ANALYSIS OF THE QUADRATIC TERM IN THE
BACKSCATTERING TRANSFORMATION

INGRID BELTITA AND ANDERS MELIN

Abstract

The quadratic term in the Taylor expansion at the origin of the backscattering transformation
in odd dimensions n > 3 gives rise to a symmetric bilinear operator Bz on C§°(R™) x C§°(R™).
In this paper we prove that Bs extends to certain Sobolev spaces with weights and show that it
improves both regularity and decay.

1. Introduction and formulation of the main result

The real part of the Fourier transform of the backscattering part of the scattering
matrix associated to the Schrodinger operator H, = —A 4 v in R™, where n > 3 is
odd, can for v in suitable function spaces be represented as a function v+ (v) + R.
Here R is a smooth function, which is due to the negative bound states and does not
appear when v is small or nonnegative. The term 3(v) is entire analytic in v, and
its Taylor series at v = 0 starts with a quadratic term (33(v). The corresponding
bilinear transformation Bs is a singular integral operator on C§°(R™) x C§°(R™).
We refer to the paper [5] in which the backscattering transform was defined in
arbitrary odd dimension (see Definition 3.4 in that paper). An explicit formula for

Bs is provided by Corollary 10.7 of [5], which implies that
+z Yy—z

(1) Balf.9)e) = [[ Bl flat g Dhgta— 2

Here E(y, z) = 4~ (im)' =62 (|y|? — |2|?) is the unique fundamental solution of

Ydy dz,  f,g € C5°(R™).

the ultra-hyperbolic operator A, — A, such that E(y, z) = —E(z,y) and E(y, 2)
is separately rotation invariant in both variables (see Corollary 10.2 of [5]). With
this notation 32(v) = Ba(v,v).

Since F is not a function the formula (1.1) needs to be interpreted in the distri-

bution sense. If the trilinear form @ on C§°(R™) is defined through

(1.2) Qf.9.h) = / W) Ba(f.g)(x)dz,  fog.h € C(R™),
this means that
QUf.9.h) = (B, ®)
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where

b(y.2) = [ ho)fe+ L )gw - LD da,
In what follows we are going to use similar notation for other integrals that have
to be interpreted in the distribution sense. For definitions and basic results in
distribution theory we use [3].

The expressions for By and E above show easily that Bs is continuous from
C5°(R™) x C§°(R™) to C$°(R™). It commutes with translations and |z| < \/r? + 72
in the support of Ba(f,g) if || < ry in supp(f) and || < r9 in supp(g). From
formulas we derive in the next section it will be clear that By extends to a much
larger domain than C§° x C§°. In particular Bs(f,g) is defined as a distribution
when f, g € LZ;.

It was noticed in the paper [4] that, when v is compactly supported, the high
order terms By (v) of G(v) gain smoothness that increases with N. This result was
made more precise in the paper [1]. In particular, it was shown that G(v) is more
regular than v.

In this paper we focus our considerations to By and establish continuity estimates

in weighted Sobolev spaces. Specifically, we consider the spaces
H(a,b)(Rd) = {u € §'(RY); (x)*(D)’u € L*(RY)}

where a,b € R and D =i'9, hence (D) is multiplication by (¢) = (1 + [£]?)'/2 on
the Fourier transform side. We prove then that for certain values of a,b > 0 it is
true that By extends to a bilinear operator on H, ). In fact, it happens also that
there are a, b, @, b with a < @, b < b such that By is continuous from Hq,5)(R™) x
Hq)(R™) to H, 3)(R™). This means that B in a certain sense improves decay and
regularity at the same time and therefore shares some nice features with ordinary
multiplication as well as convolution. There are good reasons to believe that similar
properties hold for higher order terms By in the expansion of the backscattering
transform, and if so, this would have applications in inverse scattering.
Throughout this paper we use the notation m = (n — 3)/2. Our main result is

the following theorem.
THEOREM 1.1. Assume (a’,V',a”,b",a,b) € RS satisfies
0<a<m+1/2+min(a’,a”), a<ad +d" —1/2,
(1.3) 0<b<1+min®,0"), b+m<bd +b",

a+b<1/2+min(a’,a”) + min(¥’,0").
Then By is continuous from Hqs py(R™) X Hqr pry(R™) to Hqp)(R™).
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COROLLARY 1.2. Assume that
0<a<a,0<b<b at+b<1/2

Then By is continuous from H1/aya,m+b) X H(1/24a,m+b) 10 H1jopatamivtp)- 1N

particular, By is a continuous bilinear operator on H, ) when a > 1/2 and b > m.

