∣∣(a2 + b2)1/2 −
(
c2 + d2)1/2∣∣ " |a − c| + |b − d| for a, b, c, d real numbers,

we get

∣∣〈!α
r u,u

〉1/2 −
〈
"αu,u

〉1/2∣∣ "
∣∣d∇r ,αhu − dαhu

∣∣ +
∣∣δ∇r ,αhu − δαhu

∣∣,

which combined with (3.46) give

∣∣〈"α,ru, u
〉1/2 −

〈
!αu,u

〉1/2∣∣ " rC|u|.

Hence, (∗) now implies that for any α > 0,

∣∣∣
√

λr
j (α) −

√
λj (α)

∣∣∣ " rC.
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Now, for f (a) = e−a2/2, one has |f ′(a)| " 1 and then |e−a2/2 − e−b2/2| " |a − b|, which
implies that for x, y ! 0, |e−x − e−y | " |√x − √

y|(e−x/2 + e−y/2). From this, one gets

∣∣∣∣∣

∞∑

j=0

e−tλj (α)/2 −
∞∑

j=0

e
−tλr

j (α)/2

∣∣∣∣∣ " rC

∞∑

j=0

(
e−tλj (α)/4 + e

−tλr
j (α)/4)

= rC

(∫

M

Tr pα
k (t/2, z, z) dz +

∫

M

Tr p"α,r

k (t/2, z, z) dz

)
,

which combined with (3.29), (3.32), (3.35) and (3.39) ends the proof of the claim. !

Our next step is to compare the heat kernel for "α,r with the heat kernel of the operator
"i on Bi .

Claim 2. There exist C1 = C1(r) > 0, C2 = C2(r) > 0, C3 = C3(r) > 0 and C4 > 0, such
that for t > 0 and α ! C1e

C1t ,

∥∥p"α,r

k (t, z1, z2)
∥∥ " t−d/2αC4

(
exp

(
−C2tα

2) + exp(−C2α)
)

for (z1, z2) ∈ Λr × M,

∥∥p"α,r

k (t, z1, z2) − p
"α

i
k (t, z1, z2)

∥∥

" t−d/2αC4 exp
(

−αC2 − α
|y1|2

2

)
for z1, z2 ∈ B(Ni, r).

Proof of Claim 2. The first part follows from (3.29) and (3.32). The proof of the second
part is based on the same ideas as the ones in the proofs of Theorems 3.32 and 3.35. Using

integration by parts, one can write the heat kernels p"α
r

k (t, z1, z2) and p
"α

i
k (t, z1, z2) as

regular integrals (i.e., without the delta functions). Then, split the resulting integrals into
the ones on paths leaving B(Ni,2r) before time t , and the others on paths staying inside
B(Ni,2r) till time t . The integrals over paths which leave decay exponentially. On the
other hand, since near Bi the connections ∇r and ∇B are the same, the other two integrals
are equal, and from this the second part follows. !

Next we compare the heat kernel for the operators "α
i and !α

i on Bi .

Claim 3. There exists a constant C > 0, independent of r and t , so that for any t > 0 and
α > 0 (cf. (3.34)),

if 0 < q+ or q− < ν−
i ,

∥∥p
"α

i

(q,q+,q−)
(t, z1, z2)

∥∥ " e−t (q++ν−
i −q−)α+Ct P̄α

i (t, z1, z2),

if q+ = 0 and q− = ν−
i , on

∧q,0,ν−
i
(Bi): p

"α
i

(q,0,ν−
i )

(t, z1, z2) = pi,α

(q,0,ν−
i )

(t, z1, z2).

(3.49)
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Proof of Claim 3. The first part follows from the fact that the Laplacian of h̄ is ν+
i − ν−

i ,

and the Hessian on
∧q,q+,q−

z (Bi) is the multiplication by (q+ − q−). Therefore the first
part is a consequence of Proposition C.5 and the definition of P̄α

i (t, z1, z2) in (3.34).
For the second part, we show that the operators "α

i and !α
i are the same on

∧q,0,ν−
i

z (Bi). This amounts to verifying two claims. The first one is that the action of
∑d

j,k,l〈T B(Ej ,Ek),El〉E∗
j ∧ iEk∇B

El
in (3.47) on

∧q,0,ν−
i

z (Bi) is 0, and the other is

that the actions of D∗RB and D∗RH are the same on
∧q,0,ν−

i
z (Bi). To see these, one

has to use (3.8) and a choice of the basis {Ej : j = 1, . . . , d} containing only vertical
or horizontal vectors. Fix a point z ∈ Bi , a horizontal basis {Fk: k = 1, . . . ,dim(Ni)},
in a neighborhood of x, and a vertical basis {F±

j : j = 1, . . . ,ν±
i } in a neighborhood

of y. Then every form in
∧q,0,ν−

i
z (Bi) can be written as a linear combination of forms

ω = f F ∗
k1

∧ · · · ∧ F ∗
kq

∧ (F−
1 )∗ ∧ · · · ∧ (F−

ν−
i

)∗, where f :Bi → R is a smooth function.

Now, the term 〈T B(Ej ,Ek),El〉 is non-zero only if Ej and Ek are horizontal and El is
vertical, in which case, (3.6) and the fact that F ∗

j ∧ iFk∇B
F−

l

ω = 0 imply the first claim.

For the second claim one has to look at the formula that gives the curvature of the Bismut
connection in (3.9) and observe that

D∗RBω =
dim(Ni)∑

j,k,l,m=1

〈
RH(Fj ,Fk)Fl,Fm

〉(
F ∗

j ∧ iFk

)
◦

(
F ∗

l ∧ iFm

)
ω

+
dim(Ni)∑

j,k=1

ν+
i∑

l,m=1

〈
RV(Fj ,Fk)F

+
l , F+

m

〉(
F ∗

j ∧ iFk

)
◦

((
F+

l

)∗ ∧ iF+
m

)
ω

+
dim(Ni)∑

j,k=1

ν−
i∑

l,m=1

〈
RV(Fj ,Fk)F

−
l , F−

m

〉(
F ∗

j ∧ iFk

)
◦

((
F−

l

)∗ ∧ iF−
m

)
ω

= D∗RHω,

where the second line above is 0 (there is no part involving F+-vectors in ω) and the third
line, ((F−

l )∗ ∧ iF−
m

)ω is non-zero only if l = m, in which case 〈RV(Fj ,Fk)F
−
l , F−

m 〉 = 0
by the skew-symmetry of the curvature RV. !

After combining these claims and estimates, (3.32), (3.35) and (3.37), one can easily
complete the proof of Theorem 3.42. !

3.5. The proof of the degenerate Morse inequalities

In this section we prove the Morse inequalities in the degenerate case. Theorem 3.42
provides the estimates which allow us to reduce everything to studying the asymptotic
behavior of the heat kernel pi,α

(k−ν−
i ,0,ν−

i )
(t, z1, z2) on

∧k−ν−
i ,0,ν−

i (Bi).
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Set T −
x (Ni) = Tx(Ni) ⊗ ∧ν−

i ((Bi)x), ∇ i,− = ∇LC ⊗ ∇V the connection on T −(Ni),
τ− and R−

i , the parallel transport, respectively, the curvature associated to ∇ i,−. Also, set

Fq
x = ∧q

x(Ni) ⊗ ∧ν−
i ((Bi)x). Using Definition 1.4, we extend the Levi-Civita connection

∇LC to forms on Ni and extend ∇ i,− naturally to Fq
x . The parallel transport also has a

natural extension from T −(Ni) to Fq
x .

