Inverse Problems and Imaging Volume 4, No. 4, 2010, 1–xx

THE QUADRATIC CONTRIBUTION TO THE BACKSCATTERING TRANSFORM IN THE ROTATION INVARIANT CASE

Ingrid Beltiță

Institute of Mathematics of the Romanian Academy Bucharest, PO Box 1–764, Romania

ANDERS MELIN

Lund University Box 118, S-22100, Lund, Sweden

ABSTRACT. Considerations of the backscattering data for the Schrödinger operator $H_v = -\Delta + v$ in \mathbb{R}^n , where $n \geq 3$ is odd, give rise to an entire analytic mapping from $C_0^{\infty}(\mathbb{R}^n)$ to $C^{\infty}(\mathbb{R}^n)$, the backscattering transformation. The aim of this paper is to give formulas for $B_2(v, w)$ where B_2 is the symmetric bilinear operator that corresponds to the quadratic part of the backscattering transformation and v and w are rotation invariant.

1. Introduction. Considerations of the backscattering data for the Schrödinger operator $H_v = -\Delta + v$ in \mathbb{R}^n , where $n \geq 3$ is odd, give rise to an entire analytic mapping from $C_0^{\infty}(\mathbb{R}^n)$ to $C^{\infty}(\mathbb{R}^n)$, the backscattering transformation. This is, up to a smooth term given by the negative eigenvalues of H_v and the corresponding eigenfunctions, the real part of the Fourier transform of the anti-diagonal part of the scattering amplitude (see [2] and [5]). The symmetric bilinear operator B_2 that corresponds to the quadratic part of the backscattering transformation is continuous from $C_0^{\infty}(\mathbb{R}^n) \times C_0^{\infty}(\mathbb{R}^n)$ to $C_0^{\infty}(\mathbb{R}^n)$, and it extends by continuity to much larger spaces as shown in [1]. (See also [6] for a related regularity result for the Born approximation of the scattering data in the case n = 3.) Let E(y, z) be the unique fundamental solution of the ultra-hyperbolic operator $\Delta_y - \Delta_z$ such that E(y, z) = -E(z, y) and E(y, z) is separately rotation invariant in both variables (see Corollary 10.2 of [5]). An explicit formula for B_2 is provided by Corollary 10.7 of [5], which shows that

(1.1)
$$B_2(v,w)(x) = \iint E(y,z)v(x+\frac{y+z}{2})w(x-\frac{y-z}{2})\,\mathrm{d}y\,\mathrm{d}z, \quad v,\,w\in C_0^\infty(\mathbb{R}^n),$$

where the integral is interpreted in the distribution sense.

The aim of this paper is to give explicit formulas for $B_2(v, w)$ when v and w are rotation invariant functions in \mathbb{R}^n . Then v and w may be considered as functions in one real variable, and this is also true for $B_2(v, w)$, since rotation invariance is preserved under B_2 . This leads to the investigation of a symmetric bilinear operator \widetilde{B}_2 acting in spaces of functions on the real line, and we compute its distribution kernel. This enables explicit computation of $B_2(v, w)$ in many cases and illustrates the continuity results obtained in our paper [1]. Moreover, our formula for the

²⁰⁰⁰ Mathematics Subject Classification. Primary: 81U025; Secondary: 35R30.

 $Key\ words\ and\ phrases.$ backscattering transformation, Born approximation, spherical averages.

distribution kernel of B_2 will show that the restriction of $B_2(v, w)$ to any ball $\{x; |x| < R\}$ depends on the restriction of v and w to the same ball only. This somewhat surprising result holds for arbitrary odd $n \ge 3$ when v and w are rotation invariant.

Some notation and presentation of results. We assume n = 2m + 3 is an odd integer ≥ 3 and let c_n denote the volume of the unit sphere in \mathbb{R}^n . Thus

(1.2)
$$c_n = 2\pi^{n/2} / \Gamma(n/2).$$

We shall also need the constants

(1.3)
$$C_n = \frac{(-1)^m}{c_n (2\pi)^{n-1}}$$

and

(1.4)
$$d_n = 2^{3-n} c_{n-1}/c_n, \ e_n = (-1)^m 2^{2m-1} m! d_n^2.$$

Points in $(\mathbb{R}^n)^N$ are written (x_1, \ldots, x_N) and Δ_j denotes the Laplacian in the variables x_j . The length of x_j is denoted r_j . We use the notation \vec{s} for vectors (s_1, s_2, s_3) in \mathbb{R}^3 , and by t^{α}_+ we denote the function which is equal to t^{α} when t > 0 and vanishes when $t \leq 0$. Finally, $\mathcal{O}(n)$ denotes the group of orthogonal transformations in \mathbb{R}^n .

Consider the distribution

(1.5)
$$\beta(x,y) = \delta^{(n-2)}(\langle x,y\rangle)$$

in $\mathbb{R}^n \times \mathbb{R}^n$. The notation needs an explanation. Since the gradient of $\langle x, y \rangle$ is nonvanishing outside the origin the right-hand side of (1.5) is a well-defined distribution outside the origin in $\mathbb{R}^n \times \mathbb{R}^n$. It is homogeneous of degree 2 - 2n and $\beta(x, y)$ is its unique homogeneous extension to $\mathbb{R}^n \times \mathbb{R}^n$. (We refer to [3] for useful background material in distribution theory.) In this notation we have (see [5])

(1.6)
$$E(y,z) = -2^{2m}c_nC_n\beta(y-z,y+z).$$

Definition 1.1. We define the distribution $B \in \mathcal{D}'(\mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^n)$ through

(1.7)
$$B(x_1, x_2, x_3) = C_n \beta (x_2 - x_1, x_3 - x_1).$$

The definition makes sense since the linear mapping which sends $(x_1, x_2, x_3) \in (\mathbb{R}^n)^3$ to $(x_2 - x_1, x_3 - x_1) \in (\mathbb{R}^n)^2$ is surjective.

A linear change of coordinates in (1.1) together with (1.6), shows that

(1.8)
$$\langle u, B_2(v, w) \rangle = 2^{-1} c_n \langle u \otimes v \otimes w, B \rangle$$

when $u, v, w \in C_0^{\infty}(\mathbb{R}^n)$. Hence B is a constant times the distribution kernel of B_2 .

Assume now that $v, w \in C_0^{\infty}(\mathbb{R}^n)$ are rotation invariant. Then $B_2(v, w)$ is uniquely determined by the values of the right-hand side of (1.8) when u ranges over the set of rotation invariant test functions in \mathbb{R}^n . Writing

$$u(x) = f(|x|^2), \quad v(x) = g(|x|^2), \quad w(x) = h(|x|^2)$$

we have

(1.9)
$$\langle u \otimes v \otimes w, B \rangle = \langle f \otimes g \otimes h, \Pi_* B \rangle,$$

where $\Pi_* B \in \mathcal{D}'(\mathbb{R}^3)$ is the push-forward of B under the mapping

(1.10)
$$\Pi: \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^n \ni (x_1, x_2, x_3) \mapsto (|x_1|^2, |x_2|^2, |x_3|^2) \in \mathbb{R}^3.$$

This means that

$$\langle \varphi, \Pi_* B \rangle = \langle \Pi^* \varphi, B \rangle = \langle \varphi \circ \Pi, B \rangle$$

when φ is an arbitrary test function in \mathbb{R}^3 . Since $s_j \ge 0$ in the image of Π it follows that $\Pi_* B$ is supported in $(\overline{\mathbb{R}}_+)^3$.

Definition 1.2. We let $\widetilde{B_2}$ be the bilinear operator from $C_0^{\infty}(\mathbb{R}) \times C_0^{\infty}(\mathbb{R})$ to $\mathcal{D}'(\mathbb{R})$ with distribution kernel $\Pi_* B$, that is, given by

(1.11)
$$\langle f, B_2(g,h) \rangle = \langle f \otimes g \otimes h, \Pi_* B \rangle, \quad f, g, h \in C_0^{\infty}(\mathbb{R}).$$

Since composition by the mapping which sends $x \in \mathbb{R}^n$ to $|x|^2 \in \mathbb{R}$ is continuous from $C_0^{\infty}(\mathbb{R})$ to $C_0^{\infty}(\mathbb{R}^n)$ and from $L^2(\mathbb{R})$ to $L^2_{\text{loc}}(\mathbb{R}^n)$ it follows from (1.8) and (1.9) that \widetilde{B}_2 is continuous from $C_0^{\infty}(\mathbb{R}) \times C_0^{\infty}(\mathbb{R})$ to $L^2(\mathbb{R})$.

A combination of (1.8) and (1.11) then leads to the next proposition.

Proposition 1.3. Assume $v(x) = g(|x|^2)$, $w(x) = h(|x|^2)$, where $g, h \in C_0^{\infty}(\mathbb{R})$. Then

(1.12)
$$B_2(v,w)(x) = |x|^{2-n} \widetilde{B_2}(g,h)(|x|^2).$$

It follows that \widetilde{B}_2 , hence Π_*B by (1.11), determines the restriction of B_2 to rotation invariant functions. We need some more notation in order to present a formula for Π_*B (and hence also for B_2 on rotation invariant functions).