In the result above the improvement on regularity of B2(v) = Ba(v,v) depends,
in a certain sense, on the regularity of the potential. In particular, there is no
gain in smoothness when b = m. It can also be noticed that when the dimension
increases, the potential needs to be more regular. However, it does not need to have
better decay, since the conditions in a’, @’ on Theorem 1.1 do not become more
restrictive when dimension increases. Let us mention the results in [6], where the
cases of dimensions n = 2, 3 are considered. In the case n = 3, these results imply
that, for L? compactly supported potentials, the difference between the potential
and the Born series approximation of the Fourier transform of the backscattering
data belongs, modulo a smooth function, to the Sobolev space H g 5y with § < 1/2,
and thus the regularity improves independently of the regularity of the potential.
From the point of view of regularity our results are better, in the case n = 3,
only for potentials in H g ;) with b > 1/2. However, as explained above, obtaining
continuity properties for Bs, from which improvement both in regularity and decay
can be derived, is the main aim here, and our technique is adapted to this aim.

The proof of Theorem 1.1 relies on a duality argument applied to the trilinear
form @ in (1.2). There is a simpler expression for (). To see this, consider the

bilinear operator
A:S(R™) x S(R™) — S(R™)

defined through

(14 A(fg)(t) = / Fo(y.0)f(z — w)g(z +y) dy, z€R" tER.

Here ko(z,t) is the convolution kernel of the operator Ky(t) = sin(¢|D|)/|D| that
is, Ko(t) is multiplication by sin(¢|£|)/|¢| on the Fourier transform side. We note
here that u(x,t) = Ko(t)f(z) is, for every f € C§°(R™), the unique solution in
C1([0,0), L?(R™)) to the Cauchy problem (97 — A,)u(z,t) = 0, u(z,0) = 0,
(Opu)(z,0) = f(z). We recall (see equation (5.4) in [5]) that

(1.5) o2, 1) = 7(27) " (=1)™ / 5= (2, ) — ) dw
Snfl
when ¢t > 0.
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LEMMA 1.3. We have the identity

(16) QUf g h) = —4 / / A(f, g) . 1) (cos t|D[h)(x) de dt

R™ xR+

when f, g, h € C§°(R™).

PROOF. By using the homogeneity of E we get

L7 QUfg.h) =4 / / / E(y, )z — 2)f(z + y)g(z — y) dr dy d=.

We recall that (see Thm. 10.4 of [5])
(1.9 B(y2) = [ Kol oz, 1) .
0

Then we first integrate with respect to z in (1.7) and apply (1.8) to write

(1.9) /E(y7 2)h(r — z)dz = — /OOO ko(y,t)(cos(t|D])h)(x) dt.

Then the integration with respect to y in (1.7) gives

(1.10) [ 105+ v)gte — 9) dy = A(F.9)(a. ).

The formula (1.6) is then obtained by integrating over the remaining variables x

and ¢.

The main idea is to use continuity properties of the operators cos(t|D|) and A
in H(,) spaces in order to get the needed estimates. To this end we need an inter-
polation result for bilinear operators, which is contained in Section 2. Continuity
properties of cos(t|D]) and A are obtained in Section 3, and the proof of the main

result is then derived.

2. An interpolation result for bilinear operators

In this subsection we consider general dimensions d > 1.

When a,b € R we define
(2.1) Hiay(RY) = {u € S'(R%); (@) (D)'u € L*(RY)}.
This is a Hilbert space with norm
ull @,y = {2} (D) ull,

where the norm in the right-hand side denotes the L? norm. Since the operators

(DY (x)*(D)~"(x)~ and (x)*(D)*(z)~*(D)~° are continuous in L2, it follows that

H(a’b)(Rd) = {u e §'(RY); (D)*(z)%u € L*(RY)}
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and the norms |[ul[, ;) and Hu||/(a’b) = |[(D)b(z)%| are equivalent. This in turn
implies that the Fourier transform is a linear homeomorphism from H, ) onto
Hpo)-

Assume T': S(R?) x S(R?) — S(R™) is a continuous bilinear operator. Let I(T)
be the set of all o = (a’,¥',a”,b",a,b) € RS for which there is a constant C' = C(o)
such that

(2.2) 1T Dy < ClF Nl oy lgll @y £o 9 € S(RY).

