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corresponding operators are bounded. We then apply the abstract results to two clas-
ses of representations, namely the unitary irreducible representations of nilpotent Lie
groups, and the natural representations of the semidirect product groups that govern
the magnetic Weyl calculus. The classical Weyl–Hörmander calculus is obtained for
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1 Introduction

A quite important class of symbols for pseudo-differential operators was introduced
by J. Sjöstrand in [21] (see also [22]). He denoted this class by S(1) and pointed out
that it has a number of remarkable properties, such as:

(1) For every symbol a ∈ S(1) the corresponding operator Op(a) obtained by the
pseudo-differential Weyl calculus is bounded on L2(Rn).

(2) The class S(1) has a natural structure of unital involutive associative Banach
algebra such that the mapping Op : S(1) → B(L2(Rn)) is a continuous ∗-
homomorphism.

(3) If a symbol a ∈ S(1) has the property that the operator Op(a) is invertible in
B(L2(Rn)), then there exists b ∈ S(1) such that Op(a)−1 = Op(b).

It was later realized that the class S(1) is actually the modulation space M∞,1(R2n)

in the sense of [6] (see for instance [7] for a broad discussion), and thus the above
three properties become as many statements in representation theory of the Heisenberg
groups.

The aim of the present paper is to present the deep representation theoretic back-
ground of properties (1)–(3), in the sense that we obtain below, in Theorem 3.10, their
appropriate versions for some representations of infinite-dimensional Lie groups and
their localized Weyl calculus proposed in our earlier papers [1,4]. We then apply these
abstract results to two classes of representations:

– Representations of some infinite-dimensional Lie groups constructed as semidirect
products of Lie groups and invariant function spaces thereon. As seen in [1,2] the
magnetic Weyl calculus developed for instance in [10,16] is in fact a localized Weyl
calculus associated to a specific coadjoint orbit and the corresponding representa-
tion of such a semidirect product, and we thus find versions of the aforementioned
properties in this setting.

– Unitary irreducible representations of arbitrary nilpotent Lie groups. The Weyl
correspondence for these representations was developed by [20], and we have later
introduced in [3] the modulation spaces in this framework and established continu-
ity properties of the operators constructed by the corresponding Weyl calculus. In
particular we found a space of symbols, which for the Heisenberg group reduces to
Sjöstrand’s class, and gives rise to bounded operators. We now show that space of
symbols has all the above properties (1)–(3) in the case of an arbitrary irreducible
representation of a nilpotent Lie group.

The present paper is a sequel to [4] and relies on the methods developed there. In
addition, we use some ideas contained in the deep analysis of Sjöstrand’s class in [8].
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Algebras of symbols associated with the Weyl calculus 15

2 Preliminaries

In this section, we recall some notions introduced in [4], where we refer for a more
detailed discussion and proofs.

Let M be a locally convex Lie group with a smooth exponential mapping

expM : L(M) = m → M

(see [18]). Assume that π : M → B(H) is a unitary representation. The space of
smooth vectors for the representation π is

H∞ := {
φ ∈ H | π(·)φ ∈ C∞(M,H)}.

The derived representation dπ : m → End (H∞) is well defined and given by

(∀X ∈ m)(∀φ ∈ H∞) dπ(X)φ = d

dt

∣
∣
∣
t=0
π

(
expM (t X)

)
φ.

The homomorphism of Lie algebras dπ extends to a unique homomorphism of un-
ital associative algebras dπ : U(mC) → End (H∞), where U(mC) is the universal
enveloping algebra of the complexified Lie algebra mC. The space of smooth vectors
H∞ is endowed with the locally convex topology defined by the family of seminorms
{pu}u∈U(mC), where for every u ∈ U(mC),

pu : H∞ → [0,∞), pu(φ) = ‖dπ(u)φ‖.
The inclusion mapping H∞ ↪→ H is continuous and, for all u ∈ U(mC) and m ∈ M ,
the linear operators dπ(u) : H∞ → H∞ and π(m) : H∞ → H∞ are continuous as
well. We denote by H−∞ the strong dual of H∞. Equivalently, H−∞ can be described
as the space of continuous antilinear functionals on H∞ endowed with the topology
of uniform convergence on the bounded subsets of H∞.

Definition 2.1 In the above setting, the unitary representation π : M → B(H) is said
to be smooth if the linear subspace of smooth vectors H∞ is dense in H. If this is the
case, then π is necessarily continuous, in the sense that the group action M ×H → H,
(m, f ) �→ π(m) f , is continuous.

The representation π is said to be nuclearly smooth if the following conditions are
satisfied:

(1) π is a smooth representation;
(2) H∞ is a nuclear Fréchet space;
(3) both mappings M × H∞ → H∞, (m, φ) �→ π(m)φ, and m × H∞ → H∞,

(X, φ) �→ dπ(X)φ are continuous.

Let B(H)∞ be the space of smooth vectors for the unitary representation

π ⊗ π̄ : M × M → B (S2(H)) , (π ⊗ π̄) (m1,m2) T = π (m1) Tπ (m2)
−1 ,

where S2(H) denotes the Hilbert–Schmidt ideal.
The representationπ : M → B(H) is said to be twice nuclearly smooth if it satisfies

the following conditions:
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16 I. Beltiţă, D. Beltiţă

(1) The representation π is nuclearly smooth.
(2) There exists the commutative diagram

H∞⊗̂H∞
� � ��

��

H⊗̄H

��
B(H)∞ � � �� S2(H)

(2.1)

where the vertical arrow on the left is a linear topological isomorphism, while the
vertical arrow on the right is the natural unitary operator defined by the condition
(φ1, φ2) �→ φ1 ⊗ φ̄2 := (· | φ2)φ1. 
�

Note that if π is a smooth representation, then there exist the dense embeddings

H∞ ↪→ H ↪→ H−∞,

and the duality pairing (· | ·) : H−∞ × H∞ → C extends the scalar product of H.
Until the end of Sect. 3 we keep the following assumption.

Setting 2.2 Let � be a finite-dimensional vector space with a Lebesgue measure and
�∗ be a manifold with a distinguished diffeomorphism onto � (this corresponds to
a polynomial structure in the sense of [19]) and a Radon measure, endowed with a
function 〈·, ·〉 : �∗ ×� → R which is linear in the second variable and such that the
“Fourier transform”

·̂ : L1(�) → L∞(�∗), b(·) �→ b̂(·) =
∫

�

e−i〈·,x〉b(x) dx

gives a linear topological isomorphism S(�) → S(�∗) and a unitary operator
L2(�) → L2(�∗). (The space S(�∗) of Schwartz functions is naturally defined
by using the distinguished diffeomorphism of �∗ onto �.) The inverse of this trans-
formation will be denoted by a �→ ǎ. 
�
Definition 2.3 Let θ : � → m be a linear mapping and π : M → B(H) be a twice
nuclearly smooth unitary representation.