Definition 1.4. Let $0 \le j \le m$. Then we set (1.13)

$$Q_{m,j}(\vec{s}) = (-1)^{j+1} 2^{j-2-2m} \frac{1}{m!} {m \choose j} \psi_{m,j}(s_2 + s_3, (s_2 - s_3)^2 - 4s_1(s_1 - s_2 - s_3)),$$

where $\psi_{m,j}(s,t)$ is the polynomial defined through

(1.14)
$$\psi_{m,j}(s,t) = (s^2 - t)^{-j} \partial_s^{m-j} (s^2 - t)^m.$$

We notice that $Q_{m,j}$ is a polynomial homogeneous of degree m-j. Furthermore, consider the polynomials

(1.15)
$$q_{m,j}(t) = \frac{(-1)^{j+1}}{2^{2+m}j!} \sum_{0 \le \mu \le (m-j)/2} \binom{j+2\mu}{\mu} \binom{m}{j+2\mu} t^{\mu}, \quad 0 \le j \le m.$$

Then, writing

$$\psi_{m,j}(s,t) = (s^2 - t)^{-j} \varphi^{(m-j)}(0),$$

where

$$\varphi(u) = ((s+u)^2 - t)^m = (s^2 - t + 2su + u^2)^m = \sum_{0 \le \nu \le m} \binom{m}{\nu} u^{2\nu} (s^2 - t + 2su)^{m-\nu},$$

we can easily see that

(1.16)
$$Q_{m,j}(\vec{s}) = (s_2 + s_3)^{m-j} q_{m,j} \left(\frac{(s_1 - s_2)(s_1 - s_3)}{(s_2 + s_3)^2} \right).$$

Our main result is the following.

Theorem 1.5. Let $Q_{m,j}$ be as above. Then

(1.17)
$$\Pi_* B(\vec{s}) = \sum_{0 \le j \le m} (\partial_{s_2} + \partial_{s_3})^j \Big(Q_{m,j}(\vec{s})(s_1 - s_2)^j_+ (s_1 - s_3)^j_+ (s_2 + s_3 - s_1)^{-1/2}_+ \Big).$$

It follows in particular from the theorem that $0 \le s_2, s_3 \le s_1$ in the support of $\Pi_* B$. Combining this with (1.12) we obtain the following corollary.

Corollary 1.6. Assume $v, w \in C_0^{\infty}$ are rotation invariant. Then $B_2(v, w)(x)$ depends only on the restriction of v and w to the ball with radius |x| and center at the origin.

It follows from the corollary that B_2 extends to a continuous bilinear mapping in the space of rotation invariant functions in $C^{\infty}(\mathbb{R}^n)$. In fact, the continuity results in the paper [1] imply that $B_2(v, w)$ is defined when v, w are rotation invariant and locally in L^2 together with the derivatives of order $\leq m$.

Note that, in the case n = 3, Theorem 1.5 gives that

(1.18)
$$\Pi_* B(\vec{s}) = -\frac{1}{4} H(s_1 - s_2) H(s_1 - s_3)(s_2 + s_3 - s_1)_+^{-1/2},$$

where H is Heaviside's function. Thus, when $v, w \in C_0^{\infty}(\mathbb{R}^3)$ are rotation invariant we obtain

$$B_{2}(v,w)(x) = -\frac{1}{16\pi^{2}|x|} \iint_{\substack{|x_{1}|,|x_{2}|<|x|\\|x|^{2}<|x_{1}|^{2}+|x_{2}|^{2}}} \frac{1}{|x_{1}||x_{2}|} \frac{1}{\sqrt{|x_{1}|^{2}+|x_{2}|^{2}}} v(x_{1})w(x_{2}) \,\mathrm{d}x_{1} \,\mathrm{d}x_{2}.$$

We shall frequently make use of spherical averages when proving the main result and include necessary preparations in Sections 2 and 3. The algebraic computations carried out in Section 4 were necessary for us in order to keep track of the cancellations that take place when taking averages of the distribution B over the group $\mathcal{O}(n)^3$. The final computation of Π_*B is taking place in Section 4, in which we first compute Π_*B_{ε} for a smooth approximation B_{ε} of B. In the last section we note that Π_*B satisfies a differential equation which is hyperbolic in \mathbb{R}^3_+ , and finally we give some simple examples.

2. Spherical averages. The elements of the orthogonal group $\mathcal{O}(n)$ are denoted by capital letters Ω and $d\Omega$ is the normalized Haar measure on $\mathcal{O}(n)$. Then

(2.1)
$$\int_{\mathcal{O}(n)} h(\Omega x) \, \mathrm{d}\Omega = c_n^{-1} \int_{S^{n-1}} h(|x|\omega) \, \mathrm{d}\omega, \quad h \in C(\mathbb{R}^n)$$

and

(2.2)
$$\int_{\mathcal{O}(n)} f(\langle \Omega x, y \rangle) \, \mathrm{d}\Omega = \frac{c_{n-1}}{c_n} \int_{-1}^{1} f(s|x| \, |y|) (1-s^2)^m \, \mathrm{d}s$$

when $f \in C(\mathbb{R}), x, y \in \mathbb{R}^n$.

Definition 2.1. When $x, y \in \mathbb{R}^n \setminus 0$ we let $\mu_{x,y}$ be the probability measure on the real line defined through

$$\int f(t) \, \mathrm{d}\mu_{x,y}(t) = \int_{\mathcal{O}(n)} f(|x + \Omega y|) \, \mathrm{d}\Omega, \quad f \in C_0(\mathbb{R}).$$

In what follows we shall make frequent use of the polynomial

(2.3)
$$q(t;a,b) = -t^2 + 2(a+b)t - (a-b)^2.$$

We shall sometimes view q as a polynomial in t with a, b as real parameters. Set

$$q_m(t;a,b) = q^m(t;a,b), \ q_m^{(\nu)}(t;a,b) = \partial_t^{\nu} q_m(t;a,b).$$

We notice that

$$q(t^{2}; a^{2}, b^{2}) = ((a+b)^{2} - t^{2})(t^{2} - (a-b)^{2})$$

has the zeros $\pm(a+b), \pm(a-b)$, and it is nonnegative if and only if $||a| - |b|| \le |t| \le |a| + |b|$.

Lemma 2.2. The measure $\mu_{x,y}$ is absolutely continuous with respect to Lebesgue measure. More precisely,

$$d\mu_{x,y}/dt = d_n(|x||y|)^{2-n} tq_m(t^2; |x|^2, |y|^2)\chi_{x,y}(t),$$

where $\chi_{x,y}$ is the characteristic function of the interval [||x| - |y||, |x| + |y|].

Proof. Writing $|x + \Omega y| = (|x|^2 + |y|^2 + 2\langle \Omega x, y \rangle)^{1/2}$ and applying (2.2) we find when $f \in C_0(\mathbb{R})$ that

$$\int f(s) \, \mathrm{d}\mu_{x,y}(s) = \frac{c_{n-1}}{c_n} \int_{-1}^{1} f((|x|^2 + |y|^2 + 2s|x| |y|)^{1/2})(1 - s^2)^m \, \mathrm{d}s$$

We take $t = (|x|^2 + |y|^2 + 2s|x||y|)^{1/2}$ as a new variable of integration and notice that

$$s = \frac{t^2 - |x|^2 - |y|^2}{2|x||y|}, \ ds = \frac{tdt}{|x||y|},$$
$$1 - s^2 = \frac{((|x| + |y|)^2 - t^2)(t^2 - (|x| - |y|)^2)}{4|x|^2|y|^2} = \frac{q(t^2; |x|^2, |y|^2)}{4|x|^2|y|^2}.$$

The lemma then follows since the condition $-1 \le s \le 1$ is equivalent to $\chi_{x,y}(t) = 1$.

Define

(2.4)
$$L_m(a, u; g) = u^{-2m} \int_{(a-u)^2}^{(a+u)^2} g(t)q_m(t; a^2, u^2) dt$$

when $(a, u) \in \mathbb{R}^2$ and $g \in C^{\infty}(\mathbb{R})$. Then

$$L_m(a, u; g) = u^{-2m} \int_{(a-u)^2}^{(a+u)^2} g(t) \left(((a+u)^2 - t)(t - (a-u)^2) \right)^m dt$$

= $(4a)^{2m+1} u \int_{0}^{1} g(4aut + (a-u)^2)(1-t)^m t^m dt$
= $(2a)^{2m+1} u \int_{-1}^{1} g(2aut + a^2 + u^2)(1-t^2)^m dt.$

This shows that $L_m(a, u; g)$ is smooth in (a, u) and it is odd in each of a and u.

