THE QUADRATIC CONTRIBUTION TO THE BACKSCATTERING TRANSFORM IN THE ROTATION INVARIANT CASE

Ingrid Beltiță
Institute of Mathematics of the Romanian Academy Bucharest, PO Box 1-764, Romania
Anders Melin
Lund University
Box 118, S-22100, Lund, Sweden

Abstract

Considerations of the backscattering data for the Schrödinger operator $H_{v}=-\Delta+v$ in \mathbb{R}^{n}, where $n \geq 3$ is odd, give rise to an entire analytic mapping from $C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ to $C^{\infty}\left(\mathbb{R}^{n}\right)$, the backscattering transformation. The aim of this paper is to give formulas for $B_{2}(v, w)$ where B_{2} is the symmetric bilinear operator that corresponds to the quadratic part of the backscattering transformation and v and w are rotation invariant.

1. Introduction. Considerations of the backscattering data for the Schrödinger operator $H_{v}=-\Delta+v$ in \mathbb{R}^{n}, where $n \geq 3$ is odd, give rise to an entire analytic mapping from $C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ to $C^{\infty}\left(\mathbb{R}^{n}\right)$, the backscattering transformation. This is, up to a smooth term given by the negative eigenvalues of H_{v} and the corresponding eigenfunctions, the real part of the Fourier transform of the anti-diagonal part of the scattering amplitude (see [2] and [5]). The symmetric bilinear operator B_{2} that corresponds to the quadratic part of the backscattering transformation is continuous from $C_{0}^{\infty}\left(\mathbb{R}^{n}\right) \times C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ to $C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$, and it extends by continuity to much larger spaces as shown in [1]. (See also [6] for a related regularity result for the Born approximation of the scattering data in the case $n=3$.) Let $E(y, z)$ be the unique fundamental solution of the ultra-hyperbolic operator $\Delta_{y}-\Delta_{z}$ such that $E(y, z)=-E(z, y)$ and $E(y, z)$ is separately rotation invariant in both variables (see Corollary 10.2 of [5]). An explicit formula for B_{2} is provided by Corollary 10.7 of [5], which shows that
(1.1) $B_{2}(v, w)(x)=\iint E(y, z) v\left(x+\frac{y+z}{2}\right) w\left(x-\frac{y-z}{2}\right) \mathrm{d} y \mathrm{~d} z, \quad v, w \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$,
where the integral is interpreted in the distribution sense.
The aim of this paper is to give explicit formulas for $B_{2}(v, w)$ when v and w are rotation invariant functions in \mathbb{R}^{n}. Then v and w may be considered as functions in one real variable, and this is also true for $B_{2}(v, w)$, since rotation invariance is preserved under B_{2}. This leads to the investigation of a symmetric bilinear operator $\widetilde{B_{2}}$ acting in spaces of functions on the real line, and we compute its distribution kernel. This enables explicit computation of $B_{2}(v, w)$ in many cases and illustrates the continuity results obtained in our paper [1]. Moreover, our formula for the

[^0]distribution kernel of \widetilde{B}_{2} will show that the restriction of $B_{2}(v, w)$ to any ball $\{x ;|x|<R\}$ depends on the restriction of v and w to the same ball only. This somewhat surprising result holds for arbitrary odd $n \geq 3$ when v and w are rotation invariant.

Some notation and presentation of results. We assume $n=2 m+3$ is an odd integer ≥ 3 and let c_{n} denote the volume of the unit sphere in \mathbb{R}^{n}. Thus

$$
\begin{equation*}
c_{n}=2 \pi^{n / 2} / \Gamma(n / 2) \tag{1.2}
\end{equation*}
$$

We shall also need the constants

$$
\begin{equation*}
C_{n}=\frac{(-1)^{m}}{c_{n}(2 \pi)^{n-1}} \tag{1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
d_{n}=2^{3-n} c_{n-1} / c_{n}, e_{n}=(-1)^{m} 2^{2 m-1} m!d_{n}^{2} \tag{1.4}
\end{equation*}
$$

Points in $\left(\mathbb{R}^{n}\right)^{N}$ are written $\left(x_{1}, \ldots, x_{N}\right)$ and Δ_{j} denotes the Laplacian in the variables x_{j}. The length of x_{j} is denoted r_{j}. We use the notation \vec{s} for vectors $\left(s_{1}, s_{2}, s_{3}\right)$ in \mathbb{R}^{3}, and by t_{+}^{α} we denote the function which is equal to t^{α} when $t>0$ and vanishes when $t \leq 0$. Finally, $\mathcal{O}(n)$ denotes the group of orthogonal transformations in \mathbb{R}^{n}.

Consider the distribution

$$
\begin{equation*}
\beta(x, y)=\delta^{(n-2)}(\langle x, y\rangle) \tag{1.5}
\end{equation*}
$$

in $\mathbb{R}^{n} \times \mathbb{R}^{n}$. The notation needs an explanation. Since the gradient of $\langle x, y\rangle$ is nonvanishing outside the origin the right-hand side of (1.5) is a well-defined distribution outside the origin in $\mathbb{R}^{n} \times \mathbb{R}^{n}$. It is homogeneous of degree $2-2 n$ and $\beta(x, y)$ is its unique homogeneous extension to $\mathbb{R}^{n} \times \mathbb{R}^{n}$. (We refer to [3] for useful background material in distribution theory.) In this notation we have (see [5])

$$
\begin{equation*}
E(y, z)=-2^{2 m} c_{n} C_{n} \beta(y-z, y+z) \tag{1.6}
\end{equation*}
$$

Definition 1.1. We define the distribution $B \in \mathcal{D}^{\prime}\left(\mathbb{R}^{n} \times \mathbb{R}^{n} \times \mathbb{R}^{n}\right)$ through

$$
\begin{equation*}
B\left(x_{1}, x_{2}, x_{3}\right)=C_{n} \beta\left(x_{2}-x_{1}, x_{3}-x_{1}\right) \tag{1.7}
\end{equation*}
$$

The definition makes sense since the linear mapping which sends $\left(x_{1}, x_{2}, x_{3}\right) \in\left(\mathbb{R}^{n}\right)^{3}$ to $\left(x_{2}-x_{1}, x_{3}-x_{1}\right) \in\left(\mathbb{R}^{n}\right)^{2}$ is surjective.

A linear change of coordinates in (1.1) together with (1.6), shows that

$$
\begin{equation*}
\left\langle u, B_{2}(v, w)\right\rangle=2^{-1} c_{n}\langle u \otimes v \otimes w, B\rangle \tag{1.8}
\end{equation*}
$$

when $u, v, w \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$. Hence B is a constant times the distribution kernel of B_{2}.
Assume now that $v, w \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ are rotation invariant. Then $B_{2}(v, w)$ is uniquely determined by the values of the right-hand side of (1.8) when u ranges over the set of rotation invariant test functions in \mathbb{R}^{n}. Writing

$$
u(x)=f\left(|x|^{2}\right), \quad v(x)=g\left(|x|^{2}\right), \quad w(x)=h\left(|x|^{2}\right)
$$

we have

$$
\begin{equation*}
\langle u \otimes v \otimes w, B\rangle=\left\langle f \otimes g \otimes h, \Pi_{*} B\right\rangle \tag{1.9}
\end{equation*}
$$

where $\Pi_{*} B \in \mathcal{D}^{\prime}\left(\mathbb{R}^{3}\right)$ is the push-forward of B under the mapping

$$
\begin{equation*}
\Pi: \mathbb{R}^{n} \times \mathbb{R}^{n} \times \mathbb{R}^{n} \ni\left(x_{1}, x_{2}, x_{3}\right) \mapsto\left(\left|x_{1}\right|^{2},\left|x_{2}\right|^{2},\left|x_{3}\right|^{2}\right) \in \mathbb{R}^{3} . \tag{1.10}
\end{equation*}
$$

This means that

$$
\left\langle\varphi, \Pi_{*} B\right\rangle=\left\langle\Pi^{*} \varphi, B\right\rangle=\langle\varphi \circ \Pi, B\rangle
$$

when φ is an arbitrary test function in \mathbb{R}^{3}. Since $s_{j} \geq 0$ in the image of Π it follows that $\Pi_{*} B$ is supported in $\left(\overline{\mathbb{R}}_{+}\right)^{3}$.
Definition 1.2. We let $\widetilde{B_{2}}$ be the bilinear operator from $C_{0}^{\infty}(\mathbb{R}) \times C_{0}^{\infty}(\mathbb{R})$ to $\mathcal{D}^{\prime}(\mathbb{R})$ with distribution kernel $\Pi_{*} B$, that is, given by

$$
\begin{equation*}
\left\langle f, \widetilde{B_{2}}(g, h)\right\rangle=\left\langle f \otimes g \otimes h, \Pi_{*} B\right\rangle, \quad f, g, h \in C_{0}^{\infty}(\mathbb{R}) \tag{1.11}
\end{equation*}
$$

Since composition by the mapping which sends $x \in \mathbb{R}^{n}$ to $|x|^{2} \in \mathbb{R}$ is continuous from $C_{0}^{\infty}(\mathbb{R})$ to $C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ and from $L^{2}(\mathbb{R})$ to $L_{\text {loc }}^{2}\left(\mathbb{R}^{n}\right)$ it follows from (1.8) and (1.9) that $\widetilde{B_{2}}$ is continuous from $C_{0}^{\infty}(\mathbb{R}) \times C_{0}^{\infty}(\mathbb{R})$ to $L^{2}(\mathbb{R})$.

A combination of (1.8) and (1.11) then leads to the next proposition.
Proposition 1.3. Assume $v(x)=g\left(|x|^{2}\right)$, $w(x)=h\left(|x|^{2}\right)$, where $g, h \in C_{0}^{\infty}(\mathbb{R})$. Then

$$
\begin{equation*}
B_{2}(v, w)(x)=|x|^{2-n} \widetilde{B_{2}}(g, h)\left(|x|^{2}\right) . \tag{1.12}
\end{equation*}
$$

It follows that $\widetilde{B_{2}}$, hence $\Pi_{*} B$ by (1.11), determines the restriction of B_{2} to rotation invariant functions. We need some more notation in order to present a formula for $\Pi_{*} B$ (and hence also for B_{2} on rotation invariant functions).