Topologically, the bundle Fq is the same as
∧q(T (Ni) ⊗ o(B−

i )), with o(B−
i ) the

orientation bundle of B−
i , therefore (cf. [5, Chapter I, Section 7]) the differential d−

i is
well defined and the cohomology groups of the sequence

0 → F0 −→
d−
i

F1 −→
d−
i

· · ·−→
d−
i

Fdim(Ni) −→
d−
i

0

are H(Ni;o(B−
i )). Analytically, one can write

(
d−
i

)
x

=
dim(Ni)∑

j=1

F ∗
j ∧ ∇ i,−

Fj
,

for any orthonormal basis {Fj : j = 1, . . . ,dim(Ni)} at Tx(Ni). The bundles Fq can be

endowed with a natural metric inherited from
∧q

x(M) and
∧ν−

i ((B−
i )x). This allows one

to define δ−
i , the adjoint of d−

i . Next we set

!i,− = d−
i δ−

i + δ−
i d−

i , (3.50)

with the convention that !i,−
q is its action on Fq . The Weitzenböck formula in this frame-

work is

!i,− = −&i,− − D∗R−,

where &i,− is the Laplacian associated to the connection ∇ i,− by the recipe given in Defi-
nition 1.4. We will denote the heat kernel of !i,−

q by pi,−
q (t, x, y).

We recall that pNi (·, x,w) ∈ P(Ni) stands for the map associated to the Riemannian
manifold Ni with the property that the distribution of w ∈ P(Rdim(Ni)) → pNi (·, x,w) ∈
P(Ni) is the Wiener measure on Ni . For µNi -almost any path ψ ∈ P(Ni) the parallel
transport τ−

ψ"[s,0] is well defined, consequently, for µNi -almost any ψ ∈ P(Ni), one can
define W−

q (t,ψ) to be the solution to the ODE on Fq
ψ(0),





Ẇ−

q (s,ψ) = W−
q (s,ψ)

(
τ−
ψ"[s,0]

1
2D∗R−

ψ(s)τ
−
ψ"[0,s]

)
,

W−
q (0,ψ) = Id∧q,−

ψ(0)(Ni)
.

(3.51)

Using this map (cf. Theorem C.3), the heat kernel of !i,−
q has the representation

pi,−
q (t, x1, x2) = EWdim(Ni )

[
W−

q

(
t, pNi (·, x,w)

)
τ−
pNi

(·,x1,w))"[t,0]δx2

(
pNi (t, x1,w)

)]
.
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For any z ∈ Bi , one can naturally identify
∧q,0,ν−

i
z (Bi) with Fq = ∧q

x(Ni) ⊗ ∧ν−
i ((Bi)x),

therefore, we can write

pi,α

(q,0,ν−
i )

(t, z1, z2) = EWd

[

exp

(

−α2

2

t∫

0

∣∣p(v, z1,w)
∣∣2

dv + αtνi

2

)

×
(
W−

q

(
t,π

(
p(·, z1,w)

))
τ−
π(p(·,z1,w))"[t,0]

)
δz2

(
p(t, z1,w)

)
]

,

where π :Bi → Ni is the projection from Bi onto Ni . To estimate pi,α

(q,0,ν−
i )

(t, z1, z2), we

follow the same line of reasoning as the one in proving Proposition 3.37. First, for a com-
pactly supported function f :Bi → R, we write (cf. Proposition 3.24),

∫

Bi

pi,α

(q,0,ν−
i )

(t, z1, u)f (u)du

= EWd
[
e− α2

2
∫ t

0 |p(v,z1,w)|2 dv+ αtνi
2 W−

q

(
t,π

(
p(·, z1,w)

))
τ−
π(p(·,x1,w))"[t,0]f

(
p(t, z1,w)

)]

= EWdim(Ni )

[
W−

q

(
t, pNi (·, x1,w′)

)
τ−
pNi

(·,x1,w′)"[t,0]

×
∫

(Bi)x1

Qα
i (t, y1, ξ)f

(
pNi (t, x1,w′), τV

pNi
(·,x1,w′)"[0,t](ξ)

)
dξ

]
, (∗)

where Qα
i is defined in (3.40), and w′ stands for paths in P(Rdim(Ni)). Then we get the

estimates for pi,α

(q,0,ν−
i )

(t, z1, z2) by estimating Qα
i (t, y1, ξ) and then replacing f with

an approximation of the delta-function δz2 . Indeed, elementary estimates show that for
|y1| " r and |ξ | = |η| " r ,

∣∣Qα
i (t, y1, ξ) −Qα

i (t, y2,η)
∣∣ " 2 sinh

(
αr2

2 sinh(tα)

)(
α

π(1 − e−2tα)

)νi /2

× exp
(

−α coth(tα)(|y1|2 + |η|2)
2

)
. (∗∗)

Then, choosing an approximation fn to δz2 as in the proof of Proposition 3.37, and recalling
that vertical parallel translation along Brownian paths on Ni is an isometry on fibers, one
can deduce from (∗) and (∗∗) that for a constant C > 0, independent of t and r , and any
z1, z2 ∈ B(Ni, r),
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∥∥pi,α

(q,0,ν−
i )

(t, z1, z2) −Qα
i (t, y1, y2)pi,−

q (t, x1, x2)
∥∥

" 2eCtpNi (t, x1, x2) sinh
(

αr2

2 sinh(tα)

)(
α

π(1 − e−2tα)

)νi /2

× exp
(

−α coth(tα)(|y1|2 + |y2|2)
2

)
,

where pNi (t, x1, x2) is the heat kernel of the Laplacian on functions on Ni . After integrat-
ing this last inequality on B(Ni, r) and performing elementary computations, one gets
∣∣∣∣

∫

B(Ni,r)

Tr pi,α

(q,0,ν−
i )

(t, z, z) dz − A(r,α)

∫

Ni

Tr pi,−
q (t, x, x) dx

∣∣∣∣ " K(t) sinh
(

αr2

2 sinh(tα)

)

for a constant K(t) > 0, depending only on t , and with

A(r,α) =
(

1
π(1 − e−tα)2

)νi /2 ∫

B(0,r
√

α tanh(tα/2))

e−|y|2 dy.

This combined with the result from Theorem 3.42 and the fact that
∫

Ni

Tr pi,−
q (t, x, x) dx = Tr e−t!i,−

q ,

proves that for some constants, K(t) > 0 and C = C(r) > 0, any α > CeCt , and any integer
k ∈ {0,1, . . . , d},

∣∣∣∣

∫

M

Tr pα
k (t, z, z) dz − A(r,α)

l∑

i=1

Tr e
−t!i,−

k−ν−
i

∣∣∣∣ " K(t)r + K(t) sinh
(

αr2

2 sinh(tα)

)
.

Because limα→∞ A(r,α) = 1, one can argue that

−K(t)r +
l∑

i=1

Tr e
−t!i,−

k−ν−
i " lim inf

α→∞

∫

M

Tr pα
k (t, z, z) dz

" lim sup
α→∞

∫

M

Tr pα
k (t, z, z) dz " K(t)r +

l∑

i=1

Tr e
−t!i,−

k−ν−
i .