Lemma 2.3. Assume $f \in C^{\infty}(\mathbb{R})$ and $x_1, x_2, x_3 \in \mathbb{R}^n \setminus 0$. Then

$$\begin{aligned} \iiint_{\mathcal{O}(n)^3} f(|\Omega_1 x_1 + \Omega_2 x_2 + \Omega_3 x_3|^2) \,\mathrm{d}\Omega_1 \,\mathrm{d}\Omega_2 \,\mathrm{d}\Omega_3 \\ &= \frac{1}{2} d_n^2 (|x_1| \cdot |x_2| \cdot |x_3|)^{2-n} \int_{||x_2| - |x_3||}^{|x_2| + |x_3|} L_m(|x_1|, u; f) q_m(u^2; |x_2|^2, |x_3|^2) \,\mathrm{d}u. \end{aligned}$$

Proof. Let I denote the left-hand side above. Obviously

$$I = \iint f(|\Omega_1 x_1 + \Omega_2 x_2 + x_3|^2) d\Omega_1 d\Omega_2$$

We may assume for reasons of continuity that $|x_2| \neq |x_3|$ so that $\Omega_2 x_2 + x_3 \neq 0$ for every Ω_2 . Applying Lemma 2.2 in the integration with respect to Ω_1 and recalling the definition of L_m above we see that

$$I = \frac{1}{2} d_n |x_1|^{2-n} \int_{\mathcal{O}(n)} |\Omega_2 x_2 + x_3|^{-1} L_m(|x_1|, |\Omega_2 x_2 + x_3|; f) \, \mathrm{d}\Omega_2.$$

The lemma then follows by applying Lemma 2.2 once more.

Let \mathcal{R} denote the differential operator $\partial_u(u^{-1}\cdot)$ in \mathbb{R}_+ . The following theorem will be proved in next section.

Theorem 2.4. Let a be a positive number. Then

(2.5)
$$L_m(a, u; g^{(2m+1)}) = 2^m m! \sum_{0 \le k \le m} (-1)^k 2^k \binom{m}{k} \mathcal{R}^{m-k} \left(g^{(k)}((u+a)^2) - g^{(k)}((u-a)^2) \right)$$

when u > 0 and $g \in C^{\infty}(\mathbb{R})$.

Theorem 2.5. Assume $f \in C^{\infty}(\mathbb{R})$. Then

$$\iiint_{\mathcal{O}(n)^3} f^{(2m+1)}(|\Omega_1 x_1 + \Omega_2 x_2 + \Omega_3 x_3|^2) d\Omega_1 d\Omega_2 d\Omega_3$$

(2.6)
$$= e_n (r_1 r_2 r_3)^{2-n} \sum_{0 \le k \le m} {\binom{m}{k}} \int_{r_2 - r_3}^{r_2 + r_3} \left(f^{(k)} ((u + r_1)^2) - f^{(k)} ((u - r_1)^2) \right) \cdot q_m^{(m-k)} (u^2; r_2^2, r_3^2) \, \mathrm{d}u$$

for every $x_1, x_2, x_3 \in \mathbb{R}^n \setminus 0$.

Proof. Let $I(r_1, r_2, r_3)$ be the left-hand side of (2.6). Then Lemma 2.3 together with (2.5) gives

(2.7)
$$I(r_1, r_2, r_3) = \frac{1}{2} d_n^2 (r_1 r_2 r_3)^{2-n} \int_{|r_2 - r_3|}^{r_2 + r_3} L_m(r_1, u; f^{(2m+1)}) q_m(u^2; r_2^2, r_3^2) \, \mathrm{d}u$$
$$= (-2)^{-m} e_n (r_1 r_2 r_3)^{2-n} \sum_{0 \le k \le m} (-1)^k 2^k \binom{m}{k} J_k(r_1, r_2, r_3),$$

INVERSE PROBLEMS AND IMAGING

where
$$(2.8)$$

$$J_k(r_1, r_2, r_3) = \int_{|r_2 - r_3|}^{r_2 + r_3} \left(\mathcal{R}^{m-k}(f^{(k)}((u+r_1)^2) - f^{(k)}((u-r_1)^2)) \right) q_m(u^2; r_2^2, r_3^2) \, \mathrm{d}u.$$

We may assume $r_2 \neq r_3$ for reasons of continuity. Let $\mathcal{R}' = -u^{-1}\partial_u$ be the transpose of \mathcal{R} . Then $\mathcal{R}'\varphi(u^2) = -2\varphi'(u^2)$ when $\varphi \in C^{\infty}(\mathbb{R})$. Hence

$$(\mathcal{R}')^{m-k}q_m(u^2; r_2^2, r_3^2) = (-2)^{m-k}q_m^{(m-k)}(u^2; r_2^2, r_3^2).$$

Since $q(u^2; r_2^2, r_3^2)$ vanishes when $u = |r_2 - r_3|$ or $u = r_2 + r_3$ we may integrate by parts m - k times in (2.8) without getting any contributions from the boundary of the interval of integration. This gives

$$J_k(r_1, r_2, r_3) = (-2)^{m-k} \int_{|r_2 - r_3|}^{r_2 + r_3} \left(f^{(k)}((u+r_1)^2) - f^{(k)}((u-r_1)^2) \right) q_m^{(m-k)}(u^2; r_2^2, r_3^2) \, \mathrm{d}u.$$

Since the integrand in the right hand side is an odd function of u we may instead integrate from $r_2 - r_3$ to $r_2 + r_3$, and the proof is completed by inserting the expression into (2.7).

3. **Proof of Theorem 2.4.** We notice that it suffices to prove (2.5) when a = 1. This is a simple consequence of the identity

$$L_m(a, u; g^{(2m+1)}) = a^{-2m} L_m(1, u/a; g_a^{(2m+1)}), \quad a, u > 0,$$

where $g_a(u) = g(a^2 u)$, since $\mathcal{R}(h(\cdot/a))(u) = a^{-2}(\mathcal{R}h)(u/a)$ when $h \in C^{\infty}(\mathbb{R})$. Hence we have to establish the identity

(3.1)
$$L_m(1, u; g^{(2m+1)}) = 2^m m! \sum_{0 \le k \le m} (-1)^k 2^k \binom{m}{k} \mathcal{R}^{m-k} \left(g^{(k)}((u+1)^2) - g^{(k)}((u-1)^2) \right).$$

We shall need some preparations before we can prove this theorem.

Lemma 3.1. We have the identity

$$u^{2m}L_m(1,u;g^{(2m+1)}) =$$

$$(3.2) \sum_{0 \le j \le m} (-1)^{m-j} (4u)^j \binom{m}{j} (2m-j)! \left(g^{(j)} ((u+1)^2) + (-1)^{j+1} g^{(j)} ((u-1)^2) \right)$$

when u > 0.

Proof. Set $\alpha = (u-1)^2$, $\beta = (u+1)^2$. Then $0 \le \alpha \le \beta$, and a simple computation shows that

(3.3)
$$u^{2m}L_m(1,u;g^{(2m+1)}) = \int_{\alpha}^{\beta} g^{(2m+1)}(t) \Big((\beta-t)(t-\alpha) \Big)^m dt$$
$$= \int_{-1}^{1} h^{(2m+1)}(t)(1-t^2)^m dt = (-1)^m \int_{-1}^{1} h^{(m+1)}(t) q_m^{(m)}(t) dt,$$

where $h(t) = g((\beta - \alpha)t/2 + (\alpha + \beta)/2)$ and $q_m(t) = (1 - t^2)^m$. Repeated integrations by parts in the right-hand side of (3.3) yield the expression

(3.4)
$$\sum_{\substack{0 \le j \le m}} (-1)^j \left(h^{(j)}(1) q_m^{(2m-j)}(1) - h^{(j)}(-1) q_m^{(2m-j)}(-1) \right) \\ = \sum_{\substack{0 \le j \le m}} (-1)^j q_m^{(2m-j)}(1) \left(h^{(j)}(1) + (-1)^{j+1} h^{(j)}(-1) \right).$$

We notice that

$$h^{(j)}(1) = (2u)^j g^{(j)}(\beta), \quad h^{(j)}(-1) = (2u)^j g^{(j)}(\alpha),$$

and writing $q_m(1+2u) = (-4)^m u^m (1+u)^m$ we see that

$$q_m^{(2m-j)}(1) = (-1)^m 2^j \binom{m}{j} (2m-j)!.$$

The lemma then follows by inserting the expressions for $h^{(j)}(\pm 1)$ and $q_m^{(2m-j)}(1)$ in (3.4).

Next we define some auxiliary functions in \mathbb{R}_+ :

(3.5)

$$A_{j,k}(g)(u) = 2^{j}(k-1)!u^{-k} \Big(g^{(j)}((u+1)^{2}) + (-1)^{j+1}g^{(j)}((u-1)^{2}) \Big), \quad k \ge 1$$
(3.6)

$$A_{j,0}(g)(u) = 2^j \left(g^{(j)}((u+1)^2) + (-1)^{j+1} g^{(j)}((u-1)^2) \right) = u A_{j,1}(g)(u).$$

We see that

(3.7)
$$uA_{j,k+1}(g)(u) = kA_{j,k}(g)(u)$$

when $k \geq 1$.