Definition 1.4. Let $0 \leq j \leq m$. Then we set

$$
\begin{equation*}
Q_{m, j}(\vec{s})=(-1)^{j+1} 2^{j-2-2 m} \frac{1}{m!}\binom{m}{j} \psi_{m, j}\left(s_{2}+s_{3},\left(s_{2}-s_{3}\right)^{2}-4 s_{1}\left(s_{1}-s_{2}-s_{3}\right)\right) \tag{1.13}
\end{equation*}
$$

where $\psi_{m, j}(s, t)$ is the polynomial defined through

$$
\begin{equation*}
\psi_{m, j}(s, t)=\left(s^{2}-t\right)^{-j} \partial_{s}^{m-j}\left(s^{2}-t\right)^{m} \tag{1.14}
\end{equation*}
$$

We notice that $Q_{m, j}$ is a polynomial homogeneous of degree $m-j$. Furthermore, consider the polynomials

$$
\begin{equation*}
q_{m, j}(t)=\frac{(-1)^{j+1}}{2^{2+m} j!} \sum_{0 \leq \mu \leq(m-j) / 2}\binom{j+2 \mu}{\mu}\binom{m}{j+2 \mu} t^{\mu}, \quad 0 \leq j \leq m \tag{1.15}
\end{equation*}
$$

Then, writing

$$
\psi_{m, j}(s, t)=\left(s^{2}-t\right)^{-j} \varphi^{(m-j)}(0)
$$

where

$$
\varphi(u)=\left((s+u)^{2}-t\right)^{m}=\left(s^{2}-t+2 s u+u^{2}\right)^{m}=\sum_{0 \leq \nu \leq m}\binom{m}{\nu} u^{2 \nu}\left(s^{2}-t+2 s u\right)^{m-\nu}
$$

we can easily see that

$$
\begin{equation*}
Q_{m, j}(\vec{s})=\left(s_{2}+s_{3}\right)^{m-j} q_{m, j}\left(\frac{\left(s_{1}-s_{2}\right)\left(s_{1}-s_{3}\right)}{\left(s_{2}+s_{3}\right)^{2}}\right) \tag{1.16}
\end{equation*}
$$

Our main result is the following.
Theorem 1.5. Let $Q_{m, j}$ be as above. Then

$$
\begin{equation*}
\Pi_{*} B(\vec{s})=\sum_{0 \leq j \leq m}\left(\partial_{s_{2}}+\partial_{s_{3}}\right)^{j}\left(Q_{m, j}(\vec{s})\left(s_{1}-s_{2}\right)_{+}^{j}\left(s_{1}-s_{3}\right)_{+}^{j}\left(s_{2}+s_{3}-s_{1}\right)_{+}^{-1 / 2}\right) \tag{1.17}
\end{equation*}
$$

It follows in particular from the theorem that $0 \leq s_{2}, s_{3} \leq s_{1}$ in the support of $\Pi_{*} B$. Combining this with (1.12) we obtain the following corollary.

Corollary 1.6. Assume $v, w \in C_{0}^{\infty}$ are rotation invariant. Then $B_{2}(v, w)(x)$ depends only on the restriction of v and w to the ball with radius $|x|$ and center at the origin.

It follows from the corollary that B_{2} extends to a continuous bilinear mapping in the space of rotation invariant functions in $C^{\infty}\left(\mathbb{R}^{n}\right)$. In fact, the continuity results in the paper [1] imply that $B_{2}(v, w)$ is defined when v, w are rotation invariant and locally in L^{2} together with the derivatives of order $\leq m$.

Note that, in the case $n=3$, Theorem 1.5 gives that

$$
\begin{equation*}
\Pi_{*} B(\vec{s})=-\frac{1}{4} H\left(s_{1}-s_{2}\right) H\left(s_{1}-s_{3}\right)\left(s_{2}+s_{3}-s_{1}\right)_{+}^{-1 / 2}, \tag{1.18}
\end{equation*}
$$

where H is Heaviside's function. Thus, when $v, w \in C_{0}^{\infty}\left(\mathbb{R}^{3}\right)$ are rotation invariant we obtain

$$
\begin{aligned}
& B_{2}(v, w)(x) \\
& \quad=-\frac{1}{16 \pi^{2}|x|} \iint_{\substack{\left|x x_{1}\right|,\left|x_{2}\right|<|x| \\
|x|^{2}<\left|x_{1}\right|^{2}+\left|x_{2}\right|^{2}}} \frac{1}{\left|x_{1}\right|\left|x_{2}\right|} \frac{1}{\sqrt{\left|x_{1}\right|^{2}+\left|x_{2}\right|^{2}-|x|^{2}}} v\left(x_{1}\right) w\left(x_{2}\right) \mathrm{d} x_{1} \mathrm{~d} x_{2}
\end{aligned}
$$

We shall frequently make use of spherical averages when proving the main result and include necessary preparations in Sections 2 and 3. The algebraic computations carried out in Section 4 were necessary for us in order to keep track of the cancellations that take place when taking averages of the distribution B over the group $\mathcal{O}(n)^{3}$. The final computation of $\Pi_{*} B$ is taking place in Section 4, in which we first compute $\Pi_{*} B_{\varepsilon}$ for a smooth approximation B_{ε} of B. In the last section we note that $\Pi_{*} B$ satisfies a differential equation which is hyperbolic in \mathbb{R}_{+}^{3}, and finally we give some simple examples.
2. Spherical averages. The elements of the orthogonal group $\mathcal{O}(n)$ are denoted by capital letters Ω and $\mathrm{d} \Omega$ is the normalized Haar measure on $\mathcal{O}(n)$. Then

$$
\begin{equation*}
\int_{\mathcal{O}(n)} h(\Omega x) \mathrm{d} \Omega=c_{n}^{-1} \int_{S^{n-1}} h(|x| \omega) \mathrm{d} \omega, \quad h \in C\left(\mathbb{R}^{n}\right) \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{\mathcal{O}(n)} f(\langle\Omega x, y\rangle) \mathrm{d} \Omega=\frac{c_{n-1}}{c_{n}} \int_{-1}^{1} f(s|x||y|)\left(1-s^{2}\right)^{m} \mathrm{~d} s \tag{2.2}
\end{equation*}
$$

when $f \in C(\mathbb{R}), x, y \in \mathbb{R}^{n}$.
Definition 2.1. When $x, y \in \mathbb{R}^{n} \backslash 0$ we let $\mu_{x, y}$ be the probability measure on the real line defined through

$$
\int f(t) \mathrm{d} \mu_{x, y}(t)=\int_{\mathcal{O}(n)} f(|x+\Omega y|) \mathrm{d} \Omega, \quad f \in C_{0}(\mathbb{R})
$$

In what follows we shall make frequent use of the polynomial

$$
\begin{equation*}
q(t ; a, b)=-t^{2}+2(a+b) t-(a-b)^{2} \tag{2.3}
\end{equation*}
$$

We shall sometimes view q as a polynomial in t with a, b as real parameters. Set

$$
q_{m}(t ; a, b)=q^{m}(t ; a, b), q_{m}^{(\nu)}(t ; a, b)=\partial_{t}^{\nu} q_{m}(t ; a, b)
$$

We notice that

$$
q\left(t^{2} ; a^{2}, b^{2}\right)=\left((a+b)^{2}-t^{2}\right)\left(t^{2}-(a-b)^{2}\right)
$$

has the zeros $\pm(a+b), \pm(a-b)$, and it is nonnegative if and only if $||a|-|b|| \leq$ $|t| \leq|a|+|b|$.

Lemma 2.2. The measure $\mu_{x, y}$ is absolutely continuous with respect to Lebesgue measure. More precisely,

$$
\mathrm{d} \mu_{x, y} / d t=d_{n}(|x||y|)^{2-n} t q_{m}\left(t^{2} ;|x|^{2},|y|^{2}\right) \chi_{x, y}(t),
$$

where $\chi_{x, y}$ is the characteristic function of the interval $[||x|-|y||,|x|+|y|]$.
Proof. Writing $|x+\Omega y|=\left(|x|^{2}+|y|^{2}+2\langle\Omega x, y\rangle\right)^{1 / 2}$ and applying (2.2) we find when $f \in C_{0}(\mathbb{R})$ that

$$
\int f(s) \mathrm{d} \mu_{x, y}(s)=\frac{c_{n-1}}{c_{n}} \int_{-1}^{1} f\left(\left(|x|^{2}+|y|^{2}+2 s|x||y|\right)^{1 / 2}\right)\left(1-s^{2}\right)^{m} \mathrm{~d} s
$$

We take $t=\left(|x|^{2}+|y|^{2}+2 s|x||y|\right)^{1 / 2}$ as a new variable of integration and notice that

$$
\begin{gathered}
s=\frac{t^{2}-|x|^{2}-|y|^{2}}{2|x||y|}, d s=\frac{t d t}{|x||y|}, \\
1-s^{2}=\frac{\left((|x|+|y|)^{2}-t^{2}\right)\left(t^{2}-(|x|-|y|)^{2}\right)}{4|x|^{2}|y|^{2}}=\frac{q\left(t^{2} ;|x|^{2},|y|^{2}\right)}{4|x|^{2}|y|^{2}} .
\end{gathered}
$$

The lemma then follows since the condition $-1 \leq s \leq 1$ is equivalent to $\chi_{x, y}(t)=$ 1.

Define

$$
\begin{equation*}
L_{m}(a, u ; g)=u^{-2 m} \int_{(a-u)^{2}}^{(a+u)^{2}} g(t) q_{m}\left(t ; a^{2}, u^{2}\right) \mathrm{d} t \tag{2.4}
\end{equation*}
$$

when $(a, u) \in \mathbb{R}^{2}$ and $g \in C^{\infty}(\mathbb{R})$. Then

$$
\begin{gathered}
L_{m}(a, u ; g)=u^{-2 m} \int_{(a-u)^{2}}^{(a+u)^{2}} g(t)\left(\left((a+u)^{2}-t\right)\left(t-(a-u)^{2}\right)\right)^{m} \mathrm{~d} t \\
=(4 a)^{2 m+1} u \int_{0}^{1} g\left(4 a u t+(a-u)^{2}\right)(1-t)^{m} t^{m} \mathrm{~d} t \\
=(2 a)^{2 m+1} u \int_{-1}^{1} g\left(2 a u t+a^{2}+u^{2}\right)\left(1-t^{2}\right)^{m} \mathrm{~d} t
\end{gathered}
$$

This shows that $L_{m}(a, u ; g)$ is smooth in (a, u) and it is odd in each of a and u.

Lemma 2.3. Assume $f \in C^{\infty}(\mathbb{R})$ and $x_{1}, x_{2}, x_{3} \in \mathbb{R}^{n} \backslash 0$. Then

$$
\begin{gathered}
\iiint_{\mathcal{O}(n)^{3}} f\left(\left|\Omega_{1} x_{1}+\Omega_{2} x_{2}+\Omega_{3} x_{3}\right|^{2}\right) \mathrm{d} \Omega_{1} \mathrm{~d} \Omega_{2} \mathrm{~d} \Omega_{3} \\
=\frac{1}{2} d_{n}^{2}\left(\left|x_{1}\right| \cdot\left|x_{2}\right| \cdot\left|x_{3}\right|\right)^{2-n} \int_{\left|\left|x_{2}\right|-\left|x_{3}\right|\right|}^{\left|x_{2}\right|+\left|x_{3}\right|} L_{m}\left(\left|x_{1}\right|, u ; f\right) q_{m}\left(u^{2} ;\left|x_{2}\right|^{2},\left|x_{3}\right|^{2}\right) \mathrm{d} u .
\end{gathered}
$$

Proof. Let I denote the left-hand side above. Obviously

$$
I=\iint f\left(\left|\Omega_{1} x_{1}+\Omega_{2} x_{2}+x_{3}\right|^{2}\right) d \Omega_{1} d \Omega_{2}
$$

We may assume for reasons of continuity that $\left|x_{2}\right| \neq\left|x_{3}\right|$ so that $\Omega_{2} x_{2}+x_{3} \neq 0$ for every Ω_{2}. Applying Lemma 2.2 in the integration with respect to Ω_{1} and recalling the definition of L_{m} above we see that

$$
I=\frac{1}{2} d_{n}\left|x_{1}\right|^{2-n} \int_{\mathcal{O}(n)}\left|\Omega_{2} x_{2}+x_{3}\right|^{-1} L_{m}\left(\left|x_{1}\right|,\left|\Omega_{2} x_{2}+x_{3}\right| ; f\right) \mathrm{d} \Omega_{2}
$$

The lemma then follows by applying Lemma 2.2 once more.
Let \mathcal{R} denote the differential operator $\partial_{u}\left(u^{-1}.\right)$ in \mathbb{R}_{+}. The following theorem will be proved in next section.