(a) Orthogonality relations. If either φ ∈ H∞ and f ∈ H−∞, or φ, f ∈ H, then we
define the ambiguity function along the mapping θ ,

Aπ,θ
φ f : � → C,

(
Aπ,θ
φ f

)
(·) = (

f | π (
expM (θ(·))

)
φ
)
.

Note that Aπ,θ
φ f ∈ C(�) ∩ S ′(�). We say that the representation π satisfies the

orthogonality relations along the mapping θ if

(
Aπ,θ
φ1

f1 | Aπ,θ
φ2

f2

)

L2(�)
= ( f1 | f2)H · (φ2 | φ1)H (2.2)

for arbitrary φ1, φ2, f1, f2 ∈ H. In particular, Aπ,θ
φ f ∈ L2(�) for all φ, f ∈ H.
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Algebras of symbols associated with the Weyl calculus 17

(b) Growth condition. We say that the representation π satisfies the growth condition
along the mapping θ if

Aπ,θ
φ2
φ1 ∈ S(�), for all φ1, φ2 ∈ H∞ (2.3)

We thus get the sesquilinear map

Aπ,θ : H∞ × H∞ → S(�), (φ1, φ2) �→ Aπ,θ
φ2
φ1.

(c) Density condition. The representation π is said to satisfy the density condition
along the mapping θ if the set {Aπ,θ

φ f | φ, f ∈ H} spans a dense linear subspace

of L2(�).

Definition 2.4 Let θ : � → m be a linear mapping. The localized Weyl calculus for

π along θ is the mapping Opθ : L̂1(�) → B(H) given by

Opθ (a) =
∫

�

ǎ(X)π
(
expM (θ(X))

)
dX (2.4)

for a ∈ L̂1(�), where the integrals are weakly convergent. The localized Weyl calculus
for π along θ is said to be regular if

• π satisfies the growth condition along the mapping θ ,
• π is twice nuclearly smooth, and
• Opθ (a) ∈ B(H)∞ whenever a ∈ S(�∗).
Since the representation π satisfies the growth condition along the θ , one can extend
the localized Weyl calculus Opθ : S ′(�∗) → L(H∞,H−∞) by

(
Opθ (a)φ | ψ) =

〈
ǎ,Aπ,θ

φ ψ
〉

(2.5)

for every a ∈ S ′(�∗) and φ,ψ ∈ H∞, where 〈·, ·〉 : S ′(�)× S(�) → C is the usual
duality pairing.

Remark 2.5 If the localized Weyl calculus for π along θ is regular, then it defines a
linear topological isomorphism Opθ : S(�∗) → B(H)∞ � L(H−∞,H∞), its dual
topological isomorphism Opθ : S ′(�∗) → L(H∞,H−∞), and the mapping

Opθ : L2(�∗) → S2(H), (2.6)

which is a unitary operator (see [4, Prop. 3.12]). 
�
In the conditions of Remark 2.5, if a, b ∈ S ′(�∗) and the operator product

Opθ (a)Opθ (b) ∈ L(H∞,H−∞) is well defined, then the Moyal product a#θb ∈
S ′(�∗) is uniquely determined by the condition

Opθ
(
a#θb

) = Opθ (a)Opθ (b).
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18 I. Beltiţă, D. Beltiţă

Thus the Moyal product defines bilinear mappings S(�∗) × S(�∗) → S(�∗) and
L2(�∗)× L2(�∗) → L2(�∗).

Remark 2.6 The setting of [4] is actually slightly narrower in the sense that �∗ was
supposed to be a finite-dimensional linear space and 〈·, ·〉 : �∗×� → R was supposed
to be a duality pairing. However, it is easily seen that the above setting ensures that
the main results of [4] hold true. 
�

We shall also need the cross-Wigner distribution W( f, φ) ∈ S ′(�∗) for π along θ ,
defined by the formula Ŵ( f, φ) = Aπ,θ

φ f for φ ∈ H∞ and f ∈ H−∞.

The modulation spaces M p,q
φ (π, θ) are defined for p, q ∈ [1,∞] with respect to a

decomposition into a direct sum of subspaces � = �1 � �2 and the window vector
φ ∈ H∞ \ {0}. Specifically, for any measurable function F : � � �1 ×�2 → C set

‖F‖L p,q (�1×�2) =
⎛

⎜
⎝

∫

�1

⎛

⎜
⎝

∫

�2

|F(X1, X2)|pdX1

⎞

⎟
⎠

p/q

dX2

⎞

⎟
⎠

1/q

∈ [0,∞]

with the usual conventions if p or q is infinite. Then

M p,q
φ (π, θ) :=

{
f ∈ H−∞ | ‖ f ‖M p,q

φ (π,θ) :=
∥
∥
∥Aπ,θ

φ f
∥
∥
∥

L p,q (�1×�2)
< ∞

}
.

If 1 ≤ p1 ≤ p2 ≤ ∞ and 1 ≤ q1 ≤ q2 ≤ ∞, then

M p1,q1
φ (π, θ) ∩ M∞,∞

φ (π, θ) ⊆ M p2,q2
φ (π, θ) ∩ M∞,∞

φ (π, θ), (2.7)

since L p1,q1(�1 ×�2) ∩ L∞(�) ⊆ L p2,q2(�1 ×�2) ∩ L∞(�).

Definition 2.7 Let us consider the semi-direct product M � M defined by the action
of M on itself by inner automorphisms. Thus M � M is a locally convex Lie group
whose underlying manifold is M × M and the group operation is

(m1,m2)(n1, n2) =
(

m1n1, n−1
1 m2n1n2

)

for all m1,m2, n1, n2 ∈ M . There exists the natural continuous unitary representation

π� : M � M → B(S2(H)), π� (m1,m2) T = π (m1m2) Tπ (m1)
−1 .