It follows by direct computation when $k \ge 2$ that

(3.8)
$$A_{j,k}(g) = -\partial_u A_{j,k-1}(g) + 2u A_{j,k-1}(g') + A_{j+1,k-1}(g).$$

Hence, when $k \ge 3$, a combination of (3.7) and (3.8) gives

(3.9)
$$A_{j,k}(g) = -(k-2)\mathcal{R}A_{j,k-2}(g) + 2(k-2)A_{j,k-2}(g') + A_{j+1,k-1}(g),$$
and recalling (3.6) we get

(3.10)
$$A_{j,2}(g) = -\mathcal{R}A_{j,0}(g) + 2A_{j,0}(g') + A_{j+1,1}(g)$$

We introduce also the function

(3.11)
$$\kappa_{m,N}(g)(u) = \sum_{0 \le j \le N} (-1)^{m-j} 2^j \binom{m}{j} (2m-j) A_{j,2m-j}(g)(u), \quad u \in \mathbb{R}_+,$$

when m > 0 and $0 \le N \le m$. When m = 0 we set

(3.12)
$$\kappa_{0,0}(g)(u) = g((u+1)^2) - g((u-1)^2).$$

With this notation Lemma 3.1 reads

(3.13)
$$L_m(1, u; g^{(2m+1)}) = \kappa_{m,m}(g)(u).$$

We are going to compute the $\kappa_{m,N}(g)$ by induction over N. Define

$$c_{m,N} = (-1)^{m-N} 2^{N+1} (m-N) \binom{m}{N}$$

INVERSE PROBLEMS AND IMAGING

when $0 \leq N \leq m$. We notice that

(3.14)
$$c_{m,m} = 0, \ c_{m,0} = (-1)^m 2m$$

Lemma 3.2. The identity

(3.15)
$$c_{m,N} = \sum_{0 \le k \le N} (-1)^{m-k} 2^k \binom{m}{k} (2m-k)$$

holds when $0 \leq N < m$.

Proof. Let $c'_{m,N}$ denote the right-hand side of (3.15). A straightforward computation shows that $c_{m,N+1} - c_{m,N} = c'_{m,N+1} - c'_{m,N}$ when N < m. The lemma therefore follows since $c_{m,0} = c'_{m,0}$.

Lemma 3.3. The identity

(3.16)
$$\kappa_{m,N}(g) = 2m\mathcal{R}\kappa_{m-1,N}(g) - 4m\kappa_{m-1,N}(g') + c_{m,N}A_{N+1,2m-N-1}(g)$$

holds when $0 \leq N < m$.

Proof. We first see that (3.10) implies that (3.16) holds when m = 1 and N = 0. We may therefore assume that $m \ge 2$.

Assume first that N = 0. Then (3.9) gives

$$\kappa_{m,N}(g) = \kappa_{m,0}(g) = (-1)^m 2m A_{0,2m}(g)$$

= $(-1)^{m-1} 2m(2m-2)\mathcal{R}A_{0,2m-2}(g) + (-1)^m 4m(2m-2)A_{0,2m-2}(g')$
+ $(-1)^m 2m A_{1,2m-1}(g)$
= $2m \mathcal{R}\kappa_{m-1,0}(g) - 4m \kappa_{m-1,0}(g') + c_{m,0}A_{1,2m-1}(g).$

This shows that (3.16) holds when N = 0. Assume now that it holds for some N where N < m-1. In this case $2m - N - 1 > m \ge 2$. From the induction hypothesis and (3.15) we get that

(3.17)

$$\kappa_{m,N+1}(g) = \kappa_{m,N}(g) + (-1)^{m-N-1} 2^{N+1} {m \choose N+1} (2m-N-1) A_{N+1,2m-N-1}(g) = 2m \mathcal{R} \kappa_{m-1,N}(g) - 4m \kappa_{m-1,N}(g') + (c_{m,N} + (-1)^{m-N-1} 2^{N+1} {m \choose N+1} (2m-N-1)) A_{N+1,2m-N-1}(g) = 2m \mathcal{R} \kappa_{m-1,N}(g) - 4m \kappa_{m-1,N}(g') + c_{m,N+1} A_{N+1,2m-N-1}(g).$$

From (3.9) we see that

(3.18)
$$A_{N+1,2m-N-1}(g) = -(2m-N-3)\mathcal{R}A_{N+1,2m-N-3}(g) + 2(2m-N-3)A_{N+1,2m-N-3}(g') + A_{N+2,2m-N-2}(g).$$

Since

$$-c_{m,N+1}(2m-N-3) = 2m(-1)^{m-1-(N+1)}2^{N+1}\binom{m-1}{N+1}(2m-N-3)$$

it follows that

 $2m\kappa_{m-1,N+1}(h) = 2m\kappa_{m-1,N}(h) - (2m-N-3)c_{m,N+1}A_{N+1,2m-N-3}(h)$ Inverse Problems and Imaging Volume 4, No. 4 (2010), 1-xx when h = g or h = g'. Then (3.17) and (3.18) yield

$$\kappa_{m,N+1}(g) = \mathcal{R}\Big(2m\kappa_{m-1,N}(g) - (2m - N - 3)c_{m,N+1}A_{N+1,2m-N-3}(g)\Big) -2\Big(2m\kappa_{m-1,N}(g') - (2m - N - 3)c_{m,N+1}A_{N+1,2m-N-3}(g')\Big) +c_{m,N+1}A_{N+2,2m-N-2}(g) = 2m\mathcal{R}\kappa_{m-1,N+1}(g) - 4m\kappa_{m-1,N+1}(g') + c_{m,N+1}A_{N+2,2m-N-2}(g).$$

We have therefore proved that (3.16) is true also with N replaced by N + 1. This completes the proof.

Lemma 3.4. We have

(3.19)
$$\kappa_{m,m}(g) = 2m\mathcal{R}\kappa_{m-1,m-1}(g) - 4m\kappa_{m-1,m-1}(g')$$

when m > 0.

Proof. It follows from the previous lemma when N = m - 1 and the fact that

$$\kappa_{m,m}(g) = \kappa_{m,m-1}(g) + m2^m A_{m,m}(g)$$

that

$$\kappa_{m,m}(g) = 2m\mathcal{R}\kappa_{m-1,m-1}(g)$$

-4m\kappa_{m-1,m-1}(g') + (c_{m,m-1} + m2^m)A_{m,m}(g).

Since $c_{m,m-1} + m2^m = 0$, this finishes the proof.

Proof of the Theorem 2.4. We have to prove (3.1). Since this identity is obvious when m = 0 we may assume $m \ge 1$. Recalling (3.12) and (3.13) we see that (3.1) is equivalent to

(3.20)
$$\kappa_{m,m}(g) = 2^m m! \sum_{0 \le k \le m} (-1)^k 2^k \binom{m}{k} \mathcal{R}^{m-k} \kappa_{0,0}(g^{(k)}).$$

We make induction over m. When m = 1 then (3.20) is equivalent to (3.19). Assume now that m > 1 and that (3.20) is proved for lower values of m. We use first (3.19) and then the induction hypothesis to write

$$\begin{split} \kappa_{m,m}(g) &= 2m2^{m-1}(m-1)! \sum_{0 \le k \le m-1} (-1)^k 2^k \binom{m-1}{k} \mathcal{R}^{m-k} \kappa_{0,0}(g^{(k)}) \\ &-4m2^{m-1}(m-1)! \sum_{0 \le k \le m-1} (-1)^k 2^k \binom{m-1}{k} \mathcal{R}^{m-1-k} \kappa_{0,0}(g^{(k+1)}) \\ &= 2^m m! \mathcal{R}^m \kappa_{0,0}(g) \\ &+ 2^m m! \sum_{1 \le k \le m-1} (-1)^k 2^k \Bigl(\binom{m-1}{k} + \binom{m-1}{k-1} \Bigr) \mathcal{R}^{m-k} \kappa_{0,0}(g^{(k)}) \\ &+ (-1)^m 2^{2m} m! \kappa_{0,0}(g^{(m)}). \end{split}$$

The lemma follows since $\binom{m-1}{k} + \binom{m-1}{k-1} = \binom{m}{k}$.

INVERSE PROBLEMS AND IMAGING

4. Computation of Π_*B . We prepare the computation of Π_*B by some useful observations.

Lemma 4.1. The distribution $\Pi_*B(s_1, s_2, s_3)$ is supported in the set where $s_j \ge 0$ and $s_1 \le s_2 + s_3$. It is positively homogeneous of degree (n-4)/2 and symmetric in (s_2, s_3) .

Proof. We have already seen that $s_j \ge 0$ in the support of $\Pi_* B$. Write

$$X = (x_1, x_2, x_3), \ S(X) = x_2^2 + x_3^2 - x_1^2.$$

Then

(4.1)
$$\langle x_2 - x_1, x_3 - x_1 \rangle = |x_1 - x_2 - x_3|^2 / 2 - S(X) / 2.$$

Since $\langle x_2 - x_1, x_3 - x_1 \rangle = 0$ in the support of *B* it follows that $S(X) \ge 0$ in the support of *B*, and this implies that $s_2 + s_3 \ge s_1$ in the support of Π_*B . The second assertion follows from the fact that B_2 is homogeneous of degree 2 - 2n, and the last assertion is a consequence of the symmetry of $B_2(x_1, x_2, x_3)$ in the variables x_2, x_3 .

We shall consider smooth approximations of B and choose some function $\chi \in C^{\infty}(\mathbb{R})$ which is increasing and such that $\chi(t) = 0$ when t < 0 while $\chi(t) = 1$ when t > 1. Define

$$\chi_{\varepsilon}(t) = \chi(t/\varepsilon)$$

when $0 < \varepsilon < 1$. This function converges in $\mathcal{D}'(\mathbb{R})$ to the Heaviside function when $\varepsilon \to 0$. We define

(4.2)
$$B_{\varepsilon}(x_1, x_2, x_3) = 2^{n-1} C_n \chi_{\varepsilon}^{(n-1)}(|x_1 - x_2 - x_3|^2 - S(X)).$$

This will serve to find a useful approximation of $\Pi_* B$, as shown in the next lemma.

