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Abstract We investigate continuity properties of operators obtained as values of the
Weyl correspondence constructed by Pedersen (Invent. Math. 118:1–36, 1994) for ar-
bitrary irreducible representations of nilpotent Lie groups. To this end we introduce
modulation spaces for such representations and establish some of their basic proper-
ties. The situation of square-integrable representations is particularly important and
in the special case of the Schrödinger representation of the Heisenberg group we
recover the classical modulation spaces used in the time-frequency analysis.
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group · Semidirect product

Mathematics Subject Classification (2000) Primary 47G30 · Secondary 22E25 ·
22E27 · 35S05

1 Introduction

The representation theory of the (2n + 1)-dimensional Heisenberg group H2n+1 pro-
vides a natural background for the pseudo-differential calculus on R

n. It is well
known that the representation theoretic approach has led to a deeper understanding
of the Weyl calculus, which resulted in simplified proofs and improvements for many
basic results. A celebrated example in this connection is the Calderón-Vaillancourt
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theorem on L2-boundedness for pseudo-differential operators [5]. This classical the-
orem was strengthened in the paper [18] by using the modulation spaces, which are
function (or distribution) spaces defined in terms of the Schrödinger representations
of Heisenberg groups. The modulation spaces were introduced in [10] in the frame-
work of harmonic analysis of locally compact abelian groups.

On the other hand, a remarkable Weyl calculus was set up in [31] for arbitrary
unitary irreducible representations of any nilpotent Lie group, by replying on [28–30].
We shall call it the Weyl-Pedersen calculus. It is a challenging task to understand this
interaction of the ideas of pseudo-differential calculus with the representation theory
of nilpotent Lie groups.

In the present paper we address the above problem in the shape of the L2-bound-
edness theorems. Specifically, we are going to investigate continuity properties of the
operators constructed by the Weyl-Pedersen calculus. For this purpose we introduce
the modulation spaces M

r,s
φ (π) defined in terms of an arbitrary irreducible represen-

tation π of a nilpotent Lie group G. One key feature of our representation theoretic
approach is that if O stands for the coadjoint orbit corresponding to π [23], then the
symbols of the operators constructed by the Weyl-Pedersen calculus are functions or
distributions on the coadjoint orbit O, while the Hilbert space L2(O) carries a natural
irreducible representation π# of the nilpotent Lie group G�G. Therefore our general
notion of modulation spaces for irreducible representations allows us to investigate
the modulation spaces of symbols for the operators constructed by the Weyl-Pedersen
calculus for the representation π . This approach also reveals the representation theo-
retic background of the L2-boundedness theorem of [18].

We find several of the familiar properties of the classical modulation spaces, such
as:

– continuity of the operators constructed by the Weyl-Pedersen calculus with sym-
bols in an appropriate modulation space M

∞,1
� (π#) (Corollary 2.26);

– independence on the choice of a window function, and covariance of the Weyl-
Pedersen calculus, in the case of square-integrable representations (Theorems 3.3
and 3.5).

Besides the aforementioned reasons, the present research has also been motivated
by the recent interest in the magnetic pseudo-differential Weyl calculus on R

n (see
for instance [22, 25, 26], and the references therein), which was partially extended to
nilpotent Lie groups in the papers [1, 2]. Specifically, the results of the present paper
apply to the Weyl calculus associated with a polynomial magnetic field on R

n, in
particular complementing the L2-boundedness theorem established in [22] for mag-
netic fields whose components are bounded and so are also their partial derivatives of
arbitrarily high degree.

Notation Throughout the paper we denote by S(V ) the Schwartz space on a finite-
dimensional real vector space V . That is, S(V ) is the set of all smooth functions that
decay faster than any polynomial together with their partial derivatives of arbitrary
order. Its topological dual—the space of tempered distributions on V —is denoted by
S ′(V ).
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We shall also use the convention that the Lie groups are denoted by upper case
Latin letters and the Lie algebras are denoted by the corresponding lower case Gothic
letters.

For basic notions on Weyl pseudo-differential calculus, we refer to [14, 17, 21].