Theorem 2.4. Let a be a positive number. Then

$$
\begin{gather*}
L_{m}\left(a, u ; g^{(2 m+1)}\right) \\
=2^{m} m!\sum_{0 \leq k \leq m}(-1)^{k} 2^{k}\binom{m}{k} \mathcal{R}^{m-k}\left(g^{(k)}\left((u+a)^{2}\right)-g^{(k)}\left((u-a)^{2}\right)\right) \tag{2.5}
\end{gather*}
$$

when $u>0$ and $g \in C^{\infty}(\mathbb{R})$.
Theorem 2.5. Assume $f \in C^{\infty}(\mathbb{R})$. Then

$$
\begin{gather*}
\iiint_{\mathcal{O}(n)^{3}} f^{(2 m+1)}\left(\left|\Omega_{1} x_{1}+\Omega_{2} x_{2}+\Omega_{3} x_{3}\right|^{2}\right) d \Omega_{1} d \Omega_{2} d \Omega_{3} \\
=e_{n}\left(r_{1} r_{2} r_{3}\right)^{2-n} \sum_{0 \leq k \leq m}\binom{m}{k} \int_{r_{2}-r_{3}}^{r_{2}+r_{3}}\left(f^{(k)}\left(\left(u+r_{1}\right)^{2}\right)-f^{(k)}\left(\left(u-r_{1}\right)^{2}\right)\right) \tag{2.6}\\
\cdot q_{m}^{(m-k)}\left(u^{2} ; r_{2}^{2}, r_{3}^{2}\right) \mathrm{d} u
\end{gather*}
$$

for every $x_{1}, x_{2}, x_{3} \in \mathbb{R}^{n} \backslash 0$.
Proof. Let $I\left(r_{1}, r_{2}, r_{3}\right)$ be the left-hand side of (2.6). Then Lemma 2.3 together with (2.5) gives

$$
\begin{gather*}
I\left(r_{1}, r_{2}, r_{3}\right)=\frac{1}{2} d_{n}^{2}\left(r_{1} r_{2} r_{3}\right)^{2-n} \int_{\left|r_{2}-r_{3}\right|}^{r_{2}+r_{3}} L_{m}\left(r_{1}, u ; f^{(2 m+1)}\right) q_{m}\left(u^{2} ; r_{2}^{2}, r_{3}^{2}\right) \mathrm{d} u \tag{2.7}\\
=(-2)^{-m} e_{n}\left(r_{1} r_{2} r_{3}\right)^{2-n} \sum_{0 \leq k \leq m}(-1)^{k} 2^{k}\binom{m}{k} J_{k}\left(r_{1}, r_{2}, r_{3}\right)
\end{gather*}
$$

where
(2.8)

$$
J_{k}\left(r_{1}, r_{2}, r_{3}\right)=\int_{\left|r_{2}-r_{3}\right|}^{r_{2}+r_{3}}\left(\mathcal{R}^{m-k}\left(f^{(k)}\left(\left(u+r_{1}\right)^{2}\right)-f^{(k)}\left(\left(u-r_{1}\right)^{2}\right)\right)\right) q_{m}\left(u^{2} ; r_{2}^{2}, r_{3}^{2}\right) \mathrm{d} u
$$

We may assume $r_{2} \neq r_{3}$ for reasons of continuity. Let $\mathcal{R}^{\prime}=-u^{-1} \partial_{u}$ be the transpose of \mathcal{R}. Then $\mathcal{R}^{\prime} \varphi\left(u^{2}\right)=-2 \varphi^{\prime}\left(u^{2}\right)$ when $\varphi \in C^{\infty}(\mathbb{R})$. Hence

$$
\left(\mathcal{R}^{\prime}\right)^{m-k} q_{m}\left(u^{2} ; r_{2}^{2}, r_{3}^{2}\right)=(-2)^{m-k} q_{m}^{(m-k)}\left(u^{2} ; r_{2}^{2}, r_{3}^{2}\right) .
$$

Since $q\left(u^{2} ; r_{2}^{2}, r_{3}^{2}\right)$ vanishes when $u=\left|r_{2}-r_{3}\right|$ or $u=r_{2}+r_{3}$ we may integrate by parts $m-k$ times in (2.8) without getting any contributions from the boundary of the interval of integration. This gives

$$
=(-2)^{m-k} \int_{\left|r_{2}-r_{3}\right|}^{J_{k}\left(r_{1}, r_{2}, r_{3}\right)}\left(f^{(k)}\left(\left(u+r_{1}\right)^{2}\right)-f^{(k)}\left(\left(u-r_{1}\right)^{2}\right)\right) q_{m}^{(m-k)}\left(u^{2} ; r_{2}^{2}, r_{3}^{2}\right) \mathrm{d} u .
$$

Since the integrand in the right hand side is an odd function of u we may instead integrate from $r_{2}-r_{3}$ to $r_{2}+r_{3}$, and the proof is completed by inserting the expression into (2.7).
3. Proof of Theorem 2.4. We notice that it suffices to prove (2.5) when $a=1$. This is a simple consequence of the identity

$$
L_{m}\left(a, u ; g^{(2 m+1)}\right)=a^{-2 m} L_{m}\left(1, u / a ; g_{a}^{(2 m+1)}\right), \quad a, u>0
$$

where $g_{a}(u)=g\left(a^{2} u\right)$, since $\mathcal{R}(h(\cdot / a))(u)=a^{-2}(\mathcal{R} h)(u / a)$ when $h \in C^{\infty}(\mathbb{R})$. Hence we have to establish the identity

$$
\begin{gather*}
L_{m}\left(1, u ; g^{(2 m+1)}\right) \\
=2^{m} m!\sum_{0 \leq k \leq m}(-1)^{k} 2^{k}\binom{m}{k} \mathcal{R}^{m-k}\left(g^{(k)}\left((u+1)^{2}\right)-g^{(k)}\left((u-1)^{2}\right)\right) . \tag{3.1}
\end{gather*}
$$

We shall need some preparations before we can prove this theorem.
Lemma 3.1. We have the identity

$$
\begin{gather*}
u^{2 m} L_{m}\left(1, u ; g^{(2 m+1)}\right)= \\
\sum_{0 \leq j \leq m}(-1)^{m-j}(4 u)^{j}\binom{m}{j}(2 m-j)!\left(g^{(j)}\left((u+1)^{2}\right)+(-1)^{j+1} g^{(j)}\left((u-1)^{2}\right)\right) \tag{3.2}
\end{gather*}
$$

when $u>0$.
Proof. Set $\alpha=(u-1)^{2}, \beta=(u+1)^{2}$. Then $0 \leq \alpha \leq \beta$, and a simple computation shows that

$$
\begin{align*}
& u^{2 m} L_{m}\left(1, u ; g^{(2 m+1)}\right)=\int_{\alpha}^{\beta} g^{(2 m+1)}(t)((\beta-t)(t-\alpha))^{m} \mathrm{~d} t \\
& =\int_{-1}^{1} h^{(2 m+1)}(t)\left(1-t^{2}\right)^{m} \mathrm{~d} t=(-1)^{m} \int_{-1}^{1} h^{(m+1)}(t) q_{m}^{(m)}(t) \mathrm{d} t \tag{3.3}
\end{align*}
$$

where $h(t)=g((\beta-\alpha) t / 2+(\alpha+\beta) / 2)$ and $q_{m}(t)=\left(1-t^{2}\right)^{m}$. Repeated integrations by parts in the right-hand side of (3.3) yield the expression

$$
\begin{align*}
& \sum_{0 \leq j \leq m}(-1)^{j}\left(h^{(j)}(1) q_{m}^{(2 m-j)}(1)-h^{(j)}(-1) q_{m}^{(2 m-j)}(-1)\right) \tag{3.4}\\
= & \sum_{0 \leq j \leq m}(-1)^{j} q_{m}^{(2 m-j)}(1)\left(h^{(j)}(1)+(-1)^{j+1} h^{(j)}(-1)\right)
\end{align*}
$$

We notice that

$$
h^{(j)}(1)=(2 u)^{j} g^{(j)}(\beta), \quad h^{(j)}(-1)=(2 u)^{j} g^{(j)}(\alpha)
$$

and writing $q_{m}(1+2 u)=(-4)^{m} u^{m}(1+u)^{m}$ we see that

$$
q_{m}^{(2 m-j)}(1)=(-1)^{m} 2^{j}\binom{m}{j}(2 m-j)!
$$

The lemma then follows by inserting the expressions for $h^{(j)}(\pm 1)$ and $q_{m}^{(2 m-j)}(1)$ in (3.4).

Next we define some auxiliary functions in \mathbb{R}_{+}:

$$
\begin{equation*}
A_{j, k}(g)(u)=2^{j}(k-1)!u^{-k}\left(g^{(j)}\left((u+1)^{2}\right)+(-1)^{j+1} g^{(j)}\left((u-1)^{2}\right)\right), \quad k \geq 1 \tag{3.5}
\end{equation*}
$$

$$
\begin{equation*}
A_{j, 0}(g)(u)=2^{j}\left(g^{(j)}\left((u+1)^{2}\right)+(-1)^{j+1} g^{(j)}\left((u-1)^{2}\right)\right)=u A_{j, 1}(g)(u) \tag{3.6}
\end{equation*}
$$

We see that

$$
\begin{equation*}
u A_{j, k+1}(g)(u)=k A_{j, k}(g)(u) \tag{3.7}
\end{equation*}
$$

when $k \geq 1$.
It follows by direct computation when $k \geq 2$ that

$$
\begin{equation*}
A_{j, k}(g)=-\partial_{u} A_{j, k-1}(g)+2 u A_{j, k-1}\left(g^{\prime}\right)+A_{j+1, k-1}(g) \tag{3.8}
\end{equation*}
$$

Hence, when $k \geq 3$, a combination of (3.7) and (3.8) gives

$$
\begin{equation*}
A_{j, k}(g)=-(k-2) \mathcal{R} A_{j, k-2}(g)+2(k-2) A_{j, k-2}\left(g^{\prime}\right)+A_{j+1, k-1}(g) \tag{3.9}
\end{equation*}
$$

and recalling (3.6) we get

$$
\begin{equation*}
A_{j, 2}(g)=-\mathcal{R} A_{j, 0}(g)+2 A_{j, 0}\left(g^{\prime}\right)+A_{j+1,1}(g) \tag{3.10}
\end{equation*}
$$

We introduce also the function

$$
\begin{equation*}
\kappa_{m, N}(g)(u)=\sum_{0 \leq j \leq N}(-1)^{m-j} 2^{j}\binom{m}{j}(2 m-j) A_{j, 2 m-j}(g)(u), \quad u \in \mathbb{R}_{+} \tag{3.11}
\end{equation*}
$$

when $m>0$ and $0 \leq N \leq m$. When $m=0$ we set

$$
\begin{equation*}
\kappa_{0,0}(g)(u)=g\left((u+1)^{2}\right)-g\left((u-1)^{2}\right) \tag{3.12}
\end{equation*}
$$

With this notation Lemma 3.1 reads

$$
\begin{equation*}
L_{m}\left(1, u ; g^{(2 m+1)}\right)=\kappa_{m, m}(g)(u) \tag{3.13}
\end{equation*}
$$

We are going to compute the $\kappa_{m, N}(g)$ by induction over N.
Define

$$
c_{m, N}=(-1)^{m-N} 2^{N+1}(m-N)\binom{m}{N}
$$

when $0 \leq N \leq m$. We notice that

$$
\begin{equation*}
c_{m, m}=0, \quad c_{m, 0}=(-1)^{m} 2 m . \tag{3.14}
\end{equation*}
$$

Lemma 3.2. The identity

$$
\begin{equation*}
c_{m, N}=\sum_{0 \leq k \leq N}(-1)^{m-k} 2^{k}\binom{m}{k}(2 m-k) \tag{3.15}
\end{equation*}
$$

holds when $0 \leq N<m$.
Proof. Let $c_{m, N}^{\prime}$ denote the right-hand side of (3.15). A straightforward computation shows that $c_{m, N+1}-c_{m, N}=c_{m, N+1}^{\prime}-c_{m, N}^{\prime}$ when $N<m$. The lemma therefore follows since $c_{m, 0}=c_{m, 0}^{\prime}$.