The next theorem might be obtained as an application of Theorem 4.4.1 in [2].
For the reader’s convenience we include here a direct proof.

THEOREM 2.1. The set 1(T) is convez in R®.

We are going to use the following lemma.

LEMMA 2.2. Assume K C R is a compact set. Then there is a positive constant
C depending on K and d only such that
(2.3) ID)* (@)™ (D) ~*|| 12 (Ray— p2(ray < (1 + Cle))I e,

when b € C with Rebe K andt € R.

PROOF. Choose a positive integer M such that K C [-2M,2M] and set
Par(z,t) = (D)2M= ()it (D)~2M=
when z € C, t € R. We have that
Dj o (z)!* = (z)" o Dj + ta;(z)*~>.
It follows by induction over || that
Do (z)'" = () o D+ > (2)"t*pr.ap(x) 0 DY,

1<k<|al

18l<lal
where <m>‘7‘87pk,aﬁ is bounded for every v € N%. Hence there is a constant C,
which depends on M and d only, such that
1Par (1, 8)] o < (1+ CJ)*M.
Since (D)?MiIm= jg ynitary in L? it follows that
(2.4) | Par(2, )] 2y < (14 ClE))*M  when Rez=1,teR.

One also clearly has that

(2.5) 1Par(z, )| o g2 <1 when Rez=0,teR.
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Let f, g € S(RY) satisfy || f|| = |lg|| = 1 and set
This is an entire analytic function, bounded on the strip 0 < Rez < 1 and, by (2.4)
and (2.5), |qam(2,t)] <1 when Rez = 0 or Rez = 1. It follows by the three lines
theorem that |gas(z,t)] <1 when 0 < Rez < 1. This implies that
1Par (2, 1)l 2 o < (1 4+ CJe])M IR
when 0 < Rez <1, t € R. A similar proof shows that the above inequality holds

also for —1 < Rez < 0. The lemma follows after replacing z by b/(2M).

PrROOF OF THEOREM 2.1. Assume
a0 = (ag, by, ag, by, a0, bo), o1 = (a},by,ay,b],a1,b1)
are elements of I(T'). Define
o(z) = (d'(2),b(2),d"(2),b"(2),a(2),b(z)) = (1 — 2)og + 201, 2z € C.
Let f, g € S(R%) and h € S(R)) and set
F(2) = (@) Dy Y Of, Gle) = () O(D) g
and
H(z) = () *D) .
Then F, G and H are holomorphic functions of z with values in S(R?) and S(RY),
respectively, and their & seminorms have at most polynomial growth in |z| when
Re z stays in a bounded set.
The previous lemma shows that when Rez =0
1F ()l g ) < Crll (DY (@)1= (D) =8 (D=0t =40 |

< Co(1+ [Tm 2|) "6l [(D)* o= £ < CJL + 2|1 .

Similarly one gets

Gy < CIL+ 2" lgll,  TH () (_ay gy < CIL+ 2R
0°70
when Re z = 0, and
IF () 0y < CIL+ 2[00 F1 G 0wy < CIL+ 21" lg]| and
1°71 1 1
IH ()| —ay,—by) < CI1+ 2[H]|n]|
when Rez = 1.
Define

This is an entire analytic function.
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Since T is continuous from S(R%) x S(R?) to S(RY) it follows (by using commu-
tator estimates as in the previous lemma) that ¢(z) is of most polynomial growth
in the strip 0 < Rez < 1. Since o, 01 € I(T) the estimates for F, G, H above
show that there are positive constants C' and 7y, which are independent of f, g, h,
such that |(14 2)"7q(z)| < C||f]| - |lg]l - ||h]] when Rez =0 or Rez = 1. It follows
then from the three lines theorem that (14 2)~7¢(z) satisfies the same estimate for
every z in the whole strip. When z = 0 € (0,1) we get an estimate for ¢(6), and

hence the estimate

(DY@ )" OT ()~ D) O £, ()" D) D) < CIf g
where C' is independent of f and g. This means precisely that o(0) € I(T).
3. Proof of the main result

We recall that n > 3 is odd and we have denoted m = (n — 3)/2. We define the
operator K : §'(R") — S'(R"*1) through

(3.1) (Ku)(z,t) = Y4 (t) cos(t|D))u(z), teR,zeR",

where Y, is the characteristic function of [0, 00).

