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An analysis of the backscattering data for the Schrödinger operator in odd
dimensions n ≥ 3 motivates the introduction of the backscattering transform
B � C�

0 ��
n��� → C���n���. This is an entire analytic mapping and we write

Bv = ∑�
1 BNv where BNv is the N th order term in the power series expansion at

v = 0. In this paper we study estimates for BNv in H�s� spaces, and prove that Bv
is entire analytic in v ∈ H�s� ∩ �′ when s ≥ �n− 3�/2.

Keywords Backscattering; Scattering matrix; Ultra-hyperbolic operator; Wave
equation.

Mathematics Subject Classification Primary 35R30; Secondary 81U40.

1. Introduction

The present paper is devoted to proving continuity and smoothing properties of the
backscattering transform for the Schrödinger operator in odd dimensions n > 1.

In order to state the main result a brief description of the mathematical objects
involved is necessary. (The reader is referred to Chapter 14 in [4] and [7–9] for
details.)

Consider the Schrödinger operator Hv = −�+ v in �n, where v ∈ L2
cpt��

n� is
real. Assume that Hv with domain H�2���

n� is self-adjoint. Then the wave operators

W± = lim
t→±�

eitHve−itH0

exist and are complete.
Let S = W ∗

+W− be the scattering operator and denote A = S − I . The
distribution kernel of the operator �A�−1, where � denotes the Fourier transform,
is of the form

−2i����	 
������2 − �
�2�	
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234 Beltiţă and Melin

where � → ���	 
� is a smooth function of 
 with values in L2
loc��

n�. In turn, when
k > 0, �,  ∈ �n−1, ��k�	 k� is a constant times ka��k	�	 �, where a��k	�	 �
is the classical far field pattern associated to Hv. Hence ��−�	 �� is given by the
classical backscattering amplitude.

It was proved in [9] that when v ∈ C�
0 ��

n��� the inverse Fourier transform of
the distribution � → �2��n��−�/2	 �/2� is equal to

2n
∫
v�x − y�W+�x − y	 x + y�dy	 (1.1)

where W+�x	 y� is the distribution kernel of W+. The real part of the expression in
(1.1) is equal to

�v�x� = 2n
∫
v�x − y�W�x − y	 x + y�dy	

where the operator W = �W+ +W−�/2 has a real-valued distribution kernel. Hence
�v is the real part of the inverse Fourier transform of the distribution � →
�2��n��−�/2	 �/2�.

The backscattering transform Bv of v ∈ C�
0 ��

n��� is a slight modification of
�v. Let Kv�t� be the wave group associated to the operator

�v = �2t − �x + v	

i.e., u�x	 t� = �Kv�t�f��x� is, for every f ∈ C�
0 ��

n�, the unique solution in
C1��0	��	 L2��n�� to the Cauchy problem

�vu�x	 t� = 0	 u�x	 0� = 0	 ��tu��x	 0� = f�x��

Then Kv�t� is a strongly continuous function of t with values in the space of
bounded linear operators on L2��n�. (See [8] for details.) We have that �x − y� ≤ t in
the support of the distribution kernel Kv�x	 y� t� of Kv and �x − y� = t in the support
of K0�x	 y� t�. This ensures that the operator

G = −
∫ �

0
Kv�t�vK̇0�t�dt

is well defined and continuous on L2
cpt��

n�, where the dot denotes derivative in the
variable t. Theorem 7.1 in [9] gives the relation between G and W above: there exists
an orthonormal basis �fj�1≤j≤� of real eigenfunctions corresponding to the negative
part of the spectrum of Hv and a set �gj�1≤j≤� of smooth real-valued functions such
that

W = I +G+
�∑
1

fj ⊗ gj�

It turns out (see below) that G = Gv, considered as function of v with values in
the space of continuous linear operators in L2

cpt��
n�, extends to an entire analytic

function of v ∈ C�
0 ��

n�, i.e., to the space of complex-valued v in C�
0 . Also, if v is

sufficiently small (in a sense that we do not make precise here), there are no bound
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Local Smoothing 235

states and W = I +G then. For these reasons it is natural to modify the definition
of �v by subtracting the contribution from

∑�
1 fj ⊗ gj .

Definition. Assume v ∈ C�
0 ��

n�, not necessarily real-valued. The backscattering
transform Bv of v is defined by

�Bv��x� = v�x�+ 2n
∫
v�x − y�G�x − y	 x + y�dy�

Here the integral is taken in distribution sense and v�x�G�x	 y� is the distribution
kernel of the operator vG.

It was proved in [8] that G = Gv extends to an entire analytic function of v ∈
L
q
cpt��

n� when q > n. For such v we can define Bv again as in the previous definition
and Bv will be entire analytic in v with values in �′��n�. We write

Bv =
�∑
1

BNv (1.2)

where BNv is the N th order term in the power series expansion at v = 0. There are
other spaces of v (containing C�

0 as a dense subset) to which Bv can be extended
analytically. Such extensions can be studied by deriving a priori estimates for the
BNv when v ∈ C�

0 . In this paper we shall study estimates for BNv in H�s� spaces, and
prove that Bv is entire analytic in v ∈ H�s� ∩ �′ when s ≥ �n− 3�/2.

We remark that the discussion before the definition above shows when
v ∈ C�

0 ��
n��� that �v, i.e., the real part of the inverse Fourier transform of

�2��n��−�/2	 �/2�, equals

Bv+
�∑
1

2n
∫
v�y�fj�y�gj�2x − y�dy�

Hence our backscattering transformation is, modulo a correction term associated
to the negative spectrum of Hv, the inverse Fourier transformed version of the
restricted backscattering mapping introduced in [1]. The latter mapping is real
analytic in a dense open set only of potentials, while removing the correction term
gives rise to a mapping that can be continued to an entire analytic mapping in
appropriate spaces of complex potentials.

We recall some basic ingredients in the construction of Bv when v ∈ C�
0 ��

n�.
We recall from [8], or Section 11 in [9], that

Kv�t� =
∑
N≥0

�−1�NKN�t�	 (1.3)

where KN are inductively defined by

K0�t� =
sin t�D�
�D� 	

(1.4)
KN�t� = �KN−1 ∗ vK0��t� =

∫ t

0
KN−1�s�vK0�t − s�ds	 N ≥ 1�
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236 Beltiţă and Melin

One has the estimate

�KN�t��L2→L2 ≤ �v�NL� t
2N+1/�2N + 1�!�

Since the distribution kernel KN�x	 y� t� of KN�t� is supported in the set where
�x − y� ≤ t, it makes sense to consider

GN = �−1�N
∫ �

0
KN−1�t�vK̇0�t�dt� (1.5)

This is a continuous linear operator in L2
cpt��

n�, and the estimates for the KN

show that

G =
�∑
1

GN

is an entire analytic function of v. We see that

�BNv��x� = 2n
∫
v�y�GN−1�y	 2x − y�dy	 N ≥ 2� (1.6)

The following theorem (Theorem 8, [8]) reveals the smoothing properties of BN

for large N .