Lemma 3.3. The identity

$$
\begin{equation*}
\kappa_{m, N}(g)=2 m \mathcal{R} \kappa_{m-1, N}(g)-4 m \kappa_{m-1, N}\left(g^{\prime}\right)+c_{m, N} A_{N+1,2 m-N-1}(g) \tag{3.16}
\end{equation*}
$$

holds when $0 \leq N<m$.
Proof. We first see that (3.10) implies that (3.16) holds when $m=1$ and $N=0$. We may therefore assume that $m \geq 2$.

Assume first that $N=0$. Then (3.9) gives

$$
\begin{gathered}
\kappa_{m, N}(g)=\kappa_{m, 0}(g)=(-1)^{m} 2 m A_{0,2 m}(g) \\
=(-1)^{m-1} 2 m(2 m-2) \mathcal{R} A_{0,2 m-2}(g)+(-1)^{m} 4 m(2 m-2) A_{0,2 m-2}\left(g^{\prime}\right) \\
+(-1)^{m} 2 m A_{1,2 m-1}(g) \\
=2 m \mathcal{R} \kappa_{m-1,0}(g)-4 m \kappa_{m-1,0}\left(g^{\prime}\right)+c_{m, 0} A_{1,2 m-1}(g)
\end{gathered}
$$

This shows that (3.16) holds when $N=0$. Assume now that it holds for some N where $N<m-1$. In this case $2 m-N-1>m \geq 2$. From the induction hypothesis and (3.15) we get that

$$
\begin{gather*}
\kappa_{m, N+1}(g)=\kappa_{m, N}(g) \tag{3.17}\\
+(-1)^{m-N-1} 2^{N+1}\binom{m}{N+1}(2 m-N-1) A_{N+1,2 m-N-1}(g) \\
=2 m \mathcal{R} \kappa_{m-1, N}(g)-4 m \kappa_{m-1, N}\left(g^{\prime}\right) \\
+\left(c_{m, N}+(-1)^{m-N-1} 2^{N+1}\binom{m}{N+1}(2 m-N-1)\right) A_{N+1,2 m-N-1}(g) \\
=2 m \mathcal{R} \kappa_{m-1, N}(g)-4 m \kappa_{m-1, N}\left(g^{\prime}\right)+c_{m, N+1} A_{N+1,2 m-N-1}(g) .
\end{gather*}
$$

From (3.9) we see that

$$
\begin{align*}
& A_{N+1,2 m-N-1}(g)=-(2 m-N-3) \mathcal{R} A_{N+1,2 m-N-3}(g) \\
& +2(2 m-N-3) A_{N+1,2 m-N-3}\left(g^{\prime}\right)+A_{N+2,2 m-N-2}(g) \tag{3.18}
\end{align*}
$$

Since

$$
-c_{m, N+1}(2 m-N-3)=2 m(-1)^{m-1-(N+1)} 2^{N+1}\binom{m-1}{N+1}(2 m-N-3)
$$

it follows that

$$
2 m \kappa_{m-1, N+1}(h)=2 m \kappa_{m-1, N}(h)-(2 m-N-3) c_{m, N+1} A_{N+1,2 m-N-3}(h)
$$

when $h=g$ or $h=g^{\prime}$. Then (3.17) and (3.18) yield

$$
\begin{gathered}
\kappa_{m, N+1}(g)=\mathcal{R}\left(2 m \kappa_{m-1, N}(g)-(2 m-N-3) c_{m, N+1} A_{N+1,2 m-N-3}(g)\right) \\
-2\left(2 m \kappa_{m-1, N}\left(g^{\prime}\right)-(2 m-N-3) c_{m, N+1} A_{N+1,2 m-N-3}\left(g^{\prime}\right)\right) \\
+c_{m, N+1} A_{N+2,2 m-N-2}(g) \\
=2 m \mathcal{R} \kappa_{m-1, N+1}(g)-4 m \kappa_{m-1, N+1}\left(g^{\prime}\right)+c_{m, N+1} A_{N+2,2 m-N-2}(g)
\end{gathered}
$$

We have therefore proved that (3.16) is true also with N replaced by $N+1$. This completes the proof.

Lemma 3.4. We have

$$
\begin{equation*}
\kappa_{m, m}(g)=2 m \mathcal{R} \kappa_{m-1, m-1}(g)-4 m \kappa_{m-1, m-1}\left(g^{\prime}\right) \tag{3.19}
\end{equation*}
$$

when $m>0$.
Proof. It follows from the previous lemma when $N=m-1$ and the fact that

$$
\kappa_{m, m}(g)=\kappa_{m, m-1}(g)+m 2^{m} A_{m, m}(g)
$$

that

$$
\begin{gathered}
\kappa_{m, m}(g)=2 m \mathcal{R} \kappa_{m-1, m-1}(g) \\
-4 m \kappa_{m-1, m-1}\left(g^{\prime}\right)+\left(c_{m, m-1}+m 2^{m}\right) A_{m, m}(g)
\end{gathered}
$$

Since $c_{m, m-1}+m 2^{m}=0$, this finishes the proof.
Proof of the Theorem 2.4. We have to prove (3.1). Since this identity is obvious when $m=0$ we may assume $m \geq 1$. Recalling (3.12) and (3.13) we see that (3.1) is equivalent to

$$
\begin{equation*}
\kappa_{m, m}(g)=2^{m} m!\sum_{0 \leq k \leq m}(-1)^{k} 2^{k}\binom{m}{k} \mathcal{R}^{m-k} \kappa_{0,0}\left(g^{(k)}\right) \tag{3.20}
\end{equation*}
$$

We make induction over m. When $m=1$ then (3.20) is equivalent to (3.19). Assume now that $m>1$ and that (3.20) is proved for lower values of m. We use first (3.19) and then the induction hypothesis to write

$$
\begin{gathered}
\kappa_{m, m}(g)=2 m 2^{m-1}(m-1)!\sum_{0 \leq k \leq m-1}(-1)^{k} 2^{k}\binom{m-1}{k} \mathcal{R}^{m-k} \kappa_{0,0}\left(g^{(k)}\right) \\
-4 m 2^{m-1}(m-1)!\sum_{0 \leq k \leq m-1}(-1)^{k} 2^{k}\binom{m-1}{k} \mathcal{R}^{m-1-k} \kappa_{0,0}\left(g^{(k+1)}\right) \\
=2^{m} m!\mathcal{R}^{m} \kappa_{0,0}(g) \\
+2^{m} m!\sum_{1 \leq k \leq m-1}(-1)^{k} 2^{k}\left(\binom{m-1}{k}+\binom{m-1}{k-1}\right) \mathcal{R}^{m-k} \kappa_{0,0}\left(g^{(k)}\right) \\
+(-1)^{m} 2^{2 m} m!\kappa_{0,0}\left(g^{(m)}\right)
\end{gathered}
$$

The lemma follows since $\binom{m-1}{k}+\binom{m-1}{k-1}=\binom{m}{k}$.
4. Computation of $\Pi_{*} B$. We prepare the computation of $\Pi_{*} B$ by some useful observations.

Lemma 4.1. The distribution $\Pi_{*} B\left(s_{1}, s_{2}, s_{3}\right)$ is supported in the set where $s_{j} \geq 0$ and $s_{1} \leq s_{2}+s_{3}$. It is positively homogeneous of degree $(n-4) / 2$ and symmetric in $\left(s_{2}, s_{3}\right)$.

Proof. We have already seen that $s_{j} \geq 0$ in the support of $\Pi_{*} B$. Write

$$
X=\left(x_{1}, x_{2}, x_{3}\right), S(X)=x_{2}^{2}+x_{3}^{2}-x_{1}^{2}
$$

Then

$$
\begin{equation*}
\left\langle x_{2}-x_{1}, x_{3}-x_{1}\right\rangle=\left|x_{1}-x_{2}-x_{3}\right|^{2} / 2-S(X) / 2 \tag{4.1}
\end{equation*}
$$

Since $\left\langle x_{2}-x_{1}, x_{3}-x_{1}\right\rangle=0$ in the support of B it follows that $S(X) \geq 0$ in the support of B, and this implies that $s_{2}+s_{3} \geq s_{1}$ in the support of $\Pi_{*} B$. The second assertion follows from the fact that B_{2} is homogeneous of degree $2-2 n$, and the last assertion is a consequence of the symmetry of $B_{2}\left(x_{1}, x_{2}, x_{3}\right)$ in the variables x_{2}, x_{3}.

We shall consider smooth approximations of B and choose some function $\chi \in$ $C^{\infty}(\mathbb{R})$ which is increasing and such that $\chi(t)=0$ when $t<0$ while $\chi(t)=1$ when $t>1$. Define

$$
\chi_{\varepsilon}(t)=\chi(t / \varepsilon)
$$

when $0<\varepsilon<1$. This function converges in $\mathcal{D}^{\prime}(\mathbb{R})$ to the Heaviside function when $\varepsilon \rightarrow 0$. We define

$$
\begin{equation*}
B_{\varepsilon}\left(x_{1}, x_{2}, x_{3}\right)=2^{n-1} C_{n} \chi_{\varepsilon}^{(n-1)}\left(\left|x_{1}-x_{2}-x_{3}\right|^{2}-S(X)\right) \tag{4.2}
\end{equation*}
$$

This will serve to find a useful approximation of $\Pi_{*} B$, as shown in the next lemma.
Lemma 4.2. The distribution $\Pi_{*} B_{\varepsilon}$ converges in the distribution sense to $\Pi_{*} B$ as $\varepsilon \rightarrow 0$.