Finally, this is true for any r > 0, and therefore, it yields

lim
α→∞

∫

M

Tr pα
k (t, z, z) dz =

l∑

i=1

Tr e
−t!i,−

k−ν−
i .
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From this, when t tends to infinity, using standard arguments in Hodge theory one can
prove the following.

Theorem 3.52 (Degenerate Morse inequalities).

mk − mk−1 + · · · + (−1)km0 ! bk − bk−1 + · · · + (−1)kb0 (3.53)

where

mk =
l∑

i=1

dimHk−ν−
i
(
Mi;o

(
B−

i

))
,

with Hk(Mi;o(B−
i )) the cohomology group of Ni twisted by the orientation bundle of E−

i .
This inequality becomes equality for k = d .
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Appendix A. Geometric computations

In this section, M is a d-dimensional Riemannian manifold, ∇ a compatible connec-
tion, i.e., 〈∇XY,Z〉 + 〈Y,∇XZ〉 = X〈Y,Z〉 for any vector fields X, Y , Z ∈ T (M), and
h :M → R a smooth function.

Define the operators on forms (cf. Definition 1.4)

• d∇
z = ∑d

j=1(E
∗
j )z ∧ ∇(Ej )z and δ∇ its adjoint,

• d∇,h = e−hd∇eh and δ∇,h = ehδ∇e−h,

• !∇ = d∇δ∇ + δ∇d∇ and !∇,h = d∇,hδ∇,h + δ∇,hd∇,h.

(A.0)

Notice that the definition above does not depend on the orthonormal basis {(Ej )x : j =
1, . . . , d} and all operators send smooth forms into smooth forms.

We collect a number of basic facts in the following proposition.

Proposition A.1. Let T be the torsion of the connection ∇ . Then,

(1) ∇XiY − iY ∇X = i∇XY , for any vector fields X, Y .
(2) 〈∇Xω,η〉 + 〈ω,∇Xη〉 = X〈ω,η〉, for any vector field X and any forms ω, η.
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(3) δ∇
x = −∑d

j=1 i(Ej )x ∇(Ej )x + ∑d
j,k=1〈T ((Ek)x, (Ej )x), (Ek)x〉i(Ej )x , for any ortho-

normal basis {(Ej )x : j = 1, . . . , d} of Tx(M).
(4) d∇,hω = d∇ω + dh ∧ ω and δ∇,hω = δ∇ω + igradh for any form ω.

Proof. We choose an orthonormal basis {Ei : i = 1, . . . , d} in a neighborhood of x ∈ M .
(1) Because both sides are anti-derivations on

∧
(M), one needs only check the equality

on functions and 1-forms. For functions both are 0. For 1-forms, it suffices to do this for
ω = f E∗

1 and this is straightforward.
(2) It suffices to prove it for ω = f E∗

1 ∧E∗
2 ∧ · · ·∧E∗

k , η = gE∗
j1

∧E∗
j2

∧ · · ·∧E∗
jk

. The
rest consists in direct computations and is left to the reader.

(3) Since ∇ is a derivation, ∇Ej (E
∗
j ∧ ω) = (∇Ej E

∗
j ) ∧ ω + E∗

j ∧ (∇Ej ω) for any
form ω, hence (E∗

j ∧ ∇Ej )
∗ = iEj ∇∗

Ej
+ i∑d

k=1〈Ej ,∇Ej
Ek〉Ek

. Now using (2), one can jus-

tify that ∇∗
X = −∇X − div(X) for any vector field X. The rest follows from the fact that

div(Ej ) = ∑d
k=1〈Ek, [Ek,Ej ]〉, 〈Ek,∇EkEj 〉 = 〈Ek,∇Ej Ek +[Ek,Ej ]+T (Ek,Ej )〉 and

〈Ek,∇Ej Ek〉 = 0.
(4) This is straightforward. !

We now want a decomposition of the operator !∇,h. For this purpose, set

L∇
X = d∇ iX + iXd∇ .

A simple computation gives

!∇,h = !∇ + |gradh|2 + L∇
gradh +

(
L∇

gradh

)∗
.

Definition A.2. The Hessian hess∇ , respectively the symmetric Hessian Shess∇ , with re-
spect to the connection ∇ are prescribed by

〈(
hess∇

x h
)
Xx,Yx

〉
= 〈∇Xx gradh,Yx〉,

〈(
Shess∇

x h
)
Xx,Yx

〉
= 1

2

(
〈∇Xx gradh,Yx〉 + 〈Xx,∇Yx gradh〉

)
.

Proposition A.3. We have

L∇
X +

(
L∇

X

)∗ = −div(X) +
d∑

j,k=1

(
〈∇Ej X,Ek〉 + 〈∇EkX,Ej 〉

)
E∗

j ∧ iEk .

Therefore,

!∇,h = !∇ + |gradh|2 − &h + 2D∗ Shess∇ h,

where D∗ Shessh is the extension of the symmetric Hessian given by Definition 1.4.
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Proof. Choose a local orthonormal basis {Ei : i = 1, . . . , d} and use Proposition A.1 to
get,

L∇
X =

d∑

j=1

(
E∗

j ∧ ∇Ej iX + iXE∗
j ∧ ∇Ej

)

=
d∑

j=1

(
E∗

j ∧ ∇Ej iX + 〈X,Ej 〉∇Ej − E∗
j iX ∧ ∇Ej

)

=
d∑

j=1

(
E∗

j ∧ i∇Ej
X + 〈X,Ej 〉∇Ej

)
=

d∑

j,k=1

〈∇Ej X,Ek〉E∗
j ∧ iEk + ∇X.

Since ∇∗
X = −div(X) − ∇X ,

(
L∇

X

)∗ = ∇∗
X +

d∑

j,k=1

〈∇Ej X,Ek〉E∗
k ∧ iEj = −div(X) − ∇X +

d∑

j,k=1

〈∇Ej X,Ek〉E∗
k ∧ iEj ,

which ends the proof. !

Theorem A.4. If T and R are, respectively, the torsion and the curvature of the connec-
tion ∇ , then for any local orthonormal basis {Ei : i = 1, . . . , d} in a neighborhood of a
point x, we have

!∇ = −&∇ − D∗R +
d∑

j,k,l

〈
T (Ej ,Ek),El

〉
E∗

j ∧ iEk∇El

+
d∑

j,k=1

〈
T (Ek,Ej ),Ek

〉
∇Ej +

d∑

j,k,l=1

E∗
j ∧ i∇Ej

(〈T (Ek,El),Ek〉El)

where D∗R is defined by Definition 1.4. In particular, if for any X ∈ Tx(M), the torsion T

satisfies
∑d

j=1〈T (Ej ,X),Ej 〉 = 0, then

!∇,h = −&∇ + |gradh|2 − &h + 2D∗ Shess∇ h

+
d∑

j,k,l

〈
T (Ej ,Ek),El

〉
E∗

j ∧ iEk∇El − D∗R. (A.5)