Theorem 1.1. Let q > n and k be a nonnegative integer. Then there is a positive
integer N0 = N0�n	 q	 k� such that �kBNv ∈ L2

loc��
n� when v ∈ Lq��n� has compact

support and N ≥ N0. Moreover, if R1	 R2 > 0, there is a constant C, depending on n, k,
R1, R2 and q only such that

��kBNv�L2�B�0	R1��
≤ CN�v�NLq/N !	 N ≥ N0	

whenever v ∈ Lq��n� has support in the ball B�0	 R2�.

The aim of this paper is to give formulas for BN and study their (local)
continuity properties in H�s� spaces.

Let �·��s� denote the norm in the Sobolev space H�s���
n�. Also H�s����, s ≥ 0,

is the space of functions which are restrictions to � of functions from the Sobolev
space H�s���

n�, when � is an open set with smooth boundary. The norm in H�s����,
s ≥ 0, is equivalent to the quotient norm

�f�H�s����
= inf

{�F��s�� F ∈ H�s���
n�	 F = f in �

}
�

Our main result here is the next theorem.

Theorem 1.2. Assume a is nonnegative, s ≥ �n− 3�/2, and let N�a	 s� be the smallest
integer N such that a < N − 1 and a ≤ �N − 1��s − �n− 3�/2�. Then there is a
constant C, which depends on n, s and a only, such that

�BNv�H�s+a��B�0	R�� ≤ CNR�N−1�/2N−N/2�v�N�s�
when N ≥ N�a	 s�, R > 0 and v ∈ C�

0 �B�0	 R��.
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Local Smoothing 237

A more refined form of this result is given in Theorem 4.1, where the estimates
are given for the N -linear operators associated to BN .

A first corollary is the above-mentioned analyticity of the backscattering
transformation.

Corollary 1.3. The mapping C�
0 ��

n� � v → Bv ∈ C���n� extends to an entire
analytic mapping from H�s���

n� ∩ �′��n� to H�s�	loc��
n� whenever s ≥ �n− 3�/2.

Summarizing, we have defined a backscattering transformation, which appears
as a natural generalization to higher dimensions of a transform arising in the
Gelfand–Levitan theory (see Section 4 of [9]). Apart from a contribution from
the bound states, it is the real part of the inverse Fourier transform of the anti-
diagonal part of the far field pattern viewed as a function of the momentum
variable. This transformation is entire analytic between certain spaces of functions.
We show that the N -linear operator associated to the N th order term BN

appearing in the power series expansion (1.2) is a singular integral operator, and its
distribution kernel is computed. We give local smoothing estimates for each of these
operators. Some other consequences of the main result, concerning the regularity
of the difference between v and its backscattering transform and local uniqueness
properties of B, are given in the last section of the paper.

The outline of this paper is as follows. In the next section we derive a formula
that generalizes to arbitrary N > 2 the formula

�B2v��x� =
∫
��n�2

E2�y1	 y2�v

(
x − y2 − y1

2

)
v

(
x − y1 + y2

2

)
dy1 dy2	

which appears in Corollary 10.7 of [9]. Here E2 is the unique fundamental solution
of the ultra-hyperbolic operator �x − �y such that E2�x	 y� = −E2�y	 x� and E2 is
rotation invariant separately in x and y. When N > 2 we have to replace E2 by a
distribution EN ∈ �′���n�N � which is a fundamental solution of the operator PN =
��xN

− �x1
���xN

− �x2
� · · · ��xN

− �xN−1
�. The distribution EN is discussed in more

detail in Section 3.
Once these formulas have been obtained, the proof of the theorem becomes

elementary. The third section contains estimates of the Fourier transforms of (cut-
offs of) EN . These are in turn used in the fourth section when the estimates in
Theorem 1.2 are obtained by Fourier transforming the formula for BNv.

We close this presentation with a few words on the existing literature on
backscattering problems for the potential scattering in odd dimensions. The classical
complex backscattering map was studied in [1] for dimension 3 and in [2] for
arbitrary dimensions. The main result in [2] shows that the mapping that associates
� → ��−�	 �� to the Fourier transform of v is a continuously Fréchet differentiable,
hence analytic, map in a open dense subset �1 of a weighted Hölder space (with
weight of the form �1+ ����N with N > n− 2) with values in the same space, and its
Fréchet derivative at v̂ is an isomorphism when v̂ belongs to open dense subset �2 of
�1. No power series expansion is given for the classical backscattering map. For the
same map, generic uniqueness was proved in [13] for compactly supported bounded
potentials in dimension 3. The problem of recovering the singularities of v from the
classical backscattering data was considered in [3, 5, 11, 12]. Let us mention the
results in [12], where the cases of dimensions n = 2, 3 are considered. In the case
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238 Beltiţă and Melin

n = 3, these results imply that, for L2 compactly supported potentials, the difference
between the potential and the Born series approximation of the Fourier transform
of the backscattering data belongs, modulo a smooth function, to the Sobolev space
H��� with � < 1/2, and thus the regularity improves independently of the regularity
of the potential. From the point of view of regularity our results are better, in the
case n = 3, only for potentials in H�s� with s ≥ 1/2 and compact support. However,
no continuity estimates are given. We also mention [10, 14] for an approach using
Lax–Phillips scattering. Melrose and Uhlmann consider a generalized backscattering
transform for compactly supported potentials in H��n+1�/2� and prove that this
is entire analytic and globally Fredholm of index zero. As a result they obtain
generic local injectivity for the backscattering operator. The actual backscattering
transformation defined as above was considered in [6] for dimension 3. Then it was
proved to be analytic when defined on small potentials v such that �v ∈ L1 and with
values in the same space, and consequently uniqueness for the inverse backscattering
problem was obtained for small potentials in this space.

Finally, let us fix some notation we use throughout the paper. If N ≥ 2 we
use the notation x = �x1	 � � � 	 xN � ∈ ��m�N where x1	 � � � xN ∈ �m, for m a positive
integer. If x ∈ �m we shall set �x� = �1+ �x�2�1/2. The Fourier transform of a
distribution u will be denoted either by û or by �u.

2. A Formula for BN

In this section we are going to write BNv as the value at �v	 � � � 	 v� of a N -linear
operator defined from C�

0 ��
n�× · · · × C�

0 ��
n� to C���n�, following the procedure

in [8]. The key point here is the fact that K0�t� obeys Huygens’ principle, more
specifically, that its convolution kernel k0�x� t� is supported in the set where �x� = t.