Proof. We notice that

$$
\beta(x, y)=\left\langle x, \partial_{y}\right\rangle^{n-1}|x|^{2-2 n} Y_{+}(\langle x, y\rangle)
$$

when $x \neq 0$. It follows that

$$
\beta(x, y)=(n-1)!\sum_{|\alpha|=n-1} \partial_{y}^{\alpha} x^{\alpha}|x|^{2-2 n} Y_{+}(\langle x, y\rangle) / \alpha!
$$

in $\mathbb{R}^{n} \times \mathbb{R}^{n}$ since both sides are homogeneous in x of degree $>-n$. If $\beta_{\varepsilon}(x, y)=$ $2^{n-1} \chi_{\varepsilon}^{(n-1)}(2\langle x, y\rangle)$ we also have

$$
\beta_{\varepsilon}(x, y)=(n-1)!\sum_{|\alpha|=n-1} \partial_{y}^{\alpha} x^{\alpha}|x|^{2-2 n} \chi_{\varepsilon}(2\langle x, y\rangle) / \alpha!
$$

Hence β_{ε} converges to β in $\mathcal{D}^{\prime}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right)$ as $\varepsilon \rightarrow 0$. Since, by (4.1),

$$
B_{\varepsilon}\left(x_{1}, x_{2}, x_{3}\right)=C_{n} \beta_{\varepsilon}\left(x_{2}-x_{1}, x_{3}-x_{1}\right)
$$

it follows that B_{ε} converges to B in \mathcal{D}^{\prime} as $\varepsilon \rightarrow 0$, and hence $\Pi_{*} B_{\varepsilon}$ converges to $\Pi_{*} B$.

In order to derive a formula for $\Pi_{*} B_{\varepsilon}$ we need to introduce some more notation. Define

$$
\begin{align*}
\mathcal{W} & =-\left(\partial_{s_{2}}+\partial_{s_{3}}\right) / 2 \tag{4.3}\\
r_{m, j}\left(u ; s_{2}, s_{3}\right) & =\left(\partial_{u}-\mathcal{W}\right)^{m-j} q_{m}\left(u ; s_{2}, s_{3}\right) \tag{4.4}
\end{align*}
$$

Also set

$$
\begin{equation*}
U_{\varepsilon}(u ; \vec{s})=\chi_{\varepsilon}^{\prime}\left(\left(u+\sqrt{s_{1}}\right)^{2}+s_{1}-s_{2}-s_{3}\right)-\chi_{\varepsilon}^{\prime}\left(\left(u-\sqrt{s_{1}}\right)^{2}+s_{1}-s_{2}-s_{3}\right) \tag{4.5}
\end{equation*}
$$

The characteristic function of the interval $\left(\sqrt{s_{2}}-\sqrt{s_{3}}, \sqrt{s_{2}}+\sqrt{s_{3}}\right)$, when s_{2} and s_{3} are nonnegative, is denoted by $\theta\left(t ; s_{2}, s_{3}\right)$.

Lemma 4.3. We have

$$
\begin{equation*}
\Pi_{*} B_{\varepsilon}(\vec{s})=\frac{2^{1-n}}{m!} \sum_{0 \leq j \leq m}\binom{m}{j} \mathcal{W}^{j} \int \theta\left(u ; s_{2}, s_{3}\right) U_{\varepsilon}(u ; \vec{s}) r_{m, j}\left(u^{2} ; s_{2}, s_{3}\right) \mathrm{d} u \tag{4.6}
\end{equation*}
$$

in \mathbb{R}_{+}^{3}.
Proof. Define

$$
\begin{equation*}
\widetilde{B}_{\varepsilon}\left(x_{1}, x_{2}, x_{3}\right)=\iint_{\mathcal{O}(n)^{3}} B_{\varepsilon}\left(\Omega_{1} x_{1}, \Omega_{2} x_{2}, \Omega_{3} x_{3}\right) \mathrm{d} \Omega_{1} \mathrm{~d} \Omega_{2} \mathrm{~d} \Omega_{3} \tag{4.7}
\end{equation*}
$$

Then
$\widetilde{B}_{\varepsilon}\left(x_{1}, x_{2}, x_{3}\right)=2^{n-1} C_{n} \iint_{\mathcal{O}(n)^{3}} \chi_{\varepsilon}^{(n-1)}\left(\left|\Omega_{1} x_{1}+\Omega_{2} x_{2}+\Omega_{3} x_{3}\right|^{2}-S(X)\right) \mathrm{d} \Omega_{1} \mathrm{~d} \Omega_{2} \mathrm{~d} \Omega_{3}$.
Theorem 2.5 with $f(t)=\chi_{\varepsilon}^{\prime}(t-S(X))$ yields

$$
\begin{gather*}
\widetilde{B}_{\varepsilon}\left(x_{1}, x_{2}, x_{3}\right)=2^{n-1} C_{n} e_{n}\left(r_{1} r_{2} r_{3}\right)^{2-n} \tag{4.8}\\
\sum_{0 \leq k \leq m}\binom{m}{k} \int_{r_{2}-r_{3}}^{r_{2}+r_{3}}\left(\chi_{\varepsilon}^{(k+1)}\left(\left(u+r_{1}\right)^{2}-S(X)\right)-\chi_{\varepsilon}^{(k+1)}\left(\left(u-r_{1}\right)^{2}-S(X)\right)\right) \\
\cdot q_{m}^{(m-k)}\left(u^{2}, r_{2}^{2}, r_{3}^{2}\right) \mathrm{d} u
\end{gather*}
$$

A simple computation shows that

$$
\begin{equation*}
\Pi_{*} \Phi\left(s_{1}, s_{2}, s_{3}\right)=\left(c_{n} / 2\right)^{3}\left(s_{1}\right)_{+}^{m+1 / 2}\left(s_{2}\right)_{+}^{m+1 / 2}\left(s_{3}\right)_{+}^{m+1 / 2} \varphi\left(\sqrt{s_{1}}, \sqrt{s_{2}}, \sqrt{s_{3}}\right) \tag{4.9}
\end{equation*}
$$

when $\Phi\left(x_{1}, x_{2}, x_{3}\right)=\varphi\left(\left|x_{1}\right|,\left|x_{2}\right|,\left|x_{3}\right|\right)$ and φ is a continuous function in \mathbb{R}^{3}. Since $\Pi_{*} B_{\varepsilon}=\Pi_{*} \widetilde{B}_{\varepsilon}$ it follows from (4.8) that

$$
\begin{align*}
\Pi_{*} B_{\varepsilon}(\vec{s}) & =2^{n-1} C_{n} e_{n}\left(c_{n} / 2\right)^{3} \sum_{0 \leq k \leq m}\binom{m}{k} A_{k, \varepsilon}(\vec{s}) \tag{4.10}\\
& =\frac{1}{2^{n-1} m!} \sum_{0 \leq k \leq m}\binom{m}{k} A_{k, \varepsilon}(\vec{s})
\end{align*}
$$

in \mathbb{R}_{+}^{3}, where

$$
\begin{aligned}
A_{k, \varepsilon}(\vec{s})= & \int_{\sqrt{s_{2}}-\sqrt{s_{3}}}^{\sqrt{s_{2}}+\sqrt{s_{3}}}\left(\chi_{\varepsilon}^{(k+1)}\left(\left(u+\sqrt{s_{1}}\right)^{2}-\tilde{S}(\vec{s})\right)-\chi_{\varepsilon}^{(k+1)}\left(\left(u-\sqrt{s_{1}}\right)^{2}-\tilde{S}(\vec{s})\right)\right) . \\
& \quad \cdot q_{m}^{(m-k)}\left(u^{2} ; s_{2}, s_{3}\right) d u .
\end{aligned}
$$

and $\tilde{S}(\vec{s})=s_{3}+s_{2}-s_{1}$. We write

$$
A_{k, \varepsilon}(\vec{s})=\int\left(\mathcal{W}^{k} U_{\varepsilon}(u ; \vec{s})\right)\left(\theta\left(u ; s_{2}, s_{3}\right) q_{m}^{(m-k)}\left(u^{2} ; s_{2}, s_{3}\right)\right) \mathrm{d} u
$$

Since $q_{m}^{(m-k)}\left(u^{2} ; s_{2}, s_{3}\right)$ vanishes to the order k when $u=\sqrt{s_{2}} \pm \sqrt{s_{3}}$ it follows after an application of Taylor's formula that

$$
\begin{equation*}
A_{k, \varepsilon}(\vec{s})=\sum_{j \leq k}(-1)^{k-j}\binom{k}{j} \mathcal{W}^{j} \int \theta\left(u ; s_{2}, s_{3}\right) U_{\varepsilon}(u ; \vec{s}) \mathcal{W}^{k-j} q_{m}^{(m-k)}\left(u^{2} ; s_{2}, s_{3}\right) \mathrm{d} u \tag{4.11}
\end{equation*}
$$

when the s_{j} are positive. Inserting this into the right hand side of (4.10) and taking $\nu=k-j$ as a new variable of summation instead of k we get

$$
\begin{aligned}
\Pi_{*} B_{\varepsilon}(\vec{s}) & =\frac{2^{1-n}}{m!} \sum_{0 \leq j \leq m}\binom{m}{j} \mathcal{W}^{j} \int \theta\left(u ; s_{2}, s_{3}\right) U_{\varepsilon}(u ; \vec{s}) \\
& \cdot\left(\sum_{\nu \leq m-j}\binom{m-j}{\nu}(-1)^{\nu} \mathcal{W}^{\nu} q_{m}^{(m-j-\nu)}\left(u^{2} ; s_{2}, s_{3}\right)\right) \mathrm{d} u \\
= & \frac{2^{1-n}}{m!} \sum_{0 \leq j \leq m}\binom{m}{j} \mathcal{W}^{j} \int \theta\left(u ; s_{2}, s_{3}\right) U_{\varepsilon}(u ; \vec{s}) r_{m, j}\left(u^{2} ; s_{2}, s_{3}\right) \mathrm{d} u
\end{aligned}
$$

We consider now the functions

$$
P_{m, j, \varepsilon}(\vec{s})=\left\{\begin{array}{l}
\int \theta\left(u ; s_{2}, s_{3}\right) U_{\varepsilon}(u ; \vec{s}) r_{m, j}\left(u^{2} ; s_{2}, s_{3}\right) \mathrm{d} u \quad \text { when } s_{1}, s_{2}, s_{3} \geq 0 \tag{4.12}\\
0 \quad \text { when some } s_{j} \text { is negative. }
\end{array}\right.
$$