PROPOSITION 3.1. Assume a <0 and b < 0. Then the operator K is continuous

from Hiq ) (R™) to Hiq_1/2)(R"™1).

PROOF. When ¢ > 0 we denote by A; the operator on S(R™) which is multi-
plication by the function ((1 + )2 + |2|?)'/2 and we consider K (t) = cos(t|D|) as
an operator in S(R™). Since n is odd the convolution kernel ko(z,t) of K(t) is
supported in the set where || = t. Therefore K (t)f is supported in the ball with
centre xg and radius r + ¢ if f € C§°(R™) is supported in the ball with centre
and radius r.

Assume first that a is real, arbitrary. We prove that there exists a constant C,

such that

(3-2) A7 KA 2Rny— 22 Ry < Car £2 0

Let (T)os0 be the dilation group on S(R™) defined by T,h(z) = 0™/?h(ox). Then

T;t=T /o and T, extends to a unitary operator in L2 for every o. We notice that
T,Kt)T, ' = K(t/o)

and

T1+tA?T1;1t = (1+1)°Ag.
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It follows that
AK(AY = TILAG K (E/(1+ 1) AGT 4y

Therefore, it is enough to show that for 0 <t < 1 the operator Ay “K (¢t)A§ extends
to a bounded operator on L?*(R™) and that there exists C,, > 0 such that

(3.3) HAJGK(t)AS||L2<Rn)HLz(Rn) < Ca, 0<t< 1.

Take 0 < ¢ < 1. We notice that (K (¢)f, K(t)g) = 0 if dist(supp(f), supp(g)) > 2,
since the supports of K(t)f and K(t)g do not overlap. Let 0 < x € C5°(R™) be
supported in the unit ball and satisfy [x(y)dy = 1. For f € C§°(R™) define

fy(@) = f(z)x(z —y). Then
(KOFKOF) =0 when |y—z| > 4.
Since f = [ f, dy it follows that
(A" KM AT KA = [[(5° KON, A5 K (DA F.) dy dz

- / / (AT K (1AL f,, A K ()AL .) dy dz < C / 1A K ()AL, |2 dy.

ly—z|<4
Since |z —y| < 1 in the support of A§ f,, we have that |z —y| < t+1 in the support
of K(t)A§f,. Hence

1A “K®)AGfyll < Coy) ™ “IAGfull < ClI Syl
The proof of (3.3) is then completed by the fact that
REER
Using (3.2) we get, when a < 0,
//(1 b la? + )2 Ku(a, )] de dt
- //(1 T [ f? + £2)0 V2| (K () ()] da
< C//(l + |22 4 £2)* V2 u(x) 2 de dt
= c(/oo (1412712 dt) /(1 + [a) u(@)]? dz = C'|[ullf, o,
when v € S(R™). This concludes the proof for the case b = 0, since S(R™) is dense
in Hg,0)-

In the case b < 0 the proposition follows from the fact that K commutes with

D, and the operator (1 + |Dy|? + |D,|?)*(D,)~? is bounded.

The previous proposition combined with Lemma 1.3 gives the next corollary.
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COROLLARY 3.2. Assume ay, as, by, ba, a3, b3 € R, az > 0 and b3 > 0. Then By
is continuous from Hq, p,) X H(ay,b,) 10 H(ay by if A is continuous from H,, p,) %
Hay,b) 10 Hag41/2,bs)-

We turn our attention to proving continuity properties for the bilinear operator

A. We will first establish some useful formulas for A(f, g) and its Fourier transform.

Let S: S(R") x S(R") — S(R"*!) be the operator defined through

(3.4) S(f,g)(x,t) =™+t / flx+tw)g(r —tw) dw, x€R" teR.
Sn—1
It is easy to see that S extends to a bounded operator from L?(R"™) x L%(R™) to

L2(Rn+1).

LEMMA 3.3. Let A\(f, g)(&, T) denote the Fourier transform of A(f, g) with respect
to both variables. Then

(3.5) Af.9)(&7) =
when f, g € S(R™).

(r/2)™
23i(2m)n—1

S(f,9)(6/2.7/2),
PrOOF. Let ¢(&,t) be the Fourier transform of A(f,g)(x,t) in the variable x.