When N = 1	 2	 � � � we define QN ∈ �′���n�N ×�+� inductively by

Q1�x� t� = k0�x� t�	 (2.1)

QN�x1	 � � � 	 xN � t� =
∫ t

0
QN−1�x1	 � � � xN−1� t − s�Q1�xN � s�ds when N ≥ 2� (2.2)

Then the mapping

�+ � t → QN�x1	 � � � xN � t� ∈ �′(��n�N
)

is smooth when N ≥ 1. It is easily seen that QN is symmetric in x1	 � � � xN , rotation
invariant separately in these variables and, since �x� = t in the support of k0�x	 t�, it
follows that

�x1� + · · · + �xN � = t in suppQN � (2.3)

Next we define EN ∈ �′���n�N �, N ≥ 2, by

EN�x1	 � � � 	 xN � = �−1�N−1
∫ �

0
QN−1�x1	 � � � 	 xN−1� t�k̇0�xN � t�dt� (2.4)

It follows from (2.3) that

�x1� + · · · + �xN−1� = �xN � in suppEN	 (2.5)
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Local Smoothing 239

EN is rotation invariant separately in all variables, and symmetric in x1	 � � � 	 xN−1.
We recall here that

E2�x	 y� = 4−1�i��1−n�n−2�x2 − y2� in �n ×�n

is the unique fundamental solution of the ultra-hyperbolic operator �x − �y such
that E2�x	 y� = −E2�y	 x� and E2 is rotation invariant separately in x and y.
(See Theorem 10.4 and Corollary 10.2 in [9].)

The next lemma follows easily from (1.4) and (1.5) by induction and some
simple computations.

Lemma 2.1. Assume v ∈ C�
0 ��

n�. Then

KN�x	 y� t� =
∫
v�x1� · · · v�xN �QN+1�x − x1	 x1 − x2	 � � � 	 xN−1 − xN 	 xN − y� t�dx	

(2.6)

GN�x	 y� =
∫
��n�N

v�x1� · · · v�xN �EN+1�x − x1	 x1 − x2	 � � � 	 xN−1 − xN 	 xN − y�dx
(2.7)

for every N ≥ 1.

Proposition 2.2. For N ≥ 2

�BNv��x� =
∫
��n�N

EN �y1	 � � � 	 yN �v

(
x − yN

2
− Y0

)

× v

(
x − yN

2
− Y1

)
· · · v

(
x − yN

2
− YN−1

)
dy

when v ∈ C�
0 ��

n�, where

Y0 =
1
2

N−1∑
j=1

yj and Yk = Y0 −
k∑

j=1

yj	 1 ≤ k ≤ N − 1�

Proof. We use (2.7) to express GN−1�y	 2x − y� in (1.6) and get thus

�BNv��x� = 2n
∫
�n×��n�N−1

v�y�v�x1� · · · v�xN−1�

× EN�y − x1	 x1 − x2	 � � � 	 xN−2 − xN−1	 xN−1 + y − 2x�dy dx�

The proposition follows by changing variables y − x1 = −y1, x1 − x2 = −y2	 � � � 	
xN−2 − xN−1 = −yN−1, xN−1 + y − 2x = −yN , hence

y = x − 1
2

N∑
j=1

yj = x − yN
2

− Y0

x1 = y + y1 = x − yN
2

− Y1

� � �

xN−1 = xN−2 + yN−1 = x − yN
2

− YN−1�
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240 Beltiţă and Melin

Here we have made use of the invariance properties of EN , which in particular
ensure that EN�y1	 � � � 	 yN � is even in each yj . �

3. The Distribution EN

We need some further information on the distribution EN defined in (2.4).
The first result is a characterization of EN . We denote

PN = ��1 − �N� · · · ��N−1 − �N�	

where �j in the Laplacian in the variables xj .

Lemma 3.1. The distribution EN is a fundamental solution of PN . It has the following
properties:

(i) EN�x1	 � � � 	 xN � is rotation invariant in each xj;
(ii) �x1� + · · · + �xN−1� = �xN � in the support of EN ;
(iii) EN is homogeneous of degree 2�N − 1�− nN .

If E is a fundamental solution of PN that satisfies (i)–(iii), then E = EN .

Proof. We first prove that PNEN = ��x1	 � � � 	 xN �, and when doing this we may
assume that N ≥ 3. Since �2t k0�x� t� = �xk0�x� t�, it follows easily from (2.2) with N
replaced by N − 1 that

�2t QN−1�x1	 � � � 	 xN−1� t� = �N−1QN−1�x1	 � � � 	 xN−1� t�

+QN−2�x1	 � � � 	 xN−2� t���xN−1��

It follows from (2.4) then that

�NEN�x1	 � � � 	 xN � = �−1�N−1
∫ �

0
QN−1�x1	 � � � 	 xN−1� t��

2
t k̇0�xN � t�dt

= �−1�N−1
∫ �

0
��2t QN−1�x1	 � � � 	 xN−1� t��k̇0�xN � t�dt

= �−1�N−1�N−1

∫ �

0
QN−1�x1	 � � � 	 xN−1� t�k̇0�xN � t�dt

+ �−1�N−1
∫ �

0
QN−2�x1	 � � � 	 xN−2� t���xN−1�k̇0�xN � t�dt

= �N−1EN�x1	 � � � 	 xN �− EN−1�x1	 � � � 	 xN−2	 xN ���xN−1��

We have proved therefore that

��N−1 − �N�EN�x1	 � � � 	 xN � = EN−1�x1	 � � � 	 xN−2	 xN ���xN−1�� (3.1)

Assuming, as we may, that the assertion has been proved for lower values of N and
letting ��1 − �N� · · · ��N−2 − �N� act on both sides of (3.1) we may conclude that
PNEN�x1	 � � � 	 xN � = ��x1	 � � � xN �.

The conditions (i) and (ii) are simple consequences of the definitions, together
with the fact that k0�x� t� is rotation invariant in x and supported in the set where
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Local Smoothing 241

�x� = t. Since k0 is homogeneous when considered as a distribution in x and t, it
follows that EN is a homogeneous distribution. Its degree of homogeneity must be
equal to the degree of PN minus the dimension of ��n�N . This proves (iii).

It remains to prove that � = 0 if � = ��x1	 � � � 	 xN � is a distribution satisfying
the conditions in (i)–(iii) and PN� = 0.