Lemma 4.4. There is $\Pi_{m, j, \varepsilon} \in C^{\infty}\left(\mathbb{R}^{3}\right)$ such that

$$
P_{m, j, \varepsilon}(\vec{s})=\left(s_{1}\right)_{+}^{1 / 2}\left(s_{2}\right)_{+}^{1 / 2}\left(s_{3}\right)_{+}^{1 / 2}\left(s_{2} s_{3}\right)^{j} \Pi_{m, j, \varepsilon}(\vec{s})
$$

in \mathbb{R}^{3}.
Proof. We consider $P_{m, j, \varepsilon}(\vec{s})$ when the s_{j} are nonnegative and notice that

$$
U_{\varepsilon}(u ; \vec{s})=2 \sqrt{s_{1}} u V_{\varepsilon}\left(u^{2}, \vec{s}\right),
$$

where $V_{\varepsilon} \in C^{\infty}\left(\mathbb{R}^{4}\right)$. Hence

$$
U_{\varepsilon}(u ; \vec{s}) r_{m, j}\left(u^{2} ; s_{2}, s_{3}\right)=2 \sqrt{s_{1}} u W_{m, j, \varepsilon}\left(u^{2}, \vec{s}\right)
$$

where $W_{m, j, \varepsilon} \in C^{\infty}\left(\mathbb{R}^{4}\right)$. It follows that

$$
\begin{gather*}
P_{m, j, \varepsilon}(\vec{s})=2 \sqrt{s_{1}} \int_{\sqrt{s_{2}}-\sqrt{s_{3}}}^{\sqrt{s_{2}}+\sqrt{s_{3}}} u W_{m, j, \varepsilon}\left(u^{2}, \vec{s}\right) \mathrm{d} u \tag{4.13}\\
=\sqrt{s_{1}} \int_{\left(\sqrt{s_{2}}-\sqrt{s_{3}}\right)^{2}}^{\left(\sqrt{s_{2}}+\sqrt{s_{3}}\right)^{2}} W_{m, j, \varepsilon}(u, \vec{s}) \mathrm{d} u=\sqrt{s_{1}} \int_{-2 \sqrt{s_{2} s_{3}}}^{2 \sqrt{s_{2} s_{3}}} W_{m, j, \varepsilon}\left(u+s_{1}+s_{2}, \vec{s}\right) \mathrm{d} u .
\end{gather*}
$$

We notice that since

$$
r_{m, j}(u ; \vec{s})=\left(\partial_{u}-\mathcal{W}\right)^{m-j} q_{m}\left(u ; s_{2}, s_{3}\right)
$$

it follows that $r_{m, j}\left(u+s_{2}+s_{3} ; \vec{s}\right)$ is divisible by

$$
q^{j}\left(u+s_{2}+s_{3} ; s_{2}, s_{3}\right)=\left(4 s_{2} s_{3}-u^{2}\right)^{j}
$$

in the ring of polynomials in (u, \vec{s}). This in turn implies that $W_{m, j, \varepsilon}\left(u+s_{2}+s_{3}, \vec{s}\right)$ is divisible by $\left(4 s_{2} s_{3}-u^{2}\right)^{j}$ in the ring $C^{\infty}\left(\mathbb{R}^{4}\right)$. Hence $W_{m, j, \varepsilon}\left(u+s_{2}+s_{3}, \vec{s}\right)$ is a finite linear combination of $\phi_{\alpha, \beta}(u, \vec{s})\left(s_{2} s_{3}\right)^{\alpha} u^{\beta}$ where $\phi_{\alpha, \beta} \in C^{\infty}\left(\mathbb{R}^{4}\right)$ and $\alpha+\beta / 2 \geq j$. The assertion of the lemma follows if this observation is combined with (4.13).

The following corollary is immediate from the previous lemma and Lemma 4.3.
Corollary 4.5. Let the $P_{m, j, \varepsilon}$ be as in (4.12) Then

$$
\begin{equation*}
\Pi_{*} B_{\varepsilon}(\vec{s})=\frac{2^{1-n}}{m!} \sum_{0 \leq j \leq m}\binom{m}{j} \mathcal{W}^{j} P_{m, j, \varepsilon}(\vec{s}) \tag{4.14}
\end{equation*}
$$

in \mathbb{R}^{3}.
Proof. It follows from Lemma 4.4 that the right-hand side of (4.14) is a continuous function of \vec{s}. Since this is also true for the left-hand side in view of (4.9), and since by Lemma 4.3 equality holds when the s_{j} are positive, it follows that equality holds everywhere.

We shall finish our computation of $\Pi_{*} B$ by showing that $P_{m, j, \varepsilon}$ converges in $L_{\text {loc }}^{1}\left(\mathbb{R}^{3}\right)$ when $\varepsilon \rightarrow 0$.
Lemma 4.6. Let K be a compact set in \mathbb{R}^{3}. Then there is a constant C_{K} such that

$$
\left|P_{m, j, \varepsilon}(\vec{s})\right| \leq C_{K}\left|s_{2}+s_{3}-s_{1}\right|^{-1 / 2} \quad \text { when } \vec{s} \in K, 0<\varepsilon<1
$$

Proof. Assume $0 \leq g \in C_{0}(\mathbb{R})$ and that $a, b \in \mathbb{R}$. Define

$$
I(a, b ; g)=|b|^{1 / 2} \int_{-\infty}^{\infty} g\left((u+a)^{2}+b\right) \mathrm{d} u
$$

We claim that

$$
\begin{equation*}
I(a, b ; g) \leq 8\left(\|g\|_{L^{1}}+\max _{t}|t g(t)|\right) \tag{4.15}
\end{equation*}
$$

When proving (4.15) we notice that

$$
I(a, b ; g)=I(0, b ; g)=I\left(0, \operatorname{sgn}(b) ; g_{b}\right)
$$

where $g_{b}(u)=|b| g(|b| u)$, and the right-hand side of (4.15) is invariant under the transformation $g \mapsto g_{b}$ when $b \neq 0$. We may assume therefore that $|b|=1$. Then

$$
I(0, b ; g) \leq \int_{-\infty}^{\infty} g(u+b)|u|^{-1 / 2} \mathrm{~d} u=\int_{-\infty}^{\infty} g(u)|u-b|^{-1 / 2} \mathrm{~d} u
$$

The estimate (4.15) follows since

$$
\int_{|u-b|>1 / 2} g(u)|u-b|^{-1 / 2} \mathrm{~d} u \leq \sqrt{2}\|g\|_{L^{1}}
$$

and

$$
\int_{|u-b|<1 / 2} g(u)|u-b|^{-1 / 2} \mathrm{~d} u \leq 2 \max |t g(t)| \int_{-1 / 2}^{1 / 2}|u|^{-1 / 2} \mathrm{~d} u=4 \sqrt{2} \max |t g(t)| .
$$

We notice next that there is a constant $C=C(n, K)$ such that

$$
\left|P_{m, j, \varepsilon}(\vec{s})\right| \leq C \int\left|U_{\varepsilon}(u ; \vec{s})\right| \mathrm{d} u
$$

when $0<\varepsilon<1$ and $\vec{s} \in K$. The lemma then follows by combining (4.15) with the observations that
$\left|s_{1}-s_{2}-s_{3}\right|^{1 / 2} \int\left|U_{\varepsilon}(u ; \vec{s})\right| \mathrm{d} u \leq I\left(\sqrt{s_{1}}, s_{1}-s_{2}-s_{3} ; \chi_{\varepsilon}^{\prime}\right)+I\left(-\sqrt{s_{1}}, s_{1}-s_{2}-s_{3} ; \chi_{\varepsilon}^{\prime}\right)$ and $\left\|\chi_{\varepsilon}^{\prime}\right\|_{L_{1}}, \max _{t}\left|t \chi_{\varepsilon}^{\prime}(t)\right|$ are independent of ε.

Combining the previous lemma with the dominated convergence theorem of Lebesgue, and recalling Lemma 4.2 and Corollary 4.5 we have proved that if $P_{m, j, \varepsilon}(\vec{s})$ converges almost everywhere to some function $P_{m, j}(\vec{s})$, then $P_{m, j, \varepsilon}(\vec{s})$ converges to $P_{m, j}(\vec{s})$ in $L_{\mathrm{loc}}^{1}\left(\mathbb{R}^{3}\right)$ and

$$
\begin{equation*}
\Pi_{*} B(\vec{s})=\frac{2^{1-n}}{m!} \sum_{0 \leq j \leq m}\binom{m}{j} \mathcal{W}^{j} P_{m, j}(\vec{s}) . \tag{4.16}
\end{equation*}
$$

We recall that the polynomials $\psi_{m, j}$ have been introduced in (1.14).
Lemma 4.7. Define

$$
\begin{equation*}
\Psi_{m, j}(\vec{s})=\psi_{m, j}\left(s_{2}+s_{3},\left(s_{2}-s_{3}\right)^{2}-4 s_{1}\left(s_{1}-s_{2}-s_{3}\right)\right) \tag{4.17}
\end{equation*}
$$

Then

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} P_{m, j, \varepsilon}(\vec{s})=-4^{j} \Psi_{m, j}(\vec{s})\left(s_{1}-s_{2}\right)_{+}^{j}\left(s_{1}-s_{3}\right)_{+}^{j}\left(s_{2}+s_{3}-s_{1}\right)_{+}^{-1 / 2} \tag{4.18}
\end{equation*}
$$

for almost every $\vec{s} \in \mathbb{R}^{3}$.
Proof. Since both sides of (4.18) are equal to 0 when $s_{j}<0$ for some j it suffices to show that (4.18) holds for almost every $\vec{s} \in \mathbb{R}_{+}^{3}$. Assume now that the s_{j} are positive. Then

$$
\begin{equation*}
P_{m, j, \varepsilon}(\vec{s})=\int \theta\left(u ; s_{2}, s_{3}\right) U_{\varepsilon}(u ; \vec{s}) r_{m, j}\left(u^{2} ; s_{2}, s_{3}\right) \mathrm{d} u \tag{4.19}
\end{equation*}
$$

Set

$$
\begin{equation*}
\rho(t ; \vec{s})=\left(t+2 s_{1}-s_{2}-s_{3}\right)^{2}-4 s_{1} t \tag{4.20}
\end{equation*}
$$

and notice that

$$
\begin{equation*}
\rho\left(u^{2} ; \vec{s}\right)=\left(\left(u+\sqrt{s_{1}}\right)^{2}+s_{1}-s_{2}-s_{3}\right)\left(\left(u-\sqrt{s_{1}}\right)^{2}+s_{1}-s_{2}-s_{3}\right) . \tag{4.21}
\end{equation*}
$$

From this follows that

$$
\lim _{\varepsilon \rightarrow 0} \int \theta\left(u ; s_{2}, s_{3}\right) U_{\varepsilon}(u ; \vec{s}) \psi\left(u^{2} ; \vec{s}\right) \mathrm{d} u=0
$$

for every polynomial $\psi(u ; \vec{s})$ which is divisible by $\rho(u ; \vec{s})$. We therefore wish to divide out ρ from $r_{m, j}$ in (4.19).