By using the unitary operator (2.6), we can construct the unitarily equivalent
representation

π# : M � M → B
(

L2(�∗)
)
, π#(·) = (

Opθ
)−1 ◦ π�(·) ◦ Opθ

(see [4, Def. 3.13]). 
�
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Algebras of symbols associated with the Weyl calculus 19

Remark 2.8 For the representationπ# : M �M → B(L2(�∗))we have by [4, Remark
3.14(2)]

π#(expM�M (θ(X1), θ(X2))) f = ei〈·,X1+X2〉#θ f #θe−i〈·,X1〉 (2.8)

for every X1, X2 ∈ � and f ∈ L2(�∗). 
�
The ambiguity function Aπ#,θ×θ

� : �×� → C of the representation π# along the
linear mapping θ × θ : �×� → m � m (see Definition 2.3) is given by

(
Aπ#,θ×θ
� F

)
(X1, X2) =

(
F | π# (

expM�M (θ(X1), θ(X2))�
))

for F ∈ S ′(�∗), � ∈ S(�∗), and X1, X2 ∈ �. Then

‖F‖Mr,s
� (π

#,θ×θ) =
⎛

⎜
⎝

∫

�

⎛

⎝
∫

�

∣
∣
∣
(
Aπ#,θ×θ
� F

)
(X1, X2)

∣
∣
∣
r

dX1

⎞

⎠

s/r

dX2

⎞

⎟
⎠

1/s

∈ [0,∞]

with the usual conventions if r or s is infinite. The space

Mr,s
�

(
π#, θ × θ

)
:=

{
F ∈ S ′(�∗) | ‖F‖Mr,s

� (π
#,θ×θ) < ∞

}

is a modulation space of symbols for the localized Weyl calculus Opθ associated with
the unitary representation π : M → B(H) along with the linear mapping θ : � → m
for the window vector � ∈ S(�∗) \ {0}.

3 Sjöstrand’s algebra of symbols in an abstract setting

The present section gives the main results of the paper, in an abstract setting (Th. 3.10).
Sections 4 and 5 are devoted to discussing wide classes of examples satisfying the
assumptions of this abstract framework.

Setting 3.1 Throughout this section, in addition to Setting 2.2, we keep the following
assumptions:

(1) M is a locally convex Lie group with a smooth exponential mapping

expM : L(M) = m → M.

(2) π : M → B(H) is a twice nuclearly smooth unitary representation.
(3) θ : � → m is a linear mapping such that

(a) π satisfies the orthogonality relations along θ ;
(b) π satisfies the density condition along θ ;
(c) the localized Weyl calculus for π along θ is regular;
(d) for every u ∈ U(mC) and φ ∈ H∞ the function ‖dπ(u)π(expM (θ(·)))φ‖

has polynomial growth. 
�
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20 I. Beltiţă, D. Beltiţă

3.1 Ambiguity functions and matrix coefficients

Here is a general version of the usual covariance property of the cross-Wigner distri-
bution (see [7, Prop. 4.3.2]).

Proposition 3.2 For all f1, f2 ∈ H and X1, X2 ∈ � we have the equation

W (
π

(
expM (θ(X1))

)
f1, π

(
expM (θ(X2))

)
f2

)

= π# (
expM�M (θ(X2), θ(X1 − X2))

)W( f1, f2)

in L2(�∗).

Proof By using [3, Prop. 3.12] we get the following equalities of continuous linear
operators on H,

Opθ (W(π(expM (θ(X1))) f1, π(expM (θ(X2))) f2))

= (· | π (
expM (θ(X2))

)
f2)π

(
expM (θ(X1))

)
f1

= π
(
expM (θ(X1))

)
((· | f2) f1)π

(
expM (θ(−X2))

)

= Opθ
(

ei〈·,X1〉
)

Opθ (W( f1, f2))Opθ
(

e−i〈·,X2〉)

= Opθ
(

ei〈·,X1〉#θW( f1, f2)#
θe−i〈·,X2〉)

= Opθ
(
π# (

expM�M (θ(X2), θ(X1 − X2))
)W( f1, f2)

)
,

where the latter equality relies on (2.8).
Then the assertion follows since Opθ : L2(�∗) → S2(H) is a linear topological

isomorphism (see [4, Prop.3.12]). 
�

Theorem 3.3 If φ ∈ H∞ and a ∈ S ′(�∗), then for all X1, X2 ∈ � we have
(
Aπ#,θ×θ

W(φ,φ)
a
)
(X1, X2) = (

Opθ (a)φX1 | φX1+X2

)

where we denote φX := π(expM (θ(X)))φ ∈ H∞ for each X ∈ �.

Proof First note that

π
(
expM (θ(−X1 − X2))

)
Opθ (a)π

(
expM (θ(X1))

)

= Opθ
(

e−i〈·,X1+X2〉#θa#θei〈·,X1〉
)

= Opθ
(
π# (

expM�M (θ(−X1), θ(−X2))
)

a
)

by (2.8). Therefore
(
Opθ (a)φX1 | φX1+X2

)= (
π

(
expM (θ(−X1−X2))

)
Opθ (a)π

(
expM (θ(X1))

)
φ | φ)

= (
Opθ

(
π# (

expM�M (θ(−X1), θ(−X2))
)

a
)
φ | φ)
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Algebras of symbols associated with the Weyl calculus 21

= (
Opθ

(
π# (

expM�M (θ(−X1), θ(−X2))
)

a
) | (· | φ)φ)

= (
Opθ

(
π# (

expM�M (θ(−X1), θ(−X2))
)

a
) | Opθ (W(φ, φ))

)

= (
π# (

expM�M (θ(−X1), θ(−X2))
)

a | W(φ, φ)
)

= (
a | π# (

expM�M (θ(X1), θ(X2))
)W(φ, φ)

)

=
(
Aπ#,θ×θ

W(φ,φ)
a
)
(X1, X2),

and this completes the proof. 
�
Corollary 3.4 Let φ ∈ H∞ and denote φX := π(expM (θ(X)))φ ∈ H∞ for each
X ∈ �, and let p, q ∈ [1,∞]. For a ∈ S ′(�∗) denote by Ba the set of all measurable
functions β : � → [0,∞] satisfying the condition

(∀X ∈ �) ∥
∥(Opθ (a)φ• | φ•+X )

∥
∥

L p(�)
≤ β(X). (3.1)

Also define

βa : � → [0,∞], βa(X) = ∥
∥(Opθ (a)φ• | φ•+X )

∥
∥

L p(�)
.

