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Abstract

This work is devoted to direct mass transportation proofs of families of functional inequalities in the con-
text of one-dimensional free probability, avoiding random matrix approximation. The inequalities include
the free form of the transportation, Log-Sobolev, HWI interpolation and Brunn–Minkowski inequalities
for strictly convex potentials. Sharp constants and some extended versions are put forward. The paper also
addresses two versions of free Poincaré inequalities and their interpretation in terms of spectral properties
of Jacobi operators. The last part establishes the corresponding inequalities for measures on R+ with the
reference example of the Marcenko–Pastur distribution.
© 2009 Elsevier Inc. All rights reserved.
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1. Introduction

A distinguished role in the world of functional inequalities is played by the logarithmic
Sobolev (Log-Sobolev) inequality and the Talagrand or transportation cost inequality. There is
an extensive literature dedicated to these inequalities in the classical setting of Euclidean and
Riemannian spaces (cf. e.g. [2,23,29,32]).
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Given a probability measure ν on R
d , the transportation cost inequality states that for some

ρ > 0 and any other probability measure μ on R
d ,

ρW 2
2 (μ, ν) � E(μ | ν). (T (ρ))

Here W2(μ, ν) is the Wasserstein distance between μ and ν of finite second moment defined by

W2(μ, ν) = inf
π∈Π(μ,ν)

(∫ ∫
|x − y|2π(dx, dy)

)1/2

with Π(μ,ν) denoting the set of probability measures on R
2d with marginals μ and ν and

E(μ | ν) =
∫

log
dμ

dν
dμ

is the relative entropy of μ with respect to ν if μ � ν and +∞ otherwise. The Log-Sobolev
inequality is that for any μ

E(μ | ν) � 1

2ρ
I (μ | ν) (LSI(ρ))

where

I (μ | ν) =
∫ ∣∣∣∣∇ log

dμ

dν

∣∣∣∣
2

dμ

is the Fisher information of μ with respect to ν which is defined in the case μ � ν with dμ
dν

being differentiable. A more subtle inequality is the HWI inequality relating entropy (notice
that E(μ | ν) is H(μ | ν) in [25] which explains the H), Wasserstein distance W, and Fisher
information I

E(μ | ν) �
√

I (μ | ν)W2(μ, ν) − ρ

2
W 2

2 (μ, ν). (HWI(ρ))

Poincaré’s inequality in this classical context is that for any compactly supported and smooth
function ψ on R

d ,

ρ Varμ(ψ) �
∫

|∇ψ |2 μ(dx) (P(ρ))

where Varμ(ψ) = ∫
ψ2(x)μ(dx) − (

∫
ψ(x)μ(dx))2 is the variance of ψ with respect to μ.

Starting with Gaussian measures [14,28], these inequalities were established for measures on
R

d with strictly convex potentials by the Bakry–Émery criterion [2,23,29,32]. More precisely,
if ν(dx) = e−V (x) dx, with V (x) − ρ|x|2 convex on R

d for some ρ > 0, both T (ρ) and LSI(ρ)

hold true. Otto and Villani generated interest in this topic through their remarkable paper [25], in
which they showed that the logarithmic Sobolev inequality implies the trasportation inequality,
in a rather general setting. This connection was actually put further through the stronger HWI(ρ)

inequality, which was shown in [25] to be valid in the case V (x) − ρ|x|2 is convex for some
ρ ∈ R, When ρ > 0, LSI(ρ) is a consequence of HWI(ρ). Subsequently the main result from [25]
was simplified and extended, for example [5] and recently [13] to mention only two sources.
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Another interesting connection in these families of functional inequalities is that any of T (ρ),
LSI(ρ) or HWI(ρ) imply the Poincaré inequality P(ρ).

The work [25] by Otto and Villani input in a powerful way the use of mass transportation
ideas in the context of functional inequalities. Starting from this, Cordero-Erausquin used in [9]
direct convexity arguments combined with mass transport methods to reprove the Log-Sobolev,
transportation and HWI inequalities for measures with strictly convex potentials. The strategy is
going back to the original approach of [28] to the transportation inequality (see also [4]).

In the world of free probability, as it was shown by Ben Arous and Guionnet in [1], one
can realize the free entropy as the rate function of the large deviations for the distribution of
eigenvalues of some n × n complex random matrix ensembles (see also [19]). To wit a little bit
here, let V : R → R be a nice function with enough growth at infinity and define the probability
distribution

Pn(dM) = 1

Zn

e−nTrn(V (M))dM

on the set Hn of complex Hermitian n × n matrices where dM is the Lebesgue measure on Hn.
For a matrix M , let μn(M) = 1

n

∑n
k=1 δλk(M) be the distribution of eigenvalues of M . These are

random variables with values in P (R), the set of probability measures on R which converge
almost surely to a non-random measure μV on R. For a measure μ on R, its the logarithmic
energy with external field V is defined by

E(μ) =
∫

V (x)μ(dx) −
∫ ∫

log |x − y|μ(dx)μ(dy).

The minimizer of E(μ) over all probability measures on R is exactly the measure μV . From [1]
we learned that the distributions of {μn}n�1 under Pn satisfy a large deviations principle with
scaling n2 and rate function given by

R(μ) = E(μ) − E(μV ).

The example of the quadratic potential V (x) = x2 defining the paradigmatic Gaussian Unitary
Ensemble in random matrix theory gives rise to the celebrated semicircular law as equilibrium
measure.

Within this random matrix framework, if V (x) − ρx2 is smooth and convex for some ρ > 0,
then the function Φ(M) = Trn(V (M)) is strongly convex (Φ(M) − nρ|M|2 is convex) on
R

n2 = Hn. An application of the classical LSI(nρ) on Hn for large n was used by Biane [3] to
prove a Log-Sobolev inequality in the context of one-dimensional free probability which holds
(cf. [18]) in the following form

E(μ) − E(μV ) � 1

4ρ
I (μ) (1.1)

for any probability measure μ on R whose density with respect to the Lebegue measure is
in L3(R), where

I (μ) =
∫ (

Hμ(x) − V ′(x)
)2

μ(dx)

with Hμ = 2
∫ 1

x−y
μ(dx) being the Hilbert transform of μ.
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More precisely, Biane and Voiculescu used the free Ornstein Uhlenbeck process and the com-
plex Burger equation. Using the large random matrix strategy, Hiai Petz and Ueda [18] reproved
and extended the result of Biane and Voiculescu in the following form. If V (x) − ρx2 is convex
for some ρ > 0, then for every probability measure μ on R,

ρW 2
2 (μ,μV ) � E(μ) − E(μV ). (1.2)

Later, the first author [24] gave a simpler proof of (1.1) and (1.2) based on a free version
of the geometric Brunn–Minkowski inequality obtained as a random matrix limiting case of its
classical counterpart. He also showed the free analog of the Otto–Villani theorem indicating that
the free Log-Sobolev inequality implies the free transportation inequality (1.2).

The first scope of this paper is to provide direct proofs of the preceding functional inequalities
in free probability without random matrix approximation. The second author of this paper in [26]
gave a simple proof of the transportation inequality (1.2) on the same line of ideas as in [28] for
the classical case where random matrix theory is entirely avoided.

In this paper, following the approach of Cordero-Erausquin [9] (see also [4]), we use a com-
bination of mass transport and convex analysis which apply to strictly convex potentials. The
methods allow us besides to enlarge the class of potentials under consideration, in particular
in instances which lack a proper random matrix approximation. For example, we cover poten-
tials V on the line such that V (x) − ρ|x|p is convex for some ρ > 0 and p > 1 as well as a class
of bounded perturbations of convex potentials. Using this approach, we present here an HWI free
inequality for various cases of potentials. For the case V (x) − ρx2 convex for some ρ ∈ R, this
is

E(μ) − E(μV ) �
√

I (μ)W2(μ,μV ) − ρW 2
2 (μ,μV ). (1.3)

Also a Brunn–Minkowski inequality receives a direct proof as well.
One interesting byproduct of our method is that some constants may be shown to be sharp.

For the case of a quadratic V , Eqs. (1.1), (1.2) and (1.3) are sharp.
Another topic discussed here in Section 3 is a free form of the transportation inequality which

does not depend on the potential and that might be thought of as a version of the celebrated
Pinsker inequality comparing total variation distance and entropy between probability measures.
As opposed to the classical case, the free counterpart is more delicate.

The second part of this work is devoted to free one-dimensional Poincaré inequalities. Us-
ing random matrix approximations and the classical Poincaré inequality, we first give an ansatz
to what could be a possible Poincaré inequality in the free probability world. In the case of
V (x) − ρx2 convex for some ρ > 0, such that the measure μV has support [−1,1], this states as,

∫
φ′(x)2μV (dx) � ρ

2π2

1∫
−1

1∫
−1

(
φ(x) − φ(y)

x − y

)2 1 − xy√
1 − x2

√
1 − y2

dx dy, (1.4)

for any smooth function φ on the interval [−1,1].
There is also a second version of the Poincaré which is discussed in [3] for the case of the

semicircular law. This inequality has a natural meaning in the context of free probability as the
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derivative ∇φ of a function from the classical P(ρ) is replaced by the noncommutative derivative
φ(x)−φ(y)

x−y
, and thus our second version takes the form

∫ ∫ (
φ(x) − φ(y)

x − y

)2

μ(dx)μ(dy) � C Varμ(φ) for every φ ∈ C1
0(R). (1.5)

As opposed to (1.4) which requires certain conditions on the measure μV , it turns out that (1.5)
is always satisfied for any compactly supported measure μ with some constant. As was shown
in [3] for the semicircular law, one can completely characterize the distribution in terms of the
constant C.

After the use of convexity, inequality (1.4) may actually be interpreted as a spectral gap as
follows. On L2

(1[−2,2](x)dx√
4−x2

)
take the Jacobi operator

Lf = −(
1 − x2)f ′′(x) + xf ′(x)

and the counting number operator defined by

NTn = nTn

where Tn are the Chebyshev polynomials of the first kind, which are orthogonal in
L2

(1[−2,2](x) dx√
4−x2

)
. Then, (1.4) for V (x) = x2/2 is equivalent to

L � N.

Inequality (1.5) in the case of V (x) = x2/2 can also be seen as the spectral gap for the
counting number operator on L2(1[−2,2](x)

√
4 − x2 dx) with respect to the basis given by the

Chebyshev polynomials of second kind. A more general situation is discussed in Section 9 which
includes both versions of the Poincaré inequalities.

As we mentioned already, in the classical setting, the Log-Sobolev and the transportation
inequality imply the Poincaré inequalities. We do not have a satisfactory picture of these im-
plications in the free context, for any of the two versions of the Poincaré inequality discussed
here.

In the final part, we investigate the preceding families of functional inequalities for proba-
bility measures supported on the positive real axis. The random matrix context is the one of
Wishart ensembles with reference measure the Marcenko–Pastur distribution as opposed to the
semicircular law, and the free functional inequalities correspond formally to the case of poten-
tials V (x) = rx − s log(x) for r > 0, s � 0 on R+. Using the mass transportation method, we
prove transportation, Log-Sobolev and HWI inequalities which were not investigated previously.
A version of the Poincaré inequality is also discussed.

The structure of the paper is as follows. Sections 2, 4, 5 and 6 deal with the mass transportation
proofs of respectively the transportation, Log-Sobolev, HWI and Brunn–Minkowski inequalities.
Section 3 studies transportation inequalities which involve some metric on the probabilities and
which are independent of the potential V . Sections 7 and 8 are devoted to the two versions of the
Poincaré inequality in the free context, related in Section 9 through Jacobi operators. Section 10
investigates the preceding inequalities with respect to the Marcenko–Pastur distribution and its
convex extensions.
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2. Transportation inequality

Throughout this paper we consider lower semicontinuous potentials V : R → R such that

lim|x|→∞
(
V (x) − 2 log |x|) = ∞. (2.1)

For a given Borel set Γ ⊂ R, denote by P (Γ ) the set of probability measures supported on Γ .
The logarithmic energy with external potential V is defined by

EV (μ) :=
∫

V (x)μ(dx) −
∫ ∫

log |x − y|μ(dx)μ(dy)

whenever both integrals exist and have finite values. In particular for measures μ which have
atoms, EV (μ) = +∞ because the second integral is +∞.

It is known (see [27] or [11]) that under condition (2.1) there exists a unique minimizer of EV

in the set P (R) and the solution μV is compactly supported. The variational characterization of
the minimizer μV (cf. [27, Theorem 1.3]) is that for a constant C ∈ R,

V (x) � 2
∫

log |x − y|μV (dy) + C for quasi-every x ∈ R,

V (x) = 2
∫

log |x − y|μV (dy) + C for quasi-every x ∈ supp(μV ), (2.2)

where supp(μV ) stands for the support of μ. If μ is such that EV (μ) < ∞, then Borel quasi-
everywhere sets have μ measure 0 and thus the properties above hold almost surely with respect
to μ.

For simplicity of the notation, we will drop the subscript V from EV unless the dependence
of the potential has to be highlighted.

Now we summarize some known facts about the equilibrium measure and its support as one
can easily deduce them from [27, Chapter IV] and [11, Chapter 6].