Define

��x1	 � � � 	 xN � = ��1 − �N� · · · ��N−2 − �N���x1	 � � � 	 xN �

(with the interpretation � = E2 if N = 2). This a homogeneous distribution of
degree 2− nN and

��N−1 − �N�� = 0�

Since � is rotation invariant in each xj , it follows from Theorem 10.1 of [9] that
� is symmetric in xN−1	 xN . Since �x1� + · · · + �xN−1� = �xN � in the support of � this
implies that x1 = · · · = xN−2 = 0 in its support. Hence

��x1	 � � � 	 xN � =
∑

�����x1	 � � � xN−2�u��xN−1	 xN �	

where the u��x	 y� ∈ �′��n ×�n� are solutions to the ultra-hyperbolic equation.
The rotation invariance of � in the xj implies that the summation takes place over
even ��� only and that the u��x	 y� are rotation invariant separately in x and y. Also,
u��x	 y� = u��y	 x� and u� is homogeneous of degree ��, where

�� = 2− nN + �N − 2�n+ ��� = 2+ ��� − 2n

is even. Since �� > −2n the proof is completed if we prove that u� vanishes outside
the origin in �n ×�n. In this set we may view u� as a function f�s	 t� in s = �x�,
t = �y�. Since it is supported in the set where s = t we may write

f�s	 t� = ∑
0≤j≤J

cj�
�j��s − t��s + t�j+�

where � = 1+ �� is odd, and the summation takes place over even j only,
since f�s	 t� = f�t	 s�. We assume that f �= 0 and shall see that this leads to a
contradiction.

Assume now that cJ �= 0. Expressing the Laplacian in polar coordinates, we get
the equation

0 = (
�2s − �2t + �n− 1��s−1�s − t−1�t�

)
f�s	 t��

The right-hand side here is a linear combination of ��j��s − t��s + t�j+�−2 with
j ≤ J + 1, and a simple computation shows that the coefficient in front of ��J+1��s +
t�J+�−1 is equal to 4cJ�, where

� = �J + ��+ n− 1�

This gives us a contradiction, since we know that � = 0 while the right-hand side
above is an odd integer. We have proved therefore that u� vanishes outside the
origin. �
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242 Beltiţă and Melin

We need to establish estimates for the Fourier transforms of certain cut-offs of
EN . Namely, we shall consider distributions of the form

�−1�N−1
∫ �

0
QN−1�x1	 � � � 	 xN−1� t�k̇0�xN � t���t�dt	 N = 2	 3	 � � � 	 (3.2)

where � ∈ C�
0 ���. We notice that �x1� + · · · + �xN−1� = �xN � < R0 in the support of

this distribution whenever the support of � is contained in the interval �−�	 R0�.
Also, if ��t� = 1 when 0 ≤ t ≤ R1, then the restrictions to ��n�N−1 × B�0	 R1� of the
distribution in (3.2) and of EN coincide.

We start with some preparatory computations. When a ∈ � define

�a�t� = Y+�t�
sin�ta�

a
	 t ∈ �	

where Y+ is the Heaviside’s function.

Lemma 3.2. Assume N ≥ 2 and a1	 � � � aN are real numbers such that a2
j �= a2

k when
j �= k. Then we have the identity

��a1
∗ · · · ∗ �aN

��t� =
N∑
j=1

∏
k �=j

1

a2
k − a2

j

�aj
�t�� (3.3)

Proof. Let � > 0 and define �j�t� = e−�t�aj
�t�. A simple computation shows that

�̂j��� =
1

��+ i��2 + a2
j

�

If � = �1 ∗ · · · ∗ �N it follows that

�̂ ��� =
N∏
1

1

��+ i��2 + a2
j

=
N∑
j=1

(∏
k �=j

1

a2
k − a2

j

)
1

��+ i��2 + a2
j

=
N∑
j=1

(∏
k �=j

1

a2
k − a2

j

)
�̂j����

Hence

��t� =
N∑
j=1

(∏
k �=j

1

a2
k − a2

j

)
�j�t��

The lemma then follows when � tends to 0. �

Lemma 3.3. When N ≥ 2, a1	 � � � aN ∈ �, � ∈ �, Re � > 0, define

F�a1	 � � � 	 aN � �� =
∫ �

0
��a1

∗ · · · ∗ �aN−1
��t� cos�taN �e

−�t dt�
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Local Smoothing 243

Then

F�a1	 � � � 	 aN � �� =
1
2

( ∏
1≤j≤N−1

1

a2
j − �aN − i��2

+ ∏
1≤j≤N−1

1

a2
j − �aN + i��2

)
� (3.4)

Proof. Since both sides of (3.4) depend continuously on a1	 � � � 	 aN ∈ � it is no
restriction to assume that a2

j �= a2
k when j �= k.

First notice that when a, b ∈ � and � ∈ �, Re � > 0, one has

∫ �

0
�a�t� cos�tb�e

−�t dt = a2 − b2 + �2

�a2 − b2 + �2�2 + 4b2�2
� (3.5)

When N = 2 then (3.4) follows directly from this formula.
Assume N ≥ 3. The previous lemma and (3.5) give

F�a1	 � � � 	 aN � �� =
N−1∑
j=1

∏
k �=j

1

a2
k − a2

j

∫ �

0
�aj

�t� cos�taN �e
−�t dt

=
N−1∑
j=1

(∏
k �=j

1

a2
k − a2

j

)
a2
j − a2

N + �2(
a2
j − a2

N + �2
)2 + 4a2

N�
2
�

We can simplify this expression by writing

tj = a2
j − a2

N + �2	 0 ≤ j ≤ N − 1	 and b = 2aN��

Then

F�a1	 � � � 	 aN � �� =
N−1∑
j=1

(∏
k �=j

1
tk − tj

)
tj

t2j + b2

= 1
2

N−1∑
j=1

(∏
k �=j

1
tk − tj

)
1

tj − ib
+ 1

2

N−1∑
j=1

( ∏
k �=j	k≤N−1

1
tk − tj

)
1

tj + ib

= 1
2

∏
1≤j≤N−1

1
tj − ib

+ 1
2

∏
1≤j≤N−1

1
tj + ib

�

This finishes the proof of the lemma, after noticing that tj ± ib = a2
j − �aN ∓ i��2.

�

The next lemma is a direct consequence of Theorem 1.4.2 in [4].