Then we have a ∈ M p,q
W(φ,φ)

(π#, θ × θ) if and only if Ba ∩ Lq(�) �= ∅, and in this
case βa ∈ Ba ∩ Lq(�) and

‖a‖M p,q
W(φ,φ)(π

#,θ×θ) = inf
β∈Ba∩Lq (�)

‖β‖Lq (�) = ‖βa‖Lq (�). (3.2)

Proof If a ∈ M p,q
W(φ,φ)

(π#, θ × θ), then the function a0 : � → [0,∞] defined by

a0(Y ) := ‖(Aπ#,θ×θ
W(φ,φ)

a)(·,Y )‖L p(�) has the property a0 ∈ Lq(�) and moreover it fol-

lows at once by Theorem 3.3 that ‖(Opθ (a)φ• | φ•+X2)‖L p(�) ≤ a0(X2) for X2 ∈ �.
Hence condition (3.3) is satisfied for β := a0.

Conversely, if (3.1) holds, then we get by Theorem 3.3 again that for all Y ∈
� we have a0(Y ) ≤ β(Y ), whence ‖a0‖Lq (�) ≤ ‖β‖Lq (�) < ∞, and then a ∈
M p,q

W(φ,φ)
(π#, θ × θ) and ‖a‖M p,q

W(φ,φ)
(π#,θ×θ) ≤ ‖β‖Lq (�).

Equality (3.2) is a by-product of the above reasoning, hence the proof is
complete. 
�
Remark 3.5 By using Corollary 3.4 for p = ∞ we get the following abstract version
of the almost diagonalization theorem established in [8, Th. 3.2]:

Let φ ∈ H∞ and denote as above φX := π(expM (θ(X)))φ ∈ H∞ for each X ∈ �.
For a ∈ S ′(�∗) let Ba be the set of all measurable functionsβ : � → [0,∞] satisfying
the condition

(∀X1, X2 ∈ �) ∣
∣(Opθ (a)φX1 | φX2

)∣∣ ≤ β(X1 − X2). (3.3)

Also define

βa : � → [0,∞], βa(X) = sup
Y∈�

∣
∣(Opθ (a)φX+Y | φX

)∣∣.
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22 I. Beltiţă, D. Beltiţă

Then we have a ∈ M∞,q
W(φ,φ)

(π#, θ × θ) if and only if Ba ∩ Lq(�) �= ∅, and in this
case βa ∈ Ba ∩ Lq(�) and

‖a‖M∞,q
W(φ,φ)(π

#,θ×θ) = inf
β∈Ba∩Lq (�)

‖β‖Lq (�) = ‖βa‖Lq (�) (3.4)

whenever 1 ≤ q ≤ ∞. 
�
Definition 3.6 Let φ ∈ H∞ with ‖φ‖ = 1 and φX = π(expM (θ(X)))φ ∈ H∞ for
each X ∈ �. For every a ∈ S ′(�∗) we define

Ca : �×� → C, Ca(X,Y ) := (
Opθ (a)φX | φY

)

and the integral operator in L2(�) defined by the integral kernel Ca will be denoted by

Ta : D(Ta) → L2(�).

Let us also denote by V := Aφ : H → L2(�) the isometry defined by the ambiguity
functions. Note that the constant function 1 ∈ S ′(�∗) gives rise to the orthogonal pro-
jection T1 = T ∗

1 = (T1)
2 ∈ B(L2(�)) with Ran T1 = Ran V and T1Ta = TaT1 = Ta

for every a ∈ S ′(�). 
�
We now present the main idea which allows to use integral operators on � for the

study of operators Opθ (a) : H∞ → H−∞, a ∈ S ′(�∗).

Lemma 3.7 For arbitrary a ∈ S ′(�) we have

Opθ (a) = V ∗Ta V : D (
Opθ (a)

) → H

on the domain

D (
Opθ (a)

) = { f ∈ H | V f ∈ D(Ta)}.

In particular, Ta ∈ B(L2(�)) if and only if Opθ (a) ∈ B(H).

Proof Use Definition 3.6 and that the representation π ⊗ π̄ : M × M → B(S2(H))
satisfies the orthogonality relations along θ × θ : � × � → m × m (see [4, Lemma
3.8(1)]). 
�
Remark 3.8 If a1, a2 ∈ S ′(�) and the operator product Ta1 Ta2 is well defined in
L2(�), so that Opθ (a1)Opθ (a2) = V ∗Ta1 Ta2 V ∈ L(H∞,H−∞) is well defined, then
the Moyal product a1#θa2 ∈ S ′(�∗) makes sense and we have

Ca1#θa2
(X, Z) =

∫

�

Ca1(X,Y )Ca2(Y, Z)dY (3.5)
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for all X, Z ∈ �. In fact, it follows by [4, Lemma 3.19(4)] that for X ∈ �we have the
integral Opθ (a2)φX = ∫

�
(Opθ (a2)φX | φY )φY dY convergent in H−∞. Therefore, if

Opθ (a2)φX ∈ D(Opθ (a1)), then

Opθ (a1)Opθ (a2)φX =
∫

�

(
Opθ (a2)φX | φY

)
Opθ (a1)φY dY.

Hence we have

(
Opθ (a1)Opθ (a2)φX | φZ

) =
∫

�

(
Opθ (a2)φX | φY

) (
Opθ (a1)φY | φZ

)
dY

for all X, Z ∈ �. 
�

The next result is a generalization of the version of [9, Prop. 0.1] without weights,
which is recovered in the special case when π is the Schrödinger representation of the
Heisenberg group.

Corollary 3.9 Let φ ∈ H∞ and p1, p2, p, q1, q2, q ∈ [1,∞] such that 1
p1

+ 1
p2

= 1
p

and 1
q1

+ 1
q2

= 1 + 1
q . Then the Moyal product #θ defines a continuous bilinear map

M p1,q1
W(φ,φ)

(
π#, θ × θ

)
× M p2,q2

W(φ,φ)

(
π#, θ × θ

)
→ M p,q

W(φ,φ)

(
π#, θ × θ

)
.

In particular, for every p ∈ [1,∞], we thus get continuous bilinear maps

M∞,1
W(φ,φ)

(
π#, θ × θ

)
× M p,1

W(φ,φ)

(
π#, θ × θ

)
→ M p,1

W(φ,φ)

(
π#, θ × θ

)

and

M p,1
W(φ,φ)

(
π#, θ × θ

)
× M∞,1

W(φ,φ)

(
π#, θ × θ

)
→ M p,1

W(φ,φ)

(
π#, θ × θ

)
.