Lemma 4.2. The distribution Π_*B_{ε} converges in the distribution sense to Π_*B as $\varepsilon \to 0$.

Proof. We notice that

$$\beta(x,y) = \langle x, \partial_y \rangle^{n-1} |x|^{2-2n} Y_+(\langle x, y \rangle)$$

when $x \neq 0$. It follows that

$$\beta(x,y) = (n-1)! \sum_{|\alpha|=n-1} \partial_y^{\alpha} x^{\alpha} |x|^{2-2n} Y_+(\langle x,y \rangle)/\alpha!$$

in $\mathbb{R}^n \times \mathbb{R}^n$ since both sides are homogeneous in x of degree > -n. If $\beta_{\varepsilon}(x, y) = 2^{n-1}\chi_{\varepsilon}^{(n-1)}(2\langle x, y \rangle)$ we also have

$$\beta_{\varepsilon}(x,y) = (n-1)! \sum_{|\alpha|=n-1} \partial_y^{\alpha} x^{\alpha} |x|^{2-2n} \chi_{\varepsilon}(2\langle x, y \rangle) / \alpha!$$

Hence β_{ε} converges to β in $\mathcal{D}'(\mathbb{R}^n \times \mathbb{R}^n)$ as $\varepsilon \to 0$. Since, by (4.1),

$$B_{\varepsilon}(x_1, x_2, x_3) = C_n \beta_{\varepsilon}(x_2 - x_1, x_3 - x_1)$$

it follows that B_{ε} converges to B in \mathcal{D}' as $\varepsilon \to 0$, and hence $\Pi_* B_{\varepsilon}$ converges to $\Pi_* B$.

In order to derive a formula for Π_*B_ε we need to introduce some more notation. Define

(4.3)
$$\mathcal{W} = -(\partial_{s_2} + \partial_{s_3})/2,$$

(4.4)
$$r_{m,j}(u;s_2,s_3) = (\partial_u - \mathcal{W})^{m-j} q_m(u;s_2,s_3).$$

Also set

(4.5)
$$U_{\varepsilon}(u;\vec{s}) = \chi_{\varepsilon}'((u+\sqrt{s_1})^2+s_1-s_2-s_3) - \chi_{\varepsilon}'((u-\sqrt{s_1})^2+s_1-s_2-s_3).$$

The characteristic function of the interval $(\sqrt{s_2} - \sqrt{s_3}, \sqrt{s_2} + \sqrt{s_3})$, when s_2 and s_3 are nonnegative, is denoted by $\theta(t; s_2, s_3)$.

Lemma 4.3. We have

(4.6)
$$\Pi_* B_{\varepsilon}(\vec{s}) = \frac{2^{1-n}}{m!} \sum_{0 \le j \le m} {m \choose j} \mathcal{W}^j \int \theta(u; s_2, s_3) U_{\varepsilon}(u; \vec{s}) r_{m,j}(u^2; s_2, s_3) \, \mathrm{d}u$$

in \mathbb{R}^3_+ .

Proof. Define

(4.7)
$$\widetilde{B}_{\varepsilon}(x_1, x_2, x_3) = \iiint_{\mathcal{O}(n)^3} B_{\varepsilon}(\Omega_1 x_1, \Omega_2 x_2, \Omega_3 x_3) \,\mathrm{d}\Omega_1 \,\mathrm{d}\Omega_2 \,\mathrm{d}\Omega_3.$$

Then

$$\widetilde{B}_{\varepsilon}(x_1, x_2, x_3) = 2^{n-1} C_n \iiint_{\mathcal{O}(n)^3} \chi_{\varepsilon}^{(n-1)} (|\Omega_1 x_1 + \Omega_2 x_2 + \Omega_3 x_3|^2 - S(X)) \,\mathrm{d}\Omega_1 \,\mathrm{d}\Omega_2 \,\mathrm{d}\Omega_3.$$

Theorem 2.5 with $f(t) = \chi'_{\varepsilon}(t - S(X))$ yields (4.8)

$$\widetilde{B}_{\varepsilon}(x_{1}, x_{2}, x_{3}) = 2^{n-1}C_{n}e_{n}(r_{1}r_{2}r_{3})^{2-n} \cdot \sum_{0 \le k \le m} \binom{m}{k} \int_{r_{2}-r_{3}}^{r_{2}+r_{3}} \left(\chi_{\varepsilon}^{(k+1)}((u+r_{1})^{2}-S(X)) - \chi_{\varepsilon}^{(k+1)}((u-r_{1})^{2}-S(X))\right) \cdot \cdot q_{m}^{(m-k)}(u^{2}, r_{2}^{2}, r_{3}^{2}) \,\mathrm{d}u.$$

A simple computation shows that

(4.9)
$$\Pi_*\Phi(s_1, s_2, s_3) = (c_n/2)^3 (s_1)_+^{m+1/2} (s_2)_+^{m+1/2} (s_3)_+^{m+1/2} \varphi(\sqrt{s_1}, \sqrt{s_2}, \sqrt{s_3})$$

when $\Phi(x_1, x_2, x_3) = \varphi(|x_1|, |x_2|, |x_3|)$ and φ is a continuous function in \mathbb{R}^3 . Since $\Pi_* B_{\varepsilon} = \Pi_* \widetilde{B}_{\varepsilon}$ it follows from (4.8) that

(4.10)
$$\Pi_* B_{\varepsilon}(\vec{s}) = 2^{n-1} C_n e_n (c_n/2)^3 \sum_{0 \le k \le m} \binom{m}{k} A_{k,\varepsilon}(\vec{s})$$
$$= \frac{1}{2^{n-1} m!} \sum_{0 \le k \le m} \binom{m}{k} A_{k,\varepsilon}(\vec{s}),$$

INVERSE PROBLEMS AND IMAGING

in \mathbb{R}^3_+ , where

$$A_{k,\varepsilon}(\vec{s}) = \int_{\sqrt{s_2} - \sqrt{s_3}}^{\sqrt{s_2} + \sqrt{s_3}} \left(\chi_{\varepsilon}^{(k+1)} ((u + \sqrt{s_1})^2 - \tilde{S}(\vec{s})) - \chi_{\varepsilon}^{(k+1)} ((u - \sqrt{s_1})^2 - \tilde{S}(\vec{s})) \right) \cdot q_m^{(m-k)}(u^2; s_2, s_3) \, du.$$

and $\tilde{S}(\vec{s}) = s_3 + s_2 - s_1$. We write

$$A_{k,\varepsilon}(\vec{s}) = \int \left(\mathcal{W}^k U_{\varepsilon}(u;\vec{s}) \right) \left(\theta(u;s_2,s_3) q_m^{(m-k)}(u^2;s_2,s_3) \right) \mathrm{d}u.$$

Since $q_m^{(m-k)}(u^2; s_2, s_3)$ vanishes to the order k when $u = \sqrt{s_2} \pm \sqrt{s_3}$ it follows after an application of Taylor's formula that (4.11)

$$A_{k,\varepsilon}(\vec{s}) = \sum_{j \le k} (-1)^{k-j} \binom{k}{j} \mathcal{W}^j \int \theta(u; s_2, s_3) U_{\varepsilon}(u; \vec{s}) \mathcal{W}^{k-j} q_m^{(m-k)}(u^2; s_2, s_3) \,\mathrm{d}u$$

when the s_j are positive. Inserting this into the right hand side of (4.10) and taking $\nu = k - j$ as a new variable of summation instead of k we get

$$\Pi_* B_{\varepsilon}(\vec{s}) = \frac{2^{1-n}}{m!} \sum_{0 \le j \le m} {\binom{m}{j}} \mathcal{W}^j \int \theta(u; s_2, s_3) U_{\varepsilon}(u; \vec{s}) \cdot \\ \cdot \left(\sum_{\nu \le m-j} {\binom{m-j}{\nu}} (-1)^{\nu} \mathcal{W}^{\nu} q_m^{(m-j-\nu)}(u^2; s_2, s_3)\right) \mathrm{d}u \\ = \frac{2^{1-n}}{m!} \sum_{0 \le j \le m} {\binom{m}{j}} \mathcal{W}^j \int \theta(u; s_2, s_3) U_{\varepsilon}(u; \vec{s}) r_{m,j}(u^2; s_2, s_3) \mathrm{d}u$$

-		

We consider now the functions (4.12)

$$P_{m,j,\varepsilon}(\vec{s}) = \begin{cases} \int \theta(u; s_2, s_3) U_{\varepsilon}(u; \vec{s}) r_{m,j}(u^2; s_2, s_3) \, \mathrm{d}u & \text{when } s_1, s_2, s_3 \ge 0\\ 0 & \text{when some } s_j \text{ is negative.} \end{cases}$$

Lemma 4.4. There is $\Pi_{m,j,\varepsilon} \in C^{\infty}(\mathbb{R}^3)$ such that

$$P_{m,j,\varepsilon}(\vec{s}) = (s_1)_+^{1/2} (s_2)_+^{1/2} (s_3)_+^{1/2} (s_2 s_3)^j \Pi_{m,j,\varepsilon}(\vec{s})$$

in \mathbb{R}^3 .