2 Modulation Spaces for Unitary Irreducible Representations

2.1 Preliminaries on Semidirect Products

Definition 2.1 Let G1 and G2 be connected Lie groups and assume that we have a
continuous group homomorphism α :G1 → AutG2, g1 �→ αg1 . The corresponding
semidirect product of Lie groups G1 �α G2 is the connected Lie group whose under-
lying manifold is the Cartesian product G1 × G2 and whose group operation is given
by

(g1, g2) · (h1, h2) = (
g1h1, αh−1

1
(g2)h2

)
(2.1)

whenever gj ,hj ∈ Gj for j = 1,2.
Let us denote by α̇ :g1 → Derg2 the homomorphism of Lie algebras defined as

the differential of the Lie group homomorphism G1 → Autg2, g1 �→ L(αg1). Then
the semidirect product of Lie algebras g1 �α̇ g2 is the Lie algebra whose underlying
linear space is the Cartesian product g1 × g2 with the Lie bracket given by

[
(X1,X2), (Y1, Y2)

] = ([X1, Y1], α̇(X1)Y2 − α̇(Y1)X2 + [X2, Y2]
)

(2.2)

if Xj ,Yj ∈ gj for j = 1,2. One can prove that g1 �α̇ g2 is the Lie algebra of the Lie
group G1 �α G2 (see for instance Chap. 9 in [20]).

Remark 2.2 Let G1 and G2 be nilpotent Lie groups and α :G1 → AutG2 be a unipo-
tent automorphism, in the sense that for every X1 ∈ g1 there exists an integer m ≥ 1
such that α̇(X1)

m = 0. Then an inspection of (2.2) shows that g1 �α̇ g2 is a nilpotent
Lie algebra, hence G1 �α G2 is a nilpotent Lie group.

Example 2.3 For an arbitrary Lie group G with center Z, let us specialize Defin-
ition 2.1 for G1 = G2 := G and α :G → AutG, g �→ αg , where αg(h) = ghg−1

whenever g,h ∈ G. Then the corresponding semidirect product will always be de-
noted simply by G � G and has the following properties:

(1) If G is nilpotent, then so is G � G.
(2) The Lie algebra of G � G is g �adg

g, which will be denoted simply by g � g,
and the center of G � G is Z × Z.

(3) The exponential map of the Lie group G � G is given by

expG�G(X,Y ) = (
expG X, expG(−X) expG(X + Y)

)

for every (X,Y ) ∈ g �adg
g.
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(4) The mapping

μ :G � G → G × G, (g,h) �→ (gh,g)

is an isomorphism of Lie groups, and the corresponding isomorphism of Lie
algebras is L(μ) :g � g → g × g, (X,Y ) �→ (X + Y,X).

In fact, property (1) follows by Remark 2.2. Property (2) is a consequence of the fact
that α̇ = adg :g → Derg along with (2.1).

To prove property (3), note that the mapping � :G � G → G, (g1, g2) → g1g2 is
a homomorphism of Lie groups, hence we have the commutative diagram

g � g
L(�)−−−−→ g

expG�G

⏐⏐�
⏐⏐�expG

G � G −−−−→
�

G

where it is easy to see that the Lie algebra homomorphism L(�) :g � g → g is given
by (X,Y ) �→ X + Y . Now let (X,Y ) ∈ g � g arbitrary. It is clear that there exists
g ∈ G such that expG�G(X,Y ) = (expG X,g), and then the above commutative dia-
gram shows that expG(X + Y) = �(expG�G(X,Y )) = �(expG X,g) = (expG X)g,
whence g = expG(−X) expG(X + Y).

Finally, property (4) follows by a straightforward computation.

2.2 Weyl-Pedersen Calculus for Unitary Irreducible Representations

Setting 2.4 Throughout the present section we shall use the following notation:

(1) Let G be a connected, simply connected, nilpotent Lie group with the Lie al-
gebra g. Then the exponential map expG :g → G is a diffeomorphism with the
inverse denoted by logG :G → g.

(2) We denote by g∗ the linear dual space to g and by 〈·,·〉 :g∗ × g → R the natural
duality pairing.

(3) Let ξ0 ∈ g∗ with the corresponding coadjoint orbit O := Ad∗
G(G)ξ0 ⊆ g∗.

(4) The isotropy group at ξ0 is Gξ0 := {g ∈ G | Ad∗
G(g)ξ0 = ξ0} with the cor-

responding isotropy Lie algebra gξ0 = {X ∈ g | ξ0 ◦ adg X = 0}. The center
z := {X ∈ g | [X,g] = {0}} clearly satisfies z ⊆ gξ0 .

