
C. R. Acad. Sci. Paris, Ser. I 351 (2013) 513–516
Contents lists available at SciVerse ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Mathematical Analysis/Harmonic Analysis

On the differentiable vectors for contragredient
representations

Sur les vecteurs différentiables par rapport aux représentations
cotragrédientes

Ingrid Beltita, Daniel Beltita

Institute of Mathematics “Simion Stoilow” of the Romanian Academy, P.O. Box 1-764, Bucharest, Romania

a r t i c l e i n f o a b s t r a c t

Article history:
Received 24 June 2013
Accepted 19 July 2013
Available online 13 August 2013

Presented by Jean-Michel Bony

We establish a few simple results on contragredient representations of Lie groups,
with a view toward applications to the abstract characterization of some spaces of
pseudo-differential operators. In particular, this method provides an abstract approach to
J. Nourrigat’s recent description of the norm closure of the pseudo-differential operators of
order zero.
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r é s u m é

On obtient quelques résultats sur les représentations contragrédientes des groupes de
Lie qui permettent d’aborder, d’une manière abstraite, la caractérisation de l’adhérence
normique de l’ensemble des opérateurs pseudodifférentiels d’ordre zero obtenue réce-
mment par J. Nourrigat.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

We study the abstract characterization of some spaces of pseudo-differential operators by using a few simple results on
the contragredients of the Banach space representations of Lie groups. The applicability of the method based on a contragre-
dient representation is due to the fact that such a representation may be discontinuous even if the original representation
is continuous; see for instance the representation (4) below, which is discontinuous if r = ∞. In particular, we provide an
abstract approach to J. Nourrigat’s recent description [10] of the norm closure of the pseudo-differential operators of order
zero (see Example 1 below), and we also bring additional information on some results from the earlier literature.

Preliminaries For any complex Banach space Y , let Y∗ be its topological dual and B(Y)× be the group of invertible el-
ements in the Banach algebra B(Y) of all bounded linear operators. A Banach space representation of any group G is a
group homomorphism π : G → B(Yπ )× , where Yπ is a complex Banach space. The contragredient representation of π is
π∗ : G → B(Y∗

π )× , π∗(g) := π(g−1)∗ , so that Yπ∗ := Y∗
π . If supg∈G ‖π(g)‖ < ∞, then π is called uniformly bounded, and

in this case also π∗ is uniformly bounded.
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Now assume that G is a topological group and define Yπ0 := {x ∈ Yπ | π(·)x ∈ C(G,Yπ )}, where C indicates the space
of continuous mappings. Then Yπ0 is a closed linear subspace of Y since π is uniformly bounded, and moreover Yπ0 is
invariant under π . Then π0 : G → B(Yπ0), π0(g) := π(g)|Yπ0

is a strongly continuous representation. We can similarly de-

fine Yπ∗
0

:= {ξ ∈ Y∗
π | π∗(·)ξ ∈ C(G,Y∗

π )} = {ξ ∈ Y∗
π | limg→1 ‖π∗(g)ξ − ξ‖ = 0} and π∗

0 : G → B(Yπ∗
0
)× , π∗

0 (g) := π∗(g)|Yπ∗
0

.

If moreover G is a Lie group, then we also define Yk
π := {y ∈ Y | π(·)y ∈ Ck(G,Y)} for every integer k � 0, so Y0

π = Yπ0 .
If the representation π is strongly continuous, that is, Y = Yπ0 , then for every basis {X1, . . . , Xm} in the Lie algebra g of G:

(∀k � 1) Yk
π =

⋂

1� j1,..., jk�m

D
(
dπ(X j1) · · · dπ(X jk )

)
(1)

(see for instance [8, Th. 9.4]). Here we denote by D(T ) the domain of any unbounded operator T .

2. The main abstract results

The following theorem can be regarded as a version of (1) for some discontinuous representations of Lie groups, namely
for the contragredient of any uniformly bounded and strongly continuous representation.

Theorem 2.1. Let G be a Lie group with a strongly continuous representation π : G → B(Y) which is also assumed to be
uniformly bounded. If {X1, . . . , Xm} is any basis in the Lie algebra g of G, then for every integer k � 1, we have Yk

π∗ ⊆⋂
1� j1,..., jk�m D(dπ(X j1 )

∗ · · ·dπ(X jk )
∗) ⊆ Yk−1

π∗ , and these inclusions could be simultaneously strict.