Proof. For simplicity we are going to use the summation convention in which any time an
index appears twice it is summed from 1 to d . Now,
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d∇δ∇ + δ∇d∇ = −E∗
j ∧ ∇Ej (iEk∇Ek ) + E∗

j ∧ ∇Ej i〈T (Ek,El),Ek〉El

− iEk∇Ek

(
E∗

j ∧ ∇Ej

)
+ i〈T (Ek,El),Ek〉ElE

∗
j ∧ ∇Ej

(A.1)(1)= −E∗
j ∧ iEk∇Ej ∇Ek − E∗

j ∧ i∇Ej
Ek∇Ek

− iEk

(
∇EkE

∗
j

)
∧ ∇Ej − iEk

(
E∗

j ∧ ∇Ek∇Ej

)

+ E∗
j ∧ i∇Ej

(〈T (Ek,El),Ek〉El) + E∗
j ∧ i〈T (Ek,El),Ek〉El∇Ej

+
〈
T (Ek,Ej ),Ek

〉
∇Ej − E∗

j ∧ i〈T (Ek,El),Ek〉El∇Ej

(
notice that E∗

j ∧ iEk + iEkE
∗
j ∧ = δjk

)

= −∇Ej ∇Ej − E∗
j ∧ iEk (∇Ej ∇Ek − ∇Ek∇Ej )

− 〈∇Ej Ek,El〉E∗
j ∧ iEl∇Ek

−
〈
∇EkE

∗
j ,E∗

k

〉
∇Ej +

〈
∇EkE

∗
j ,E∗

l

〉
E∗

l ∧ iEk∇Ej

+ E∗
j ∧ i∇Ej

(〈T (Ek,El),Ek〉El) +
〈
T (Ek,Ej ),Ek

〉
∇Ej .

The last line in this computation is the last line in the formula we want to prove. Since
〈∇Ej El,Ek〉 = −〈∇Ej Ek,El〉, one gets

−∇Ej ∇Ej − E∗
j ∧ iEk (∇Ej ∇Ek − ∇Ek∇Ej ) − 〈∇Ej Ek,El〉E∗

j ∧ iEl∇Ek

= −&∇ − ∇∇Ej
Ej − E∗

j ∧ iEkR(Ej ,Ek) − E∗
j ∧ iEk∇[Ej ,Ek]

− 〈∇Ej Ek,El〉E∗
j ∧ iEl∇Ek + 〈∇Ej Ej ,Ek〉∇Ek − 〈∇ElEk,Ej 〉E∗

l ∧ iEk∇Ej

= −&∇ − D∗R −
〈
[Ej ,Ek],El

〉
E∗

j ∧ iEk∇El

+ 〈∇Ej Ek,El〉E∗
j ∧ iEk∇El − 〈∇EkEj ,El〉E∗

j ∧ iEk∇El

= −&∇ − D∗R +
d∑

j,k,l

〈
T (Ej ,Ek),El

〉
E∗

j ∧ iEk∇El ,

which ends the proof. !

Appendix B. Integration by parts on the path space of a Riemannian manifold

B.1. Integration by parts

Integration by parts on the path space of a compact Riemann manifold is well under-
stood (see for example [2] for a detailed exposition). In this paper we need an integration
by parts on a vector bundle endowed with a particular metric. The bundle is not a compact
manifold but the metric has enough properties to guarantee the integration by parts on its
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path space. For example, the condition given by (3.10) turns out to be sufficient for what
we need.

We will assume in this section that M is a d-dimensional Riemannian manifold so that
for a fixed reference point o on M , and C and m positive constants, the Ricci curvature
satisfies

−C
(
1 + dist(x, o)2)|X|2x " Ricx(Xx,Xx) " C

(
1 + dist(x, o)m

)
|X|2x, (B.1)

for any x ∈ M , Xx ∈ Tx(M).
The idea outlined in [7] for the proof of the integration by parts on the path space of

a compact manifold is based on a perturbation scheme. Recall the map w → p(·, f,w),
defined in Section 1. Since f will be fixed throughout this section, we will simply drop it
from our notations. Our perturbation is driven by h : [0,∞] → Rd , with the property that
there is a function ḣ ∈ L2([0,∞];Rd) such that h(σ ) =

∫ σ
0 ḣ(v) dv for σ ! 0.

The perturbation w → ps(·,w), s ∈ [0,1], for a piecewise smooth path w is prescribed
by

θ
(
ṗ0(t,w)

)
= ẇ(t) and θ

(
p′
s(t,w)

)
= h(t) (B.2)

for any t ! 0 and any s ∈ [0,1], where here the superscript dot and the prime denote the
differentiation with respect to t and s, respectively. Here θ is the connection 1-form (see
for example [8, 8.16]).

Assume for the moment that M is a compact manifold. We will characterize w →
ps(t,w) as the integral curve of a time dependent vector field. In order to do this, we
first introduce some spaces. For a Hilbert space V , we denote by L2([0,1];V ) the
space of L2-integrable functions with values in V . H([0,1];V ) will be the space of
absolutely continuous functions s ∈ [0,1] → ψs ∈ V so that ψ ′

s ∈ L2([0,1];V ). We set
L2([0,1];O(M)) to be the set of s ∈ [0,1] → ps ∈ O(M) so that θ(ps) ∈ L2([0,1];Rd)

and ω(ps) ∈ L2([0,1];o(d)), where ω is the o(d)-valued 1-form (see for example
[8, 8.18]). H([0,1];O(M)) is the set of absolutely continuous functions s ∈ [0,1] → ps ∈
O(M) with θ(ps) ∈ H([0,1];Rd) and ω(ps) ∈ H([0,1];o(d)).

Given ξ ∈ Rd , we define X(t, ξ) :H([0,1];O(M)) → L2([0,1];O(M)) by

[
X(t, ξ)p·

]
(s) = E

(

Os(p·)

(

ξ +
s∫

0

Ov(p·)ᵀḣ(t) dv

))

pt

where s ∈ [0,1] → Os(p·) ∈ O(d) is the solution to the ODE

O ′
s(p·) + θ(p′

t )Os(p·) = 0 with O0(p·) = I. (B.3)

For a given piecewise smooth path w, the perturbation w → ps(t,w), s ∈ [0,1], is the
integral curve of the time dependent vector field X(t, ẇ(t)),

ṗ·(t,w) =
[
X

(
t, ẇ(t)

)
p·(t,w)

]
with p0(t,w) = p(t,w).
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One can prove that ps(t,w) can be extended from piecewise smooth paths w to generic
Brownian paths and that (cf. [7, 4.14]), for continuous functions F :P(O(M)) → R of
p # [0, t],

EWd
[
F

(
ps(·,w)

)
Es(t,w)

]
= E

[
F

(
p(·,w)

)]
(B.4)

where

Es(t,w) = exp

[

−
t∫

0

(
bs(σ,w), dw(σ )

)
− 1

2

t∫

0

∣∣bs(σ,w)
∣∣2

dσ

]

, (B.5)

and, with Os(t,w) = Os(p·(t,w)),

bs(t,w) =
s∫

0

Ov(t,w)ᵀ
(

ḣ(t) + 1
2
Rpv(t,w)h(t)

)
dv (B.6)

where the superscript 5 is standing for the transpose of a matrix.
Now, for a bounded smooth F :P(O(M)) → R, which depends only on the path p #

[0, t], we define

[
X(h)F

]
(w) = d

ds
F

(
ps(·,w)

)∣∣∣∣
s=0

.