(5) Let n := dimg and fix a sequence of ideals in g,

{0} = g0 ⊂ g1 ⊂ · · · ⊂ gn = g

such that dim(gj /gj−1) = 1 and [g,gj ] ⊆ gj−1 for j = 1, . . . , n.
(6) Pick any Xj ∈ gj \ gj−1 for j = 1, . . . , n, so that the set {X1, . . . ,Xn} will be a

Jordan-Hölder basis in g.
(7) The set of jump indices of the coadjoint orbit O with respect to the above Jordan-

Hölder basis is e := {j ∈ {1, . . . , n} | gj � gj−1 +gξ0} and does not depend on the
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choice of ξ0 ∈ O (see also Proposition 2.4.1 in [28]). The corresponding predual
of the coadjoint orbit O is

ge := span{Xj | j ∈ e} ⊆ g.

We shall denote e = {j1, . . . , jd} with 1 ≤ j1 < · · · < jd ≤ n.
(8) We shall always consider O endowed with its canonical Liouville measure (see

for instance the remark after the statement of the theorem in Sect. 6, Chap. II,
Part 2 in [32]).

(9) Let π :G → B(H) be a fixed unitary irreducible representation associated with
the coadjoint orbit O by Kirillov’s theorem [23].

Remark 2.5 The space of smooth vectors H∞ := {v ∈ H | π(·)v ∈ C∞(G, H)} is a
Fréchet space in a natural way and is a dense linear subspace of H which is invari-
ant under the unitary operator π(g) for every g ∈ G. The derivate representation
dπ :g → End(H∞) is a homomorphism of Lie algebras defined by

(∀X ∈ g, v ∈ H∞) dπ(X)v = d

dt

∣∣∣
∣
t=0

π
(
expG(tX)

)
v.

We denote by H−∞ the space of all continuous antilinear functionals on H∞ and the
corresponding pairing will be denoted by (· | ·) : H−∞ × H∞ → C just as the scalar
product in H, since they agree on H∞ × H∞ if we think of the natural inclusions
H∞ ↪→ H ↪→ H−∞. (See for instance [6] for more details.)

Remark 2.6 We now recall a few facts from Sect. 1.2 in [31] for later use. Let us
denote by Sp(H) the Schatten ideals of operators on H for 1 ≤ p ≤ ∞. Consider the
unitary representation π ⊗ π̄ :G × G → B(S2(H)) defined by

(∀g1, g2 ∈ G)
(∀T ∈ S2(H)

)
(π ⊗ π̄)(g1, g2)T = π(g1)T π(g2)

−1.

It is well-known that π ⊗ π̄ is strongly continuous. (See for instance Proposi-
tion 4.1.2.4 in [35].) The corresponding space of smooth vectors is denoted by
B(H)∞ and is called the space of smooth operators for the representation π . One
can prove that actually B(H)∞ ⊆ S1(H). In fact, one may also define similar repre-
sentations, with S2(H) replaced by a more general norm ideal of compact operators,
and find that the corresponding space of smooth vectors is again B(H)∞. (See [3].)

For an alternative description of B(H)∞ let gC := g⊗R C be the complexification
of g with the corresponding universal associative enveloping algebra U(gC). Then
the aforementioned homomorphism of Lie algebras dπ has a unique extension to
a homomorphism of unital associative algebras dπ : U(gC) → End(H∞). One can
prove that for T ∈ B(H) we have T ∈ B(H)∞ if and only if T (H) + T ∗(H) ⊆ H∞
and dπ(u)T ,dπ(u)T ∗ ∈ B(H) for every u ∈ U(gC).

Since {(· | f1)f2 | f1, f2 ∈ H∞} ⊆ B(H)∞ ⊆ S1(H) and H∞ is dense in H, we
get continuous inclusion maps

B(H)∞ ↪→ S1(H) ↪→ B(H) ↪→ B(H)∗∞, (2.3)
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where the latter mapping is constructed by using the well-known isomorphism
(S1(H))∗ � B(H) given by the usual semifinite trace on B(H).

Definition 2.7 The Fourier transform S(O) → S(ge), a �→ â, defined by

â(X) =
∫

O
e−i〈ξ,X〉a(ξ)dξ

is an isomorphism of Fréchet spaces. The Lebesgue measure on ge can be normalized
such that the Fourier transform extends to a unitary operator

L2(O) → L2(ge), a �→ â,

and its inverse is defined by the usual formula (see Lemma 4.1.1 in [31]). We shall
always consider the predual ge endowed with this normalized measure.