It will be convenient to denote Ck(π∗) := ⋂
1� j1,..., jk�m D(dπ(X j1 )

∗ · · ·dπ(X jk )
∗) for arbitrary k � 1. It is clear that

C1(π∗) ⊇ C2(π∗) ⊇ · · · . The proof will be based on the following auxiliary result, which should be thought of as an embed-
ding lemma on abstract Sobolev spaces.

Lemma 2.2. We have C1(π∗) ⊆ Yπ∗
0

.

Proof. For every X ∈ g let us denote γX :R → G , γX (t) := expG(t X). It follows by [9, Th. 1.3.1] that:

D
(
dπ(X)∗

) ⊆ Yπ∗◦γX = {
ξ ∈ Y∗ ∣∣ π∗(γX (·))ξ ∈ C

(
R,Y∗)} (2)

for arbitrary X ∈ g. On the other hand, the inclusion ⊆ in the following equality is obvious:

Yπ∗ = Yπ∗◦γX1
∩ · · · ∩Yπ∗◦γXm

(3)

while the inclusion ⊇ holds true for the following reason. For all t1, . . . , tm ∈ R and ξ ∈Y∗ we have:

∥∥π∗(γX1(t1) · · ·γXm (tm)
)
ξ − ξ

∥∥ �
m∑

j=1

∥∥π∗(γX1(t1) · · ·γX j−1(t j−1)
)(

π∗(γX j (t j)
)
ξ − ξ

)∥∥

� M
m∑

j=1

∥∥π∗(γX j (t j)
)
ξ − ξ

∥∥

where M := supg∈G ‖π(g)‖. Since {X1, . . . , Xm} is a basis in g, the map (t1, . . . , tm) �→ γX1 (t1) · · ·γXm (tm) is a local diffeo-
morphism at 0 ∈ R

m , and then the above estimate shows that, for every ξ ∈ ⋂m
j=1 Yπ∗◦γX j

, we have limg→1 ‖π∗(g)ξ −
ξ‖ = 0, hence ξ ∈ Yπ∗ . This completes the proof of (3).

Now the assertion follows by (2) and (3), since D(dπ(X1)
∗) ∩ · · · ∩D(dπ(Xm)∗) = C1(π∗). �

Proof of Theorem 2.1. By using Lemma 2.2 and [11, Lemma 1.1] we obtain

Ck(π∗) ⊆
⋂

1� j1,..., jk−1�m

D
(
dπ∗

0 (X j1) · · · dπ∗
0 (X jk−1)

) = Yk−1
π∗

where the latter equality follows by using (1) for the strongly continuous representation π∗
0 . The inclusion Yk

π∗ ⊆ Ck(π∗) can
be easily proved by using (1) and the fact that for every X ∈ g we have D(dπ∗

0 (X)) ⊂ D(dπ(X)∗) and dπ(X)∗|D(dπ∗
0 (X)) =

dπ∗
0 (X).
We now prove by example that the inclusion in the statement can be strict for k = 1. Let G = R, Y be the space of

trace-class operators on L2(R), and ρ : R → B(L2(R)), ρ(t) f = f (· + t). Then define π : R → B(Y), π(t)A = ρ(t)Aρ(t)−1

and for every φ ∈ L∞(R) let φ(Q ) be the multiplication-by-φ operator on L2(R), so that φ(Q ) ∈ B(L2(R)) � Y∗ . It was
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noted in [1, Ex. 6.2.7] that φ(Q ) ∈ Yk
π∗ if and only if the first k derivatives of φ exist, are bounded, and the k-th derivative

is also uniformly continuous on R.
On the other hand, if we denote by P = −i d

dt the infinitesimal generator of ρ , then it is easily checked that
φ(Q ) ∈ C1(π∗) if and only if the commutator [φ(Q ), P ] belongs to B(L2(R)), hence by using also [1, Prop. 5.1.2(b)]
and again [1, Ex. 6.2.7], we see that the latter commutator condition is equivalent to the fact that φ is bounded and
satisfies the Lipschitz condition globally on R. Therefore there exist φ,ψ ∈ L∞(R) such that φ(Q ) ∈ C1(π∗) \ Y1

π∗ and
ψ(Q ) ∈Y2

π∗ \ C1(π∗). This completes the proof. �
Corollary 2.3. In Theorem 2.1, the subspace

⋂
k�1

⋂
1� j1,..., jk�m D(dπ(X j1 )

∗ · · ·dπ(X jk )
∗) is dense in Yπ∗

0
.