Then
o(€.1) = / Fo(y, ) F(m)F(E — me @169 dy dn
(2m)~ "2~ //ko y,t) g n)g(ggn)e_“”’”dydn

oy [ Sn0l0) 5 € n €
= my e [ FE TG ET) 4y

It follows that
~ el —eithl ey e
A = (27) "o~ —irt© -~
(rae.n = @nra [[em e T aay
R™ xR

= (2m)~ (Vi tam (D7 /(5(|77| — )= ol + N FEE D) an

Rn
—(n=1):—1o—(n e ~EtTw, L —Tw
= (2m)~(n7DjTlgm (k) =2 / 7 5 =) dw.

Sn—1

This combined with (3.4) gives the lemma.
LEMMA 3.4. We have
(3.6) ko(z,t) = 0" ko(z, 1),

where the smooth mapping R 3 t — ko(-,t) € D'(R™) is given by
(3.7)

(H0(~,t),<p>:7r(27r)7("+1)/2tm+1 / go(tw)dw—i—/p(t/r)rm / plrw)dw | dr

Sn—1 t n—1
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for every ¢ € C§°(R™). Here

1 d

p(s) = W( — )" A=),

ds

with the convention that p(s) = 0 when m = 0.

REMARK 3.5. When m = 0, that is, n = 3 the polynomial p vanishes. Therefore
only the first term appears in the right-hand side of (3.7). We have used here the

convention that 0! = 1.

PROOF. We notice that p(s) is a polynomial of degree m — 1 which is odd (even)
if m is even (odd). The polynomial rp(t/r) is therefore odd in r and odd (even)
in ¢ if m is even (odd). Set ¢(t) = [ ¢(tw)dw when ¢ € R. This a smooth and

Snfl
even function of ¢t. If m is even then

/ plt/r)yrmE(r) dr = / p(t/ryr @ () dr = — / p(—t/r)rm3(r) dr

which shows that the left-hand side is an odd function of ¢. If m is odd similar
arguments show that the left-hand side is even in t. Hence, if we define kg as in the
lemma it follows that ko(-,¢) is a smooth distribution valued function of ¢ which is
odd (even) if m is even (odd).
Define
Up(z,t) = / S (2, w) — t) dw.
n-1

g
It follows from (1.5) that

ko(z,t) = Of'n(2m) " Uop(x, t).
Here Uy(-,t) is a smooth distribution valued function of ¢ with the same parity as
ko(+,t). The lemma follows therefore if we prove that
K/O(xa t) = 71-(271-)7"[]0(7:7 t)
when ¢t > 0.
We may write

Us (1) = (—0,)™+? / Y. (2w — ) dw
Snfl

= o1 (—=0)™2 | Yi(|z|s — t)(1 — s?)™ds

= Cpo1(=0)™ [ §(|z|s — t)(1 — s?)™ ds.

L L—
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where ¢, = 2™ /m! is the area of the (n — 2)-dimensional unit sphere. In

{t > 0} we have

<U0('7t)’ >_ Cn— 1 m+1

1
/5 (s —t)r" 11 — s*)™p(r) dsdr
21

= cnfl(_at)m—i_l

(t/s)" (1= s")"s7 G(t/s) ds

o—__

m+1 2(1 =2 /r?)m@(r) dr.

= Cn— 1

&\8

Set q(s) = cp_1(—d/ds)™TH(1—s%)™ ~1(27)"p(s). A simple computation then

gives
o0

(Uo(+,1), ) = cp_1m!2™t™ T 5(t) + /q(t/r)rmﬁ(r) dr

t

=11 (2m) " (ko (1), ©).
This finished the proof of the lemma.

COROLLARY 3.6. With the notation in the previous lemma, we have

o0

A(f,9)(x,t) = 0" 7?(27T)*("+1)/25(f79)(177t)+/p(t/7")7"*15(f,9)(93,7") dr

t
for every f, g € C5°(R™).

It has become clear that, in order to get continuity properties of A, we need to
study the bilinear operator S. We start with an elementary lemma, where meas(-)

denotes the surface measure on S* 1.

LEMMA 3.7. There is a constant C such that
n—1
(3.8) meas ({w € S" 71 r/2 < |z — tw| < 2r, |z + tw| < s}) < C(f)
r

whenr, s >0, x € R*, teR.