If f ∈ H−∞ and φ ∈ H∞, or f,φ ∈ H, then we define the corresponding ambigu-
ity function

A(f,φ) = Aφf :ge → C, (Aφf )(X) = (
f | π(expG X)φ

)
.

For φ ∈ H−∞ and f ∈ H∞ we also define (Aφf )(X) = (φ | π(expG(−X))f ) when-
ever X ∈ ge .

It follows by Proposition 2.8(1) below that if f,φ ∈ H, then Aφf ∈ L2(ge), so
we can use the aforementioned Fourier transform to define the corresponding cross-
Wigner distribution W (f,φ) ∈ L2(O) such that Ŵ (f,φ) := Aφf .

The second equality in Proposition 2.8(1) below could be referred to as the Moyal
identity since that classical identity (see for instance [17]) is recovered in the special
case when G is a simply connected Heisenberg group.

Proposition 2.8 The following assertions hold:

(1) If φ,f ∈ H, then Aφf ∈ L2(ge). We have

(Aφ1f1 | Aφ2f2)L2(ge)
= (f1 | f2)H · (φ2 | φ1)H

= (
W (f1, φ1) | W (f2, φ2)

)
L2(O)

(2.4)

for arbitrary φ1, φ2, f1, f2 ∈ H.
(2) If φ0 ∈ H with ‖φ0‖ = 1, then the operator Aφ0 : H → L2(ge), f �→ Aφ0f , is an

isometry and we have
∫

ge

(Aφ0f )(X) · π(expG X)φ dX = (φ | φ0)f

for every φ ∈ H and f ∈ H. In particular,
∫

ge

(Aφ0f )(X) · π(expG X)φ0 dX = f

for arbitrary f ∈ H.
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Proof (1) We first prove that (2.4) holds for φ1, φ2, f1, f2 ∈ H∞. Since B(H∞) is
contained in the ideal S1(H) of trace-class operators, it makes sense to define

(∀A ∈ B(H)∞
)

f A
π :G → C, f A

π (x) = Tr
(
π(x)A

)
.

It follows by Theorem 2.2.7 in [31] that for the suitably normalized Lebesgue mea-
sure on ge we have for every A,B ∈ B(H)∞,

∫

ge

f A
π (expG X)f B

π (expG X)dX = Tr
(
AB∗). (2.5)

We now denote

(∀f,φ ∈ H) Af,φ = (· | φ)f ∈ B(H)

and recall that for arbitrary f,f1, f2, φ,φ1, φ2 ∈ H we have

A∗
f,φ = Aφ,f , Tr(Af,φ) = (f | φ), and

Af1,φ1Af2,φ2 = Af1,(φ1|f2)φ2 = A(f2|φ1)f1,φ2 .

It then easily follows that if f,φ ∈ H∞, then Af,φ ∈ B(H)∞ and for arbitrary X ∈ ge

we have

f
Af,φ
π (expG X) = Tr

(
π(expG X)Af,φ

) = Tr(Aπ(expG X)f,φ) = (
π(expG X)f | φ)

= (
f | π(

expG(−X)
)
φ
)
,

whence

(∀X ∈ ge) f
Af,φ
π (expG X) = (Aφf )(−X). (2.6)

Now, by using (2.5) for A := Af1,φ1 and B := Af2,φ2 , we get

(Aφ1f1 | Aφ2f2)L2(ge)
= Tr

(
Af1,φ1A

∗
f2,φ2

) = Tr(Af1,φ1Aφ2,f2) = Tr(Af1,(φ1|φ2)f2)

= (
f1 | (φ1 | φ2)f2

) = (f1 | f2)H · (φ2 | φ1)H.