Theorem 1.

1. Let V be a potential satisfying (2.1) and α �= 0, β ∈ R. Set Vα,β(x) = V (αx + β). Then,
μVα,β = ((id − β)/α)#μV and

EV (μV ) = EVα,β (μVα,β ) − log |α|. (2.3)

2. If V is convex satisfying (2.1), then the support of the equilibrium measure μV consists of
one interval [a, b] where a and b solve the system

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1

2π

b∫
a

V ′(x)

√
x − a

b − x
dx = 1,

1

2π

b∫
a

V ′(x)

√
b − x

x − a
dx = −1.

(2.4)
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3. Let V be either a C2 satisfying (2.1) whose equilibrium measure has support [a, b]. Then
the equilibrium measure μV has density g(x), given by

g(x) = 1[a,b](x)

√
(x − a)(b − x)

2π2

b∫
a

V ′(y) − V ′(x)

(y − x)
√

(y − a)(b − y)
dy. (2.5)

4. If V is C2, then

V ′(x) = p.v.
∫

2

x − y
μV (dx) for μV -a.s. all x ∈ supp(μV ), (2.6)

where p.v. stands for the principal value integral. Notice that the principal value makes sense
as μV has a continuous density.

We mention as a basic example that if V (x) = ρx2 is quadratic, then μV is the semicircular
law

μV (dx) = 1[−√
2/ρ,

√
2/ρ](x)

√
2ρ − ρ2x2 dx

π
.

In this work, for p � 1, we use Wp(μ,ν) for the Wasserstein distance on the space of proba-
bility measures on R defined as

Wp(μ,ν) = inf
π∈Π(μ,ν)

(∫ ∫
|x − y|pπ(dx, dy)

)1/p

(2.7)

with Π(μ,ν) denoting the set of probability measures on R
2 with marginals μ and ν. Note here

that if θ is the (non-decreasing) transport map such that θ#μ = ν, then

W
p
p (μ,ν) =

∫ ∣∣θ(x) − x
∣∣pν(dx). (2.8)

For a detailed discussion on this topic we refer the reader to [29].
Our first result concerns the free version of the transportation cost inequality. As discussed

in the introduction, the first assertion for strictly convex potentials was initially proved by large
matrix approximation in [18]. The strategy of proof is inspired from [4,9,28] (see [26]).

Theorem 2 (Transportation inequality).

1. If V is C2 and V (x) − ρx2 is convex for some ρ > 0, then for any probability measure μ

on R,

ρW 2
2 (μ,μV ) � E(μ) − E(μV ). (2.9)

If V (x) = ρx2, then the equality in (2.9) is attained for measures μ = θ#μV , with θ(x) =
x + m, therefore the constant ρ in front of W 2(μ,μV ) is sharp.
2
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2. Assume that V is C2, convex and V ′′(x) � ρ > 0 for all |x| � r . Then, there is a constant
C = C(r,ρ,μV ,V ) > 0, such that

CW 2
2 (μ,μV ) � E(μ) − E(μV ). (2.10)

3. In the case V is C2 and V (x) − ρ|x|p is convex for some real number p > 1, then, for any
probability measure μ on R,

cpρW
p
p (μ,μV ) � E(μ) − E(μV ) (2.11)

where cp = infx∈R(|1 + x|p − |x|p − p sign(x)|x|p−1) > 0.

Proof. 1. Since there is nothing to prove in the case E(μ) = ∞, we assume that E(μ) < ∞. In
this case we also have that the measure μ and μV both have second finite moments.

Now we take the non-decreasing transportation map θ such that θ#μV = μ which exists due
to the lack of atoms of μV . Using the transport map θ , we first write

E(μ) − E(μV ) =
∫ (

V
(
θ(x)

)− V (x) − V ′(x)
(
θ(x) − x

))
μV (dx)

+
∫ ∫ (

θ(x) − θ(y)

x − y
− 1 − log

θ(x) − θ(y)

x − y

)
μV (dx)μV (dy) (2.12)

where in between we used the variational equation (2.6) to justify that

∫
V ′(x)

(
θ(x) − x

)
μV (dx) = 2

∫ ∫
θ(x) − x

x − y
μV (dy)μV (dx)

=
∫ ∫

(θ(x) − x) − (θ(y) − y)

x − y
μV (dy)μV (dx).

Since V (x) − ρx2 is convex, for any x, y the following holds

V (y) − V (x) − V ′(x)(y − x) � ρ
(
y2 − x2 − 2x(y − x)

) = ρ(y − x)2.

On the other hand since a − 1 � log(a) for any a � 0, Eqs. (2.12) and (2.8) yield (2.9).
In the case V (x) = ρx2 it is easy to see that for θ(x) = x+m, all inequalities involved become

equalities, thus we attain equality in (2.9) for translations of μV .
2. We start the proof with (2.12), whereas this time we need to exploit the logarithmic term

to get our inequality. The idea is to use the strong convexity where ψ(x) := θ(x) − x takes large
values and for small values of ψ(x) we try to compensate this with the second integral of (2.12).

Notice in the first place that by Taylor’s theorem we have that

V (y) − V (x) − V ′(x)(y − x) = (y − x)2

1∫
0

V ′′((1 − τ)x + τy
)
(1 − τ) dτ. (2.13)

Now, let us assume that the support of the equilibrium measure μV is [a, b]. Next, V ′′(x) � 0
and V ′′(x) � ρ for |x| � r , implies that for |y| � 2r + 2 max{|a|, |b|}, we obtain that
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V (y) − V (x) − V ′(x)(y − x) � (y − x)2

1∫
1/2

V ′′((1 − τ)x + τy
)
(1 − τ) dτ

� ρ(y − x)2/8 for any x ∈ [a, b].

Now write θ(x) = x + ψ(x). Thus using (2.12), and denoting R = 2r + 2 max{|a|, |b|} we con-
tinue with ∫ (

V
(
θ(x)

)− V (x) − V ′(x)
(
θ(x) − x

))
μV (dx)

� 1

2

∫
ψ2(x)

1∫
0

V ′′(x + τψ(x)
)
(1 − τ) dτ μV (dx)

� ρ

16

∫
|ψ |�R

ψ2(x)μV (dx). (2.14)

This inequality provides a lower bound of the first term in (2.12). Further, it is not hard to check
that ∫

|ψ |�R

ψ2(x)μV (dx)

= 1

2

∫
1|ψ |�R(x)ψ2(x)μV (dx) + 1

2

∫
1|ψ |�R(y)ψ2(y)μV (dy)

� 1

8

∫ ∫
1|ψ(x)−ψ(y)|�2R(x, y)

∣∣ψ(x) − ψ(y)
∣∣2 μV (dx)μV (dy). (2.15)

Now we treat the second integral on the left-hand side of (2.12). Use that t − log(1 + t) �
|t |− log(1+|t |) for any t > −1 together with the fact that t − log(1+ t) is an increasing function
for t � 0 to argue that

∫ ∫ (
ψ(x) − ψ(y)

x − y
− log

(
1 + ψ(x) − ψ(y)

x − y

))
μV (dx)μV (dy)

�
∫ ∫ ( |ψ(x) − ψ(y)|

b − a
− log

(
1 + |ψ(x) − ψ(y)|

b − a

))
μV (dx)μV (dy). (2.16)

Further, for s � 0 and u,v > 0 we have

us2 + s − log(1 + s) �
{

v−log(1+v)

v2 s2, 0 � s � v

us2, v � s
� min

{
u,

v − log(1 + v)

v2

}
s2.

This inequality used for u = ρ(b−a)2

128 and v = 2R
b−a

in combination with (2.15) and (2.16) yields

for the choice of c = min{u, (v − log(1 + v))/v2} that
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ρ

16

∫
|ψ |�R

ψ2(x)μV (dx) +
∫ ∫ (

ψ(x) − ψ(y)

x − y
− log

(
1 + ψ(x) − ψ(y)

x − y

))
μV (dx)μV (dy)

� c

∫ ∫ (
ψ(x) − ψ(y)

)2
μV (dx)μV (dy)

= c

[∫
ψ2(x)μV (dx) −

( ∫
ψ(x)μV (dx)

)2]
. (2.17)

This shows that E(μ) − E(μV ) is bounded below by a constant times the variance of ψ . Notice
that W 2

2 (μ,μV ) = ∫
ψ2(x)μV (dx) and in order to complete the proof we have to replace the

variance of ψ by the integral of ψ2 with respect to μV . This boils down to estimating the μV

integral of ψ in terms of the integral of ψ2.
To this end, use Cauchy’s inequality:

(∫
ψ(x)μV (dx)

)2

�
∫

ψ2(x)

(
1 + 1

2c

1∫
0

V ′′(x + τψ(x)
)
(1 − τ) dτ

)
μV (dx)

×
∫

1

1 + 1
2c

∫ 1
0 V ′′(x + τψ(x))(1 − τ) dτ

μV (dx).

This inequality combined with Eqs. (2.12), (2.14) and (2.17), results with

E(μ) − E(μV ) �
∫

ψ2(x)

(
c + 1

2

1∫
0

V ′′(x + τψ(x)
)
(1 − τ) dτ

)
μV (dx)

×
∫ ∫ 1

0 V ′′(x + τψ(x))(1 − τ)dτ

2c + ∫ 1
0 V ′′(x + τψ(x))(1 − τ) dτ

μV (dx)

� c

∫ ∫ 1
0 V ′′(x + τψ(x))(1 − τ) dτ

2c + ∫ 1
0 V ′′(x + τψ(x))(1 − τ) dτ

μV (dx)W 2
2 (μ,μV ),

where here we used the convexity encoded into V ′′ � 0 and the fact that W 2
2 (μ,μV ) =∫

ψ2(x)μV (dx) to get the lower bound of the first integral.
From the previous inequality, it becomes clear that we are done as soon as we prove that the

quantity in front of W 2
2 (μ,μV ) is bounded from below by a positive constant uniformly in ψ . To

carry this out, notice that V ′′ can not be identically zero on [a, b]. Indeed, if V ′′ were identically
zero on [a, b], then we would have that V ′(x) = K for all x ∈ [a, b], and this plugged into
Eq. (2.4), yields that K(b − a) = 2 and K(b − a) = −2, a system without a solution. Therefore
V ′′ is not identically 0 on [a, b]. If |ψ(x)| > R, then V ′′(x + τψ(x)) � ρ for 1/2 � τ < 1, which
implies

∫ 1
0 V ′′(x + τψ(x))(1 − τ)dτ � ρ/8. On the other hand, if |ψ(x)| � R, then

1∫
V ′′(x + τψ(x)

)
(1 − τ) dτ �

δ∫
V ′′(x + τψ(x)

)
(1 − τ) dτ � δ

2
inf|y−x|�δR

V ′′(y)
0 0
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for all 0 � δ � 1. Define

w(x) = sup
δ∈[0,1]

min

{
ρ

8
,
δ

2
inf|y−x|�δR

V ′′(y)

}
.

Since V ′′ is not identically 0 on [a, b], it follows that w is not identically zero on [a, b]. With
this we obtain that

1∫
0

V ′′(x + τψ(x)
)
(1 − τ) dτ � w(x) � 0,

and then that

c

∫ ∫ 1
0 V ′′(x + τψ(x))(1 − τ) dτ

2c + ∫ 1
0 V ′′(x + τψ(x))(1 − τ) dτ

μV (dx) � C =
∫

cw(x)

2c + w(x)
μV (dx) > 0

which finishes the proof of (2.10) with this choice of C.
3. For the inequality (2.11), we follow the same route as in the proof of (2.9), the only change

this time being that V (x) − ρ|x|p is convex, and thus we obtain

V (y) − V (x) − V ′(x)(y − x) � ρ
(|y|p − |x|p − p sign(x)|x|p−1(y − x)

)
. (2.18)

Writing θ(x) = x + ψ(x), and using (2.12) together with a − 1 � log(a) for a � 0, one arrives
at

E(μ) − E(μV ) � ρ

∫ (|x + ψ(x)|p − |x|p − p sign(x)|x|p−1ψ(x)
)
μV (dx).

Now we use the fact that for all a, b ∈ R,

|a + b|p − |b|p − p sign(b)|b|p−1a � cp|a|p, (2.19)

which applied to the above inequality in conjunction to (2.8), yields inequality (2.11). �
Remark 1.

1. The C2 regularity of V for (2.9) can be dropped (see [26]) but to simplify the presentation
here we decided to consider only this case.