Considering F = F1F2, with F1,F2 bounded smooth functions depending only on the path
p # [0, t], and taking derivatives with respect to s at 0 in (B.4), we get the integration by
parts formula

EWd
[[

X(h)F1
]
(w)F2

(
p(·,w)

)]

= −EWd
[
F1

(
p(·,w)

)[
X(h)F2

]
(w)

]

+ EWd

[

F1F2
(
p(·,w)

)
t∫

0

(
ḣ(σ ) + 1

2
Ricp(σ,w) h(σ )

)
dσ

]

.

If the manifold is not compact, the main idea is to prove a localized version of this inte-
gration by parts formula and then pass to the full version by using the integrability of the
Ricci curvature. Here, there are two key facts. The first is that (cf. (B.2)) the perturbed path
is staying in finite distance from the original path. To be more precise, let ζR(w) be the
exit time of the path p(·,w) from π−1B(o,R) (recall π :O(M) → M is the projection).
Then, for large enough R, and any (s,σ ) ∈ [0,1] × [0, ζR(w)], ps(σ,w) ∈ π−1B(o,2R).
The second fact is a version of the integration by parts for the stopped path p(·∧ζR(w),w).

Now we assume M is a complete Riemannian manifold whose Ricci tensor satisfies the
condition (B.1). The perturbation scheme for the path p is the one given in (B.2). However,



I. Popescu / Journal of Functional Analysis 235 (2006) 1–68 57

for the application we have in mind, we will have to consider the joint distribution of p, w
and another map which we will describe now.

Assume we are given S ∈ C∞(O(M);Hom(Rd ; so(d))), where so(d) is the Lie algebra
of the group o(d), i.e., the set of skew-symmetric d × d-matrices. This will be used to
construct a map which will be considered part of our perturbation.

First, for a smooth path w, define Ws(t,w), its perturbation, given by Ẇs(t,w) =
θ(ṗs(t,w)). Now define o(t,w) to be the solution to

ȯ(t,w) = o(t,w)Sp(t,w)

(
ẇ(t)

)
with o(0,w) = I,

and its perturbation Os(t,w) ∈ O(d) to be given by the solution to the equation

Ȯs(t,w) = Os(t,w)Sps (t,w)

(
Ẇs(t,w)

)
with Os(0,w) = I. (B.7)

Notice that, since Sf(ξ) is skew-symmetric, both o(t,w) and Os(t,w) are in o(d). The
map w → zs(·,w) := (Ws(·,w),ps(·,w),Os(·,w)) is the perturbation we will consider
here.

Let Os be given by the prescription in (B.3), and construct the following time dependent
vector fields sending smooth functions s ∈ [0,1] → ps ∈ O(M) into smooth functions by
the following recipe,

[
A0(t)p·

]
(s) = Os(p·)

s∫

0

Ov(p·)ᵀḣ(t) dv,

[
Ak(t)p·

]
(s) = Os(p·)ek for 1 " k " d, (B.8)

where (ek)k=1..d is an orthonormal basis of Rd which will be fixed for the rest of this
section. For a smooth map s → (vs ,ps ,Os) ∈ Rd ×O(M) × O(d), we set

[
X0(t)(v·,p·,O·)

]
(s) = (∂[A0(t)p· ](s))vs +

(
E
([

A0(t)p·
]
(s)

))
ps

+ (∂OsS([A0(t)p· ](s)))Os ,
[
Xk(t)(v·,p·,O·)

]
(s) = (∂[Ak(t)p· ](s))vs +

(
E
([

Ak(t)p·
]
(s)

))
ps

+ (∂OsS([Ak(t)p· ](s)))Os .

Then, for a piecewise smooth w, the map t → z·(t,w) is the unique solution to the follow-
ing differential equation:

dz·(t,w) = X0(t)z·(t,w) +
d∑

k=1

Xk(t)z·(t,w)

〈
ẇ(t), ek

〉
, with z·(0,w) = (0, f, I ).

Using an approximation scheme with piecewise smooth paths, one can prove that z·(t,w)
is well defined up to a set of Wd -measure zero and satisfies the Stratonovich stochastic
differential equation,

dz·(t,w) = X0(t)z·(t,w) dt +
d∑

k=1

Xk(t)z·(t,w) ◦ d
〈
w(t), ek

〉
, z·(0,w) = (0, f, I ). (B.9)
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For details on proving this, we refer to [6, Corollary 10.28]. However, we should mention
two key ingredients needed for the argument. One is the non-explosion of Brownian motion
and the associated estimates on the rate at which Brownian motion leaves balls, which are
consequences of the quadratic lower bound on the Ricci curvature. The other is the fact,
alluded to earlier, that the perturbed paths stay close to the unperturbed (i.e., Brownian)
paths.

We now define the vector field given by

Y(ξ)(f,v,o) = E(ξ)f + (∂ξ )v + (∂oSf(ξ))

for f ∈ O(M), v ∈ Rd , o ∈ o(d). For any ϕ ∈ C2
c (Rd ×O(M)×o(d)), one can prove (using

Itô’s formula and the idea in the proof of [6, Corollary 10.28]) that for each s ∈ [0,1],

ϕ
(
zs(t,w)

)
−

t∫

0

(

Y
(
bs(σ,w)

)
+ 1

2

d∑

k=1

Y(ek)
2

)

ϕ
(
zs(σ,w)

)
dσ, (B.10)

is a Wd -martingale with bs(t,w) defined in (B.6).
Now we can state and prove the main result of this section.

Theorem B.11 (Integration by parts on path space). Under the growth condition on the
Ricci curvature given by (B.1), for any bounded smooth function F :P(Rd)×P(O(M))×
P(o(d)) → R, depending only on the path z # [0, t], define

[
X(h)F

]
(w) = d

ds
F

(
zs(·,w)

)∣∣∣∣
s=0

. (B.12)

If z(t,w) = z0(t,w), then, for bounded smooth functions F1,F2 :P(Rd) × P(O(M)) ×
P(o(d)) → R depending only on the path z # [0, t], we have

EWd
[[

X(h)F1
]
(w)F2

(
z(·,w)

)]

= −EWd
[
F1

(
z(·,w)

)[
X(h)F2

]
(w)

]

+ EWd

[

F1F2
(
z(·,w)

)
t∫

0

(
ḣ(σ ) + 1

2
Ricz(σ,w) h(σ )

)
dσ

]

, (B.13)

provided that w → [X(h)F1](w)F2(z(·,w)) and w → F1(z(·,w))[X(h)F2](w) are Wd -
integrable.

Proof. The difficulty here, which is not present in the compact case, is caused by the
unboundedness of the Ricci curvature, which leads to the possibility that the Es(t,w) in
(B.5) is not integrable and so (B.4) no longer holds. To get around this difficulty, we use a
localization procedure based on stopping times.
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Take a large R > 0, and consider a compactly supported function ψR :O(M) → [0,1],
which is 1 on U2R = π−1B(o,2R). Then set

ER
s (t,w) = exp

(

−
t∫

0

〈
bR

s (σ,w), dw(σ )
〉
− 1

2

t∫

0

∣∣bR
s (σ,w)

∣∣2
dσ

)

, (B.14)

where

bR
s (t,w) =

s∫

0

ψR

(
pv(t,w)

)
Ov(t,w)ᵀ

(
ḣ(t) + 1

2
Rpv(t,w)h(t)

)
dv.