Proof. We consider $P_{m,j,\varepsilon}(\vec{s})$ when the s_j are nonnegative and notice that

$$U_{\varepsilon}(u;\vec{s}) = 2\sqrt{s_1}uV_{\varepsilon}(u^2,\vec{s}),$$

where $V_{\varepsilon} \in C^{\infty}(\mathbb{R}^4)$. Hence

$$U_{\varepsilon}(u;\vec{s})r_{m,j}(u^2;s_2,s_3) = 2\sqrt{s_1}uW_{m,j,\varepsilon}(u^2,\vec{s})$$

INVERSE PROBLEMS AND IMAGING

where $W_{m,j,\varepsilon} \in C^{\infty}(\mathbb{R}^4)$. It follows that

$$P_{m,j,\varepsilon}(\vec{s}) = 2\sqrt{s_1} \int_{\sqrt{s_2} - \sqrt{s_3}}^{\sqrt{s_2} + \sqrt{s_3}} u W_{m,j,\varepsilon}(u^2, \vec{s}) \, \mathrm{d}u$$

$$(4.13) = \sqrt{s_1} \int_{(\sqrt{s_2} - \sqrt{s_3})^2}^{(\sqrt{s_2} + \sqrt{s_3})^2} W_{m,j,\varepsilon}(u, \vec{s}) \, \mathrm{d}u = \sqrt{s_1} \int_{-2\sqrt{s_2s_3}}^{2\sqrt{s_2s_3}} W_{m,j,\varepsilon}(u + s_1 + s_2, \vec{s}) \, \mathrm{d}u.$$

We notice that since

$$r_{m,j}(u;\vec{s}) = (\partial_u - \mathcal{W})^{m-j} q_m(u;s_2,s_3)$$

it follows that $r_{m,j}(u+s_2+s_3;\vec{s})$ is divisible by

$$q^{j}(u+s_{2}+s_{3};s_{2},s_{3}) = (4s_{2}s_{3}-u^{2})^{j}$$

in the ring of polynomials in (u, \vec{s}) . This in turn implies that $W_{m,j,\varepsilon}(u+s_2+s_3, \vec{s})$ is divisible by $(4s_2s_3-u^2)^j$ in the ring $C^{\infty}(\mathbb{R}^4)$. Hence $W_{m,j,\varepsilon}(u+s_2+s_3, \vec{s})$ is a finite linear combination of $\phi_{\alpha,\beta}(u, \vec{s})(s_2s_3)^{\alpha}u^{\beta}$ where $\phi_{\alpha,\beta} \in C^{\infty}(\mathbb{R}^4)$ and $\alpha + \beta/2 \geq j$. The assertion of the lemma follows if this observation is combined with (4.13). \Box

The following corollary is immediate from the previous lemma and Lemma 4.3.

Corollary 4.5. Let the $P_{m,j,\varepsilon}$ be as in (4.12) Then

(4.14)
$$\Pi_* B_{\varepsilon}(\vec{s}) = \frac{2^{1-n}}{m!} \sum_{0 \le j \le m} \binom{m}{j} \mathcal{W}^j P_{m,j,\varepsilon}(\vec{s})$$

in \mathbb{R}^3 .

Proof. It follows from Lemma 4.4 that the right-hand side of (4.14) is a continuous function of \vec{s} . Since this is also true for the left-hand side in view of (4.9), and since by Lemma 4.3 equality holds when the s_j are positive, it follows that equality holds everywhere.

We shall finish our computation of Π_*B by showing that $P_{m,j,\varepsilon}$ converges in $L^1_{\text{loc}}(\mathbb{R}^3)$ when $\varepsilon \to 0$.

Lemma 4.6. Let K be a compact set in \mathbb{R}^3 . Then there is a constant C_K such that

$$|P_{m,j,\varepsilon}(\vec{s})| \le C_K |s_2 + s_3 - s_1|^{-1/2}$$
 when $\vec{s} \in K, \ 0 < \varepsilon < 1.$

Proof. Assume $0 \leq g \in C_0(\mathbb{R})$ and that $a, b \in \mathbb{R}$. Define

$$I(a,b;g) = |b|^{1/2} \int_{-\infty}^{\infty} g((u+a)^2 + b) \,\mathrm{d}u.$$

We claim that

(4.15)
$$I(a,b;g) \le 8(\|g\|_{L^1} + \max_{t} |tg(t)|).$$

When proving (4.15) we notice that

$$I(a, b; g) = I(0, b; g) = I(0, \operatorname{sgn}(b); g_b)$$

INVERSE PROBLEMS AND IMAGING

where $g_b(u) = |b|g(|b|u)$, and the right-hand side of (4.15) is invariant under the transformation $g \mapsto g_b$ when $b \neq 0$. We may assume therefore that |b| = 1. Then

$$I(0,b;g) \le \int_{-\infty}^{\infty} g(u+b)|u|^{-1/2} \,\mathrm{d}u = \int_{-\infty}^{\infty} g(u)|u-b|^{-1/2} \,\mathrm{d}u.$$

The estimate (4.15) follows since

$$\int_{|u-b|>1/2} g(u)|u-b|^{-1/2} \,\mathrm{d} u \le \sqrt{2} \|g\|_{L^1}$$

and

$$\int_{|u-b|<1/2} g(u)|u-b|^{-1/2} \, \mathrm{d}u \le 2 \max |tg(t)| \int_{-1/2}^{1/2} |u|^{-1/2} \, \mathrm{d}u = 4\sqrt{2} \max |tg(t)|.$$

We notice next that there is a constant C = C(n, K) such that

$$|P_{m,j,\varepsilon}(\vec{s})| \le C \int |U_{\varepsilon}(u;\vec{s})| \,\mathrm{d}u$$

when $0 < \varepsilon < 1$ and $\vec{s} \in K$. The lemma then follows by combining (4.15) with the observations that

$$\begin{split} |s_1 - s_2 - s_3|^{1/2} \int |U_{\varepsilon}(u; \vec{s})| \, \mathrm{d}u &\leq I(\sqrt{s_1}, s_1 - s_2 - s_3; \chi_{\varepsilon}') + I(-\sqrt{s_1}, s_1 - s_2 - s_3; \chi_{\varepsilon}') \\ \text{and } \|\chi_{\varepsilon}'\|_{L_1}, \max_t |t\chi_{\varepsilon}'(t)| \text{ are independent of } \varepsilon. \end{split}$$

Combining the previous lemma with the dominated convergence theorem of Lebesgue, and recalling Lemma 4.2 and Corollary 4.5 we have proved that if $P_{m,j,\varepsilon}(\vec{s})$ converges almost everywhere to some function $P_{m,j}(\vec{s})$, then $P_{m,j,\varepsilon}(\vec{s})$ converges to $P_{m,j}(\vec{s})$ in $L^1_{\text{loc}}(\mathbb{R}^3)$ and

(4.16)
$$\Pi_* B(\vec{s}) = \frac{2^{1-n}}{m!} \sum_{0 \le j \le m} \binom{m}{j} \mathcal{W}^j P_{m,j}(\vec{s}).$$

We recall that the polynomials $\psi_{m,j}$ have been introduced in (1.14).

Lemma 4.7. Define

(4.17)
$$\Psi_{m,j}(\vec{s}) = \psi_{m,j}(s_2 + s_3, (s_2 - s_3)^2 - 4s_1(s_1 - s_2 - s_3)).$$

Then

(4.18)
$$\lim_{\varepsilon \to 0} P_{m,j,\varepsilon}(\vec{s}) = -4^{j} \Psi_{m,j}(\vec{s}) (s_1 - s_2)^{j}_{+} (s_1 - s_3)^{j}_{+} (s_2 + s_3 - s_1)^{-1/2}_{+}$$

for almost every $\vec{s} \in \mathbb{R}^3$.

Proof. Since both sides of (4.18) are equal to 0 when $s_j < 0$ for some j it suffices to show that (4.18) holds for almost every $\vec{s} \in \mathbb{R}^3_+$. Assume now that the s_j are positive. Then

(4.19)
$$P_{m,j,\varepsilon}(\vec{s}) = \int \theta(u;s_2,s_3) U_{\varepsilon}(u;\vec{s}) r_{m,j}(u^2;s_2,s_3) \,\mathrm{d}u.$$

Set

(4.20)
$$\rho(t;\vec{s}) = (t+2s_1-s_2-s_3)^2 - 4s_1t,$$

0

and notice that

(4.21) $\rho(u^2; \vec{s}) = ((u + \sqrt{s_1})^2 + s_1 - s_2 - s_3)((u - \sqrt{s_1})^2 + s_1 - s_2 - s_3).$

From this follows that

$$\lim_{\varepsilon \to 0} \int \theta(u; s_2, s_3) U_{\varepsilon}(u; \vec{s}) \psi(u^2; \vec{s}) \, \mathrm{d}u = 0$$

for every polynomial $\psi(u; \vec{s})$ which is divisible by $\rho(u; \vec{s})$. We therefore wish to divide out ρ from $r_{m,j}$ in (4.19).