Lemma 3.4. There is a sequence ��N �
�
1 in C�

0 ��� such that �N �t� = 1 when �t� ≤ 1,
�N �t� = 0 when �t� > 2 and

���k�N �t�� ≤ CkNk	 0 ≤ k ≤ 2N + 2�

Here C > 0 is independent of N .
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In what follows R is an arbitrary positive number. We set �N	R�t� = �N �t/R�, so
that �N	1 = �N . We define

EN	R = �−1�N−1
∫ �

0
QN−1�x1	 � � � 	 xN−1� t�k̇0�xN � t��N	R�t�dt	 N = 2	 3 � � � � (3.6)

We notice that

�x1� + · · · + �xN−1� = �xN � ≤ 2R in supp�EN	R� (3.7)

and

EN	R�x1	 � � � 	 xN � = EN�x1	 � � � 	 xN � when �xN � ≤ R� (3.8)

We shall derive estimates for the Fourier transform �EN	R��1	 � � � 	 �N � of EN	R.
We notice here that, due to the homogeneity of QN−1�·� t� and of k̇0�·� t� and to the
definition of �N	R, we have

EN	R�Rx1	 � � � 	 RxN � = R2N−2R−NnEN	1�x1	 � � � xN ��

It follows that

��EN	R���1	 � � � 	 �N � = R2N−2�EN	1�R�1	 � � � 	 R�N �� (3.9)

Therefore it is enough to establish estimates for �EN	1.
The distribution EN	1�x1	 � � � � 	 xN � is rotation invariant in the variables

x1	 � � � 	 xN and compactly supported. The Fourier transform �EN	1��1	 � � � 	 �N � of
EN	1 is smooth and rotation invariant in each variable �j . We define FN�r1	 � � � 	 rN �
when rj ≥ 0 by

��EN	1���1	 � � � 	 �N � = FN�r1	 � � � 	 rN � when rj = ��j�� (3.10)

Hence we need estimates of FN .
Consider � > 0. Let us define the functions h��r	 s� through

h��r	 s� = ��+ �r − s��−1��+ �r + s��−1�

Lemma 3.5. When s, t ∈ �, one has

1+ �s − t� ≥ 1+ �s�
1+ �t� �

Consequently

h��s	 r + t� ≤ �−2��+ �t��2h��s	 r�
when s, t, r ∈ �.

Proof. The lemma follows from the inequalities

1+ �s − t� ≥ 1+ �s − t�
1+ �t� ≥ 1+ �s� − �t�

1+ �t� = 1+ �s�
1+ �t� � �
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The estimate of FN that we need is contained in the next lemma.

Lemma 3.6. There is a constant C, which does not depend on N and �, such that

�FN�r1	 � � � 	 rN �� ≤ CNN 2N+1�−�2N+1�e2�
∏

1≤j≤N−1

h��rj	 rN �� (3.11)

Proof. It follows from (3.6) and (2.2) that

FN�r1	 � � � 	 rN � = �−1�N−1
∫ �

−�
�N�r1	 � � � 	 rN 	 t��N �t�dt (3.12)

where

�N�r1	 � � � 	 rN 	 t� = ��r1
∗ · · · ∗ �rN−1

��t� cos�trN ��

As a function of t, �N�r1	 � � � 	 rN 	 t� is supported in �0	�� and of polynomial growth
at infinity.

Define

�̃N	��r1	 � � � 	 rN 	 t� = e−�t�N �r1	 � � � 	 rN 	 t�	 �̃N	��t� = e�t�N �t��

Then

FN�r1	 � � � 	 rN � =
∫
�
�̃N	��r1	 � � � 	 rN 	 t��̃N	��t�dt

= �2��−1
∫
�
�� �̃N	���r1	 � � � 	 rN 	 ���� �̃N	���−��d�	 (3.13)

where the Fourier transform is taken in the variable t. We notice that

�� �̃N	���r1	 � � � 	 rN 	 �� =
∫
�N�r1	 � � � rN 	 t�e

−�t dt = F�r1	 � � � 	 rN � ��	 � = �+ i�	

with F as in Lemma 3.3. Then an application of that lemma gives the estimate

��� �̃N	���r1	 � � � 	 rN 	 ��� ≤
1
2

∏
1≤j≤N−1

�r2j − �rN + i��2�−1 + 1
2

∏
1≤j≤N−1

�r2j − �rN − i��2�−1

= 1
2

∏
1≤j≤N−1

�rj − �rN − ��− i��−1�rj + �rN − ��+ i��−1

+ 1
2

∏
1≤j≤N−1

�rj − �rN + ��− i��−1�rj + �rN + ��+ i��−1

≤ 2N−2
∏

1≤j≤N−1

��+ �rj − �rN − ����−1��+ �rj + �rN − ����−1

+ 2N−2
∏

1≤j≤N−1

��+ �rj − �rN + ����−1��+ �rj + �rN + ����−1

= 2N−2
∏

1≤j≤N−1

h��rj	 rN − ��+ 2N−2
∏

1≤j≤N−1

h��rj	 rN + ���
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246 Beltiţă and Melin

Next we see that

� �̃N	��−�� =
∫
�N	��t�e

t��+i��dt

= ��+ i��−�2N+2�
∫
�N	��2N + 2��t�et��+i��dt�

From this and Lemma 3.4 we deduce that there is a constant C, which is
independent of N and �, such that

�� �̃N	��−��� ≤ CNN 2N+2e2���+ ����−2N−2�

Then (3.13), (3.14) and the above inequality, together with Lemma 3.5, give

�FN�r1	 � � � 	 rN �� ≤ CNN 2N+2e2�
∫ �

−�
��+ ����−2N−2

( ∏
1≤j≤N−1

h��rj	 rN − ��

)
d�

≤ CNN 2N+2�−2�N−1�e2�
( ∫ �

−�
��+ ����−4 d�

)( ∏
1≤j≤N−1

h��rj	 rN �

)

≤ CN�−�2N+1�N 2N+2e2�
∏

1≤j≤N−1

h��rj	 rN �

≤ �2C�N�−�2N+1�N 2N+1e2�
∏

1≤j≤N−1

h��rj	 rN ��

This finishes the proof. �

The following theorem gives the estimate we need for the Fourier transform
of EN	R.

Theorem 3.7. There is a constant C > 0, which depends on n only, such that

���EN	R���1	 � � � 	 �N �� ≤ CN�N/�R���2N+1e2R�
∏

1≤j≤N−1

h����j�	 ��N ��	 �1	 � � � �N ∈ �n

for every N ≥ 2, R > 0 and � > 0.