Now, ER
s (t,w) is integrable since bR

s is bounded. Let Ft be the σ -algebra generated by
{p # [0, t],p ∈ P(Rd) × P(O(M)) × P(End(Rd))} and take ζR :P(Rd) × P(O(M)) ×
P(o(d)) → [0,∞), so that ζR(w,p,O) is the first time the path p(·,w) exits the set UR =
π−1B(o,R). Note here the crucial fact that (cf. (B.2)), for large R, ps(t,w) ∈ U2R for all
(s, t) ∈ [0,1] × [0, ζR(w,p,O)].

Define the probabilities P and QR
s on P(Rd) ×P(O(M)) ×P(End(Rd)) by

P(C) = EWd
[
z(t,w) ∈ C

]
and QR

s (C) = EWd
[
ER

s (t,w), zs(t,w) ∈ C
]
.

Now, for any ϕ ∈ C2
c (Rd ×O(M) ×P(End(Rd))

ϕ
(
w(t ∧ ζR),p(t ∧ ζR),o(t ∧ ζR)

)
− 1

2

t∧ζR∫

0

d∑

k=1

(
Y(ek)

)2
ϕ
(
w(σ ),p(σ ),o(σ )

)
dσ

is a QR
s -martingale. On the other hand, one can see that

ϕ
(
w(t),p(t),o(t)

)
− 1

2

t∫

0

d∑

k=1

(
Y(ek)

)2
ϕ
(
w(σ ),p(σ ),o(σ )

)
dσ

is a P-martingale. Therefore, invoking [8, Theorem 3.10], we conclude that

QR
s #FζR∧t = P #FζR∧t ,

which implies that for large enough R, s ∈ [0,1], and any bounded Ft -measurable function
F :P(Rd) ×P(O(M)) ×P(End(Rd)) → R,

EWd
[
Eh,R

s (· ∧ t ∧ ζR,w)F
(
zs(· ∧ t ∧ ζR,w)

)]
= EWd

[
F

(
z(· ∧ t ∧ ζR,w)

)]
.

From this, taking derivatives with respect to s and using the bounds on the Ricci curvature
and the estimates in [8, Theorem 8.62], one gets (B.13). !
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B.2. Application

The main motivation for this application is given at the end of this section for conditional
expectations coming from heat kernels. In the next section we will apply these things to
real heat kernels. Throughout this section, unless explicitly specified, we will drop the
dependence on f from p(t, f,w). We begin with a definition.

Definition B.15. If N is a smooth Riemannian manifold and (V ,‖ · ‖) is a normed vector
space, we say that a smooth map A :O(M) × N → V , has at most polynomial growth
in all its derivatives if for any positive integer n, there exist Nn,Cn ! 0 so that for any
vector fields X1,X2, . . . ,Xn ∈ {(X,Y ) ∈ TO(M) × T N | |π∗X| " 1, |Y | " 1} and (f, y) ∈
O(M) × N ,

∥∥(X1)(f,y)X2 . . .XnA
∥∥ " Cn

(
1 + dist(π f, o)

)Nn. (B.16)

For a given normed vector space (V ,‖ ·‖), consider a map A :O(M)×O(d) → End(V ),
and for (p,o) ∈P(O(M)) ×P(O(d)), define Ut (p,o) to be the solution to the ODE

{
U̇t (p,o) = Ut (p,o)A(p(t),o(t)),

U0(p,o) = IV .
(B.17)

Also, recall the map S ∈ C∞(O(M);Hom(Rd ;o(d))) used in defining Eq. (B.7). Here Ω

is the o(d)-valued 2-form defined by [E(ξ),E(η)] = −λ(Ω(ξ,η)) (see [8, 8.44]).

Assumption. We assume that S, Ω and A are of at most polynomial growth in all their
derivatives and there is a smooth function φ :O(M) → R, and a constant C > 0 such that,

〈
A(f,o)ξ, ξ

〉
" φ(f)|ξ |2 " C dist(π f, o)|ξ |2 for f ∈ O(M), ξ ∈ V. (B.18)

The main result is the following.

Theorem B.19. For f ∈ C∞
c (M;R), G ∈ C∞(O(d);End(V )), and any horizontal vector

fields X1, . . . ,Xm, there exist T1(t), T2(t), . . . ,Tl (t) products of multiple End(V )-valued
classic or stochastic integrals with the integrands bounded polynomially in terms of the
distance function and Ψ (t, ·) ∈ ⋂

p$1 Lp(Wd;End(V )), so that

∥∥Ψ (t,w)
∥∥ "

(∥∥T1(t,w)
∥∥ + · · · +

∥∥Tl (t,w)
∥∥)

exp

( t∫

0

φ
(
p(σ,w)

)
dσ

)

, (B.20)

and

EWd
[(

X1 . . .Xn(f ◦ π)
)(

p(t,w)
)
Ut

(
p(·,w),o(·,w)

)
G

(
o(t,w)

)]

= EWd
[
f

(
π

(
p(t,w)

))
Ψ (t,w)

]
. (B.21)
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Moreover, if Γ ⊂ O(M) is an open set, and ζΓ (w) = inf{t > 0,p(·,w) ∈ Γ c} the first
exit time of p(·,w) from Γ , then Ψ (t) on the set {ζΓ ! t} depends only on the support of f ,
the vectors X1, . . . ,Xm, and the restriction to Γ and Γ ×O(d) of f , S, Ω , respectively A.

Proof. The idea is to use Theorem B.11 to move the derivatives off of f ◦ π to the other
side.

Because the function f ◦ π has compact support, we may assume that the vector fields
Xi , i = 1, . . . ,m, also have compact support. Next, notice that a compactly supported hor-
izontal vector field X, can be written as X = ∑d

k=1 akE(ek) where ak , k = 1, . . . , d , are
compactly supported functions. Therefore, one can reduce the problem to one in which all
vectors fields Xi , i = 1, . . . ,m − 1, are of the form E(eji ), and Xm = aE(ejm) with a a
compactly supported function. If a :O(M) → R, hk(s) = s

t ek and Φa(p) = a(p(t)), then

[
X(hk)Φa

](
p(·,w)

)
= E(ek)p(t,w)a +

d∑

l=1

λ

( t∫

0

Ωp(σ,w)

(
el,hk(σ )

)
◦ dwl(σ )

)

a.

Applying this to f ◦ π , one gets

(
E(ek)(f ◦ π)

)(
p(t,w)

)
=

[
X(hk)Φf ◦π

](
p(·,w)

)
,

and consequently, one can use Theorem B.11 to move all the derivatives of f ◦ π . After
doing this, all that one has to do is to estimate derivatives of solutions to stochastic integral
equations.