Define

$$
\widetilde{r}_{m, j}\left(t ; s_{2}, s_{3}\right)=r_{m, j}\left(t+s_{2}+s_{3} ; s_{2}, s_{3}\right)
$$

and

$$
\widetilde{\rho}(t ; \vec{s})=\rho\left(t+s_{2}+s_{3} ; \vec{s}\right) .
$$

Then

$$
\begin{equation*}
\widetilde{\rho}(t ; \vec{s})=t^{2}+4\left(s_{1}-s_{2}\right)\left(s_{1}-s_{3}\right)-4 s_{2} s_{3} \tag{4.22}
\end{equation*}
$$

We notice that
(4.23) $\widetilde{r}_{m, j}\left(t ; s_{2}, s_{3}\right)=(-\mathcal{W})^{m-j} q_{m}\left(t+s_{2}+s_{3} ; s_{2}, s_{3}\right)=(-\mathcal{W})^{m-j}\left(4 s_{2} s_{3}-t^{2}\right)^{m}$,
since

$$
-\mathcal{W}\left(f\left(s_{2}+s_{3}\right)\right)=f^{\prime}\left(s_{2}+s_{3}\right)
$$

when $f \in C^{1}$. This also implies that

$$
\begin{gathered}
(-\mathcal{W})^{m-j}\left(4 s_{2} s_{3}-t^{2}\right)^{m}=(-\mathcal{W})^{m-j}\left(\left(s_{2}+s_{3}\right)^{2}-\left(s_{2}-s_{3}\right)^{2}-t^{2}\right)^{m} \\
=\partial_{u}^{m-j}\left(u^{2}-\left(s_{2}-s_{3}\right)^{2}-t^{2}\right)_{u=s_{2}+s_{3}}^{m}
\end{gathered}
$$

Recalling (4.23) and (1.14) we have proved that

$$
\begin{equation*}
\widetilde{r}_{m, j}\left(t ; s_{2}, s_{3}\right)=\left(4 s_{2} s_{3}-t^{2}\right)^{j} \psi_{m, j}\left(s_{2}+s_{3},\left(s_{2}-s_{3}\right)^{2}+t^{2}\right) \tag{4.24}
\end{equation*}
$$

Then a combination of (4.22) and (4.24) shows that

$$
\tilde{r}_{m, j}\left(t ; s_{2}, s_{3}\right)-4^{j}\left(s_{1}-s_{2}\right)^{j}\left(s_{1}-s_{3}\right)^{j} \Psi_{m, j}(\vec{s})
$$

is divisible by $\widetilde{\rho}(t ; \vec{s})$ in the ring of polynomials in (t, \vec{s}). After replacing t by $t-s_{1}-s_{2}$ we have proved that

$$
\begin{equation*}
r_{m, j}(t ; \vec{s})=T_{m, j}(\vec{s})+\rho(t ; \vec{s}) S_{m, j}(t ; \vec{s}) \tag{4.25}
\end{equation*}
$$

where $S_{m, j}$ is a polynomial and

$$
\begin{equation*}
T_{m, j}(\vec{s})=4^{j}\left(s_{1}-s_{2}\right)^{j}\left(s_{1}-s_{3}\right)^{j} \Psi_{m, j}(\vec{s}) . \tag{4.26}
\end{equation*}
$$

It follows from (4.19) and (4.25) together with the observations after (4.21) that

$$
\begin{equation*}
P_{m, j, \varepsilon}(\vec{s})=T_{m, j}(\vec{s}) Y_{\varepsilon}(s)+R_{m, j, \varepsilon}(\vec{s}), \tag{4.27}
\end{equation*}
$$

where

$$
\begin{equation*}
Y_{\varepsilon}(\vec{s})=\int \theta\left(u ; s_{2}, s_{3}\right) U_{\varepsilon}(u, \vec{s}) \mathrm{d} u \tag{4.28}
\end{equation*}
$$

and

$$
\lim _{\varepsilon \rightarrow 0} R_{m, j, \varepsilon}(\vec{s})=0
$$

We shall complete the proof of the lemma by showing that

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} Y_{\varepsilon}(\vec{s})=Y(\vec{s}) \quad \text { for almost every } \vec{s} \in \mathbb{R}_{+}^{3} \tag{4.29}
\end{equation*}
$$

where

$$
Y(\vec{s})=-\left(s_{2}+s_{3}-s_{1}\right)_{+}^{-1 / 2} H\left(s_{1}-s_{2}\right) H\left(s_{1}-s_{3}\right)
$$

If $s_{2}+s_{3}<s_{1}$ then $U_{\varepsilon}(u ; \vec{s})=0$ for every u when ε is small enough. We may assume therefore that $s_{2}+s_{3}-s_{1}=\sigma^{2}$, where $\sigma>0$. Let $N=\left\{ \pm \sqrt{s_{1}} \pm \sigma\right\}$. Then there is a constant C depending on \vec{s} such that the support of $u \mapsto U_{\varepsilon}(u ; \vec{s})$ is within distance $C \varepsilon$ from N. We may assume that $\sqrt{s_{2}} \pm \sqrt{s_{3}} \notin N$ and then $u \mapsto \theta\left(u ; s_{2}, s_{3}\right)$ is smooth in an open neighbourhood of N. When taking limits of the integral defining Y_{ε} we can therefore treat θ as a test function in the variable u.

Recalling the definition of U_{ε} we see that $u \mapsto U_{\varepsilon}(u ; \vec{s})$ converges in $\mathcal{D}^{\prime}(\mathbb{R})$ to

$$
\frac{1}{2 \sigma}\left(\delta\left(u+\sqrt{s_{1}}+\sigma\right)+\delta\left(u+\sqrt{s_{1}}-\sigma\right)-\delta\left(u-\sqrt{s_{1}}+\sigma\right)-\delta\left(u-\sqrt{s_{1}}-\sigma\right)\right)
$$

Hence

$$
\begin{gather*}
Y_{\varepsilon}(\vec{s}) \rightarrow Y_{0}(\vec{s}) \\
=\frac{1}{2}\left(s_{2}+s_{3}-s_{1}\right)^{-1 / 2}\left(\theta\left(-\sqrt{s_{1}}-\sigma ; s_{2}, s_{3}\right)+\theta\left(-\sqrt{s_{1}}+\sigma ; s_{2}, s_{3}\right)\right. \tag{4.30}\\
\left.-\theta\left(\sqrt{s_{1}}-\sigma ; s_{2}, s_{3}\right)-\theta\left(\sqrt{s_{1}}+\sigma ; s_{2}, s_{3}\right)\right)
\end{gather*}
$$

It suffices to show now that $Y_{0}(\vec{s})=Y(\vec{s})$ when $s_{1} \neq s_{2}$, s_{3}. Let $\alpha, \beta= \pm 1$. Then $\alpha \sqrt{s_{1}}+\beta \sigma$ is not an endpoint of the interval $\left(\sqrt{s}_{2}-\sqrt{s}_{3}, \sqrt{s}_{2}+\sqrt{s}_{3}\right)$ and

$$
\theta\left(\alpha \sqrt{s_{1}}+\beta \sigma ; s_{2}, s_{3}\right)=H(t(\alpha, \beta)),
$$

where

$$
t(\alpha, \beta)=\left(\sqrt{s_{2}}+\sqrt{s_{3}}-\alpha \sqrt{s_{1}}-\beta \sigma\right)\left(\alpha \sqrt{s_{1}}+\beta \sigma-\sqrt{s_{2}}+\sqrt{s_{3}}\right)
$$

We write

$$
\begin{gathered}
t(\alpha, \beta)=s_{3}-\left(\alpha \sqrt{s_{1}}+\beta \sigma-\sqrt{s_{2}}\right)^{2} \\
=s_{3}-s_{1}-\sigma^{2}-s_{2}-2 \alpha \beta \sqrt{s_{1}} \sigma+2 \alpha \sqrt{s_{1}} \sqrt{s_{2}}+2 \beta \sigma \sqrt{s_{2}} \\
=-2 s_{2}+2 \beta \sigma \sqrt{s_{2}}-2 \alpha \beta \sqrt{s_{1}} \sigma+2 \alpha \sqrt{s_{1}} \sqrt{s_{2}} \\
=2\left(\alpha \sqrt{s_{1}}-\sqrt{s_{2}}\right)\left(\sqrt{s_{2}}-\beta \sigma\right)
\end{gathered}
$$

It is easily verified that

$$
\begin{gathered}
H(t(-1,-1))=0, \quad H(t(-1,1))=H\left(s_{3}-s_{1}\right), H(t(1,-1))=H\left(s_{1}-s_{2}\right) \\
H(t(1,1))=H\left(\left(s_{1}-s_{2}\right)\left(s_{1}-s_{3}\right)\right)
\end{gathered}
$$

From this follows that

$$
\begin{aligned}
Y_{0}(\vec{s}) & =\frac{1}{2}\left(s_{2}+s_{3}-s_{1}\right)^{-1 / 2} \sum_{\alpha, \beta= \pm 1} \alpha H(t(-\alpha, \beta)) \\
& =-\left(s_{2}+s_{3}-s_{1}\right)^{-1 / 2} H\left(s_{1}-s_{2}\right) H\left(s_{1}-s_{3}\right) \\
& =Y(\vec{s})
\end{aligned}
$$

This concludes the proof.
Proof of Theorem 1.5. It follows from (4.16) and Lemma 4.7 that

$$
\Pi_{*} B(\vec{s})
$$

$$
\begin{aligned}
= & -\frac{2^{1-n}}{m!} \sum_{0 \leq j \leq m} 4^{j}\binom{m}{j} \mathcal{W}^{j}\left(\Psi_{m, j}(\vec{s})\left(s_{1}-s_{2}\right)_{+}^{j}\left(s_{1}-s_{3}\right)_{+}^{j}\left(s_{2}+s_{3}-s_{1}\right)_{+}^{-1 / 2}\right) \\
& =\sum_{0 \leq j \leq m}\left(\partial_{s_{2}}+\partial_{s_{3}}\right)^{j}\left(Q_{m, j}(\vec{s})\left(s_{1}-s_{2}\right)_{+}^{j}\left(s_{1}-s_{3}\right)_{+}^{j}\left(s_{2}+s_{3}-s_{1}\right)_{+}^{-1 / 2}\right),
\end{aligned}
$$

where we have used (4.3), (4.17) and (1.13).
5. Remarks and examples. We first show that $\Pi_{*} B$ solves a second order partial differential equation which is hyperbolic in \mathbb{R}_{+}^{3}.
Theorem 5.1. Define the differential operator L in \mathbb{R}^{3} through

$$
\begin{equation*}
L=2 s_{2} \partial_{s_{2}}^{2}+2 s_{3} \partial_{s_{3}}^{2}-2 s_{1} \partial_{s_{1}}^{2}+(n-4)\left(\partial_{s_{1}}-\partial_{s_{2}}-\partial_{s_{3}}\right) \tag{5.1}
\end{equation*}
$$

Then

$$
\begin{equation*}
L \Pi_{*} B=\left(s_{1}\right)_{+}^{n / 2-1} \delta\left(s_{1}-s_{2}\right) \delta\left(s_{1}-s_{3}\right) \tag{5.2}
\end{equation*}
$$

Proof. It follows from (1.6) and (1.7) that

$$
B\left(x_{1}, x_{2}, x_{3}\right)=-\frac{2^{1+n}}{c_{n}} E\left(x_{2}+x_{3}-2 x_{1}, x_{2}-x_{3}\right)
$$