Proof. Let R > 0. The identity (3.9) and previous lemma show that there is a
constant C > 0, which depends on n only, such that

���EN	R���1	 � � � 	 �N �� ≤ CN�N/��2N+1R2N−2e2�
∏

1≤j≤N−1

h��R��j�	 R��N ��	

when �1	 � � � 	 �N ∈ �n, for every N ≥ 2, R > 0 and � > 0. This in turn shows that,
with the same C, one has

���EN	R���1	 � � � 	 �N �� ≤ CN�N/��2N+1e2�
∏

1≤j≤N−1

h�/R���j�	 ��N ���

The theorem follows by replacing �/R by �. �
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4. Proof of the Main Result and Some Consequences

We introduce an N -linear version of BN , N ≥ 2. Namely, for v = �v1	 � � � 	 vN �, vj ∈
C�

0 ��
n�, define

�BN v��x� =
∫
��n�N

EN �y1	 � � � 	 yN �

(4.1)

v1

(
x − yN

2
− Y0

)
v2

(
x − yN

2
− Y1

)
· · · vN

(
x − yN

2
− YN−1

)
dy�

Here the Yks are defined as in Proposition 2.2, that is,

Y0 =
1
2

N−1∑
1

yj	 Yk = Y0 −
k∑

j=1

yj	 k = 1	 � � � 	 N − 1�

Then BN v is a smooth compactly supported function in �n and BNv = BN �v	 � � � 	 v�
for every v ∈ C�

0 ��
n�. Therefore the result in Theorem 1.2 is contained in the next

theorem. Here and in the rest of the section we use the notation

m = n− 3
2

�

Theorem 4.1. Assume that 0 < � < 1, sj ≥ m and aj = min�sj −m	 1− ��,
j = 1	 � � � 	 N , where N ≥ 2. Set

� = min�sj − aj�+
N∑
j=1

aj�

Then there is a constant C which is independent of N and the sj , but may depend on �
and n, such that

�BN v�2H����B�0	R��
≤ CNN 2min�sj−aj−m��R/N�N−1

N∏
1

�vj�2�sj �	 (4.2)

for every R > 0, v1	 � � � 	 vN ∈ C�
0 �B�0	 R��.

The present section is devoted to the proof of the above result and a
presentation of some of its consequences. We start with some preparations.

Let R > 0 and recall that the distributions EN	R ∈ �′���n�N � were defined
in (3.6). When v = �v1	 � � � 	 vN �, vj ∈ C�

0 ��
n�, we consider

�BN	Rv��x� =
∫
��n�N

EN	R�y1	 � � � 	 yN �

(4.3)

v1

(
x − yN

2
− Y0

)
v2

(
x − yN

2
− Y1

)
· · · vN

(
x − yN

2
− YN−1

)
dy�

It is easy to see that BN	Rv is a smooth compactly supported function in �n. The
following lemma gives the connection between BN	Rv and BN v.
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248 Beltiţă and Melin

Lemma 4.2. Assume v1	 � � � 	 vN ∈ C�
0 �B�0	 R��. Then �BN	4Rv��x� = �BN v��x� in a

neighborhood of B�0	 R� and BN	2�N−1�Rv = BN v.

Proof. Choose � > 0 such that the vj are supported in B�0	 R− �� and define

Vx�y� = v1�x − yN/2− Y0� · · · vN �x − yN/2− YN−1�� (4.4)

Since Y0 + YN−1 = 0, it follows that

�2x − yN � = ��x − yN/2− Y0�+ �x − yN/2− YN−1�� ≤ 2R− 2�

when y ∈ supp�Vx�. When �x� < R+ �/2 we see that �yN � < 4R when y is in the
support of Vx and, since EN	4R = EN when �yN � < 4R, it follows from (4.3) that
�BN	4Rv��x� = �BN v��x� when �x� < R+ �/2. This proves the first assertion. When
proving the second assertion we notice that

�yj� =
∣∣�x − yN/2− Yj−1�− �x − yN/2− Yj�

∣∣ < 2R

when 1 ≤ j ≤ N − 1 and y ∈ supp�Vx�, hence
∑N−1

1 �yj� < 2�N − 1�R. This shows
that the support of Vx does not intersect the support of EN	2�N−1�R − EN , hence
BN	2�N−1�Rv = BN v. �

Let s = �s1	 � � � 	 sN � be a sequence of nonnegative real numbers and let � ∈ �,
N ≥ 2, R > 0. Define

A�N	R	 s	 �� = sup
�N

∫
· · ·

∫
�1+ 4��N �2�����EN	R���1	 � � � 	 �N ��2

×Ms��1	 � � � 	 �N �
2 d�1 � � � d�N−1	 (4.5)

where

Ms��1	 � � � 	 �N � = ��1 + �N �−s1��2 − �1�−s2 · · · ��N − �N−1�−sN �

Then 0 ≤ A�N	R	 s	 �� ≤ �.

Lemma 4.3. We have that

�BN	Rv�2��� ≤ �2��n�1−N�AN	R�s1	 � � � 	 sN 	 ��
N∏
1

�vj�2�sj � (4.6)

for every vj ∈ C�
0 ��

n�, 1 ≤ j ≤ N .

Proof. Let Vx be defined as in (4.4). In order to compute the Fourier transform of
Vx we introduce the linear map L in ��n�N through Lz = y, where

yj = zj − zj+1	 1 ≤ j ≤ N − 1	 yN = z1 + zN �
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It is easily seen that det�L� = 2n and that yN/2+ Yj−1 = zj when 1 ≤ j ≤ N .
Therefore we may write

Vx�y� = �v1 ⊗ · · · ⊗ vN ��−L−1�y1	 � � � yN−1	 yN − 2x���

Hence

�Vx�−�1	 � � � 	−�N � = 2ne2i�x	�N ��v̂1 ⊗ · · · ⊗ v̂N ��L
′���

Here L′ denotes the transpose of L. It is easy to see that L′� = 
, where

1 = �1 + �N 	 
j = �j − �j−1	 2 ≤ j ≤ N�

It follows that

��Vx��−�1	 � � � 	−�N � = 2ne2i�x	�N �v̂1��1 + �N �v̂2��2 − �1� · · · v̂N ��N − �N−1��

Write wj = � �D�sj vj and
W��� = w1��1 + �N �w2��2 − �1� · · ·wN��N − �N−1��

It follows from (4.3) and the computations above that

�BN	Rv��x� = �2��−nN
∫
��EN	R������Vx��−��d�

= �2��−nN2n
∫

e2i�x	�N ����N �d�N

= �2��−nN
∫

ei�x	�N ����N/2�d�N 	

where

���N � =
∫

· · ·
∫
��EN	R����v̂1��1 + �N �v̂2��2 − �1� · · · v̂N ��N − �N−1�d�1 · · · d�N−1

=
∫

· · ·
∫
��EN	R����Ms���W���d�1 · · · d�N−1�

This shows that

�BN	Rv�2��� = �2��−2n�N−1/2�
∫
��N �2�����N/2��2 d�N

= 2n�2��−2n�N−1/2�
∫
�1+ �4�N �2������N ��2 d�N

≤ 2n�2��−2n�N−1/2�
∫ {

�1+ 4��n�2�� (4.7)

×
( ∫

· · ·
∫

���EN	R�����2Ms���
2 d�1 · · · d�N−1

)

×
( ∫

· · ·
∫

�W����2 d�1 · · ·d�N−1

)}
d�N

≤ 2n�2��−2n�N−1/2�A�N	R	 s	 ��
∫

�W����2 d��
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250 Beltiţă and Melin

The proof is then completed by the observation that

W��� = �w1 ⊗ w2 ⊗ · · · ⊗ wN��L
′���

It follows that∫
�W����2 d� = 2−n

∫
��w1 ⊗ · · · ⊗ wN�����2 d�

= 2−n
N∏
1

�wj�2 = 2−n�2��nN
N∏
1

��D�sj vj�2 = 2−n�2��nN
N∏
1

�vj�2�sj ��

The lemma follows if this is inserted into (4.7). �

We shall arrive at estimates for BN	Rv by combining the inequality (4.6) with
estimates for the expressionA�N	R	 s	 �� in (4.5). The following lemma will be needed.