2. If V (x) − ρ|x|p is convex, then using inequalities (2.11), (2.10) and Young’s inequality we
obtain that for any 2 � k � p, there exists a constant c = c(k,p,ρ,μV ,V ) such that

cWk
k (μ,μV ) � E(μ) − E(μV ).
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3. We want to point out that the inequalities (2.11) and (2.10) are somehow complementary to
each other. For example, if we take V (x) = ρ|x|p with p > 1 and the measure μ = θ#μV for
θ(x) = x + m, then Eq. (2.11) takes the form

cpmp �
∫ (|x + m|p − |x|p)μV (dx) (2.20)

while Eq. (2.10) becomes

Cm2 �
∫ (|x + m|p − |x|p)μV (dx),

which, because it is easy to check that μV is symmetric, is the same as

Cm2 �
∫ (|x + m|p − |x|p − p sign(x)|x|p−1m

)
μV (dx). (2.21)

Notice here that (2.20) is in the right scale for large m as (2.21) is in the right scale for m

close to 0, because in this case the integrand is of the size m2. It seems that Talagrand’s
transportation inequality in this context has two aspects, one is the large Wp(μ,μV ) which
is dictated by the potential V for large values and results with Eq. (2.11) and the small
W2(μ,μV ) regime which is dictated by the repulsion effect of the logarithm and results with
Eq. (2.10).

4. It is not clear whether inequality (2.10) still holds for the case of a potential V which is
not convex. Of interest would be the particular case V (x) = ax4 + bx2 for some a > 0 and
b < 0. This example actually raises the question of the stability of transportation inequality
under bounded perturbations.

5. Very likely the constant cp in (2.11) is not sharp.

3. Potential independent transportation inequalities

In this section, we investigate some potential independent transportation inequalities. A trans-
portation inequality in the form of (2.10) can not possibly hold without a quadratic growth at
infinity. Also, the proof of (2.10) might lead to the conclusion that the logarithmic term plays
a more important role. Therefore the natural question one may ask is whether there is a mani-
festation of this fact in some sort of transportation type inequality which is independent of the
potential involved. The main question reduces to hint some appropriate distance one needs to use
to replace the Wasserstein distance in Theorem 2. We investigate in this section several possibil-
ities, starting with the free version of the classical Pinsker’s inequality.

The Pinsker’s inequality classically states that (cf. [10] and [21])

2‖μ − ν‖2
v � E(μ | ν) for any μ,ν probability measures on R,

where ‖μ − ν‖v is the total variation distance between μ and ν and E(μ | ν) is the relative
entropy between μ and ν. This in particular shows that if μn convergence to μ in entropy, then
μn converges to μ is a very strong sense.
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The same natural question can be posed in the logarithmic entropy context. For a given po-
tential V , is there an inequality of the form

C‖μ − μV ‖2
v � E(μ) − E(μV )

for a given constant C > 0 and any probability distribution μ on R?
It turns out that these inequalities do not hold for the logarithmic energy. In fact, we will show

that even a weaker inequality of the form

C|Fμ − FμV
|2u � E(μ) − E(μV ) (3.1)

does not hold, where Fμ denotes the cumulative function of a probability measure μ on the
line. Even though the uniform distance does not have the same widespread use in probability
it appears for example in the Berry–Esseen type estimates for the convergence in the central
limit theorem. This is the reason why we consider this distance as the first next best candidate
wherever the total variation fails. Clearly this metric gives a stronger topology as the topology of
weak convergence.

We will construct a counterexample to (3.1) in the case of V (x) = 2x2, for which the equilib-
rium measure is

μV (dx) = 1[−1,1](x)
2
√

1 − x2

π
dx,

the semicircular law on [−1,1]. Consider now the sequence

μn(dx) = 1[−1,1](x)
2
√

1 − x2

π
dx +

∑2n−1
k=2 (−1)kT2k+1(x)

4(n2 − 1)π
√

1 − x2
dx

where Tk is the kth Chebyshev polynomial of the first kind. With these choices we have that

E(μn) − E(μV ) � π2

log(n/3)
|Fμn − FμV

|2u for all n � 4. (3.2)

Let us point out that μn is indeed a probability measure. This requires a little proof but it is
entirely elementary and is left to the reader.

To prove (3.1), notice that since the support of μn is the same as the support of μV , we have
from (2.2) that

E(μn) − E(μV ) = −
∫ ∫

log |x − y|(μn − μV )(dx)(μn − μV )(dy). (3.3)

Next remark that μn = cos#(fnλ) and μV = cos#(gλ), where λ is the Lebesgue measure on
[0,π] and

fn(t) = 1 − cos(2t)

π
+ 1

4π(n2 − 1)

2n−1∑
k=2

(−1)k cos
(
(2k + 1)t

)
, g(t) = 1 − cos(2t)

π

and further
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−
∫ ∫

log |x − y|(μn − μV )(dx)(μn − μV )(dy)

= −
π∫

0

π∫
0

log | cos t − cos s|hn(t)hn(s) dt ds where hn = fn − g.

Now we provide a formula for the logarithmic energy we learnt from [15] and have not
seen it elsewhere. Here is a quick description. Write first cos t = (eit + e−it )/2 and cos s =
(eis + e−is)/2 so | cos t − cos s| = |(eit + e−it )/2 − (eis + e−is)|/2 = |1 − ei(t+s)||1 − ei(t−s)|/2
and so, for t �= s, and t or s not equal to π ,

log | cos t − cos s| = − log 2 + Re
(
log

(
1 − ei(t+s)

)+ log
(
1 − ei(t−s)

))
= − log 2 −

∞∑
�=1

Re
(
ei�(t+s)/� + ei�(t−s)/�

)

= − log 2 −
∞∑

�=1

2

�
cos(�t) cos(�s).

From this, one gets to

−
π∫

0

π∫
0

log | cos t − cos s|hn(t)hn(s) dt ds =
∞∑

�=1

2

�

( π∫
0

cos(�t)hn(t) dt

)2

. (3.4)

But now,

π∫
0

cos(�t)hn(t) dt = 1

4π(n2 − 1)

2n−1∑
k=2

(−1)k

π∫
0

cos(�t) cos
(
(2k + 1)t

)
dt

=
{

(−1)(�−1)/2

8(n2−1)
, 4 � � � 4n and odd

0 otherwise

and thus

−
π∫

0

π∫
0

log | cos t − cos s|hn(t)hn(s) dt ds =
∞∑

�=1

2

�

( π∫
0

cos(�t)hn(t) dt

)2

= 1

32(n2 − 1)2

2n−1∑
�=2

1

2� + 1
. (3.5)

On the other hand |Fμn − FμV
|u = |Ffnλ − Fgλ|u = supx∈[0,π] |

∫ x

0 hn(t) dt | and

x∫
hn(t) dt = 1

4π(n2 − 1)

2n−1∑
�=2

(−1)� sin((2� + 1)x)

2� + 1
,

0
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from which for x = π/4, we obtain

|Fμn − FμV
|u = sup

x∈[0,π]

∣∣∣∣∣
x∫

0

hn(t) dt

∣∣∣∣∣ � 1

4π(n2 − 1)

2n−1∑
�=2

1

2� + 1
. (3.6)

Combining (3.5) and (3.6) we get

π2

2
∑2n−1

�=2
1

2�+1

|Fμn − FμV
|2u � −

∫ ∫
log |x − y|(μn − μV )(dx)(μn − μV )(dy) (3.7)

which together with the fact that
∑2n−1

�=2
1

2�+1 � 1
2 log(n/3) for n � 4 and (3.3), we finally arrive

at (3.2).
The example shown above has the property that E(μn) − E(μV ) converges to 0 when n goes

to infinity, and also that |Fμn − FμV
|u converges to zero. Despite the fact that (3.1) does not

hold, we will see below in Corollary 1 that if E(μn)−E(μV ) converges to 0, then |Fμn −FμV
|u

always converges to 0.
We consider now a weak form of (3.1). To do this we define the distance

d(μ, ν) = sup
a,b∈R

∣∣∣∣
∫

e−|ax+b| μ(dx) −
∫

e−|ax+b| ν(dx)

∣∣∣∣. (3.8)

With this definition we have the following result.

Theorem 3. For any potential V satisfying (2.1), we have that for any compactly supported
measure μ,

4π3d2(μ,μV ) � E(μ) − E(μV ). (3.9)

Proof. Using Eqs. (2.1) and (2.2), we get for any compactly supported measure μ with E(μ)

finite,

E(μ) − E(μV ) � −
∫ ∫

log |x − y|(μ − μV )(dx)(μ − μV )(dy).

We will prove that for any measures μ and ν with compact support such that
− ∫∫

log |x − y|μ(dx)μ(dy) < ∞ and − ∫∫
log |x − y|ν(dx) ν(dy) < ∞, we have that

4π3d2(μ, ν) � −
∫ ∫

log |x − y|(μ − ν)(dx)(μ − ν)(dy), (3.10)

which shows that (3.10) implies (3.9).
Now we use [11, Eq. (6.45)] to write

−
∫ ∫

log |x − y|(μ − μV )(dx)(μ − μV )(dy) =
∞∫ |μ̂(t) − μ̂V (t)|2

t
dt (3.11)
0
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where the hat stands for the Fourier transform, and continue with

∞∫
0

|μ̂(t) − ν̂(t)|2
t

dt = 1

2

∞∫
−∞

|μ̂(t) − ν̂(t)|2
|t | dt � |a|

∞∫
−∞

|μ̂(t) − ν̂(t)|2
a2 + t2

dt

� a2

π

∣∣∣∣∣
∞∫

−∞

(μ̂(t) − ν̂(t))e−ict

a2 + t2
dt

∣∣∣∣∣
2

for any a, c ∈ R with a �= 0. Further, using the inversion formula for the Fourier transform, one
has

∞∫
−∞

(μ̂(t) − ν̂(t))e−ict

a2 + t2
dt = 2π

∫
φ̂(x)(μ − ν)(dx) = 2π2

|a|
∫

e−|a(x+c)|(μ − ν)(dx) (3.12)

because for φ(t) = eict

a2+t2 ,

φ̂(x) =
∫

ei(x+c)t

t2 + a2
dt = πe−|a(x+c)|

|a| .

From here, (3.10) follows immediately. �
Remark 2. From Eq. (3.11) it seems that the distance one should consider should be the Sobolev
norm with exponent −1/2. This is another possible candidate to the role of d played here, how-
ever not always finite. We chose the metric d as it’s definition is somehow close to uniform norm
of the difference of the Laplace transforms of the measures. It is also always defined and bounded
by 1, thus resembling the total variation distance.

The next result is collecting facts about how strong the topology induced by d is.

Proposition 1.

1. d is a distance on P (R) and if d(μn,μ) −→
n→∞ 0, then μn →n→∞ μ in the weak topology. In

addition d(δa, δb) = 1 for a �= b, thus the topology induced by d is strictly stronger than the
weak convergence topology.

2. For any two probability measures μ and ν,

d(μ, ν) � 2|Fμ − Fν |u. (3.13)

3. If V satisfies condition (2.1), then EV (μn) −→
n→∞EV (μV ) implies |Fμn − FμV

|u −→
n→∞ 0.
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Proof. 1. To prove that d is a distance the only non trivial fact is that for two probability measures
μ and ν, d(μ, ν) = 0 implies μ = ν. Thus from Eq. (3.12), we obtain for a = 1 that for all c ∈ R,

∞∫
−∞

(μ̂(t) − ν̂(t))e−ict

1 + t2
dt = 0.

Since this holds true for any c ∈ R, it implies that the Fourier transform of the function
t → μ̂(t)−ν̂(t)

1+t2 is 0, which means that the function in discussion must be 0. This means that μ̂ = ν̂,
or equivalently that μ = ν.

Let L(μ, ν) stand for the Levy distance which induces the weak topology on P (R). Let
d(μn,μ) −→

n→∞ 0. Assume now that there exists ε > 0 and a subsequence such that L(μnk
,μ) � ε.

Otherwise said, the sequence μn has a subsequence which is not convergent to μ. Since, we are
dealing with probability measures, there is a subsequence μnkl

which is vaguely convergent to a
measure ν with total mass less than 1. This means that for any continuous function φ which is
vanishing at infinity, we have that

∫
φ dμnkl

−→
l→∞

∫
φ dν.

We can apply this for functions φ(x) = e−|ax+b| where a �= 0 and infer that

∫
e−|ax+b|μnkl

(dx) −→
l→∞

∫
e−|ax+b|ν(dx) for all a �= 0, b ∈ R.

On the other hand, because d(μnkl
,μ) −→

l→∞ 0, these considerations result with

∫
e−|ax+b|μ(dx) =

∫
e−|ax+b|ν(dx) for all a �= 0, b ∈ R.

Further, using the dominated convergence for b = 0 and a → 0, we obtain that ν is a probability
measure. From the discussion at the beginning of this proof, it also follows that ν = μ and this
in turn results with μnkl

being weakly convergent to μ, a contradiction. This proves that the
convergence in the metric d implies weak convergence.

It is obvious that d(μ, ν) � 1 for any measures μ and ν. For the case of discrete measures,
we also have that 1 � d(δa, δb) �

∫
e−α|x−a|δa(dx) − ∫

e−α|x−a|δb(dx) for any α > 0, which
yields that 1 � d(δa, δb) � 1 − e−α|b−a| for all α > 0. Letting α → ∞, we get that d(δa, δb) = 1
for a �= b which shows that convergence in d is strictly stronger than convergence in the weak
topology.