Proof For j = 1, 2 let a j ∈ M
p j ,q j

W(φ,φ)
(π#, θ × θ). We shall use the notation of

Definition 3.6.
Then there exists β j ∈ Lq j (�) such that ‖Ca j (·, · + Y )‖L p j (�) ≤ β j (Y ) for every

Y ∈ �. On the other hand, it follows by (3.5) that for X1, X2 ∈ � we have

Ca1#θa2
(X1, X1 + X2) =

∫

�

Ca1(X1,Y )Ca2(Y, X1 + X2)dY

=
∫

�

Ca1(X1, X1 + Y )Ca2(X1 + Y, X1 + X2)dY
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hence by Minkowski’s inequality, and then Hölder’s inequality, we get

∥
∥Ca1#θa2

(·, · + X2)
∥
∥

L p(�)
≤

∫

�

∥
∥Ca1(·, · + Y )Ca2(· + Y, · + X2)

∥
∥

L p(�)
dY

≤
∫

�

∥
∥Ca1(·, · + Y )

∥
∥

L p1 (�)

∥
∥Ca2(· + Y, ·+X2)

∥
∥

L p2 (�)
dY

≤
∫

�

∥
∥Ca1(·, · + Y )

∥
∥

L p1 (�)

∥
∥Ca2(·, · + X2−Y )

∥
∥

L p2 (�)
dY

≤
∫

�

β1(Y )β2(X2 − Y )dY

not= β(X2)

Since β j ∈ Lq j (�) for j = 1, 2, we have β ∈ Lq(�) and

∥
∥a1#θa2

∥
∥

M p,q
W(φ,φ)(π

#,θ×θ) ≤ ‖β‖Lq (�) ≤ ‖β1‖Lq1 (�)‖β2‖Lq2 (�).

By using Corollary 3.4 , it then follows that a1#θa2 ∈ M p,q
W(φ,φ)

(π#, θ × θ) and

∥
∥a1#θa2

∥
∥

M p,q
W(φ,φ)(π

#,θ×θ) ≤ ‖a1‖M
p1,q1
W(φ,φ)(π

#,θ×θ)‖a2‖M
p2,q2
W(φ,φ)(π

#,θ×θ),

which ends the proof. 
�

3.2 The abstract version of Sjöstrand’s algebra

We can now prove the main result of the paper.

Theorem 3.10 If φ ∈ H∞ \ {0}, then the following assertions hold:

(1) For every a ∈ M∞,1
W(φ,φ)

(π#, θ × θ) we have Opθ (a) ∈ B(H) and moreover

‖Opθ (a)‖ ≤ ‖a‖M∞,1
W(φ,φ)

(π#,θ×θ).

(2) The Moyal product #θ makes the modulation space M∞,1
W(φ,φ)

(π#, θ × θ) into an
involutive associative Banach algebra.

(3) Let

M∞,1
W(φ,φ)

(
π#, θ × θ

)
= C1 + M∞,1

W(φ,φ)

(
π#, θ × θ

)
. (3.6)

If a0 ∈ M∞,1
W(φ,φ)

(π#, θ×θ) and the operator Opθ (a0) is invertible in B(H), then

there exists b0 ∈ M∞,1
W(φ,φ)

(π#, θ × θ) such that Opθ (a0)
−1 = Opθ (b0).
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Proof To prove Assertion (1), let a ∈ M∞,1
W(φ,φ)

(π#, θ × θ) arbitrary and denote
φX := π(expM (θ(X)))φ ∈ H∞ for each X ∈ �. It follows by Remark 3.5 that there
exists βa ∈ L1(�) such that ‖a‖M∞,1

W(φ,φ)
(π#,θ×θ) = ‖βa‖L1(�) and

(∀X1, X2 ∈ �) ∣
∣(Opθ (a)φX1 | φX2

)∣∣ ≤ βa(X1 − X2).

Now let f ∈ H∞ and recall from [4, Lemma 3.19] that f = ∫
�
( f | φX )φX dX , hence

∣
∣(Opθ (a) f | φY

)∣∣ ≤
∫

�

∣
∣( f | φX ) | · | (Opθ (a)φX | φY

)∣∣ dX

≤
∫

�

|( f | φX )| · βa(X − Y )dX.

That is, |(Aπ,θ
φ (Opθ (a) f ))(Y ) ≤ (|Aπ,θ

φ f | ∗ βa(−·))(Y ) for all Y ∈ �. Therefore,

∥
∥Opθ (a) f

∥
∥ =

∥
∥
∥
(
Aπ,θ
φ

(
Opθ (a) f

))∥
∥
∥

L2(�)
≤

∥
∥
∥Aπ,θ

φ f
∥
∥
∥

L2(�)
‖βa‖L1(�)

= ‖ f ‖ · ‖a‖M∞,1
W(φ,φ)(π

#,θ×θ).

Since f ∈ H∞ is arbitrary and H∞ is dense in H, the assertion follows.
For Assertion (2), to see that M∞,1

W(φ,φ)
(π#, θ × θ) is closed under the Moyal prod-

uct and the corresponding product is continuous, just use Corollary 3.9 for p1 =
p2 = p = ∞ and q1 = q2 = q = 1. Next note that if ‖a‖M∞,1

W(φ,φ)
(π#,θ×θ) = 0,

then Aπ#,θ×θ
W(φ,φ)

a = 0. Since π# satisfies the orthogonality relations along θ × θ (by
[4, Lemma 3.8 and Def. 3.12 (2)]), we have

∥
∥
∥Aπ#,θ×θ

W(φ,φ)
a
∥
∥
∥

L2(�×�) = ‖W(φ, φ)‖L2(�∗)‖a‖L2(�∗) = ‖φ‖2‖a‖L2(�∗).

Hence a = 0, and this shows that ‖ · ‖M∞,1
W(φ,φ)

(π#,θ×θ) is a norm.

To prove that the norm of M∞,1
W(φ,φ)

(π#, θ × θ) is complete, it suffices to check that
any Cauchy sequence {a j } j≥1 has a convergent subsequence. By selecting a suitable
subsequence, we may assume that ‖a j+1 − a j‖M∞,1

W(φ,φ)
(π#,θ×θ) <

1
2 j for every j ≥ 0,

where a0 := 0. It follows by Remark 3.5 that there exists β j+1 ∈ L1(�) such that
‖β j+1‖L1(�) <

1
2 j and

(∀X1, X2 ∈ �) ∣
∣(Opθ (a j+1 − a j )φX1 | φX2

)∣∣ ≤ β j+1(X1 − X2). (3.7)

Note that β := ∑∞
j=1 β j ∈ L1(�) and, by summing up the above inequalities for

j = 0, . . . , k − 1 we get

(∀X1, X2 ∈ �) ∣
∣(Opθ (ak)φX1 | φX2

)∣∣ ≤ (β1 + · · · + βk)(X1−X2) ≤ β(X1−X2).
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On the other hand, since {ak}k≥1 is a Cauchy sequence in M∞,1
W(φ,φ)

(π#, θ × θ), it

follows by Assertion (1) that there exists an operator T ∈ B(H) such that
limk→∞ ‖Opθ (ak)− T ‖ = 0. It follows by the above inequalities for k → ∞ that

(∀X1, X2 ∈ �) ∣
∣(TφX1 | φX2

)∣∣ ≤ β(X1 − X2).