Proof. It follows by Theorem 2.1 that this linear subspace is equal to the space of smooth vectors for the strongly continuous
representation π∗

0 , hence it is dense in the representation space Yπ∗
0

(see [6]). �
3. Applications

We will develop here a more general version of the example used in the proof of Theorem 2.1. Let G be a Lie group
with a continuous unitary representation ρ : G → B(H). If 1 � p < ∞, denote by Sp(H) the p-th Schatten ideal, and let
S∞(H) := B(H) and S0(H) be the ideal of all compact operators on H. It is well known that if p,q ∈ {0} ∪ [1,∞] with
1
p + 1

q = 1 and p �= ∞, then an isometric linear isomorphism Sp(H)∗ � Sq(H) is defined by the trace duality pairing. The

representation ρ(q) can thus be regarded as the contragredient representation of the strongly continuous representation ρ(p) ,
where (see also [3]):

(∀r ∈ {0} ∪ [1,∞]) ρ(r) : G → B
(
Sr(H)

)
, ρ(r)(g)Y = ρ(g)Yρ(g)−1 (4)

In the special case of the Heisenberg group, the following corollary establishes a direct relationship between the classical
characterizations of pseudo-differential operators from [2] and [5].

Corollary 3.1. In the above setting, pick any basis {X1, . . . , Xm} in the Lie algebra g of G. Assume 1 � q � ∞ and denote Ψq(ρ) :=
{Y ∈Sp(H) | ρ(q)(·)Y ∈ C∞(G,Sp(H))}. Then we have:

(i) The linear subspace Ψq(ρ) is precisely the set of all Y ∈ Sq(H) such that for arbitrary k � 1 and j1, . . . , jk ∈ {1, . . . ,m} we have
[dρ(X j1 ), . . . , [dρ(X jk ), Y ] . . .] ∈Sq(H).

(ii) If 1 � q < ∞, then Ψq(ρ) is dense in Sq(H). If q = ∞, then Ψ∞(ρ) contains S0(H) and is dense in the norm-closed subspace
{Y ∈ B(H) | ρ(∞)(·)Y ∈ C(G,B(H))} of B(H).

Proof. Note that C1(ρ(q)) = {Y ∈ Sq(H) | [dρ(X j), Y ] ∈ Sq(H) for j = 1, . . . ,m}. Then both assertions are special cases of
Theorem 2.1 and Corollary 2.3. �

We can now prove a corollary which shows that the first two conditions in [7, Th. 1] are equivalent, irrespective of
the unitary representation involved therein. This also shows that the C∞ part of the relation between differentiability and
existence of commutators suggested after [5, Eq. (8.4)] holds true, although the C1 part of that suggestion fails to be true,
since the following corollary would be false with the class C∞ replaced by Ck for any k < ∞. In fact, recall from the proof
of Theorem 2.1 that the corresponding inclusions are strict in a special instance of the present setting, which is precisely
the situation of [5].

Corollary 3.2. If Y ∈ B(H) then the above mapping ρ(∞)(·)Y : G → B(H) is of class C∞ with respect to the norm operator topology
on B(H) if and only if it is C∞ with respect to the strong operator topology.

Proof. The mapping ρ(∞)(·)Y : G → B(H) is smooth with respect to any topology on B(H) if and only if it is smooth on any
neighborhood of 1 ∈ G . On the other hand, just as in the proof of [1, Prop. 5.1.2(b)], one can see that this mapping is smooth
with respect to the strong operator topology on B(H) if and only if the iterated commutator condition in Corollary 3.1(i) is
satisfied, hence the conclusion follows by Corollary 3.1(i), where the smoothness of ρ(∞)(·)Y is understood with respect to
the norm operator topology on S∞(H) = B(H). �
Example 1. Let G =H2n+1 be the (2n+1)-dimensional Heisenberg group with the Schrödinger representation ρ : G → B(H).
As recalled in [10], for 1 � p � ∞, the set Ψp(ρ) of the above Corollary 3.1 is precisely the set of pseudo-differential
operators on L2(Rn) corresponding to the space of symbols {a ∈ C∞(R2n) | (∀α ∈ N

2n) ∂αa ∈ Lp(R2n)} (see also [4] for
similar results on more general nilpotent Lie groups). Thus our Corollary 3.1 leads to the main results of [10].
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Example 2. The above Corollary 3.1 also provides additional information on pseudo-differential operators on a compact
manifold acted on by a Lie group, as studied for instance in [12] and [7]. Thus, it follows that the notions of U -smoothness
and A-smoothness from [12, Sect. 2] actually coincide.
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[3] I. Beltiţă, D. Beltiţă, Smooth vectors and Weyl–Pedersen calculus for representations of nilpotent Lie groups, Ann. Univ. Buchar. Math. Ser. 58 (1) (2010)

17–46.
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