2. From the fact that for any finite positive measure μ,

∫ (
1 − e−αy

)
μ(dx) =

∫
αe−αyμ

(
(y,∞)

)
dy,
(0,∞) (0,∞)
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we deduce that∫
e−α|x−a|(μ − ν)(dx) =

∫
(0,∞)

αe−αy
[
Fμ(a − y) − Fμ(a + y) − Fν(a − y) + Fν(a + y)

]
dy

which easily yields (3.13).
3. We actually show that if μn and μ are compactly supported probability measures such that

−
∫ ∫

log |x − y|μ(dx)μ(dy) < ∞, −
∫ ∫

log |x − y|μn(dx)μn(dy) < ∞

and

lim
n→∞

∫ ∫
log |x − y|(μn − μ)(dx)(μn − μ)(dy) = 0,

then |Fμn −Fμ|u −→
n→∞ 0. From (3.10) and the first part, we obtain that μn converges weakly to μ.

In addition, none of the measures μn or μ have atoms. Thus Fμn and Fμ are continuous functions
which combined with the weak convergence implies that Fμn converges pointwise to Fμ. Since
the functions Fμn and Fμ are distributions of probability measures, it is an easy matter to check
that the convergence is actually uniform. �
Remark 3. We do not know if the topology of convergence in d is the same as the one defined
by the metric |Fμ − Fν |u.

This result might leave one wondering if a stronger convergence takes place. In other words,
is it true that EV (μn) −→

n→∞EV (μV ) implies ‖μn − μV ‖v −→
n→∞ 0? To this end, we can consider

V (x) = log | |x|+
√

x2−1
2 | and notice (see [27, p. 46]) that μV is the arcsine law of [−1,1]. Thus

if we consider

μV (dx) = 1[−1,1](x)
dx

π
√

1 − x2
, μn(dx) = 1[−1,1](x)

(1 − Tn(x))dx

π
√

1 − x2
,

then, using the same argument which led us to (3.4), with hn there replaced by hn(x) = cos(nx)

here, one arrives at E(μn)−E(μV ) = 1
n

while the total variation distance is ‖μn −μV ‖v � 1/4.

4. Log-Sobolev inequality

In this section, we develop similarly the mass transportation method to prove the Log-Sobolev
inequality in the free context. Note again that, as discussed in the introduction, the first assertion
for strictly convex potentials was initially proved by large matrix approximation in [3].

Before we state the main result, we define inspired by Voiculescu [31], the relative free Fisher
information as

I (μ) =
∫ (

Hμ(x) − V ′(x)
)2

μ(dx) with Hμ(x) = p.v.
∫

2
μ(dy). (4.1)
x − y
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for measures μ on R which have density p = dμ/dx in L3(R). In this case the principal value
integral is a function in L3. Otherwise we let I (μ) be equal to +∞.

Theorem 4 (Log-Sobolev).

1. If V is C2 and V (x) − ρx2 is convex for some ρ > 0, then for any probability measure μ

on R,

E(μ) − E(μV ) � 1

4ρ
I (μ). (4.2)

Equality is attained for the case V (x) = ρx2 and μ = θ#μV , where θ(x) = x + m. Thus the
inequality (4.2) is sharp for translations of μV .

2. If V is C2 and V (x) − ρ|x|p is convex for some ρ > 0 and p > 1, then for any probability
measure μ on R,

E(μ) − E(μV ) � kp

ρq/p
Iq(μ) where Iq(μ) =

∫ ∣∣Hμ(x) − V ′(x)
∣∣q μ(dx) (4.3)

where here q is the conjugate of p i.e. 1/q + 1/p = 1 and the constant kp = (pcp)q/p/q ,
with cp from (2.11).

Proof. 1. We will assume that the measure μ has a smooth compactly supported density as the
general case follows via approximation arguments discussed in details in [18]. Take the (increas-
ing) transport map θ from μV into μ. We write the inequality (4.2) in the following equivalent
way

1

4ρ

∫ (
Hμ

(
θ(x)

)− V ′(θ(x)
))2

μV (dx)

+
∫ (

V (x) − V
(
θ(x)

)− V ′(θ(x)
)(

x − θ(x)
))

μV (dx)

−
∫ (

Hμ
(
θ(x)

)− V ′(θ(x)
))(

x − θ(x)
)
μV (dx)

+
∫

Hμ
(
θ(x)

)(
x − θ(x)

)
μV (dx) −

∫ ∫
log

x − y

θ(x) − θ(y)
μV (dx)μV (dy) � 0. (4.4)

Notice now that from the convexity of V (x) − ρx2, one obtains that

V (x) − V
(
θ(x)

)− V ′(θ(x)
)(

x − θ(x)
)
� ρ

(
x2 − θ(x)2 − 2θ(x)

(
x − θ(x)

))
= ρ

(
x − θ(x)

)2
. (4.5)

Now, ∫
Hμ

(
θ(x)

)(
x − θ(x)

)
μV (dx) =

∫ (
x − θ(x)

) ∫ 2

θ(x) − θ(y)
μV (dy)μV (dx)

=
∫ ∫ (

x − y − 1

)
μV (dx)μV (dy) (4.6)
θ(x) − θ(y)
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where one has to interpret the second integral here in the principal value sense, however since θ

is increasing, the last integral is actually taken in the Lebesgue sense.
Using these, Eq. (4.4) may be rewritten as

1

4ρ

∫ [
Hμ

(
θ(x)

)− V ′(θ(x)
)− 2ρ

(
x − θ(x)

)]2
μV (dx)

+
∫ ∫ (

x − y

θ(x) − θ(y)
− 1 − log

x − y

θ(x) − θ(y)

)
μV (dx)μV (dy) � 0

which is seen to hold since u − 1 − log(u) � 0 for u � 0.
Equality is attained for the case V (x) = ρx2 and θ(x) = x + c, which corresponds to the

translations of the measure μV .
2. With the same arguments used in the above proof and the proof of Theorem 2, we use

Eqs. (2.18) and (2.19) to argue that

kp

ρq/p

∫ ∣∣Hμ(x) − V ′(x)
∣∣qμ(dx) − E(μ) + E(μV )

�
∫ [

kp

ρq/p

∣∣Hμ
(
θ(x)

)− V ′(θ(x)
)∣∣q

+ (
V ′(θ(x)

)− Hμ
(
θ(x)

))(
x − θ(x)

)+ cpρ
∣∣x − θ(x)

∣∣p]μV (dx)

+
∫ ∫ (

x − y

θ(x) − θ(y)
− 1 − log

x − y

θ(x) − θ(y)

)
μV (dx)μV (dy)

� 0

where we used Young’s inequality aq/q + bp/p � ab for a, b � 0 and the constant kp =
(pcp)q/p/q . �
Remark 4. It was proved in [24] that a Log-Sobolev inequality always implies a transportation
inequality.

5. HWI Inequality

This section is devoted to the free analog of the HWI inequality of Otto and Villani [25] in the
classical context, connecting thus the (free) entropy, Wasserstein distance and Fisher information.
As we will see, the HWI implies the Log-Sobolev inequality for strictly convex potentials. This
free HWI inequality was not considered before, and in particular it is not clear whether there is a
random matrix proof, delicate points involving the Wasserstein distance entering into the proof.

Theorem 5 (HWI inequality).

1. Assume that V is C2 such that for some ρ ∈ R, V (x)−ρx2 is convex. Then, for any measure
μ ∈ P (R),

E(μ) − E(μV ) �
√

I (μ)W2(μ,μV ) − ρW 2(μ,μV ). (5.1)
2
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In the case V (x) = ρx2, the inequality is sharp.
2. If V is C2 and V (x)−ρ|x|p is convex for some ρ � 0 and p > 1, then for the same constant

cp appearing in Theorem 2, we have that

E(μ) − E(μV ) � I
1/q
q (μ)Wp(μ,μV ) − ρcpW

p
p (μ,μV ), (5.2)

where 1/p + 1/q = 1.

Proof. 1. We employ here the notations used in Theorem 4 and we will give a proof of the
inequality for the case of a measure μ with smooth and compactly supported density, the general
case follows through careful approximations pointed in [18]. The inequality to be proved can be
restated as (5.3) + (5.4) + (5.5) � 0, where

(5.3) =
(∫ (

Hμ
(
θ(x)

)− V ′(θ(x)
))2

μV (dx)

∫ (
θ(x) − x

)2
μV (dx)

)1/2

−
∫ (

Hμ
(
θ(x)

)− V ′(θ(x)
))(

x − θ(x)
)
μV (dx) (5.3)

(5.4) =
∫ [

V (x) − V
(
θ(x)

)− V ′(θ(x)
)(

x − θ(x)
)− ρ

(
θ(x) − x

)2]
μV (dx) (5.4)

(5.5) =
∫

Hμ
(
θ(x)

)(
x − θ(x)

)
μV (dx) −

∫ ∫
log

x − y

θ(x) − θ(y)
μV (dx)μV (dy). (5.5)

A simple application of Cauchy’s inequality shows that (5.3) � 0. Using convexity of V (x)−ρx2

we have from Eq. (4.5), that (5.4) � 0. Finally, using (4.6), we have that

(5.5) =
∫ ∫ (

x − y

θ(x) − θ(y)
− 1 − log

x − y

θ(x) − θ(y)

)
μV (dx)μV (dy) � 0,

which finishes the proof of (5.1). For the case V (x) = ρx2, we have equality if θ(x) = x + m.
2. The inequality we want to prove is equivalent to the statement that (5.6)+(5.7)+(5.8) � 0,

where

(5.6) =
∣∣∣∣
∫ ∣∣Hμ

(
θ(x)

)− V ′(θ(x)
)∣∣q μV (dx)

∣∣∣∣
1/q ∣∣∣∣

∫ (
θ(x) − x

)p
μV (dx)

∣∣∣∣
1/p

−
∫ (

Hμ
(
θ(x)

)− V ′(θ(x)
))(

x − θ(x)
)
μV (dx) (5.6)

(5.7) =
∫ [

V (x) − V
(
θ(x)

)− V ′(θ(x)
)(

x − θ(x)
)− ρcp

∣∣θ(x) − x
∣∣p]μV (dx) (5.7)

(5.8) =
∫

Hμ
(
θ(x)

)(
x − θ(x)

)
μV (dx) −

∫ ∫
log

x − y

θ(x) − θ(y)
μV (dx)μV (dy). (5.8)

Now, (5.6) is non-negative thanks to Hölder’s inequality, Eq. (5.7), follows from the convexity of
V (x) − ρ|x|p and the combination of (2.18) and (2.19), while Eq. (5.8) is the same as (5.5). �
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As pointed out in [25], HWI inequalities for ρ > 0 always implies Log-Sobolev. We give here
the following formal corollary of HWI inequality.

Corollary 1.

1. If ρ > 0, then inequality (5.1) implies (4.2) and (5.2) implies (4.1).
2. If V (x) − ρx2 is a convex for some ρ ∈ R, then Talagrand’s free transportation in-

equality with constant C > max{0,−ρ} implies free Log-Sobolev inequality with constant

K = max{ρ,
(C+ρ)2

32C
}. More precisely,

∀μ ∈ P (R), CW 2
2 (μ,μV ) � E(μ) − E(μV ) �⇒

∀μ ∈ P (R), E(μ) − E(μV ) � 1

4K
I (μ).

3. In particular, if V is convex and C2 such that V ′′(x) � ρ > 0 for |x| � r , then free Log-
Sobolev inequality holds with the constant C > 0 from (2.10).

Proof. 1. It follows as an application of Young’s inequality ap/p + bq/q � ab for a, b � 0.
2. For ρ > 0, everything is clear. In the case ρ � 0, then, from (5.1) and Talagrand’s trans-

portation inequality, one has for δ > 0, that

E(μ) − E(μV ) �
√

I (μ)W2(μ,μV ) − ρW 2
2 (μ,μV )

� 4δI (μ) +
(

1

Cδ
− ρ

C

)(
E(μ) − E(μV )

)

which yields for any δ > 1
C+ρ

E(μ) − E(μV ) � 4Cδ2

(C + ρ)δ − 1
I (μ).

Taking minimum over δ > 1
C+ρ

gives the conclusion.

3. In the case V is convex, C2 and strongly convex for large values, part 2 of Theorem 2 does
the rest. �
6. Brunn–Minkowski inequality

The (one-dimensional) free Brunn–Minkowski inequality was put forward in [24] again
through random matrix approximation. We provide here a direct mass transportation proof simi-
lar to the one of its classical (one-dimensional) counterpart (see e.g. [12]). As discussed in [24],
this inequality may be used to deduce in an easy way both the Log-Sobolev and transportation
inequalities.

The main result of this section is the following theorem.
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Theorem 6. Assume that V1,V2,V3 are some potentials satisfying (2.1) such that for some
a ∈ (0,1),

aV1(x) + (1 − a)V2(y) � V3
(
ax + (1 − a)y

)
for all x, y ∈ R. (6.1)

Then

aEV1(μV1) + (1 − a)EV2(μV2) � EV3(μV3). (6.2)

Proof. Take the (increasing) transportation map θ from μV1 into μV2 . This certainly exists as the
measure μV1 has no atoms.

Noticing that for any measure with finite logarithmic energy, we have the obvious equality

∫
log |x − y|μ(dx)μ(dy) = 2

∫
x>y

log(x − y)μ(dx)μ(dy).