Define

$$\widetilde{r}_{m,j}(t;s_2,s_3) = r_{m,j}(t+s_2+s_3;s_2,s_3)$$

and

$$\widetilde{\rho}(t;\vec{s}) = \rho(t+s_2+s_3;\vec{s}).$$

Then

(4.22)
$$\widetilde{\rho}(t;\vec{s}) = t^2 + 4(s_1 - s_2)(s_1 - s_3) - 4s_2s_3.$$

We notice that

(4.23) $\widetilde{r}_{m,j}(t;s_2,s_3) = (-\mathcal{W})^{m-j} q_m(t+s_2+s_3;s_2,s_3) = (-\mathcal{W})^{m-j} (4s_2s_3-t^2)^m$, since

$$-\mathcal{W}(f(s_2+s_3)) = f'(s_2+s_3)$$

when $f \in C^1$. This also implies that

$$(-\mathcal{W})^{m-j}(4s_2s_3 - t^2)^m = (-\mathcal{W})^{m-j}((s_2 + s_3)^2 - (s_2 - s_3)^2 - t^2)^m$$
$$= \partial_u^{m-j}(u^2 - (s_2 - s_3)^2 - t^2)_{u=s_2+s_3}^m.$$

Recalling (4.23) and (1.14) we have proved that

(4.24)
$$\widetilde{r}_{m,j}(t;s_2,s_3) = (4s_2s_3 - t^2)^j \psi_{m,j}(s_2 + s_3,(s_2 - s_3)^2 + t^2).$$

Then a combination of (4.22) and (4.24) shows that

$$\widetilde{r}_{m,j}(t;s_2,s_3) - 4^j(s_1 - s_2)^j(s_1 - s_3)^j \Psi_{m,j}(\vec{s})$$

is divisible by $\tilde{\rho}(t; \vec{s})$ in the ring of polynomials in (t, \vec{s}) . After replacing t by $t-s_1-s_2$ we have proved that

(4.25)
$$r_{m,j}(t;\vec{s}) = T_{m,j}(\vec{s}) + \rho(t;\vec{s})S_{m,j}(t;\vec{s})$$

where $S_{m,j}$ is a polynomial and

(4.26)
$$T_{m,j}(\vec{s}) = 4^j (s_1 - s_2)^j (s_1 - s_3)^j \Psi_{m,j}(\vec{s})$$

It follows from (4.19) and (4.25) together with the observations after (4.21) that

(4.27)
$$P_{m,j,\varepsilon}(\vec{s}) = T_{m,j}(\vec{s})Y_{\varepsilon}(s) + R_{m,j,\varepsilon}(\vec{s}),$$

where

(4.28)
$$Y_{\varepsilon}(\vec{s}) = \int \theta(u; s_2, s_3) U_{\varepsilon}(u, \vec{s}) \, \mathrm{d}u$$

and

$$\lim_{\varepsilon \to 0} R_{m,j,\varepsilon}(\vec{s}) = 0$$

We shall complete the proof of the lemma by showing that

(4.29)
$$\lim_{\varepsilon \to 0} Y_{\varepsilon}(\vec{s}) = Y(\vec{s}) \text{ for almost every } \vec{s} \in \mathbb{R}^3_+$$

where

$$Y(\vec{s}) = -(s_2 + s_3 - s_1)_+^{-1/2} H(s_1 - s_2) H(s_1 - s_3).$$

If $s_2 + s_3 < s_1$ then $U_{\varepsilon}(u; \vec{s}) = 0$ for every u when ε is small enough. We may assume therefore that $s_2 + s_3 - s_1 = \sigma^2$, where $\sigma > 0$. Let $N = \{\pm \sqrt{s_1} \pm \sigma\}$. Then there is a constant C depending on \vec{s} such that the support of $u \mapsto U_{\varepsilon}(u; \vec{s})$ is within distance $C\varepsilon$ from N. We may assume that $\sqrt{s_2} \pm \sqrt{s_3} \notin N$ and then $u \mapsto \theta(u; s_2, s_3)$ is smooth in an open neighbourhood of N. When taking limits of the integral defining Y_{ε} we can therefore treat θ as a test function in the variable u.

Recalling the definition of U_{ε} we see that $u \mapsto U_{\varepsilon}(u; \vec{s})$ converges in $\mathcal{D}'(\mathbb{R})$ to

$$\frac{1}{2\sigma}\Big(\delta(u+\sqrt{s_1}+\sigma)+\delta(u+\sqrt{s_1}-\sigma)-\delta(u-\sqrt{s_1}+\sigma)-\delta(u-\sqrt{s_1}-\sigma)\Big).$$

Hence

(4.30)
$$Y_{\varepsilon}(\vec{s}) \to Y_{0}(\vec{s})$$
$$= \frac{1}{2}(s_{2} + s_{3} - s_{1})^{-1/2} \Big(\theta(-\sqrt{s_{1}} - \sigma; s_{2}, s_{3}) + \theta(-\sqrt{s_{1}} + \sigma; s_{2}, s_{3}) - \theta(\sqrt{s_{1}} - \sigma; s_{2}, s_{3}) - \theta(\sqrt{s_{1}} + \sigma; s_{2}, s_{3})\Big).$$

6

It suffices to show now that $Y_0(\vec{s}) = Y(\vec{s})$ when $s_1 \neq s_2, s_3$. Let $\alpha, \beta = \pm 1$. Then $\alpha\sqrt{s_1}+\beta\sigma$ is not an endpoint of the interval $(\sqrt{s_2}-\sqrt{s}_3,\sqrt{s_2}+\sqrt{s}_3)$ and

$$\theta(\alpha\sqrt{s_1} + \beta\sigma; s_2, s_3) = H(t(\alpha, \beta)),$$

where

$$t(\alpha,\beta) = (\sqrt{s_2} + \sqrt{s_3} - \alpha\sqrt{s_1} - \beta\sigma)(\alpha\sqrt{s_1} + \beta\sigma - \sqrt{s_2} + \sqrt{s_3}).$$

We write

$$t(\alpha,\beta) = s_3 - (\alpha\sqrt{s_1} + \beta\sigma - \sqrt{s_2})^2$$

= $s_3 - s_1 - \sigma^2 - s_2 - 2\alpha\beta\sqrt{s_1}\sigma + 2\alpha\sqrt{s_1}\sqrt{s_2} + 2\beta\sigma\sqrt{s_2}$
= $-2s_2 + 2\beta\sigma\sqrt{s_2} - 2\alpha\beta\sqrt{s_1}\sigma + 2\alpha\sqrt{s_1}\sqrt{s_2}$
= $2(\alpha\sqrt{s_1} - \sqrt{s_2})(\sqrt{s_2} - \beta\sigma).$

It is easily verified that

$$\begin{split} H(t(-1,-1)) &= 0, \ H(t(-1,1)) = H(s_3-s_1), \ H(t(1,-1)) = H(s_1-s_2), \\ H(t(1,1)) &= H((s_1-s_2)(s_1-s_3)). \end{split}$$

From this follows that

$$Y_0(\vec{s}) = \frac{1}{2}(s_2 + s_3 - s_1)^{-1/2} \sum_{\alpha,\beta=\pm 1} \alpha H(t(-\alpha,\beta))$$
$$= -(s_2 + s_3 - s_1)^{-1/2} H(s_1 - s_2) H(s_1 - s_3)$$
$$= Y(\vec{s}).$$

This concludes the proof.

Proof of Theorem 1.5. It follows from (4.16) and Lemma 4.7 that

$$= -\frac{2^{1-n}}{m!} \sum_{0 \le j \le m} 4^{j} {m \choose j} \mathcal{W}^{j} \Big(\Psi_{m,j}(\vec{s})(s_{1}-s_{2})^{j}_{+}(s_{1}-s_{3})^{j}_{+}(s_{2}+s_{3}-s_{1})^{-1/2}_{+} \Big)$$

$$= \sum_{0 \le j \le m} (\partial_{s_{2}} + \partial_{s_{3}})^{j} \Big(Q_{m,j}(\vec{s})(s_{1}-s_{2})^{j}_{+}(s_{1}-s_{3})^{j}_{+}(s_{2}+s_{3}-s_{1})^{-1/2}_{+} \Big),$$

ere we have used (4.3), (4.17) and (1.13).

 $\Pi_* B(\vec{s})$

where we have used (4.3), (4.17) and (1.13).

INVERSE PROBLEMS AND IMAGING

5. **Remarks and examples.** We first show that Π_*B solves a second order partial differential equation which is hyperbolic in \mathbb{R}^3_+ .