Moreover, it follows by Remark 2.5 that T = Opθ (a) for some a ∈ S ′(�∗), and then
a ∈ M∞,1

W(φ,φ)
(π#, θ × θ) by the above inequality along with Remark 3.5. Finally,

by summing up the inequalities (3.7) for j = k, k + 1, . . . and using Remark 3.5
again, we get ‖a − ak‖M∞,1

W(φ,φ)
(π#,θ×θ) ≤ ∑∞

j=k
1
2 j = 1

2k−1 for arbitrary k ≥ 1, hence

a = limk→∞ ak in M∞,1
W(φ,φ)

(π#, θ × θ).

For Assertion (3) let a0 ∈ M∞,1
W(φ,φ)

(π#, θ × θ) and assume that the operator

Opθ (a0) is invertible in B(H). There exist α ∈ C and a00 ∈ M∞,1
W(φ,φ)

(π#, θ × θ)

such that a0 = α + a00. We shall use the notation of Definition 3.6 and also recall
that for the symbol 1 ∈ M∞,1

W(φ,φ)
(π#, θ × θ) we get the operator T1 ∈ B(L2(�))

with the properties T1 = T ∗
1 = (T1)

2 and Ran T1 = Ran V . Moreover, for every

a ∈ M∞,1
W(φ,φ)

(π#, θ × θ) we have TaT1 = T1Ta = Ta , and in particular Ta vanishes

on (Ran T1)
⊥.

It then follows that if z ∈ C \ {α} and the operator

z1 − Opθ (a0) = Opθ (z − a0) = Opθ (z − α − a00)

is invertible in B(H), then (z − α)(1 − T1) + Tz−α−a00 = (z − α)1 − Ta00 is invert-
ible in B(L2(�)). On the other hand, since a00 ∈ M∞,1

W(φ,φ)
(π#, θ × θ), it follows

by Remark 3.5 that there exists β0 ∈ L1(�) such that the integral kernel Ca00 of
Ta00 satisfies the estimate |Ca00(X − Y )| ≤ β0(X − Y ) for all X,Y ∈ �. We then
get by [13, Th. 5.4.7] (see also [14]) that ((z − α)1 − Ta00)

−1 = (z − α)−11 − Nz ,
where Nz ∈ B(L2(�)) is an integral operator whose kernel KNz satisfies a simi-
lar estimate |KNz (X − Y )| ≤ βz(X − Y ) for all X,Y ∈ � and a suitable function
βz ∈ L1(�). Since Ta00 T1 = T1Ta00 = Ta00 , it follows that NzT1 = T1 Nz = Nz . By
using the fact that Opθ : S ′(�∗) → L(H∞,H−∞) is a linear isomorphism (see [4,
Rem. 3.11]) and Lemma 3.7, we then get bz ∈ S ′(�∗) such that Opθ (bz) ∈ B(H) and
Tbz = Nz . Moreover, the estimates satisfied by the integral kernel of Nz show that
actually bz ∈ M∞,1

W(φ,φ)
(π#, θ × θ) by Remark 3.5 again.

We have thus shown that if z ∈ C \ {α} and z1 − Opθ (a0) (which is equal to
Opθ (z − a0)) is invertible in B(H), then there exists bz ∈ M∞,1

W(φ,φ)
(π#, θ × θ) such

that Opθ (z − a0)
−1 = Opθ ((z − α)−1 − bz). Thus we can see that z − a0 is invertible

in the unital Banach algebra M∞,1
W(φ,φ)

(π#, θ × θ) and its inverse is (z −α)−1 −bz . In
particular, z �→ bz is a holomorphic mapping from the complement of the spectrum
of Opθ (a0) into M∞,1

W(φ,φ)
(π#, θ × θ). Now, since Opθ (a0) ∈ B(H) is an invertible

operator, there exists a piecewise smooth closed curve that does not contain α and
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surrounds the spectrum of Opθ (a0), and we have by holomorphic functional calculus

Opθ (a0)
−1 = 1

2π i

∫

γ

1

z
(z − Opθ (a0))

−1dz.

Since M∞,1
W(φ,φ)

(π#, θ × θ) is a unital Banach algebra, we can define

b0 := 1

2π i

∫

γ

1

z

(
(z − α)−1 − bz

)
dz ∈ M∞,1

W(φ,φ)

(
π#, θ × θ

)
.

Then

Opθ (b0) = 1

2π i

∫

γ

1

z
Opθ

(
(z − α)−1 − bz

)
dz = 1

2π i

∫

γ

1

z

(
z − Opθ (a0)

)−1
dz

= Opθ (a0)
−1,

which completes the proof. 
�
Remark 3.11 A more general result on the continuity of the operators Opθ (a) on
modulation spaces was obtained in [4] by a completely different method based on
continuity properties of the cross-Wigner distribution. 
�

4 Applications to the magnetic Weyl calculus

In this section, we apply the above abstract results to the magnetic Weyl calculus
developed in a series of papers including for instance [1,2,4,10,11,16,17].

Notation 4.1 Let G be a simply connected, nilpotent Lie group with the Lie algebra g
and the inverse of the exponential map denoted by logG : G → g. We denote
by λ : G → End (C∞(G)), g �→ λg , the left regular representation defined by
(λgφ)(x) = φ(g−1x) for every x, g ∈ G and φ ∈ C∞(G). Moreover, we denote
by 1 the constant function which is identically equal to 1 on G. (This should not be
confused with the unit element of G, which is denoted in the same way.)