Using this we argue that

∫
aV1(x) + (1 − a)V2

(
θ(x)

)
μV1(dx)

− 2
∫ ∫
x>y

(
a log(x − y) + (1 − a) log

(
θ(x) − θ(y)

))
μV1(dx)μV1(dy)

�
∫

V3
(
ax + (1 − a)θ(x)

)
μV1(dx)

− 2
∫ ∫
x>y

log
[(

ax + (1 − a)θ(x)
)− (

ay + (1 − a)θ(y)
)]

μV1(dx)μV1(dy)

= EV3(ν) � EV3(μV3)

where ν = (a id+(1−a)θ)#μV1 and we used (6.1) and the concavity of the logarithm on (0,∞).
The proof is complete. �
7. Random matrices and a first version of Poincaré inequality

In the next three sections, we investigate Poincaré type inequalities in the free (one-
dimensional) context. We discuss two versions of it. The first one is suggested by large matrix
approximations and the classical Poincaré inequality for strictly convex potentials, but will be
proved directly. Recall first the classical Poincaré inequality (cf. e.g. [2,23,29,32]. . . ).

Theorem 7. Let μ(dx) = e−W(x) dx be a probability measure on R
d such that W(x) − r|x|2 is

convex. Then for any compactly supported and smooth function φ : R
d → R, we have that

∫
|∇φ|2 dμ � r Varμ(φ). (7.1)
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Assume now that V is a potential on R with enough growth at infinity. Consider the matrix
models on Hn, the space of Hermitian n × n matrices with the inner product 〈A,B〉 = Tr(AB∗)
and the probability measure given by

Pn(dM) = 1

Zn(V )
e−nTr(V (M)) dM

where here dM is the standard Lebesgue measure on Hn. We have that for any bounded contin-
uous function F : R → R,∫

1

n
Tr
(
F(M)

)
Pn(dM) −→

n→∞

∫
F(x)μV (dx). (7.2)

Assume in addition that V (x) − ρx2 is a convex function on R. Then, consider Φ(M) =
Trφ(M), where φ : R → R is a compactly supported and smooth function. Notice that
∇Φ(M) = φ′(M) and thus |∇Φ(M)|2 = |φ′(M)|2 = Tr(φ′(M)2). Since nTr(V (M)) − nρ|M|2
is convex as a function of M , we can apply Poincaré’s inequality on Hn to obtain that∫

Tr
(
φ′(M)2)

Pn(dM) � nρVarPn

(
Tr
(
φ(M)

))
. (7.3)

The first term in this inequality divided by n (cf. Eq. (7.2)) converges to
∫

φ′(x)2 μV (dx). To
understand the second term in the above equation, notice that Var(Tr(φ(M))) = E[(Tr(φ(M)) −
E[Tr(φ(M))])2]. The study of the asymptotic of the linear statistics, Tr(φ(M)) − E[Tr(φ(M))]
in the literature of random matrix is known as “fluctuations”. From Johansson’s paper [19], it
is known that this is universal in the sense that the limit in distribution of the fluctuations is
Gaussian and, at least in the case of polynomial V (for which V (x) − ρx2 fulfills the conditions
in there), the variance of the Gaussian limit depends only on the endpoints of the support of μV .
Moreover, in the particular case of V (x) = 2x2, the variance of the distribution was computed
for example in [22] and [19] as

1

2π2

1∫
−1

1∫
−1

(
φ(t) − φ(s)

t − s

)2 1 − ts√
1 − t2

√
1 − s2

dt ds. (7.4)

This variance is interpreted in [8] in terms of the number operator of the arcsine law. We will
come back to this aspect in Section 9.

Dividing the inequality in Eq. (7.3) by n and taking the limit when n → ∞, these heuristics
(after a simple rescaling) suggest the following result.

Theorem 8. Assume that V (x)−ρx2 is convex for some ρ > 0. Then for any smooth function φ,
one has that

∫
φ′(x)2μV (dx) � ρ

2π2

b∫
a

b∫
a

(
φ(x) − φ(y)

x − y

)2

× −2ab + (a + b)(x + y) − 2xy√ √ dx dy. (7.5)

2 (x − a)(b − x) (y − a)(b − y)
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where supp(μV ) = [a, b]. Equality is attained for V (x) = ρ(x − α)2 + β and φ(x) = c1 + c2x

for some constants c1, c2.

The reader may wonder if the numerator in the second fraction of (7.5) is nonnegative. This
is so because

−2ab + (a + b)(x + y) − 2xy = 2

((
b − a

2

)2

−
(

x − a + b

2

)(
y − a + b

2

))
� 0

for any x, y ∈ [a, b].
Proof. Using a simple rescaling we may assume without loss of generality that a = −1 and
b = 1 and the inequality we have to show reduces to

∫
φ′(x)2μV (dx) � ρ

2π2

1∫
−1

1∫
−1

(
φ(x) − φ(y)

x − y

)2 1 − xy√
1 − x2

√
1 − y2

dx dy. (7.6)

Then, based on Eq. (2.5), we have that

g(x) =
√

1 − x2

2π2

1∫
−1

V ′(y) − V ′(x)√
1 − y2(y − x)

dy.

From the convexity of V (x) − ρx2, we learn that V ′(y)−V ′(x)
y−x

� 2ρ and thus that

g(x) � ρ

π

√
1 − x2, (7.7)

which implies

∫
φ′(x)2μV (dx) � ρ

π

1∫
−1

φ′(x)2
√

1 − x2 dx.

Therefore it is enough to check that

1∫
−1

φ′(x)2
√

1 − x2 dx � 1

2π

1∫
−1

1∫
−1

(
φ(x) − φ(y)

x − y

)2 1 − xy√
1 − x2

√
1 − y2

dx dy (7.8)

for any smooth φ. Now, we make the change of variables x = cos t to justify

1∫
−1

φ′(x)2
√

1 − x2 dx =
π∫

0

φ′(cos t)2 sin2(t) dt =
π∫

0

ψ ′(t)2 dt

where ψ(t) = φ(cos t).
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On the other hand, using the change of variable x = cos t , y = cos s on the right-hand side,
inequality (7.8) becomes

π∫
0

ψ ′(t)2 dt � 1

2π

π∫
0

π∫
0

(
ψ(t) − ψ(s)

cos t − cos s

)2

(1 − cos t cos s) dt ds. (7.9)

To show this, we write ψ(t) = ∑∞
k=0 ak coskt and then, because ψ is a smooth function, we can

differentiate term by term to get ψ ′(t) = −∑∞
k=1 kak sin kt , therefore

π∫
0

ψ ′(t)2 dt = π

2

∞∑
k=1

k2a2
k

and

π∫
0

π∫
0

(
ψ(t) − ψ(s)

cos t − cos s

)2

(1 − cos t cos s) dt ds

=
∞∑

k,l=1

akal

π∫
0

π∫
0

(coskt − cosks)(cos lt − cos ls)(1 − cos t cos s)

(cos t − cos s)2
dt ds.

To compute the integrals on the right-hand side of the above equation, we take the generating
function of these numbers and with a little algebra one can show that

∞∑
k,l=1

ukvl

π∫
0

π∫
0

(coskt − cosks)(cos lt − cos ls)(1 − cos t cos s)

(cos t − cos s)2
dt ds

=
π∫

0

π∫
0

(u − u3)(v − v3)(1 − cos t cos s)

(1 + u2 − 2u cos t)(1 + u2 − 2u cos s)(1 + v2 − 2v cos t)(1 + v2 − 2v cos s)
dt ds

= π2uv

(1 − uv)2
= π2

∞∑
k=1

kukvk (7.10)

for all u,v ∈ (−1,1). The last integral can be computed as follows. First use partial fractions to
justify

π∫
0

(A + B cos t) dt

(1 + u2 − 2u cos t)(1 + v2 − 2v cos t)
=

π∫
0

C dt

1 + u2 − 2u cos t
+

π∫
0

D dt

1 + v2 − 2v cos t

= C/2
2

+ D/2
2
1 − u 1 − v
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where the constants C,D are linear combinations of A and B . Further, taking A = 1 and
B = − cos s and repeating once more the partial fractions argument, one can cary out the proof
of (7.10).

The main consequence of the above calculation is that

π∫
0

π∫
0

(coskt − cosks)(cos lt − cos ls)(1 − cos t cos s)

(cos t − cos s)2
dt ds = π2kδkl

and that

π∫
0

π∫
0

(
ψ(t) − ψ(s)

cos t − cos s

)2

(1 − cos t cos s) dt ds = π2
∞∑

k=1

ka2
k . (7.11)

Therefore inequality (7.9) becomes equivalent to

π

2

∞∑
k=1

k2a2
k � π

2

∞∑
k=1

ka2
k

which is obviously true. Notice that equality in this inequality is attained for the case ak = 0 for
all k � 2 and arbitrary a1. This corresponds to the case ψ(t) = c1 + c2 cos t or φ(x) = c2x + c1
for some c1, c2.

Finally we point out that equality in (7.6) is attained if the equality is attained in (7.7) and (7.9).
From there one can easily see from rescaling that equality in (7.5) is attained for V (x) =
ρ(x − α)2 + β and φ(x) = c1 + c2x. The proof of Theorem 8 is complete. �

In the above proof we showed a direct calculation for Eq. (7.11) which is natural in the course
of the above proof. However, there is another way of looking at it which will appear below in
Section 9 as the kernel of the number operator.

8. A second version of Poincaré inequality

The second version of the Poincaré inequality is motivated by the free calculus and the non-
commutative derivative. It was already investigated by Biane [3] for the case of the semicircular
law.

Definition 1. For a given probability measure μ on R, we say that it satisfies a Poincaré inequality
if there is a constant C > 0 such that

∫ ∫ (
φ(x) − φ(y)

x − y

)2

μ(dx)μ(dy) � C Varμ(φ) for every φ ∈ C1
0(R). (8.1)

By the best constant we mean the largest C > 0 for which the above inequality is satisfied and
we denote it by Poin(μ) or λ1(μ) or SG(μ).
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In the noncommutative setting for a given function φ, we can think of Dφ(x, y) = φ(x)−φ(y)
x−y

as the noncommutative derivative of φ. As pointed out by Voiculescu in [30], this is the unique
map D : C〈x〉 → C〈x〉 ⊗ C〈x〉 such that

1. D1 = 0.
2. D(fg) = D(f )g + f D(g) for any f,g ∈ C〈x〉.

First we collect a couple of obvious properties of the Poincaré constant.

Proposition 2.

1. For any a �= 0,

Poin
(
(ax + b)#μ

) = 1

a2
Poin(μ)

where here and elsewhere, for a given function f : R → R, f#μ is the push forward measure
given by (f#μ)(A) = μ(f −1(A)).

2. If f : R → R is a differential map such that |f ′(x)| � c > 0 for all x ∈ R, then

Poin(μ) � c2 Poin(f#μ).

3. If {μn}n�1 is a sequence of probability measures which converges weakly to μ, then

Poin(μ) � lim sup
n→∞

Poin(μn).

Next we describe some bounds for the Poincaré constant.

Theorem 9. Assume that the measure μ has compact support and is not concentrated at one
point. Then μ satisfies a Poincaré inequality with

2

d2(μ)
� Poin(μ) � 1

Var(μ)
(8.2)

where d(μ) = diam(supp(μ)) is the diameter of the support of μ and Var(μ) = ∫
x2μ(dx) −

(
∫

xμ(dx))2. Equality on the left in (8.2) is attained only for the case

μ = αδa + (1 − α)δb, a < b, d0 < α < 1.

Equality on the right of (8.2) is attained only for the case of a semicircular law (a ∈ R, r > 0)

μ(dx) = 1

2πr2
1[a−2r,a+2r](x)

√
4r2 − (x − a)2 dx.

In addition, assume that V is a C2 potential on R such that for some integer p and real ρ > 0,
V (x) − ρx2p , is convex and μ is the minimizer of∫

V (x)μ(dx) −
∫ ∫

log |x − y|μ(dx)μ(dy)
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over all probability measures of R. Then

(pρ
(2p

p

)
)

1
p

8
� Poin(μ). (8.3)

In particular if p = 1, we get that ρ
4 � Poin(μ).

Proof. For a given function φ ∈ C1
0(R), the left-hand side of (8.2) follows from

Varμ(φ) = 1

2

∫ ∫ (
φ(x) − φ(y)

)2
μ(dx)μ(dy)

= 1

2

∫ ∫
(x − y)2

(
φ(x) − φ(y)

x − y

)2

μ(dx)μ(dy)

� d2(μ)

2

∫ ∫ (
φ(x) − φ(y)

x − y

)2

μ(dx)μ(dy). (8.4)

The right-hand side of (8.2) follows from (8.1) for a φ ∈ C1
0(R) such that φ(x) = x on the support

of μ.
For measures μ = αδa + (1 − α)δb , condition (8.1) is equivalent to

Cα(1 − α)
(
φ(b) − φ(a)

)2 � α2(φ′(a)
)2 + (1 − α)2(φ′(b)

)2

+ 2α(1 − α)

(
φ(b) − φ(a)

b − a

)2

for any φ ∈ C1
0(R).