PROOF. It is enough to prove the lemma for s < r/4. Denote
M(z,t;r,8) = {w € S" Y /2 < |x — tw| < 2r, |z +tw| < s}.
Since
meas(M (x, —t;r, s)) = meas(M (z, t;r, s))
we may assume t > 0.
If w € M(x,t;r,s) we must have (v, w) < 0. It follows that r/2 < |x|+t < 2/2r

when M (x,t;7,s) # 0. Also ||z| — ¢| < s < r/4, hence |z|, ¢t and r are of the same

order of magnitude. Using the fact that the push-forward of the measure dw on
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S"~! under the mapping w — 7 = (z,w)/|x| € [-1,1] is a multiple of the measure

(1 —72)™dr we easily see that

meas(M(x,t;r,s)) < C / (1—=7)"dr,

N (z,t,s)
where
N(z,t,8) = {r €(0,1); |z|* + 1% — 2|z|tr < s%}.
Since
e o
. 2 ¢ 2\ m+1
/ (1-7)"dr < / ™mdr < C sy (2] —#) ,
2|x|t
N(z,t,s) 0

we have proved that

n—1
2,

meas(M (z,t;7,5)) < C(s*/(|z|t))

Recalling that |z| and ¢ are of the same order of magnitude as r, we see that (3.8)

holds.

LEMMA 3.8. Assume r, s >0, ¢, ¢ € C(R™), ¢ is supported in the set where
r/2 <|z| < 2r, 1 is supported in the set where |x| < s, and a € R. Then there is a
constant C = C(a), independent of v, s, ¢ and 1, such that

(3.9) 15(6,9)ll q,0) < Cs/r)™F max((r)®, (r + 5)*)llg]l 4]

PRrROOF. It follows from Lemma 3.7 and Cauchy’s inequality applied to the inte-

gration with respect to w that there is a constant C' such that

(3.10)  |S(d, ) (@, t)[* < Ot (s/r)2mHD / |6z + tw) |9 (z — tw)|? dw.

Since 2(|z|? + t?) = |z + tw|? + |z — tw|?® when w € S"~1, one has

(3.11)
(14 [ + )15 (0, ¢) (=, 1)
ne1 (82D 2 2\a 2 _ 2
<t (;) /(1+|x+tw| + 7 — tw]?)?é(z + tw) 2t (a — tw)]? dw

8)2(m+1)

<t () max((r, g 5)%) [ fota + )Pt - ) do.

An integration with respect to x and ¢ in (3.11) gives (3.9).
LEMMA 3.9. Let a’, d”’, a € R satisfy
(3.12) a<m+1+min(a’,a”), a<ada +ad".

Then S is continuous from H,r o) X Har o) to Hig -
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PROOF. Choose x € C§°(R™) a smooth decreasing function of |z| such that

x(x) =1 when |z| <1, x(z) =0 when |z| > 2 and 0 < xy < 1. Set

Xi(x) = x(2772) = x(2'7x), j>1, xolz) = x(2)
when z € R". Then f =) x; f with convergence in S(R™) when f is in that space.
0
In addition, when p € R, there is C = C(p) > 0 such that
oo

(o)
(3.13) CY 2 G 1P < D fIIE0) < C Do 2% s fIIP.
0 0

Consider f, g € S(R") and denote s; = 2%7||x; f|l, ox = 2% *||xxg|l. These are
£%(N)-sequences with ¢2 norm bounded from above by a constant C times 11l (ar.0)
and [|gl[ ¢y, respectively. Set € = m + 1+ min(a’,a”) — a. Then € > 0 and we
shall show that there is a constant C' > 0, which depends on a, a’, a” only, such

that

(3.14) SO X690y < C27 M550

Hence

ISCF Doy < D 1SOGFH Xk () < C1 D 271 505,

§,k>0 §,k>0

< () o) < Clfllw oyl o

=0 =0

This would prove the statement.
It remains to prove (3.14). Since S is symmetric, and since the condition (3.12)
is symmetric in (a’, a”), it suffices to prove (3.14) when j > k. The previous lemma

shows that

(3.15) IS £ xkg)| < €277k sj0,

where
pik=0U—k)(m+1)—aj+dj+ad'k

= —k)(m+1+d —a)+(a+d" —a)k
> (j —k)(m+1+4min(d',a") —a) = (j — k)e.
This proves (3.14).