For a purely stochastic or classical integral, the estimates are obtained by simply com-
puting the derivatives. For example, in the case of an integral involving the Ricci curvature,
we point out that

X(hlr ) . . .X(hl1)

t∫

0

〈
ḣk(σ ) + 1

2
Rp(σ,w)hk(σ ), dw(σ )

〉

= 1
2

t∫

0

〈(
E(elr )p(σ,w) . . .E(el1)R

)
hk(σ ), dw(σ )

〉
. (B.22)

Similar equalities can be obtained for other integrals involving the full curvature.
For the estimates of X(hlr ) . . .X(hl1)G or X(hlr ) . . .X(hl1)Ut , we use induction.
First observe that the estimates of X(hl1) . . .X(hlm)G are reduced to estimates of

X(hl1) . . .X(hlm)o. For this purpose, notice that, since S is skew-symmetric, o(t,w) is
an orthogonal matrix. Set

om = X(hlm) . . .X(hl1)o.
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From (B.7), Os(t,w) satisfies

dOs(t,w) = Os(t,w)SPs (t,w)

(
◦dWs(t,w)

)
,

with Os(0,w) = I , thus the equation for o1 is

do1(t,w) = o1(t,w)Sp(t,w)(◦dw) +Z(t,w) (B.23)

with the initial condition o1(0,w) = 0, and Z(t,w), a multiple classic and stochastic inte-
grals involving the curvature, o, canonical vector fields and S. In general, the solution to
the Stratonovich stochastic differential equation

dYt = YtSp(t,w)(◦dw) + ◦dZt

with the initial condition Y0 = 0, is given by

Yt =
t∫

0

(◦dZσ )o(σ,w)∗o(t,w).

In the same way we can estimate higher derivatives. The equation satisfied by ok is written
in terms of the action of X(hls ) . . .X(hl1), 0 " s " k − 1, on o, S and the curvature, we
already know how to control.

We point out the general structure of these derivatives, namely they are iterated
Stratonovich integrals where the integrands are polynomially bounded in terms of the dis-
tance function on M .

For the case of Ut , set

Um
t = X(hlm) . . .X(hl1)Ut .

The following lemma is needed here and has a standard proof, therefore will be omitted.

Lemma B.24. Let (H, 〈·,·〉) be a finite-dimensional vector space with an inner product.
Let t ∈ [0,∞) → Xt,Yt ∈ End(H) be two continuous maps, and t : [0,∞) → ψ(t) ∈ R
a locally integrable function with the property that 〈Xtξ, ξ 〉 " ψ(t)|ξ |2 for any t ! 0. If Ut

is the solution to

U̇t = UtXt + Yt

then,

‖Ut‖ " e
∫ t

0 ψ(s) ds

(

‖U0‖ +
t∫

0

‖Ys‖e−
∫ s

0 ψ(σ ) dσ ds

)

for t ! 0,

where ‖ · ‖ is the operator norm.
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From this lemma, with Y = 0 and W0 = I , one gets

Ut

(
p(·,w),o(·,w)

)
" C exp

( t∫

0

φ
(
p(σ,w)

)
dσ

)

.

Next, write the equation for U1:

{
dU1

t = U1
t A(p(t,w),o(t,w)) + UtA1(p(t,w),o(t,w)),

U1
0 = 0,

(∗)

where, A1 is given in terms of the action of the vector fields X(hi ), i = 1, . . . ,m on A,
the curvature and o. To estimate U1, we use again Lemma B.24 with Y = UtA1(p(t,w),

o(t,w)) together with the estimate on U to arrive at

∥∥U1
t

∥∥ " V1
t exp

( t∫

0

φ
(
p(σ,w)

)
dσ

)

,

where V1
t is the sum of norms of product of multiple classical or stochastic integrals with

each integrand polynomially bounded in terms of the distance along the path p(·,w) =
πp(t,w). Similarly, one can estimate higher derivatives. For the kth derivative, we get

∥∥Uk
t

∥∥ " Vk
t exp

( t∫

0

φ
(
p(σ,w)

)
dσ

)

,

where Vk
t is the sum of norms of product of multiple integrals, each integrand being poly-

nomially bounded in terms of the distance along the path p(·,πw). From here, (B.20)
follows.

Finally, using [8, Theorem 8.46] one can justify the integrability of

exp

( t∫

0

C dist
(
p(σ,w), o

)
dσ

)

for any positive constant C. Using Burkholder’s inequality one can prove that Ψ (t) ∈⋂
p>1 Lp(Wd ,End(V )). The rest is straightforward. !

Next we want to describe the application of this theorem to the conditional expectations
and in the next section we will apply these considerations to heat kernels analysis. Take
a complete Riemannian manifold M with a compatible connection ∇ which has the same
Laplacian on functions as the usual Laplacian. We assume that the torsion of ∇ and the
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curvature of the Levi-Civita connection have at most polynomial growth at infinity in all
their derivatives. Our interest is in the conditional expectations of the form

EWd
[
U(t, x,w)τ∇

p(·,x,w)"[t,0]δy

(
p(t, x,w)

)]
, (B.25)

where τ∇ is the parallel transport with respect to the connection ∇ extended to forms, and
U satisfies the differential equation

{
U̇ (t, x,w) = U(t, x,w)τ∇

p(·,x,w)"[t,0]A(p(t, x,w))τ∇
p(·,x,w)"[0,t],

U(0, x,w) = Id∧
x(M),

where A ∈ End(
∧

(M)) (i.e., A(x) :
∧

x(M) → ∧
x(M)) is a smooth tensor which has at

most polynomial growth at infinity in all its derivatives and there exists C > 0 such that for
any x ∈ M , 〈A(x)ξ, ξ 〉 " C dist(x, o)|ξ |2, ξ ∈ ∧

x(M).
Next we want to interpret the integral in (B.25) as an integral at the frame bundle level.

To this end, take the tensor SXY = ∇XY − ∇LC
X Y and its lift Sf(ξ) = f−1Sfξ f, and extend

(cf. Definition 1.4) S and S to act on forms. Then notice that this tensor is given entirely
in terms of the torsion of ∇ , therefore they have at most polynomial growth at infinity. Fix
f ∈ O(M) so that π f = x, identify Rd with Tx(M) by f, and set

o(t,w) = f−1τ∇
p(·,x,w)"[t,0]τp(·,x,w)"[0,t]f.

Extend this to a map on forms, and observe that

do(t,w) = o(t,w)Sp(t,w)(◦dw).

Now, in distributional sense, one can write δy as a linear combinations of the form
X1X2 . . .Xdf , with f a bounded measurable function and Xi , i = 1, . . . , d , compactly
supported vector fields. Taking X1,X2, . . . ,Xd , the horizontal lifts of X1,X2, . . . ,Xd , we
can rewrite the integral (B.25) as

EWd
[(

X1X2 . . .Xd(f ◦ π)
)(

p(t,w)
)
U(t,w)o(t,w)

]
,

where A(g) = g−1A(πg)g and

{
U̇(t,w) = U(t,w)o(t,w)A(p(t,w))o(t,w)∗,
U(0,w) = IdRd .

Therefore we have,

Corollary B.26. Under the assumption (B.1) on the Ricci curvature of the Levi-Civita
connection, and if the torsion of the connection ∇ and the curvature of the Levi-Civita con-
nection have at most polynomial growth at infinity in all their derivatives, then, there exists
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a progressively measurable map Ψ (t, x, y, ·) ∈ ⋂
p$1 Lp(Wd ;Hom(

∧
y(M),

∧
x(M))) so

that,

EWd
[
U(t, x,w)σ∇

p(·,x,w)"[t,0]δy

(
p(t, x,w)

)]
= EWd

[
f

(
p(t, x,w)Ψ (t, x, y,w)

)]
.

In addition, if Γ ⊂ M is an open set, x ∈ Γ ⊂ M , ζΓ (w) = inf{t > 0,p(·, x,w) ∈ Γ c} the
first exit time of the path p(·, x,w) from Γ , then Ψ (t, x, y,w) on the set {ζΓ ! t} depends
only on the support of f , the vectors X1, X2, . . . , Xd and f , S, R (the curvature), T (the
torsion of ∇) and A restricted to Γ .