Since for any function φ ∈ C∞
0 (R) we can find another function ψ ∈ C1

0(R) so that φ(a) = ψ(a)

and φ(b) = ψ(b) and ψ ′(a) = 0, ψ ′(b) = 0, this is also equivalent to

Cα(1 − α)
(
ψ(b) − ψ(a)

)2 � 2α(1 − α)

(
ψ(b) − ψ(a)

b − a

)2

for any ψ ∈ C1
0(R).

This amounts to C � 2/(b − a)2 and therefore, in this case, Poin(μ) = 2
d2(μ)

.

Conversely, if μ is a measure so that Poin(μ) = 2
d2(μ)

, then, for 1 > ε > 0, there is a function

φε ∈ C1
0(R) such that

(
2

d2(μ)
+ ε2

)
Varμ(φε) >

∫ ∫ (
φε(x) − φε(y)

x − y

)2

μ(dx)μ(dy).

Without loss of generality we can assume that 0 = inf supp(μ), 1 = sup supp(μ) and
∫

φε dμ = 0,∫
φ2

ε dμ = 1 where we recall that supp(μ) stands for the support of μ. In this case, the above
inequality implies
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2 + ε2 �
∫ ∫

|x−y|�1−ε

(
φε(x) − φε(y)

x − y

)2

μ(dx)μ(dy)

+
∫ ∫

|x−y|<1−ε

(
φε(x) − φε(y)

x − y

)2

μ(dx)μ(dy)

�
∫ ∫

|x−y|�1−ε

(
φε(x) − φε(y)

)2
μ(dx)μ(dy)

+ 1

(1 − ε)2

∫ ∫
|x−y|<1−ε

(
φε(x) − φε(y)

)2
μ(dx)μ(dy)

= −ε(2 − ε)

(1 − ε)2

∫ ∫
|x−y|�1−ε

(
φε(x) − φε(y)

)2

μ(dx)μ(dy) + 2

(1 − ε)2
,

which results with

∫ ∫
|x−y|�1−ε

(
φε(x) − φε(y)

)2
μ(dx)μ(dy) � 2 − ε(1 − ε)2

2 − ε
. (8.5)

Now,

∫ ∫
|x−y|�1−ε

(
φε(x) − φε(y)

)2
μ(dx)μ(dy) �

∫ ∫
|x−1/2|�1/2−ε
|y−1/2|�1/2−ε

(
φε(x) − φε(y)

)2
μ(dx)μ(dy)

� 2μ
(|x − 1/2| � 1/2 − ε

)
. (8.6)

Thus (8.5) and (8.6) give

μ
(|x − 1/2| � 1/2 − ε

)
� 1 − ε(1 − ε)2

4 − 2ε
for any 1 > ε > 0.

This shows that μ((0,1)) = 0 and therefore μ = αδ0 + (1 − α)δ1.
The other extreme case of inequality (8.2) is contained in Biane’s paper [3] in the more general

context of several noncommutative variables. For completeness we will provide here a selfcon-
tained proof. In the first place, using Proposition 8.1, we may assume that

μ(dx) = 1
1[−2,2](x)

√
4 − x2 dx
2π
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is the semicircular law on [−2,2]. Take Un to be the Chebyshev polynomials of second kind
defined by Un(cos(θ)) = sin(n+1)θ

sin θ
. With this choice, we have that Un(

x
2 ) are the orthogonal

polynomials with respect to μ. The generating function of Un is given by

∞∑
n=0

rnUn(x) = 1

1 − 2rx + r2
for |x|, |r| < 1,

from which one gets

∞∑
n=0

rn Un(x) − Un(y)

x − y
= 2r

(1 − 2rx + r2)(1 − 2ry + r2)
= 2

∞∑
n=0

rn
n−1∑
k=0

Uk(x)Un−1−k(y),

and then

Un(x) − Un(y)

x − y
= 2

n−1∑
k=0

Uk(x)Un−1−k(y). (8.7)

Now, for a given φ ∈ C1
0(R), we can write in L2(μ) sense,

φ(x) =
∞∑

n=0

αnUn

(
x

2

)
,

yielding from orthogonality and (8.7) that

Varμ(φ) =
∫

φ2 dμ −
(∫

φ dμ

)2

=
∞∑

n=1

α2
n and

∫ ∫ (
φ(x) − φ(y)

x − y

)2

μ(dx)μ(dy) =
∞∑

n=1

nα2
n.

It follows that in this case Poin(μ) = 1 = 1/Var(μ) and equality is attained only for φ(x) =
c1 + c2U1(x) = c1 + c2x for some constants c1, c2.

To prove the converse, take a compactly supported measure μ and assume that
∫

x μ(dx) = 0
and

∫
x2 μ(dx) = 1. In order to show that μ is the semicircular distribution, it suffices to

show that
∫

Un(
x
2 )μ(dx) = 0 for all n � 1. We use induction to this task. Assuming true for

U1,U2, . . . ,Un, and using Un+1(x) = 2xUn(x) − Un−1(x), we need to show that xUn(
x
2 ) in-

tegrates to 0 against μ. Applying Poincaré’s inequality to Un(
x
2 ) + rU1(

x
2 ) together with the

induction hypothesis and equation (8.7), we get that for any r ∈ R,

∫
U2

n

(
x

2

)
μ(dx) + r

∫
xUn

(
x

2

)
μ(dx) �

∫ ∫ (
Un(

x
2 ) − Un(

y
2 )

x − y

)2

μ(dx)μ(dy),

which implies that
∫

xUn(
x )μ(dx) = 0.
2
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In the case of the equilibrium measure of a convex potential V , we have the support of the
measure consists of one interval [a, b] and a, b solve the system (cf. Eq. (2.4))

1

2π

b∫
a

V ′(x)

√
x − a

b − x
dx = 1 and

1

2π

b∫
a

V ′(x)

√
b − x

x − a
dx = −1.

If we denote c = (b − a)/2 and β = (a + b)/2, the system above can be rewritten in terms of β

and c as

c

2π

1∫
−1

V ′(β + ct)
1 + t√
1 − t2

dt = 1 and
c

2π

1∫
−1

V ′(β + ct)
1 − t√
1 − t2

dt = −1

which is equivalent to

c

2π

1∫
−1

V ′(β + ct)
t√

1 − t2
dt = 1 and

1∫
−1

V ′(β + ct)
1√

1 − t2
dt = 0.

Since V is C2 the first equation can be integrated by parts to get that

c2

2π

1∫
−1

V ′′(β + ct)
√

1 − t2 dt = 1.

On the other hand we know that V ′′(x) � 2p(2p − 1)ρx2p−2, hence

1 � 2p(2p − 1)ρc2

2π

1∫
−1

(ct + β)2p−2
√

1 − t2 dt

� 2p(2p − 1)ρc2p

2π

1∫
−1

t2p−2
√

1 − t2 dt

= p(2p − 1)ρc2p
(2p

p

)
4p(2p − 1)

= pρ
(2p

p

)
c2p

4p
.

This yields

c � 2

(
mρ

(
2p

p

))− 1
2p

.

Finally, because d(μ) = b − a = 2c, we arrive at (8.3). �
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To conclude this section, we present an inequality which relates the equilibrium measure of a
strong convex potential and the arcsine law.

Theorem 10. Assume that V (x) − ρx2 is a convex for some ρ > 0 and the equilibrium measure
μV has support [a, b]. Let arcsinea,b = 1[a,b](x) 1

π
√

(b−x)(x−a)
dx be the arcsine law with support

[a, b]. Then for any smooth function supported on [a, b],∫
φ′(x)2 μV (dx) � ρ Vararcsinea,b

(φ), (8.8)

where the variance is considered with respect to the arcsinea,b law.

Proof. It suffices to deal with the case a = −1, b = 1, the rest following by simple rescaling.
Recall that in the proof of Theorem 8, we use convexity to get that the density g(x) of μV satisfies
g(x) � ρ

π

√
1 − x2. Thus the proof reduces to

1

π

1∫
−1

φ′(x)2
√

1 − x2(dx) � Vararcsine(φ). (8.9)

For this, write φ = ∑∞
n=0 αnTn(x) the expansion of φ in terms of Chebyshev polynomials of

the first kind. Now, T ′
n = nUn−1 and thus the above inequality reduces to the obvious inequality∑∞

n=1 n2α2
n �

∑∞
n=1 α2

n. �
We will actually see below that inequality (8.9) is simply the spectral gap for the Jacobi

operator associated to the arcsine law.

9. Poincaré inequalities and Jacobi operators

In this section we show how the two versions of the Poincaré inequalities can be viewed as
spectral gaps for some Jacobi operators. This discussion is mainly driven from the work [8] by
Cabanal-Duvillard and his interpretation of the variance in (7.4) in terms of the number oper-
ator of the Jacobi operator associated to the arcsine law. This viewpoint allows for an unified
perspective of the Poincaré inequalities presented in the preceding sections.

For our purpose we consider here the Jacobi operators given, for smooth functions on (−1,1),
by

Lλf (x) = −(
1 − x2)f ′′(x) + (2λ + 1)xf ′(x) (9.1)

for λ � 0. We consider the Gegenbauer polynomials Cλ
n , λ > 0, defined by the generating func-

tion

∞∑
n=0

rnCλ
n(x) = 1

(1 − rx + r2)λ
.

For λ = 0 we set Cλ
n(x) = Tn(x)/n, n � 1, where Tn are the Chebyshev polynomials of the first

kind.
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It is known that Cλ
n are eigenfunctions of Lλ, with eigenvalue n(n + 2λ), i.e.

LλC
λ
n = n(n + 2λ)Cλ

n .

On the other hand the Gegenbauer polynomials are orthogonal with respect to the probability
measure

νλ = 22λΓ 2(λ + 1)

πΓ (2λ + 1)
1[−1,1](x)

(
1 − x2)λ−1/2

.

Notice that in the case of λ = 0, this becomes the arcsine law and for λ = 1, this is the semicir-
cular law, while for λ = 1/2, this becomes the uniform measure on [−1,1].

Take now the normalized Gegenbauer polynomials φλ
n = Gλ

n/
√

cλ
n , where cλ

n =∫
Gλ

n(x)2νλ(dx). Then φλ
n form an orthonormal basis of L2(νλ) and thus the operator Lλ is

diagonalized in this basis. Consider Nλ to be the counting number operator with respect to the
basis φλ

n , i.e.

Nλφ
λ
n = nφλ

n. (9.2)

This implies that Lλ = N2
λ + 2λNλ. Therefore we have the following two inequalities

Lλ � (2λ + 1)Nλ and Nλ � 1 − Pλ (9.3)

where Pλ here stands for the projection on constant functions in L2(νλ). In other words,
Pλφ = ∫

φνλ.
Notice that Eq. (9.3) include two statements. The first one is the comparison of L and N , with

the spectral gap 2λ + 1 while the second one is the spectral gap of the counting number operator
with the spectral gap 1. In the sequel we want to translate these spectral gaps in terms of Poincaré
type inequality. For this matter we need to find the kernel of the operator N .

Then we have for any function in the domain of definition of Lλ, that φ = ∑∞
n=0 αnφ

λ
n , and

then

〈Lφ,φ〉L2(νλ) =
∞∑

n=0

n(n + 2λ)α2
n.

On the other hand, using integration by parts, we can justify that

〈Lφ,φ〉L2(νλ) =
∫

φLλφ dνλ =
∫

φ′(x)2(1 − x2)νλ(dx).

For the number operator, we have that

∫
φNλφ dνλ =

∞∑
nα2

n = lim
r↑1

∞∑
nrn−1α2

n.
n=0 n=0
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Now, for −1 < r < 1,

∞∑
n=0

nrn−1α2
n =

∫ ∫
φ(x)φ(y)

∞∑
n=0

nrn−1φλ
n(x)φλ

n(y) νλ(dx) νλ(dy).

Furthermore, since
∫

φλ
ndνλ = 0 for n � 1, we also obtain that

∫∫
φ2(x)φλ

n(y)νλ(dx)νλ(dy) = 0
for n � 0 and thus, denoting Kλ(r, x, y) = −∑∞

n=0 nrn−1φλ
n(x)φλ

n(y),

∫ ∫
φ(x)φ(y)

∞∑
n=0

nrn−1φλ
n(x)φλ

n(y) νλ(dx) νλ(dy)

= 1

2

∫ ∫ (
φ(x) − φ(y)

)2
Kλ(r, x, y) νλ(dx) νλ(dy).

The following formula is essentially due to Watson [33] and valid for λ > 0,

∞∑
n=0

rnφλ
n(x)φλ

n(y) = (1 − r2)Γ (2λ)

22λ−1Γ 2(λ)

1∫
−1

(1 − z2)λ−1

(1 − 2r(xy + z
√

(1 − x2)(1 − y2)) + r2)1+λ
dz.