Lemma 4.4. Assume 0 < � < 1. Then there is a constant C = Cn	� such that∫
h2
�����	  ���− 
�−2s d� ≤ C�−1� �2m−2s	 (4.8)

when 
 ∈ �n,  ≥ 0, � > 0, m ≤ s ≤ m+ 1− �.

Proof. Assume r > 0 and 
 ∈ �n\0. Set

fs�r	 
� =
∫
�n−1

�r− 
�−2s d�

If u = �	 
�/�
� then a simple computation shows that

�r− 
�2 ≥ 1+ r2�1− �u���

If f is a continuous function, and cn−2 is the area of the n− 2-dimensional unit
sphere, then ∫

�n−1
f��	 
�/�
��d
 = cn−2

∫ 1

−1
f�t��1− t2�m dt�

This shows that

fs�r	 
� ≤ cn−2

∫ 1

−1
�1+ r2�1− �t���−s�1− t2�m dt

≤ 2m+1cn−2

∫ 1

0
�1+ r2�1− t��−s�1− t�m dt ≤ 2m+1cn−2

∫ 1

0
�1+ r2t�−stm dt

≤ 2m+1cn−2�r�−2s
∫ 1

0
tm−s dt�

This gives the estimate

fs�r	 
� ≤ C1�r�−2s	 (4.9)

where C1 = 2m+1cn−2/�, for 
 ∈ �n\0. This inequality clearly holds for 
 = 0 as well.
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Local Smoothing 251

Using (4.9) and introducing polar coordinates in the integration one gets

∫
h2
�����	  ���− 
�−2s d� ≤ C1

∫ �

0
h2
��r	  �r

2m+2�r�−2s dr� (4.10)

Assume first that  ≥ 1. Then

∫ �

0
h2
��r	  �r

2m+2�r�−2s dr =
∫ �

0

1
��+ �r −  ��2

1
��+ r +  �2

r2m+2

�r2 + 1�s
dr

≤ 1
 2�s−m�

∫ �

0

1
��+ �r −  ��2

r2m+2

�r2 + 1�m+1
dr (4.11)

≤ 22�s−m�

� + 1�2�s−m�

∫
�

1
��+ �r��2 dr ≤ 23�−1� �−2�s−m��

Assume next that  < 1. Then

∫ �

0
h2
��r	  �r

2m+2�r�−2s dr

≤
∫ �

0

1
��+ �r −  ��2

r2m

�r2 + 1�s
dr ≤

∫
�

1
��+ �r��2 dr (4.12)

≤ 22�s−m�+1�−1� 2 + 1�−�s−m� ≤ 23�−1� �−2�s−m��

Combining (4.10)–(4.12) we see that the lemma holds with C = 23C1. �

Now we are going to estimate A�N	R	 s	 ��. Recall that Theorem 3.7 gives that

���EN	R���1	 � � � 	 �N �� ≤ CN�N/��R��2N+1e2R�
∏

1≤j≤N−1

h����j�	 ��N ��	 (4.13)

where � > 0, N ≥ 2, R > 0 and the constant C is independent of these parameters.
We notice that

Ms��1	 � � � 	 �N � ≤ 2s2��1 + �N �−s1Ms2	���	sN
��2	 � � � 	 �N �

+ 2s1��2 − �1�−s2Ms1	s3	���	sN
��2	 � � � 	 �N �� (4.14)

In fact, since

��2 + �N � ≤ ��2 − �1� + ��1 + �N �	

either ��2 − �1� ≥ ��2 + �N �/2 or ��1 + �N � ≥ ��2 + �N �/2. In the first case

Ms��1	 � � � 	 �N � ≤ 2s2��1 + �N �−s1Ms2	���	sN
��2	 � � � 	 �N �

and in the second case

Ms��1	 � � � 	 �N � ≤ 2s1��1 − �2�−s2Ms1	s3	���	sN
��2	 � � � 	 �N ��
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252 Beltiţă and Melin

When N ≥ 2 we define

TN	���	 s� =
∫

· · ·
∫ ( ∏

1≤j≤N−1

h����j�	 ����
)2

M2
s ��1	 � � � 	 �N−1	 ��d�1 d�2 � � � d�N−1�

Let 0 < � < 1 and assume that m ≤ sj ≤ m+ 1− � when 0 ≤ j ≤ N . It follows
from (4.13) and (4.5) that

A�N	R	 s	 �� ≤ CN�N/��R��4N+2e4R� sup
�

��2��2�TN	���� s��� (4.15)

Here, and in what follows, C denotes constants that are independent of N , R, s, �,
� (but may depend on � and dimension n).

Assume N ≥ 3. From (4.14) follows that

TN	���� s� ≤ 2n
( ∫

h2
����1�	 ������1 + ��−2s1 d�1

)
∫

· · ·
∫ ( ∏

2≤j≤N−1

h2
����j�	 ����

)
M2

s2	���	sN
��2	 � � � 	 �N−1	 ��d�2 · · · d�N−1

+ 2n
( ∫

h2
����1�	 ������1 − �2�−2s2 d�1

)
∫

· · ·
∫ ( ∏

2≤j≤N−1

h2
����j�	 ����

)
M2

s1	s3	���	sN
��2	 � � � 	 �N−1	 ��d�2 · · · d�N−1�

From Lemma 4.4 we get the estimate

TN	���� s� ≤ �C/2��−1���2m−2s1TN−1	���� s2	 � � � 	 sN �

+ �C/2��−1���2m−2s2TN−1	���� s1	 s3	 � � � 	 sN �� (4.16)