Appendix C. About semigroups and heat kernels

In this section we assume that M is a complete Riemannian manifold with the curvature
having at most polynomial growth in all its derivatives and satisfying, for a certain constant
C > 0 and a fixed reference point o,

−C
(
1 + dist(z, o)2)|X|2z " Ricz(Xz,Xz), for all z ∈ M, Xz ∈ Tz(M).

We will analyze the existence, basic properties and estimates for heat kernels of opera-
tors on

∧
(M) of the form

L = −&∇ +
d∑

j=1

B1(Ej )∇Ej + B2, (C.1)

where Ej , j = 1, . . . , d , is any orthonormal basis and the various components satisfy:

(1) ∇ is a connection which is compatible with the metric on M and its Laplacian on
functions is the same as the Laplacian of the Levi-Civita connection.

(2) In the notations of Definition 1.4, B1 = D∗S and B2 = D∗T where S is an odd tensor
and T is an even tensor. Also we assume that (B1)z(Xz) is skew-symmetric for all
z ∈ M , Xz ∈ Tz(M).

(3) There exists a constant K ! 0 such that

〈(

(B2)z +
d∑

i=1

B1(Ei)
2
z

)

Xz,Xz

〉

" K|Xz|2 for any z ∈ M, Xz ∈ Tz(M).

The next lemma gives estimates on the size of solutions to certain stochastic differential
equations.

Lemma C.2. Let (H, 〈·,·〉) be a finite-dimensional vector space endowed with an inner
product and Xt , Y i

t , i = 1, . . . , d , locally bounded progressively measurable End(H)-
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valued processes such that Y i
t is skew-symmetric for i = 1, . . . , d . Let Vt be the solution to

the stochastic differential equation

{
dVt = Vt

(
Xt dt + ∑d

i=1 Y i
t dwi (t)

)
,

V0 = Id,

where dwi stands for the Itô stochastic differential. If Tt is the solution to the Stratonovich
equation

{
dTt = Tt ◦ d

∑d
i=1

∫ t
0 Y i

σ dwi (σ ),

T0 = Id,

and Wt is the solution to the ODE

{
Ẇt = WtTt

(
Xt − 1

2
∑d

i=1(Y
i
t )

2)T −1
t ,

W0 = Id.

Then Tt is unitary for any t ! 0 and

Vt = WtTt .

Therefore, estimates on the size of Vt reduces to estimates on the size of Wt .

Proof. Rewrite the equation for V in the Stratonovich form:

{
dVt = VtXt dt + Vt ◦ d

∑d
i=1

∫ t
0 Y i

σ dwi (σ ) − 1
2d

〈〈
Vt ,

∫ t
0
∑d

i=1 Y i
σ dwi (σ )

〉〉
,

V0 = Id,

where for two End(H)-valued martingales A and B , 〈〈A,B〉〉 is the End(H)-valued process
with bounded variation such that AB − 〈〈A,B〉〉 is an End(H)-valued martingale. Notice
that if A and B are two End(H)-valued semimartingales, then 〈〈A,B〉〉 is the corresponding
process associated to their martingale parts. Since

Vt = Id +
t∫

0

Vσ

d∑

i=1

Y i
σ dwi (σ ) +

t∫

0

Vσ Xσ dσ,

we obtain

〈〈

Vt ,

t∫

0

d∑

i=1

Y i
σ dwi (σ )

〉〉

=
〈〈 t∫

0

Uσ

d∑

i=1

Y i
σ dwi (σ ),

t∫

0

d∑

j=1

Y j
σ dwj (σ )

〉〉

=
d∑

i=1

t∫

0

Vσ Y i
σ Y i

σ dσ =
d∑

i=1

t∫

0

Vσ

(
Y i

σ

)2
dσ.
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Then, the equation for V becomes

dVt = Vt

(

◦d

d∑

i=1

t∫

0

Y i
σ dwi (σ ) +

(

Xt − 1
2

d∑

i=1

(
Y i

t

)2

)

dt

)

.

Now, because (Y i
σ )∗ = −Y i

σ , an easy computation shows that ◦d(TtT
∗
t ) = 0, which proves

that Tt is an isometry. Further,

◦dWtTt = (◦dWt)Tt + Wt ◦ dTt

= WtTt

(

◦d

d∑

i=1

t∫

0

Y i
σ dwi (σ ) +

(

Xt − 1
2

d∑

i=1

(
Y i

t

)2

)

dt

)

with W0T0 = Id. Hence, by uniqueness Vt = WtTt . !

Theorem C.3. The operator L in (C.1) determines a semigroup {PL
t : t ! 0} whose action

on compactly supported forms is given by

(
PL

t ω
)
(z) = EWd

[
U(t, z,w)τ∇

p(·,z,w)"[t,0]ω
(
p(t, z,w)

)]
(C.4)

where the parallel transport τ∇ is the parallel transport with respect to the connection ∇
defined in Section 3.3, and U is the solution to the equation

{
dU(t, z,w) = U(t, z,w)

(
B2(t, z,w) dt + ∑d

j=1(B1)j (t, z,w) dwj (t)
)
,

U(0, z,w) = Id∧
z(M),

with Ej , j = 1, . . . , d , an orthonormal basis of Tz(M), and

B2(t, z,w) = τ∇
p(·,z,w)"[t,0](B2)p(t,z,w)τ

∇
p(·,z,w)"[0,t],

(B1)j (t, z,w) = τ∇
p(·,z,w)"[t,0]B1

(
τ∇
p(·,z,w)"[0,t]Ej

)
p(t,z,w)

τ∇
p(·,z,w)"[0,t].

Moreover, if the tensors B1 and B2 have at most polynomial growth in all their derivatives
(cf. Definition B.15), then the heat kernel pL(t, z1, z2) :

∧k
z2

M → ∧k
z1

M of L exists and
can be written as

pL(t, z1, z2) = EWd
[
U(t, z1,w)τ∇

p(·,z1,w)"[t,0]δz2

(
p(t, z1,w)

)]
,

interpreted via integration by parts on the path space.

Proof. The proof of (C.4) is standard and therefore will be omitted. We point out that
in order to justify the integrability in (C.4), one can use Proposition C.2 together with
Lemma B.24 to show that U is a bounded map.
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For the existence of the heat kernels one can follow the proof outlined in [8, Theo-
rem 6.25], which extends to this case as well since the semigroup here has all the essential
properties needed in the proof there. !

The following proposition is a basic tool for heat kernels estimates.

Proposition C.5. Assume there is a smooth function φ :M → R bounded from above such
that

〈

(B2)zXz +
n∑

i=1

B1(Ei)
2
zXz,Xz

〉

" φ(z)|Xz|2 for z ∈ M, Xz ∈ Tz(M).

Then
∥∥pL(t, z1, z2)

∥∥ " pφ(t, z1, z2)

where the last quantity is the heat kernel of the operator & + φ on functions.

Proof. Using the expression for the semigroups given in Proposition C.3, the estimates
in Proposition C.2 and Lemma B.24, we get the bounds on the semigroups. By taking an
approximate identity of the delta function in distributional sense, one gets from estimates
on semigroups to the estimates on the heat kernels. !
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