For λ = 0, we have to deal with the Chebyshev polynomials of the first kind which was more or
less what appeared in the proof of Theorem 8. For this case, we have that (denoting x = cos t and
y = cos s),

∞∑
n=0

rn

cn

Tn(x)Tn(y) = 1 − r cos(t + s)

1 − 2r cos(t + s) + r2
+ 1 − r cos(t − s)

1 − 2r cos(t − s) + r2

where cn = ∫
T 2

n dν0 = 1 for n = 0 and 1/2 otherwise.
Thus, we obtain, after differentiation with respect to r and then limit over r ↑ 1, that

Kλ(x, y) = lim
r↑1

Kλ(r, x, y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Γ (2λ)

23λ−1Γ 2(λ)

∫ 1
−1

(1−z2)λ−1

(1−xy−z
√

(1−x2)(1−y2))1+λ
dz, λ > 0,

1−xy

(x−y)2 , λ = 0,

1
2(x−y)2 , λ = 1.

(9.4)

The integrand is not a rational function. In some cases, it is algebraic since λ � 0 need not be an
integer.

To reveal the singularity of this kernel, we make the change of variable

1 − xy − z

√(
1 − x2

)(
1 − y2

) = t
(

1 − xy −
√(

1 − x2
)(

1 − y2
))

.

Then, after simple algebraic manipulations, setting fλ : (0,1) → R,

fλ(u) =
1/u∫ [(t − 1)(1 − ut)]λ−1

tλ+1
dt,
1
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and

Hλ(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

Γ (2λ)(1−xy+
√

(1−x2)(1−y2))λ

23λ−1Γ 2(λ)((1−x2)(1−y2))λ−1/2 fλ

( (x−y)2

(1−xy+
√

(1−x2)(1−y2))2

)
, λ > 0,

1 − xy, λ = 0,
1
2 , λ = 1,

(9.5)

we can rewrite Eq. (9.4) for |x|, |y| < 1 as

Kλ(x, y) = Hλ(x, y)

(x − y)2
(9.6)

where Hλ(x, y) is a continuous function of x, y ∈ [−1,1].
Now, from (9.3), we obtain the following result.

Theorem 11. For any λ � 0, one has for all λ � 0 and any φ ∈ C1([−1,1]), that

∫
φ′(x)2(1 − x2)νλ(dx) � 2λ + 1

2

∫ ∫ (
φ(x) − φ(y)

x − y

)2

Hλ(x, y) νλ(dx) νλ(dy). (9.7)

and ∫ ∫ (
φ(x) − φ(y)

x − y

)2

Hλ(x, y) νλ(dx) νλ(dy) � 2 Varνλ(φ). (9.8)

Remark 5.

1. Eq. (9.7) for λ = 0 is the statement of Theorem 8 for the case V (x) = 2x2 and for λ = 1
(more precisely, Eq. (7.8)) while Eq. (9.8) is the statement of the second Poincaré inequality
contained in Theorem 9 for the semicircular law. The combination of these two inequalities
is equation (8.9).
In other words, for measures νλ, the first Poincaré type inequality is driven by the compar-
ison of the Jacobi and counting number operators defined in (9.1) and (9.2), as the second
Poincaré type is the spectral gap of the counting number operator.

2. Combining Eqs. (9.7) and (9.8), we also get a Brascamp–Lieb type inequality:∫
φ′(x)2(1 − x2)νλ(dx) � (2λ + 1)Varνλ(φ). (9.9)

For λ � 1/2, the measure νλ is of the form e−V (x) dx, where V (x) = −cλ − (λ − 1/2)×
log(1 − x2), a strictly convex function on (−1,1) and according to the classical Brascamp–
Lieb inequality [6],

∫
φ′(x)2 (1 − x2)2

(1 + x2)
νλ(dx) � (2λ − 1)Varνλ(φ). (9.10)

Notice here that neither (9.9) not (9.10) implies the other which means that they complement
each other in some sense. For example if φ has support in [− 1

2λ
, 1

2λ
], (9.9) implies (9.10),

while if φ is supported on [−1,1] \ [− 1
2λ

, 1
2λ

], (9.10) implies (9.9).
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10. Wishart ensembles and Marcenko–Pastur distributions

In this section, we address the preceding functional inequalities for probability measures on
the real positive axis in the context of the Wishart Ensembles from random matrix theory and
their associated Marcenko–Pastur distributions.

We start with the random matrix heuristics although, as far as we know, it has not been used
towards functional inequalities as before. The problems of large deviations principle for the dis-
tribution of the eigenvalues of Wishart ensembles is discussed in [16]. The model is as follows.
Take T (n) a n × p(n) random matrix with all the entries being iid N(0,1) random variables.
Then T (n)T (n)t for n < p(n) is known as the nonsingular Wishart random ensemble. Accord-
ing to [17, p. 129], the distribution of the Wishart ensembles is given by

Cnpe− p(n)
2 TrM(detM)(p−n−1)/2 dM.

where the measure dM = ∏
i�j dMij the restriction of the Lebegue measure on the set of n × n

non-negative matrices.
It is also known (for example [17, p. 129]) that the joint distribution of eigenvalues

(λ1, λ2, . . . , λn) of 1
p(n)

T (n)T (n)t is given by

1

Zn

e− p(n)
2

∑n
i=1 ti

n∏
i=1

λ
(p(n)−n−1)/2
i

∏
1�i<j�n

|λi − λj |.

Our interest is in the limit distribution of μn = 1
n

∑n
i=1 δλi

. The classical result states that if
n/p(n) −→

n→∞α ∈ (0,1], then the limit distribution of μn is the so called Marcenko–Pastur distri-

bution given by

1[(1−√
α)2,(1+√

α)2](x)

√
4α − (x − 1 − α)2

2παx
dx.

This is a particular model for the standard Wishart ensembles. However one can consider a more
general example with potentials for which the distribution of the matrix is driven by a potential
Q : [0,∞) → R,

Cne
−p(n)TrQ(M)(detM)γ (n)dM

where dM stands for the Lebesgue measure on n × n positive definite matrices. The distribution
of eigenvalues of M is given by

1

Zn

e−p(n)
∑n

i=1 Q(ti )

n∏
t
γ (n)

i

∏
|ti − tj |.
i=1 1�i<j�n
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The main result of [16] is that the distribution of the random measures μn = 1
p(n)

∑p(n)

i=1 δλi
under

the conditions n/p(n)−→
n→∞α ∈ (0,1], γ (n)/n−→

n→∞γ > 0, νn satisfy a large deviation principle

with scale n−2 and the rate function given by

R(μ) = ẼQ(μ) − inf
μ∈P ([0,∞))

ẼQ(μ),

where

ẼQ(μ) =
∫

α
(
Q(x) − γ log(x)

)
μ(dx) − α2

2

∫ ∫
log |x − y|μ(dx)μ(dy).

This gives the following motivation. Assume that V : [0,∞) → R ∪ {+∞} is a lower semi-
continuous potential such that lim|x|→∞(V (x) − 2 log |x|) = ∞. Then, according to the results
in [27], we know that there is a unique minimizer of

inf
μ∈P ([0,∞))

EV (μ).

In addition the equilibrium measure μV has compact support.
A particular case of interest is V (x) = rx − s log(x) with r > 0, s � 0 for which we know

[27, p. 207] that the equilibrium measure is given by

μV (dx) = 1[a,b](x)
r
√

(x − a)(b − x)

2πx
dx where a = s + 2 − 2

√
s + 1

r
,

b = s + 2 + 2
√

s + 1

r
. (10.1)

One recovers the Marcenko–Pastur distribution for V (x) = rx − s log(x), r > 0, s � 0, with
r = 1/α and s = (1 − α)/α.

The natural way to deal with functional inequalities in the context of measures on the positive
axis [0,∞) is to transfer measures from [0,∞) into measures on the whole R. For a measure μ

on [0,∞), consider thus the associated symmetric measure μ̃ on R defined as

μ(F) = μ̃
({

x: x2 ∈ F
})

(10.2)

for any measurable set F of [0,∞). Defining Ṽ (x) = V (x2)/2, it is then an easy exercise to
check that

EV (μ) = 2E
Ṽ
(μ̃). (10.3)

In addition, the minimizer of E
Ṽ

is μ
Ṽ

= μ̃V Further, for the non-decreasing transportation map
θ of μV into μ, define

θ̃ (x) = sign(x)

√
θ
(
x2

)
, (10.4)

which transports μ̃ ˜ into μ̃.

V
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In addition, as it was pointed out in [18], the relative free Fisher information IV (μ) is defined
for measures μ on [0,∞) with density p = dμ/dx in L3([0,∞), x dx) as

IV (μ) =
∞∫

0

x
(
Hμ(x) − V ′(x)

)2
μ(dx) with Hμ(x) = p.v.

∫
2

x − y
μ(dy). (10.5)

Otherwise we take IV (μ) = +∞. The main reason for defining this in this way is because, cf.
[18, Lemma 6.3] and the discussion following, one has

IV (μ) = 2I
Ṽ
(μ̃), (10.6)

where I
Ṽ

is defined by (4.1).
To state the transportation cost result, we define the appropriate distance. For any μ,ν ∈

P ([0,∞)), set the distance as

W(μ,ν) = inf
π∈Π(μ,ν)

(∫ (√
x − √

y
)2

π(dx, dy)

)1/2

(10.7)

where Π(μ,ν) is the set of probability measures on R
2 with marginals μ and ν.

In this context we have the following transportation cost inequality.

Theorem 12. Assume that V : (0,∞) → R is C2((0,∞)) such that V (x2) − ρx2 is convex on
(0,∞) for some ρ > 0 and let μV be the equilibrium measure of V on [0,∞). Then, for any
probability measure μ on [0,∞), we have that

ρ W 2(μ,μV ) � EV (μ) − EV (μV ). (10.8)

In the case of V (x) = rx − s log(x) with r > 0 and s � 0, this inequality with ρ = r is sharp.

Proof. As announced, the idea is to interpret this inequality as an inequality for potentials on
the whole real line instead of [0,∞). Using the measures μ̃ and μ̃V from Eq. (10.2) together
with (10.3), we have that

EV (μ) − EV (μV ) = 2
(
E

Ṽ
(μ̃) − E

Ṽ
(μ̃V )

)
.

On the other hand, if θ is the (increasing) transportation map of μV into μ, then it is not hard to
check that

W 2(μ, ν) =
∫ (√

x −√
θ(x)

)2
μV (dx) =

∫ (
x − θ̃ (x)

)2
μ̃V (dx).

In this framework the inequality (10.8) translates as

ρ

2
W 2

2 (μ̃, μ̃V ) � E
Ṽ
(μ̃) − E

Ṽ
(μ̃V ). (10.9)

From here we will use the same argument as in the proof of Theorem 2. Start with
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E
Ṽ
(μ̃) − E

Ṽ
(μ̃V ) =

∫ (
Ṽ
(
θ̃ (x)

)− Ṽ (x) − Ṽ ′(x)
(
θ̃ (x) − x

))
μ̃V (dx)

+
∫ ∫ (

θ̃ (x) − θ̃ (y)

x − y
− 1 − log

θ̃ (x) − θ̃ (y)

x − y

)
μ̃V (dx) μ̃V (dy)

and notice that the second line of this is non-negative. For the first line we point out that because
Ṽ (x) − ρ

2 x2 is convex and x and θ̃ (x) have the same sign, for any x,

Ṽ
(
θ̃ (x)

)− Ṽ (x) − Ṽ ′(x)
(
θ̃ (x) − x

)
� ρ

2

(
θ̃ (x) − x

)2
,

which implies (10.8).
In the case V (x) = rx − s log(x), take θ(x) = (

√
x + m)2 for large m and notice that θ̃ (x) =

x + m sign(x). Therefore inequality (10.9) becomes

rm2 � rm2 + 2rm

∫
|x| μ̃(dx) − 2s

∫
log

( |x + m sign(x)|
|x|

)
μ̃(dx)

−
∫ ∫

log

(
1 + m

sign(x) − sign(y)

x − y

)
μ̃(dx) μ̃(dy)

which is sharp for large m. �
The next result is the Log-Sobolev type inequality, which was conjectured by Cabanal-

Duvillard in [7, p. 140] for the case of Marcenko–Pastur distribution.

Theorem 13. Let V be as in the previous theorem. Then, with the definition from (10.5) and for
any measure μ ∈ P ([0,∞)),

EV (μ) − EV (μV ) � 1

2ρ
IV (μ). (10.10)

In the case V (x) = rx − s log(x), r > 0 and s � 0 inequality (10.10) with ρ = r is sharp.

Proof. We will discuss here the proof only in the case when μ has a smooth compactly supported
density, careful approximations being described in [18].