If the space of globally defined smooth vector fields on G (that is, global sections
in its tangent bundle) is denoted by X(G) and the space of globally defined smooth
1-forms (that is, global sections in its cotangent bundle) is denoted by 1(G), then
there exists a natural bilinear map

〈·, ·〉 : 1(G)× X(G) → C∞(G) (4.1)

defined as usually by evaluations at every point of G.
For arbitrary g ∈ G we denote the corresponding right-translation mapping by

Rg : G → G, h �→ hg. Then we define the injective linear mapping

ιR : g → X(G)

by (ιR X)(g) = (T1(Rg))X ∈ TgG for all g ∈ G and X ∈ g.
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Moreover, we set

� = �∗ := g × g∗

with the symplectic duality pairing

�∗ ×� → R, ((X1, ξ1), (X2, ξ2)) �→ 〈ξ1, X2〉 − 〈ξ2, X1〉

where 〈·, ·〉 : g∗ × g → R is the natural duality pairing. This should not be confused
with the bilinear mapping (4.1), which is denoted in the same way. In fact, the meaning
of 〈·, ·〉 will always be clear from the context. 
�
Setting 4.2 Throughout this section we denote by F a linear space of real functions
on the Lie group G which is endowed with a sequentially complete, locally convex
topology and satisfies the following conditions:

(1) The linear space F is invariant under the representation of G by left translations,
that is, if φ ∈ F and g ∈ G then λgφ ∈ F .

(2) There exist the continuous inclusion maps g∗ ↪→ F ↪→ C∞
pol(G), where the

embedding g∗ ↪→ F is given by ξ �→ ξ ◦ logG .
(3) The mapping G × F → F , (g, φ) �→ λgφ is smooth. For every φ ∈ F we

denote by λ̇(·)φ : g → F the differential of the mapping g �→ λgφ at the point
1 ∈ G.

For instance, the function space C∞
pol(G) is admissible. Here C∞

pol(G) is the space of
smooth functions φ : G → R such that the function φ ◦ expG : g → R and its partial
derivatives have polynomial growth. 
�
Definition 4.3 We define the semidirect product M = F �λ G, which is a locally
convex Lie group, and the unitary representation

π : M → B(L2(G)), π(φ, g) f = eiφλg f for φ ∈ F , g ∈ G, and f ∈ L2(G).

If we have A ∈ 1(G) with F-growth, in the sense that 〈A, ιR X〉 ∈ F whenever
X ∈ g, then we define the linear mapping

θ A : g × g∗ → m = F �λ̇ g, (X, ξ) �→
(
ξ ◦ logG +

〈
A, ιR X

〉
, X

)
.

Remark 4.4 The representation π is twice nuclearly smooth and its space of smooth
vectors is the Schwartz space S(G) ([4, Cor.4.5]) and the following assertions hold
for every 1-form A ∈ 1(G) with F-growth:

(1) The representation π satisfies the orthogonality relations along the mapping θ A.
(2) The representation π satisfies the density condition along θ A.
(3) The localized Weyl calculus for π along θ A is regular and defines a unitary

operator Opθ
A : L2(g × g∗) → S2(L2(G)).
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(4) If u ∈ U(mC) and φ ∈ S(G), the function ‖dπ(AdU(mC)(expM (θ
A(·)))u)φ‖

has polynomial growth on g × g∗. Here for any element x ∈ M we denote
by AdU(mC)(x) the unique automorphism of the universal enveloping algebra
U(mC) which extends the Lie algebra automorphism Adm(x) : m → m defined
by the adjoint action.

These properties have been established in [4, Cor.4.5], and it thus follows that all
of the conditions of Setting 3.1 are satisfied in the present setting provided by the
representation π and the linear mapping θ A.

Just as in [1] we shall denote the corresponding Moyal product #θ
A

simply by #A

and the localized Weyl calculus for π along θ A is denoted by OpA(·) and is called
the magnetic Weyl calculus associated with the magnetic potential A ∈ 1(G). The
corresponding magnetic field is B := dA ∈ 2(G). 
�
Theorem 4.5 If φ ∈ S(G), then the following assertions hold:

(1) For every a ∈ M∞,1
W(φ,φ)

(π#, θ A × θ A) we have OpA(a) ∈ B(L2(G)) and more-

over ‖OpA(a)‖ ≤ ‖a‖M∞,1
W(φ,φ)

(π#,θ A×θ A)
.

(2) The Moyal product #A makes the modulation space M∞,1
W(φ,φ)

(π#, θ A × θ A) into
an associative Banach algebra.

(3) If a0 ∈ M∞,1
W(φ,φ)

(π#, θ A × θ A) and OpA(a0) ∈ B(L2(G)) is invertible, then

there exists b0 ∈ M∞,1
W(φ,φ)

(π#, θ A × θ A) such that OpA(a0)
−1 = OpA(b0).

Proof The above Remark 4.4 shows that Corollary 3.9 and Theorem 3.10 apply, and
then the assertions follow. 
�

5 Applications to representations of nilpotent Lie groups

All of the conditions of Setting 3.1 are satisfied in the case of a finite-dimensional nil-
potent Lie group, and a unitary irreducible representation, along the inclusion mapping
of a predual of the corresponding coadjoint orbit (in the sense of [3]). This will be the
setting of the present section, and our point here is to describe how the abstract results
of Sect. 3 can be specialized in this framework, and also to point out how they can be
further sharpened in the special case of a square-integrable representation modulo the
center.

Setting 5.1 Throughout this section we use the following notation:

(1) Let G be a connected, simply connected, nilpotent Lie group with Lie algebra g.
Then the exponential map expG : g → G is a diffeomorphism with the inverse
denoted by logG : G → g.

(2) We denote by g∗ the linear dual space to g and by 〈·, ·〉 : g∗ × g → R the natural
duality pairing.

(3) Let ξ0 ∈ g∗ with the corresponding coadjoint orbit O := Ad∗
G(G)ξ0 ⊆ g∗.

(4) Let π : G → B(H) be any unitary irreducible representations associated with
the coadjoint orbit O by Kirillov’s theorem [12].

123

Author's personal copy



30 I. Beltiţă, D. Beltiţă

(5) The isotropy group at ξ0 is Gξ0 := {g ∈ G | Ad∗
G(g)ξ0 = ξ0} with the

corresponding isotropy Lie algebra gξ0 = {X ∈ g | ξ0 ◦ adgX = 0}. If we
denote the center of g by z := {X ∈ g | [X, g] = {0}}, then z ⊆ gξ0 .

(6) Let n := dim g and fix a sequence of ideals in g,

{0} = g0 ⊂ g1 ⊂ · · · ⊂ gn = g

such that dim(g j/g j−1) = 1 and [g, g j ] ⊆ g j−1 for j = 1, . . . , n.
(7) Pick any X j ∈ g j \ g j−1 for j = 1, . . . , n, so that the set {X1, . . . , Xn} will be

a Jordan–Hölder basis in g.