We get

$$
\begin{gathered}
\left(\Delta_{1}-\Delta_{2}-\Delta_{3}\right) B\left(x_{1}, x_{2}, x_{3}\right) \\
=\left(\partial_{x_{1}}^{2}-\left(\partial_{x_{2}}+\partial_{x_{3}}\right)^{2} / 2-\left(\partial_{x_{2}}-\partial_{x_{3}}\right)^{2} / 2\right) B\left(x_{1}, x_{2}, x_{3}\right) \\
=-\frac{2^{1+n}}{c_{n}}\left(\frac{1}{2} \partial_{x_{1}}^{2}-\frac{1}{2}\left(\partial_{x_{2}}-\partial_{x_{3}}\right)^{2}\right) E\left(x_{2}+x_{3}-2 x_{1}, x_{2}-x_{3}\right) \\
=-\frac{2^{2+n}}{c_{n}}\left(\left(\Delta_{y}-\Delta_{z}\right) E\right)\left(x_{2}+x_{3}-2 x_{1}, x_{2}-x_{3}\right) \\
=-\frac{2^{2+n}}{c_{n}} \delta\left(x_{2}+x_{3}-2 x_{1}\right) \delta\left(x_{2}-x_{3}\right) \\
=-\frac{2^{2+n}}{c_{n}} \delta\left(2 x_{2}-2 x_{1}\right) \delta\left(x_{2}-x_{3}\right)=-\frac{4}{c_{n}} \delta\left(x_{2}-x_{1}\right) \delta\left(x_{2}-x_{3}\right) .
\end{gathered}
$$

When $f \in C_{0}^{\infty}\left(\mathbb{R}^{3}\right)$ we have

$$
\begin{aligned}
& \int_{0}^{\infty} s^{n / 2-1} f(s, s, s) \mathrm{d} s=2 \int_{0}^{\infty} s^{n-1} f\left(s^{2}, s^{2}, s^{2}\right) \mathrm{d} s \\
&= \frac{2}{c_{n}} \int_{\mathbb{R}^{n}} f\left(|x|^{2},|x|^{2},|x|^{2}\right) \mathrm{d} x=\frac{2}{c_{n}}\left\langle\Pi^{*} f, \delta\left(x_{2}-x_{1}\right) \delta\left(x_{2}-x_{3}\right)\right\rangle \\
&=-\frac{1}{2}\left\langle\Pi^{*} f,\left(\Delta_{1}-\Delta_{2}-\Delta_{3}\right) B\right\rangle=-\frac{1}{2}\left\langle\left(\Delta_{1}-\Delta_{2}-\Delta_{3}\right) \Pi^{*} f, B\right\rangle .
\end{aligned}
$$

Let L^{\prime} be the formal transpose of L. A simple computation shows that

$$
\left(\Delta_{1}-\Delta_{2}-\Delta_{3}\right) \circ \Pi^{*}=-2 \Pi^{*} \circ L^{\prime}
$$

It follows that

$$
\int_{0}^{\infty} s^{n / 2-1} f(s, s, s) \mathrm{d} s=\left\langle\Pi^{*} L^{\prime} f, B\right\rangle=\left\langle f, L \Pi_{*} B\right\rangle .
$$

Hence (5.2) holds.
We shall finally give some examples in the case $n=3$. In this case Theorem 1.5 gives that (1.18) holds.

In what follows we assume $0<a \leq \infty, b \geq 0$, and set

$$
g_{a, b}(s)=Y_{a}(s) \mathrm{e}^{-b s}
$$

where Y_{a} denotes characteristic function of the interval $[0, a]$.

We first compute $\widetilde{B_{2}}\left(g_{a, b}, g_{a, b}\right)(s)$.
Theorem 5.2. Assume $n=3$. Then

$$
\begin{equation*}
\widetilde{B_{2}}\left(g_{a, b}, g_{a, b}\right)(s)=-\frac{1}{2} \mathrm{e}^{-b s} \min (s, 2 a-s)_{+}^{3 / 2} \int_{0}^{1}\left(1-t^{2}\right) \mathrm{e}^{-b s t^{2}} \mathrm{~d} t \tag{5.3}
\end{equation*}
$$

Proof. It follows from (1.11) and (1.18) that

$$
\widetilde{B_{2}}\left(g_{a, b}, g_{a, b}\right)(s)=-\frac{1}{4} \iint_{t, u \leq s}(t+u-s)_{+}^{-1 / 2} Y_{a}(t) Y_{a}(u) \mathrm{e}^{-b(t+u)} \mathrm{d} t \mathrm{~d} u
$$

If $\sigma=\min (a, s)$ this means that

$$
\begin{gathered}
\widetilde{B_{2}}\left(g_{a, b}, g_{a, b}\right)(s)=-\frac{1}{4} \int_{s}^{\infty}(t-s)^{-1 / 2}\left(Y_{\sigma} * Y_{\sigma}\right)(t) \mathrm{e}^{-b t} \mathrm{~d} t \\
=-\frac{\mathrm{e}^{-b s}}{4} \int_{0}^{\infty} t^{-1 / 2}\left(Y_{\sigma} * Y_{\sigma}\right)(t+s) \mathrm{e}^{-b t} \mathrm{~d} t
\end{gathered}
$$

But $\left(Y_{\sigma} * Y_{\sigma}\right)(t)=(\sigma-|t-\sigma|)_{+}$and hence

$$
\left(Y_{\sigma} * Y_{\sigma}\right)(s+t)=(2 \sigma-t-s)_{+}=(\min (s, 2 a-s)-t)_{+}
$$

With $\mu=\min (s, 2 a-s)$ this yields

$$
\begin{gathered}
\widetilde{B_{2}}\left(g_{a, b}, g_{a, b}\right)(s)=-\frac{\mathrm{e}^{-b s}}{4} \int_{0}^{\mu} t^{-1 / 2}(\mu-t) \mathrm{e}^{-b t} \mathrm{~d} t \\
=-\frac{\mathrm{e}^{-b s}}{4} \mu^{3 / 2} \int_{0}^{1} t^{-1 / 2}(1-t) \mathrm{e}^{-b \mu t} \mathrm{~d} t=-\frac{\mathrm{e}^{-b s}}{2} \mu^{3 / 2} \int_{0}^{1}\left(1-t^{2}\right) \mathrm{e}^{-b \mu t^{2}} \mathrm{~d} t .
\end{gathered}
$$

Corollary 5.3. Let the function $v_{a, b}$ in \mathbb{R}^{3} be defined by

$$
v_{a, b}(x)=\left\{\begin{array}{l}
\mathrm{e}^{-b|x|^{2}} \quad \text { when }|x|<a \\
0 \quad \text { when }|x| \geq a
\end{array}\right.
$$

Then

$$
B_{2}\left(v_{a, b}, v_{a, b}\right)(x)=\left\{\begin{array}{l}
-\frac{\mathrm{e}^{-b|x|^{2}}}{2}|x|^{2} \int_{0}^{1}\left(1-t^{2}\right) \mathrm{e}^{-b|x|^{2} t^{2}} \mathrm{~d} t \quad \text { when }|x|<a \\
-\frac{\mathrm{e}^{-b|x|^{2}}}{2}\left(2 a^{2} /|x|^{2}-1\right)^{3 / 2}|x|^{2} \int_{0}^{1}\left(1-t^{2}\right) \mathrm{e}^{-b\left(2 a^{2}-|x|^{2}\right) t^{2}} \mathrm{~d} t \\
\text { when } a \leq|x| \leq \sqrt{2} a \\
0 \quad \text { when }|x|>\sqrt{2} a
\end{array}\right.
$$

Proof. The formula (1.12) gives

$$
B_{2}\left(v_{a, b}, v_{a, b}\right)(x)=|x|^{-1} \widetilde{B}_{2}\left(g_{a^{2}, b}, g_{a^{2}, b}\right)\left(|x|^{2}\right)
$$

and the result follows by applying Theorem 5.2

Remark. We notice that $v_{a, b}$ has a discontinuity at the sphere $S_{a}=\{x ;|x|=a\}$ where it is locally in the Sobolev space $H_{(r)}$ (of functions with r derivatives in L^{2}) for any $r<1 / 2$. The function $B_{2}\left(v_{a, b}, v_{a, b}\right)$ is singular at the spheres S_{a} and $S_{\sqrt{2} a}$. The singularity at S_{a} is the same as that of the function $t \mapsto|t|$ at the origin. Hence $v_{a, b} \in H_{(r)}$ locally at S_{a} for any $r<3 / 2$ but it is not locally in $H_{(3 / 2)}$. It follows from Theorem 1.1 in the paper [1] that the mapping $v \mapsto B_{2}(v, v)$ is continous from $H_{(r), \text { loc }}\left(\mathbb{R}^{3}\right)$ to $H_{(r+\varepsilon), \text { loc }}\left(\mathbb{R}^{3}\right)$ for any $r \geq 0$ if $\varepsilon<1$. The above example shows that it is necessary that $\varepsilon \leq 1$ for this smoothing property to hold for every $r \geq 0$.

We also notice that the singularity of $B_{2}\left(v_{a, b}, v_{a, b}\right)$ at $|x|=\sqrt{2} a$ is the same as that of $t_{+}^{3 / 2}$ at the origin. Hence $B_{2}\left(v_{a, b}, v_{a, b}\right)$ is locally in $H_{(r)}$ at $S_{\sqrt{2} a}$ for any $r<2$. Finally we notice that $B_{2}\left(v_{a, b}, v_{a, b}\right)(x)=B_{2}\left(v_{0, b}, v_{0, b}\right)(x)$ when $|x|<a$. This reflects the fact that $s_{2}, s_{3} \leq s_{1}$ in the support of $\Pi_{*} B$.

Remark. If $v(x)=e^{-b|x|^{2}}$ in \mathbb{R}^{n} where $n=3$ and $b>0$ then Corollary 5.3 with $a=\infty$ shows that $B_{2}(v, v)(x)$ is a (continuous) superposition of Gaussian functions. When n is an arbitrary odd integer ≥ 3 and $v(x)$ is the corresponding Gaussian in \mathbb{R}^{n} it follows from Theorem 1.5 and (1.16) that

$$
B_{2}(v, v)(x)=\sum_{0 \leq j \leq m} b^{j}|x|^{2+2 j} e^{-b|x|^{2}} \int_{0}^{1} h_{m, j}\left(t^{2}\right)\left(1-t^{2}\right)^{1+2 j} e^{-b t^{2}|x|^{2}} \mathrm{~d} t
$$

where the $h_{m, j}$ are polynomials.

REFERENCES

[1] I. Beltiţă and A. Melin, Analysis of the quadratic term in the backscattering transformation, Math. Scand., 105 (2009), 218-234.
[2] I. Beltiţă and A. Melin, Local smoothing for the backscattering transformation, Comm. Partial Diff. Equations, 34 (2009), 233-256.
[3] L. Hörmander, "The Analysis of Linear Partial Differential Operators" (I-IV), Springer Verlag, Berlin, Heidelberg, New York, Tokyo, 1983-1985.
[4] A. Melin, Smoothness of higher order terms in backscattering, in "Wave Phenomena and Asymptotic Analysis," RIMS Kokyuroku, 1315 (2003), 43-51.
[5] A. Melin, Some transforms in potential scattering in odd dimension, in "Inverse Problems and Spectral Theory," Contemp. Math., 348, Amer. Math. Soc., Providence, RI, (2004), 103-134.
[6] A. Ruiz and A. Vargas, Partial recovery of a potential from backscattering data, Comm. Partial Diff. Equations, 30 (2005), 67-96.
Received for publication December 2008.
E-mail address: Ingrid.Beltita@imar.ro
E-mail address: andersmelin@hotmail.com

[^0]: 2000 Mathematics Subject Classification. Primary: 81U025; Secondary: 35R30.
 Key words and phrases. backscattering transformation, Born approximation, spherical averages.