Theorem 5.1. Define the differential operator L in \mathbb{R}^3 through

(5.1)
$$L = 2s_2\partial_{s_2}^2 + 2s_3\partial_{s_3}^2 - 2s_1\partial_{s_1}^2 + (n-4)(\partial_{s_1} - \partial_{s_2} - \partial_{s_3})$$

Then

(5.2)
$$L\Pi_*B = (s_1)_+^{n/2-1}\delta(s_1 - s_2)\delta(s_1 - s_3).$$

Proof. It follows from (1.6) and (1.7) that

$$B(x_1, x_2, x_3) = -\frac{2^{1+n}}{c_n} E(x_2 + x_3 - 2x_1, x_2 - x_3).$$

We get

$$(\Delta_1 - \Delta_2 - \Delta_3)B(x_1, x_2, x_3)$$

= $\left(\partial_{x_1}^2 - (\partial_{x_2} + \partial_{x_3})^2/2 - (\partial_{x_2} - \partial_{x_3})^2/2\right)B(x_1, x_2, x_3)$
= $-\frac{2^{1+n}}{c_n}\left(\frac{1}{2}\partial_{x_1}^2 - \frac{1}{2}(\partial_{x_2} - \partial_{x_3})^2\right)E(x_2 + x_3 - 2x_1, x_2 - x_3)$
= $-\frac{2^{2+n}}{c_n}((\Delta_y - \Delta_z)E)(x_2 + x_3 - 2x_1, x_2 - x_3)$
= $-\frac{2^{2+n}}{c_n}\delta(x_2 + x_3 - 2x_1)\delta(x_2 - x_3)$
= $-\frac{2^{2+n}}{c_n}\delta(2x_2 - 2x_1)\delta(x_2 - x_3) = -\frac{4}{c_n}\delta(x_2 - x_1)\delta(x_2 - x_3).$

When $f \in C_0^{\infty}(\mathbb{R}^3)$ we have

$$\int_{0}^{\infty} s^{n/2-1} f(s,s,s) \, \mathrm{d}s = 2 \int_{0}^{\infty} s^{n-1} f(s^2,s^2,s^2) \, \mathrm{d}s$$
$$= \frac{2}{c_n} \int_{\mathbb{R}^n} f(|x|^2,|x|^2,|x|^2) \, \mathrm{d}x = \frac{2}{c_n} \langle \Pi^* f, \delta(x_2 - x_1) \delta(x_2 - x_3) \rangle$$
$$= -\frac{1}{2} \langle \Pi^* f, (\Delta_1 - \Delta_2 - \Delta_3) B \rangle = -\frac{1}{2} \langle (\Delta_1 - \Delta_2 - \Delta_3) \Pi^* f, B \rangle$$

Let L' be the formal transpose of L. A simple computation shows that

$$(\Delta_1 - \Delta_2 - \Delta_3) \circ \Pi^* = -2\Pi^* \circ L'.$$

It follows that

$$\int_{0}^{\infty} s^{n/2-1} f(s,s,s) \, \mathrm{d}s = \langle \Pi^* L' f, B \rangle = \langle f, L \Pi_* B \rangle.$$

Hence (5.2) holds.

We shall finally give some examples in the case n = 3. In this case Theorem 1.5 gives that (1.18) holds.

In what follows we assume $0 < a \le \infty$, $b \ge 0$, and set

$$g_{a,b}(s) = Y_a(s) \mathrm{e}^{-bs}$$

where Y_a denotes characteristic function of the interval [0, a].

INVERSE PROBLEMS AND IMAGING

We first compute $\widetilde{B}_2(g_{a,b}, g_{a,b})(s)$.

Theorem 5.2. Assume n = 3. Then

(5.3)
$$\widetilde{B}_2(g_{a,b}, g_{a,b})(s) = -\frac{1}{2} \mathrm{e}^{-bs} \min(s, 2a-s)_+^{3/2} \int_0^1 (1-t^2) \mathrm{e}^{-bst^2} \mathrm{d}t$$

Proof. It follows from (1.11) and (1.18) that

$$\widetilde{B_2}(g_{a,b}, g_{a,b})(s) = -\frac{1}{4} \iint_{t,u \le s} (t+u-s)_+^{-1/2} Y_a(t) Y_a(u) e^{-b(t+u)} dt du.$$

If $\sigma = \min(a, s)$ this means that

$$\widetilde{B_2}(g_{a,b}, g_{a,b})(s) = -\frac{1}{4} \int_s^\infty (t-s)^{-1/2} (Y_\sigma * Y_\sigma)(t) e^{-bt} dt$$
$$= -\frac{e^{-bs}}{4} \int_0^\infty t^{-1/2} (Y_\sigma * Y_\sigma)(t+s) e^{-bt} dt.$$

But $(Y_{\sigma} * Y_{\sigma})(t) = (\sigma - |t - \sigma|)_{+}$ and hence

$$(Y_{\sigma} * Y_{\sigma})(s+t) = (2\sigma - t - s)_{+} = \left(\min(s, 2a - s) - t\right)_{+}$$

With $\mu = \min(s, 2a - s)$ this yields

$$\widetilde{B}_{2}(g_{a,b},g_{a,b})(s) = -\frac{e^{-bs}}{4} \int_{0}^{\mu} t^{-1/2}(\mu-t)e^{-bt} dt$$
$$= -\frac{e^{-bs}}{4} \mu^{3/2} \int_{0}^{1} t^{-1/2}(1-t)e^{-b\mu t} dt = -\frac{e^{-bs}}{2} \mu^{3/2} \int_{0}^{1} (1-t^{2})e^{-b\mu t^{2}} dt.$$

Corollary 5.3. Let the function $v_{a,b}$ in \mathbb{R}^3 be defined by

$$v_{a,b}(x) = \begin{cases} e^{-b|x|^2} & when \ |x| < a \\ 0 & when \ |x| \ge a. \end{cases}$$

Then

$$B_{2}(v_{a,b}, v_{a,b})(x) = \begin{cases} -\frac{e^{-b|x|^{2}}}{2}|x|^{2}\int_{0}^{1}(1-t^{2})e^{-b|x|^{2}t^{2}} dt & when \ |x| < a \\ -\frac{e^{-b|x|^{2}}}{2}(2a^{2}/|x|^{2}-1)^{3/2}|x|^{2}\int_{0}^{1}(1-t^{2})e^{-b(2a^{2}-|x|^{2})t^{2}} dt, \\ when \ a \le |x| \le \sqrt{2}a \\ 0 & when \ |x| > \sqrt{2}a. \end{cases}$$

Proof. The formula (1.12) gives

$$B_2(v_{a,b}, v_{a,b})(x) = |x|^{-1} \widetilde{B}_2(g_{a^2,b}, g_{a^2,b})(|x|^2),$$

and the result follows by applying Theorem 5.2

INVERSE PROBLEMS AND IMAGING

Remark. We notice that $v_{a,b}$ has a discontinuity at the sphere $S_a = \{x; |x| = a\}$ where it is locally in the Sobolev space $H_{(r)}$ (of functions with r derivatives in L^2) for any r < 1/2. The function $B_2(v_{a,b}, v_{a,b})$ is singular at the spheres S_a and $S_{\sqrt{2}a}$. The singularity at S_a is the same as that of the function $t \mapsto |t|$ at the origin. Hence $v_{a,b} \in H_{(r)}$ locally at S_a for any r < 3/2 but it is not locally in $H_{(3/2)}$. It follows from Theorem 1.1 in the paper [1] that the mapping $v \mapsto B_2(v, v)$ is continous from $H_{(r),\text{loc}}(\mathbb{R}^3)$ to $H_{(r+\varepsilon),\text{loc}}(\mathbb{R}^3)$ for any $r \ge 0$ if $\varepsilon < 1$. The above example shows that it is necessary that $\varepsilon \le 1$ for this smoothing property to hold for every $r \ge 0$.

We also notice that the singularity of $B_2(v_{a,b}, v_{a,b})$ at $|x| = \sqrt{2}a$ is the same as that of $t_+^{3/2}$ at the origin. Hence $B_2(v_{a,b}, v_{a,b})$ is locally in $H_{(r)}$ at $S_{\sqrt{2}a}$ for any r < 2. Finally we notice that $B_2(v_{a,b}, v_{a,b})(x) = B_2(v_{0,b}, v_{0,b})(x)$ when |x| < a. This reflects the fact that $s_2, s_3 \leq s_1$ in the support of Π_*B .

Remark. If $v(x) = e^{-b|x|^2}$ in \mathbb{R}^n where n = 3 and b > 0 then Corollary 5.3 with $a = \infty$ shows that $B_2(v, v)(x)$ is a (continuous) superposition of Gaussian functions. When n is an arbitrary odd integer ≥ 3 and v(x) is the corresponding Gaussian in \mathbb{R}^n it follows from Theorem 1.5 and (1.16) that

$$B_2(v,v)(x) = \sum_{0 \le j \le m} b^j |x|^{2+2j} e^{-b|x|^2} \int_0^1 h_{m,j}(t^2) (1-t^2)^{1+2j} e^{-bt^2|x|^2} \, \mathrm{d}t,$$

where the $h_{m,j}$ are polynomials.

REFERENCES

- I. Beltiță and A. Melin, Analysis of the quadratic term in the backscattering transformation, Math. Scand., 105 (2009), 218–234.
- [2] I. Beltiţă and A. Melin, Local smoothing for the backscattering transformation, Comm. Partial Diff. Equations, 34 (2009), 233–256.
- [3] L. Hörmander, "The Analysis of Linear Partial Differential Operators" (I-IV), Springer Verlag, Berlin, Heidelberg, New York, Tokyo, 1983–1985.
- [4] A. Melin, Smoothness of higher order terms in backscattering, in "Wave Phenomena and Asymptotic Analysis," RIMS Kokyuroku, 1315 (2003), 43–51.
- [5] A. Melin, Some transforms in potential scattering in odd dimension, in "Inverse Problems and Spectral Theory," Contemp. Math., 348, Amer. Math. Soc., Providence, RI, (2004), 103–134.
- [6] A. Ruiz and A. Vargas, Partial recovery of a potential from backscattering data, Comm. Partial Diff. Equations, 30 (2005), 67–96.

Received for publication December 2008.

E-mail address: Ingrid.Beltita@imar.ro

E-mail address: andersmelin@hotmail.com