From (10.6), we have IV (μ) = 2I
Ṽ
(μ̃), where I

Ṽ
(μ̃) = ∫

(Hμ̃(x) − Ṽ ′(x))2 μ̃(dx). Rewrit-
ing everything in terms of μ̃ and the associated quantities, the inequality to be proven can be
written in the same way as we did in the proof of Theorem 4,

1

2ρ

∫ (
Hμ̃

(
θ̃ (x)

)− Ṽ ′(θ̃ (x)
))2

μ̃
Ṽ
(dx)

+
∫ (

Ṽ (x) − Ṽ
(
θ̃ (x)

)− Ṽ ′(θ̃ (x)
)(

x − θ̃ (x)
))

μ̃
Ṽ
(dx)

−
∫ (

Hμ̃
(
θ̃ (x)

)− Ṽ ′(θ̃ (x)
))(

x − θ̃ (x)
)
μ̃

Ṽ
(dx)

+
∫

Hμ̃
(
θ̃ (x)

)(
x − θ̃ (x)

)
μ̃

Ṽ
(dx) −

∫ ∫
log

x − y

˜ ˜ μ̃
Ṽ
(dx) μ̃

Ṽ
(dy) � 0. (10.11)
θ(x) − θ(y)
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Notice that Ṽ (x) − ρ
2 x2 is not convex on the whole real line but it is convex on the intervals

(0,∞) and (−∞,0). The key to everything here is that θ̃ (x) has the same sign as x and this
allows us to apply convexity of Ṽ (x) − ρ

2 x2 on each of the intervals (−∞,0) and (0,∞) to
conclude that

Ṽ (x) − Ṽ
(
θ̃ (x)

)− Ṽ ′(θ̃ (x)
)(

x − θ̃ (x)
)
� ρ

2

(
x2 − θ̃ (x)2 − 2θ̃ (x)

(
x − θ̃ (x)

))
= ρ

2

(
x − θ̃ (x)

)2
. (10.12)

From here we can follow word by word the proof of Theorem 4.
For the case V (x) = rx, we have equality in (10.10) if θ̃ (x) = x + m sign(x) and thus this

means θ(x) = (
√

x + m)2.
In the case V (x) = rx − s log(x), we look at θ̃ (x) = x + m for large m. In this case Ṽ (x) =

rx2/2 − s log |x| and then a simple calculation shows that (10.10) is equivalent to

rm2 + 2mr

∫
|x|μ̃V (dx) − 2s

∫
log

( |x + m sign(x)|
|x|

)
μ̃V (dx)

− 2
∫ ∫

log

(
1 + m

sign(x) − sign(y)

x − y

)
μ̃(dx) μ̃(dy)

� m2

ρ

∫ (
r − s

x(x + m sign(x))

)2

μ̃V (dx).

Dividing both sides by m2 and taking the limit of m to infinity implies that ρ � r . On the other
hand ρ = r validates (10.10), hence ρ = r is the best constant. �

Next in line is the HWI inequality which is the content of the following statement.

Theorem 14. Assume V is as in Theorem 12 and the distance W given by (10.7). Then for any
measure μ ∈ P ([0,∞)),

EV (μ) − EV (μV ) �
√

2IV (μ)W(μ,μV ) − ρW 2(μ,μV ). (10.13)

For the case of V (x) = rx − s log(x), r > 0, s � 0, this inequality for ρ = r is sharp.

Proof. As it was made clear in the previous two theorems, we translate this inequality in terms
of the associated symmetric measures on R. Following upon the proofs of above theorems, we
can rewrite (10.13) in the following form:

(∫ (
Hμ̃

(
θ̃ (x)

)− Ṽ ′(θ̃ (x)
))2

μ̃V (dx)

∫ (
θ̃ (x) − x

)2
μ̃V (dx)

)1/2

−
∫ (

Hμ̃
(
θ̃ (x)

)− Ṽ ′(θ̃ (x)
))(

x − θ̃ (x)
)
μ̃V (dx)

+
∫ (

Ṽ (x) − Ṽ
(
θ̃ (x)

)− Ṽ ′(θ̃ (x)
)(

x − θ̃ (x)
)− ρ

(
θ̃ (x) − x

)2)
μ̃V (dx)

+
∫

Hμ̃
(
θ̃ (x)

)(
x − θ̃ (x)

)
μ̃V (dx) −

∫ ∫
log

x − y

˜ ˜ μ̃V (dx) μ̃V (dy) � 0.

θ(x) − θ(y)
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Using the fact that Ṽ (x)− ρ
2 x2 is convex on each interval (−∞,0) and (0,∞) combined with the

fact that x and θ̃ (x) have the same sign, the rest of the proof is the same as the one of Theorem 5.
For the case V (x) = rx − s log(x), using θ(x) = (

√
x + m)2, one can show that ρ = r is

sharp. �
At last, we would like to discuss a Poincaré type inequality in this context. As in Section 7,

for the heuristics, we consider the general model of random matrices with distribution

Pn(dM) = Cne
−nr TrM(detM)sndM = Cne

−nTr(rM−s log(M))dM

= Cne
−nTr(V (M))dM (10.14)

where dM stands for the Lebesgue measure on n × n positive definite matrices and s � 0. For
a given smooth compactly supported function φ : [0,∞) → R, we want to apply the Brascamp–
Lieb inequality [6] to the function Φ(M) = Trφ(M) on the space of positive definite matrices.
Now, ∇Φ(M) = φ′(M).

The Hessian of Ψ (M) := Tr(V (M)) can be interpreted as a linear map from Hn (n × n Her-
mitian matrices) into itself which is given by ∇2Ψ (M)X = sM−1XM−1. Hence the inverse of
the Hessian is then (∇2Ψ (M))−1X = 1

s
MXM . Thus we obtain from Brascamp-Lieb that

∫
1

n
Tr
((∇2Ψ (M)

)−1
φ′(M)2)

Pn(dM) � VarPn

(
Φ(M)

)
.

On the other hand, from [20] or [8] the variance of Φ(M) converges to 1
4 Vararcsine[a,b](φ), where

we recall that arcsine[a,b] = dx

π
√

(x−a)(b−x)
is the arcsine law on the support [a, b] of μV . Next,

1
n

Tr((∇2Ψ (M))−1φ′(M)2) = 1
sn

Tr((φ′(M)M)2), whose integral against Pn converges to the
integral of 1

s
x2φ′(x)2 against the equilibrium measure μV from Eq. (10.1). These considerations

suggest that ∫
x2φ′(x)2μV (dx) � s

4
Vararcsine[a,b](φ). (10.15)

Notice here that one can actually make this heuristic into an actual proof of this inequality.
Motivated by these heuristics and also inspired by Theorem 8, we have the following stronger

result.

Theorem 15. Assume that Q : [0,∞) → R is a convex potential and let V (x) = Q(x)− s log(x)

for s > 0 satisfy limx→∞(V (x) − 2 log(x)) = ∞. Assume that the support of μV is [a, b]. Then
for any smooth function φ on [a, b], the following holds,

∫
x2φ′(x)2μV (dx) � s

4π2

b∫
a

b∫
a

(
φ(x) − φ(y)

x − y

)2

× −2ab + (a + b)(x + y) − 2xy

2
√

(x − a)(b − x)
√

(y − a)(b − y)
dx dy. (10.16)

If Q(x) = rx + t , equality is attained for φ(x) = c1 + c2 , therefore (10.16) is sharp.

x
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In particular, combining (10.16) with (9.8) for λ = 0, we get an improvement of (10.15) as

∫
x2φ′(x)2μV (dx) � s

2
,Vararcsine[a,b](φ).

Equality though is attained only for φ identically 0.
In the case V (x) = rx, r > 0, on [0,∞), there is no constant C > 0 such that inequality

(10.16) holds with C instead of s/4π2. Nevertheless, for every smooth φ on [a, b], the following
holds,

∫
xφ′(x)2μV (dx) � r

4π2

b∫
a

b∫
a

(
φ(x) − φ(y)

x − y

)2

× −2ab + (a + b)(x + y) − 2xy

2
√

(x − a)(b − x)
√

(y − a)(b − y)
dx dy, (10.17)

with equality for φ(x) = c1 + c2x.

As remarked after the statement of Theorem 8, the numerator in (10.17) is nonnegative.

Proof. The same argument as in the proof of Theorem 8, shows that the density g(x) of μV

satisfies

g(x) � s
√

(x − a)(b − x)

2πx
√

ab
,

therefore it suffices to show that

1

π
√

ab

b∫
a

xφ′(x)2
√

(x − a)(b − x)dx � 1

2π2

b∫
a

b∫
a

(
φ(x) − φ(y)

x − y

)2

× −2ab + (a + b)(x + y) − 2xy

2
√

(x − a)(b − x)
√

(y − a)(b − y)
dx dy.

Next, making the change of variable x = (a + b)/2 + u(b − a)/2 and denoting ζ(u) =
φ((a + b)/2 + u(b − a)/2), we reduce the problem to showing that for any smooth function
φ on [−1,1], we have

1

π
√

ab

1∫
−1

(
a + b

2
+ b − a

2
u

)
ζ ′(u)2

√
1 − u2 du � 1

2π2

1∫
−1

1∫
−1

(
ζ(u) − ζ(v)

u − v

)2

× 1 − uv√
1 − u2

√
1 − v2

dudv.

Denoting β = b−a
b+a

, we have that a+b

2
√

ab
= 1√

2
, and the preceding inequality reformulates as
1−β
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∫
(1 + βu)ζ ′(u)2

√
1 − u2 du �

√
1 − β2

2π

1∫
−1

1∫
−1

(
ζ(u) − ζ(v)

u − v

)2

× 1 − uv√
1 − u2

√
1 − v2

dudv. (10.18)

To show this, take ψ(t) = ζ(cos(t)) and then after the change of variable u = cos(t) we need to
check

π∫
0

(
1 + β cos(t)

)
ψ ′(t)2 dt �

√
1 − β2

2π

π∫
0

π∫
0

(
ψ(t) − ψ(s)

cos(t) − cos(s)

)2(
1 − cos(t) cos(s)

)
dt ds.

Writing ψ(t) = ∑∞
n=0 an cos(nt) and using that ψ ′(t) = −∑∞

n=1 nan sin(nt), together with the
fact that

π∫
0

cos(t) sin(nt) sin(mt) dt =
{

π
4 for |m − n| = 1,

0 otherwise,

and Eq. (7.11), the inequality becomes

∑
n�1

(
n2a2

n + βn(n + 1)anan+1
)
�

√
1 − β2

∑
n�1

na2
n. (10.19)

Let δ = 1−
√

1−β2

β
be the solution 0 < δ < 1 of βδ2 − 2δ + β = 0. Notice that for any n � 1, we

have

anan+1 � − δ

2
a2
n − 1

2δ
a2
n+1

which implies that

∑
n�1

(
n2a2

n + βn(n + 1)anan+1
)
�

∑
n�1

(
n2a2

n − βn(n + 1)

2

(
δa2

n + 1

δ
a2
n+1

))

=
∑
n�1

nβ(1 − δ2)

2δ
a2
n =

√
1 − β2

∑
n�1

na2
n,

what we had to prove. Notice here that equality is attained in this inequality if and only if an+1 =
−δan for all n � 1, which means that an = (−1)n−1δn−1a1. This corresponds to the function
ψ(t) = a1

δ+cos t

1+δ2+2δ cos t
, or ζ(u) = a1

δ+u

1+δ2+2δu
which means that φ(x) = a1(r − s/x). Therefore

equality holds also for φ(x) = c1 + c2/x.
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For the second part, in the case V (x) = rx with r > 0, notice that if there is a C > 0 so that
(10.16) holds with C instead of s/4π2, then, following the same argument as above, we would
have the equivalent of (10.19) as

∑
n�1

(
n2a2

n + n(n + 1)anan+1
)
� C

∑
n�1

na2
n.

Taking in this an = (−γ )n

n
for 0 < γ < 1, we have that γ 2/(γ + 1) � −C log(1 − γ 2), and this is

certainly false for γ close to 1.

For Eq. (10.17), notice that in this case the equilibrium measure is μV (dx) = r
√

b−x

2π
√

x
and then

after a simple rescaling this follows from Eq. (7.8). This complete the proof of the theorem. �
It is interesting to look at this inequality as a spectral gap result as in Section 9. For exam-

ple in the case of the Marcenko–Pastur measure (Q(x) = rx), the inequality (10.16) is actually
equivalent to inequality (10.18). Using the interpretation from Section 9, we can rephrase this as,
for a given β ∈ (0,1),

∫
(1 + βx)

(
1 − x2)φ′(x)2ν0(dx) �

√
1 − β2〈Nφ,φ〉ν0

where ν0 is the arcsine law on [−1,1] and N is the number operator. Now we can define the
operator

Lβφ(x) = −(1 + βx)
(
1 − x2)φ′′(x) − (

β − x − 2βx2)φ′(x).

With this definition,

〈Lβφ,φ〉ν0 = 1

π

∫
(1 + βx)φ′(x)2

√
1 − x2 dx

and then inequality (10.18) becomes

〈Lβφ,φ〉ν0 �
√

1 − β2 〈Nφ,φ〉ν0

for any smooth function φ on [−1,1]. In particular this means that Lβ �
√

1 − β2N . On the
other hand it is clear that the operator Lβ can not be diagonalized by the Chebyshev polynomials
of the first kind, therefore the orthogonal polynomial approach given in Section 9 does not work
the same way here.

Remark 6. We want to point out that for the case V (x) = rx − s log(x) for r > 0 and s � 0, the
parameter r appears in the transportation, Log-Sobolev and HWI, while the parameter s plays
the dominant role in the Poincaré inequality.
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