Also consider the set of jump indices of the coadjoint orbit O with respect to the
aforementioned Jordan–Hölder basis,

e := {
j ∈ {1, . . . , n} | g j �⊆ g j−1 + gξ0

} = {
j ∈ {1, . . . , n} | X j �∈ g j−1 + gξ0

}

and then define the corresponding predual of the coadjoint orbit O,

ge := span {X j | j ∈ e} ⊆ g.

We note the direct sum decomposition g = gξ0 � ge.
This setting is a special instance of the above abstract setting of Sect. 3 with M = G,

� = ge, θ = idge : ge ↪→ g, and �∗ = O. The corresponding operator calculus and
Moyal product will be denoted simply by Op and #, respectively. 
�
Theorem 5.2 If the representation π is square integrable modulo the center, then the
following assertions hold:

(1) If p1, p2, p, q1, q2, q ∈ [1,∞] satisfy the conditions 1
p1

+ 1
p2

= 1
p and 1

q1
+ 1

q2
=

1 + 1
q , then the Moyal product # defines a continuous bilinear map

M p1,q1
(
π#

)
× M p2,q2

(
π#

)
→ M p,q

(
π#

)
.

(2) The Moyal product # makes the modulation space M∞,1(π#) into an associative
involutive Banach algebra and the Weyl calculus defines an injective continuous
∗-homomorphism Op : M∞,1(π#) → B(H).

(3) If a0 ∈ M∞,1(π#) and Op(a0) ∈ B(H) is an invertible operator, then there exists
b0 ∈ M∞,1(π#) such that Op(a0)

−1 = Op(b0).

Proof Recall that the modulation spaces of symbols M p,q(π#) are independent on
the choice of a window vector by [3, Example 3.4(2)]. Then the assertions follow by
the above Corollary 3.9 and Theorem 3.10. 
�
Theorem 5.3 Assume that the representation π is square integrable modulo the cen-
ter of G and let ge = g1

e �g2
e be any decomposition of the predual into a direct sum of

linear subspaces. If φ ∈ H∞ and we have 1 ≤ p1 ≤ p2 ≤ ∞ and 1 ≤ q1 ≤ q2 ≤ ∞,
then M p1,q1

φ (π) ⊆ M p2,q2
φ (π).
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Proof It follows by (2.7) that the proof will be complete as soon as we have proved
that if p, q ∈ [1,∞] and f ∈ M p,q

φ (π), then f ∈ M∞,∞
φ (π), that is, Aφ f ∈ L∞(ge).

In fact, let us define

Rφ : ge × ge → C, Rφ(X,Y ) = (
π(expG X)φ | π(expG Y )φ

)

= (Aφ(π(expG φ))
)
(Y ).

Let us denote by ∗e the Baker–Campbell–Hausdorff multiplication on the nilpotent
Lie algebra ge � g/z. There exists a polynomial map α : ge × ge → R such that
π(expG((−X) ∗ Y )) = eiα(−X,Y )π(expG((−X) ∗e Y )) (see for instance [15]), hence

Rφ(X,Y ) = e−iα(−X,Y ) (φ | π(expG((−X) ∗e Y ))φ
)

= e−iα(−X,Y )(Aφφ)((−X) ∗e Y ).

Since Aφφ ∈ S(ge) (see [20]) and the Lebesgue measure on ge coincides with the
Haar measure on the nilpotent Lie group (ge, ∗e), it then follows that

(∀r, s ∈ [1,∞]) sup
X∈ge

∥
∥Rφ(X, ·)

∥
∥

Lr,s(g1
e×g2

e)
< ∞. (5.1)

On the other hand, note that Rφ(X,Y ) = (Aφ(π(expG φ)))(Y ), hence

(Aφ f )(X) = (
f | π(expG X)φ

)

=
(

f
∣
∣
∣
∫

ge

(Aφ

(
π(expG φ)

))
(Y )π

(
expG Y

)
φdY

)

=
(

f
∣
∣
∣
∫

ge

Rφ(X,Y )π
(
expG Y

)
φdY

)

=
∫

ge

Rφ(X,Y )( f | π (
expG Y

)
φ)dY,

by [3, Cor. 2.9(1)]. Therefore

(∀X ∈ ge) (Aφ f )(X) = (Aφ f | Rφ(X, ·)
)
, (5.2)

where the right-hand side makes sense since Aφ f ∈ C(ge)∩S ′(ge), while Rφ(X, ·) ∈
S(ge) by [20]. If f ∈ M p,q

φ (π), then it follows by (5.2) along with Hölder’s inequality
in mixed-norm spaces (see [5]) and (5.1) that

sup
X∈ge

∣
∣(Aφ f )(X)

∣
∣ ≤ sup

X∈ge

(∥
∥Aφ f

∥
∥

L p,q(g1
e×g2

e)

∥
∥Rφ(X, ·)

∥
∥

L p′,q′
(g1

e×g2
e)

)
< ∞,
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where 1
p + 1

p′ = 1
q + 1

q ′ = 1. Thus Aφ f ∈ L∞(ge), and this completes the proof, in
view of the beginning remark. 
�
Corollary 5.4 If the representation π is square integrable modulo the center of G,
then for every p ∈ [1,∞] the modulation space M p,1(π#) is a two-sided ideal of the
Banach algebra M∞,1(π#) endowed with the Moyal product #.

Proof As noted in [3, Example 3.4(2) and Rem. 3.7], the representationπ# : G�G →
B(L2(O)) is square integrable (modulo the center) and its modulation spaces are inde-
pendent on the choice of the window vector. Thus the above Theorem 5.3 applies for
the representation π# instead of π , and it follows that M p1,q1(π#) ⊆ M p2,q2(π#)

whenever 1 ≤ p1 ≤ p2 ≤ ∞ and 1 ≤ q1 ≤ q2 ≤ ∞.
In particular we have M p,1(π#) ⊆ M∞,1(π#) if 1 ≤ p ≤ ∞. Moreover, it follows

by Theorem 5.2 (1) that

M p,1
(
π#

)
#M∞,1

(
π#

)
⊂ M p,1

(
π#

)

and

M∞,1
(
π#

)
#M p,1

(
π#

)
⊂ M p,1

(
π#

)
.

This completes the proof. 
�
In the special case when π is the Schrödinger representation of the Heisenberg

group, the above result goes back to [23]; see also [9]. We also note that in this case
we have M∞,1(π#) = M∞,1(π#).
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16. Măntoiu, M., Purice, R.: The magnetic Weyl calculus. J. Math. Phys. 45(4), 1394–1417 (2004)
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