Another application of Lemma 4.4 gives

T2	���� s1	 s2� =
∫
h2
����1�	 ������1 + ��−2s1��1 − ��−2s2 d�1

≤ ���−2s1
∫
h2
����1�	 ������1 − ��−2s2 d�1

+ ���−2s2
∫
h2
����1�	 ������1 + ��−2s1 d�1

≤ C�−1���2m−2s1−2s2

where we may assume that C is the same constant as in (4.16). From this we deduce
that the inequality

TN	���� s� ≤ CN−1�−�N−1����2��N−1�m−s1−···−sN � (4.17)
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holds when N = 2. Applying (4.16) together with an induction argument we obtain
that (4.17) holds for every N ≥ 2. Since m ≤ sj < m+ 1 we get (with another C)

TN	���� s� ≤ CN−1�−�N−1��2��2��N−1�m−s1−···−sN �� (4.18)

Assume now that sj ≥ m, j = 1	 � � � 	 N , but not necessarily sj < m+ 1, and let
0 < � < 1. Set aj = min�sj −m	 1− ��, j = 1	 � � � 	 N . We notice that

��1 + �N � + ��2 − �1� + · · · + ��N − �N−1� ≥ 2��N �	

and therefore

max���1 + �N �	 ��2 − �1�	 � � � 	 ��N − �N−1�� ≥ 2��N �/N�

It follows that

��1 + �N �−1��2 − �1�−1 · · · ��N − �N−1�−1 ≤ �1+ 4��N �2/N 2�−1/2 ≤ N�2�N �−1�

Then we may write

Ms��� ≤ Nmin�sj−�aj+m���2�N �−min�sj−�aj+m��M�m+a1	���	m+aN ��
���

This implies that

TN	���� s� ≤ N 2min�sj−�aj+m���2��−2min�sj−�aj+m��TN	����m+ a1	 � � � 	 m+ aN��

Then (4.18) gives

TN	���	 s� ≤ CN−1N 2min�sj−�aj+m���−�N−1��2��−2min�sj−aj�−2
∑N

1 aj � (4.19)

Combining (4.15) with (4.19) we get the following lemma.

Lemma 4.5. Assume that 0 < � < 1, sj ≥ m and aj = min�sj −m	 1− ��,
j = 1	 � � � 	 N . Set

� = min�sj − aj�+
N∑
j=1

aj�

Then there is a constant C which is independent of N and the sj , but may depend on �
and n, such that

A�N	R	 s	 �� ≤ CNN 2min�sj−aj−m��N/��R��4N+2�−�N−1�e4R� (4.20)

for every � > 0 and R > 0.

Next we recall (4.6) which, together with the previous lemma, gives the next
proposition.
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254 Beltiţă and Melin

Proposition 4.6. Assume that 0 < � < 1, sj ≥ m and aj = min�sj −m	 1− ��,
j = 1	 � � � 	 N , where N ≥ 2. Set

� = min�sj − aj�+
N∑
j=1

aj�

Then there is a constant C which is independent of N and the sj , but may depend on �
and n, such that

�BN	Rv�2��� ≤ CNN 2min�sj−aj−m��N/��R��4N+2�−�N−1�e4R�
N∏
1

�vj�2�sj �	 (4.21)

for every v1	 � � � 	 vN ∈ C�
0 ��

n�, R > 0 and � > 0.

Theorem 4.1 follows from the previous proposition and Lemma 4.2, by
replacing R by 4R and taking � = N/�4R�. When replacing R by 2�N − 1�R and
taking � = 1/R, we obtain the following corollary, where we use Lemma 4.2.

Corollary 4.7. Assume that 0 < � < 1, sj ≥ m and aj = min�sj −m	 1− ��,
j = 1	 � � � 	 N . Set

� = min�sj − aj�+
N∑
j=1

aj�

Then there is a constant C, which depends on n, � and the sj only, such that

�BN v�2��� ≤ CNRN−1
N∏
1

�vj�2�sj �	 (4.22)

for every N ≥ 2, R > 0 and v1	 � � � 	 vN ∈ C�
0 �B�0	 R��.

We conclude this section by giving some consequences of our main result. The
first one, the analyticity of the backscattering transformation, has already been
stated in Corollary 1.3. A second consequence gives the difference of regularity
between v and its backscattering transform.

Corollary 4.8. Assume s ≥ �n− 3�/2 and 0 ≤ a < 1 satisfy a ≤ s − �n− 3�/2. If v ∈
H�s���

n� is compactly supported, then

v− Bv ∈ H�s+a�	loc��
n�� (4.23)

Let now R > 0 be arbitrary fixed. When s ≥ 0 we denote by Ḣ�s��B�0	 R�� the
closure of C�

0 �B�0	 R�� in the H�s��B�0	 R��-norm. This is a closed subspace of
the Hilbert space H�s��B�0	 R��, and let !s	R� H�s��B�0	 R�� �→ Ḣ�s��B�0	 R�� be the
associated orthogonal projection.

The next consequence gives generic local uniqueness for the backscattering
transformation. The arguments are quite similar to the arguments in [10, 14], used
in the proofs of the corresponding results for the backscattering mapping defined in
terms of the Lax–Phillips scattering.
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Local Smoothing 255

When s > �n− 3�/2 define

B�R�v� Ḣ�s��B�0	 R�� �→ Ḣ�s��B�0	 R�� (4.24)
B�R�v = !s	R�Bv�B�0	R��	 v ∈ Ḣ�s��B�0	 R���

Corollary 4.9. There is a closed subset Gs	R of Ḣ�s��B�0	 R�� such that each complex
line through the origin of Ḣ�s��B�0	 R�� intersects Gs	R in a discrete set only and B�R� is
a local isomorphism at every v not in Gs	R.

In particular, if v ∈ Ḣ�s��B�0	 R�� \Gs	R, there is a neighborhood U of v in
Ḣ�s��B�0	 R�� such that v1 = v2 if v1, v2 ∈ U and Bv1 = Bv2 on B�0	 R�.

Proof. The mapping v → B�R�v is entire analytic on Ḣ�s��B�0	 R��, according to
Theorem 4.1. The same theorem shows that the derivative of this mapping at a
point v ∈ Ḣ�s��B�0	 R�� has the form I + Tv, where Tv is a compact operator on
Ḣ�s��B�0	 R��. Let Gs	R be the set of those v such that I + Tv is not invertible; this
is a closed set. By the inverse mapping theorem (see Theorem 1.2.3, [15]), B�R� is
a local isomorphism at every v not in Gs	R. The estimates in Theorem 4.1 show
that operator I + Tzv is invertible for �z� small enough. Since z → Tzv is entire
analytic, the analytic Fredholm alternative (see Theorem 1.8.2 in [16]) ensures that
the inversibility can fail only for z in a discrete set. This finishes the proof. �
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