LEMMA 3.10. Define

oo

T(f,q)(x,t) :/pt/T fr9)(x,r)dr,
when f,g € C§°(R™). Then

1TCF, 9 a0y < Qmax Ip( )-S5 9) a0

when a > 0.
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PROOF. We recall that
p(t/r)r=S(f, g)(x,r) = p(t/r)r™r~ " S(f, g)(z, 7)

is an odd function of r. Hence

T(f,9) mt\<’/ (t/r)r— f,)acrdr’<6’/ “US(f, 9)(z,1)| dr

Il Il

where C' = max|s <1 [p(s)|. When a > 0 we get

(1 +[af” +)**|T(f, 9) (2, )] < C/ (1+ |2)* +72)21S(f, 9) (x, )| dr
It

The lemma follows therefore if we notice that

7H2(t) dt < 47h2(t) dt

when H(t ft In(t)dt and 0 < h € Co(R). In fact, if h(s) = e*/2h(e*) and

H(s) = eS/QH( %), then

~ 2 ~ 2
/ B2() dt = [l 2o / H2()dt = ||
0 0

and H = v  h, where v(s) = (1 — Y, (s))e*/2 has L' norm equal to 2.

PROPOSITION 3.11. (i) When o/, a”, a € R satisfy
0<a<m+1+min(d,ad"”), a<d +ad",

then A extends to a continuous bilinear operator from H . oy X H(qr 0y t0 H 4, —m)-
(ii) When ¥, b, b € R satisfy

b<m+1+min(b',b0"), b<b +1b",

then A extends to a continuous bilinear operator from H g 5y X Ho, 7y t0 H g p—m)-

PROOF. A combination of Corollary 3.6, Lemma 3.9 and Lemma 3.10 gives (i),

and (ii) follows from Lemma 3.3 and Lemma 3.9.

PROPOSITION 3.12. Let (a/,b',a”,b",a,b) € R® satisfy
0<a<m+1+min(a,a"), a <d +ad”,
(3.16) b<m+1+min(,b"), b<bd +1",
a+b<m+1+min(a’,a”) + min(d',d").

Then A is continuous from Hqr py X Hgr pry t0 Hgp—m)-
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PROOF. If (a/,b',a",b",a,b) € RS satisfies (3.16), it is easy to see that there is
an 6 € (0,1) such that

a<6(m+1)+min(a’,a”), b< (1—6)(m+ 1)+ min(b',0").

This shows that a’/0, a”’ /0, a/0, respectively b/ /(1—0), b" /(1 —0), b/(1 —0) satisfy
the conditions in Proposition 3.11, hence
(a'/0,0,a"/6,0,a/0,—m) € I(A),

(0,6//(1 = 0),0,5" /(1 — 6),0,~m + b/(1 - 0)) € I(A).
The proposition then follows by Theorem 2.1.

PrROOF OF THEOREM 1.1. Theorem 1.1 follows from Proposition 3.12 applied
for (a/,V',a",b",a +1/2,b), and from Corollary 3.2.

REFERENCES

1. I. BELTITA, A. MELIN, Local smoothing for the backscattering transform, preprint arXiv:
0712.3865.

2. J. BERGH, J. LOFSTROM, Interpolation Spaces. An Introduction. Die Grundlehren der mathe-
matischen Wissenschaften, Vol. 223, Springer, Berlin, 1976.

3. L. HORMANDER, The analysis of linear partial differential operators I. Springer Verlag, Berlin,
Heidelberg, New York, Tokyo, 1983.

4. A. MELIN, Smoothness of higher order terms in backscattering. In Wave phenomena and
asymptotic analysis, RIMS Kokyuroku 1315 (2003), 43-51.

5. A. MELIN, Some transforms in potential scattering in odd dimension. Inverse problems and
spectral theory, 103—134, Contemp. Math., 348, Amer. Math. Soc., Providence, RI, 2004.

6. A. Ruiz, A. VARGAS, Partial recovery of a potential from backscattering data. Comm. Partial
Differential Equations 30 (2005), no. 1-3, 67-96.

INSTITUTE OF MATHEMATICS ” SIMION STOILOW” OF THE ROMANIAN ACADEMY, PO Box 1-764,
BUCHAREST, ROMANIA
E-mail: Ingrid.Beltita@imar.ro

LuND UNIVERSITY, SWEDEN
E-mail: andersmelin@hotmail.com