The second part of (2.4) then follows since the Fourier transform L2(O) → L2(ge)

is a unitary operator, as we already mentioned in Definition 2.7.
The extension of (2.4) from H∞ to H proceeds by a density argument. First note

that by (2.4) for φ1 = φ2 =: φ ∈ H∞ and f1 = f2 =: f ∈ H∞ we get ‖Aφf ‖ =
‖φ‖ · ‖f ‖. Since H∞ is dense in H, it then follows that the sesquilinear mapping
H∞ × H∞ → H, (f,φ) �→ Aφf extends uniquely to a mapping H × H → H satis-
fying

(∀f,φ ∈ H) ‖Aφf ‖ = ‖φ‖ · ‖f ‖. (2.7)

Now the first part of (2.4) follows as a polarization of (2.7), and then the second part
follows by using the Fourier transform L2(O) → L2(ge) as above.
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(2) It follows at once by Assertion (1) that the operator Aφ0 : H → L2(ge) is an
isometry if ‖φ0‖ = 1. The other properties then follow immediately; see for instance
Proposition 2.11 in [15]. �

We now draw some useful consequences of Proposition 2.8. We emphasize that
Assertion (3) in the following corollary in the special case of square-integrable rep-
resentations reduces to a theorem of [7, 9]. One thus recovers Theorem 2.3 in [19] in
the case of the Schrödinger representation of the Heisenberg group.

Corollary 2.9 If φ0 ∈ H∞ with ‖φ0‖ = 1, then the following assertions hold:

(1) For every f ∈ H−∞ we have
∫

ge

(Aφ0f )(X) · π(expG X)φ0 dX = f (2.8)

where the integral is convergent in the weak∗-topology of H−∞.
(2) If f ∈ H∞, then the above integral converges in the Fréchet topology of H∞.
(3) If f ∈ H−∞, then we have f ∈ H∞ if and only if Aφ0f ∈ S(ge).

Proof If f ∈ H−∞, we have to prove that
∫
ge

(Aφ0f )(X) · (π(expG X)φ0 | φ)dX =
(f | φ), for every φ ∈ H∞, that is,

∫

ge

(
f | π(expG X)φ0

) · (π(expG X)φ0 | φ)
dX = (f | φ).

Since (f | ·) is an antilinear continuous functional, the above equation will follow as
soon as we have proved that for φ ∈ H∞ we have

∫

ge

(
φ | π(expG X)φ0

)
π(expG X)φ0 dX = φ

with an integral that converges in the topology of H∞. Note that this is precisely
Assertion (2). To prove it, we just have to use Proposition 2.8(2) along with the fact
that for φ,φ0 ∈ H∞ the function X �→ (φ | π(expG X)φ0) = (Aφ0φ)(X) belongs to
S(ge) (see Theorem 2.2.6 in [31]) while the function X �→ π(expG X)φ0 and all its
partial derivatives have polynomial growth.

For Assertion (3), we have just noted that if f ∈ H∞ then Aφ0f ∈ S(ge) as a direct
consequence of Theorem 2.2.6 in [31]. Conversely, if f ∈ H−∞ has the property
Aφ0f ∈ S(ge), then the fact that all the partial derivatives of X �→ π(expG X)φ0
have polynomial growth implies at once that the integral in (2.8) is convergent in the
Fréchet space H∞, hence Assertion (1) shows that actually f ∈ H∞. �

Definition 2.10 The Weyl-Pedersen calculus Opπ (·) for the unitary representation π

is defined for every a ∈ S(O) by

Opπ (a) =
∫

ge

â(X)π(expG X)dX ∈ B(H). (2.9)
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This definition can be extended to an arbitrary tempered distribution a ∈ S ′(O) by
using Theorems 4.1.4 and 2.2.7 in [31] to define an unbounded operator Opπ (a)

such that
(∀b ∈ S(O)

)
Tr

(
Opπ (a)Opπ (b)

) = 〈a, b〉, (2.10)

where we recall that 〈·,·〉 : S ′(O) × S(O) → C stands for the usual pairing between
the tempered distributions and the Schwartz functions. We say that a ∈ S ′(O) is the
symbol of the operator Opπ (a).

We now record some basic properties of the Weyl-Pedersen calculus constructed
in Definition 2.10. These are actually direct consequences of Proposition 2.8(1).

Corollary 2.11 The following assertions hold:

(1) For each a ∈ S(O) we have

(
Opπ (a)φ | f )

H = (̂a | Aφf )L2(ge)
= (

a | W (f,φ)
)
L2(O)

whenever φ,f ∈ H. Similar equalities hold if a ∈ S ′(O) and φ,f ∈ H∞.
(2) If φ1, φ2 ∈ H∞ and a := W (φ1, φ2) ∈ S(O), then Opπ (a) is a rank-one opera-

tor, namely Opπ (a) = (· | φ2)φ1.

Proof Assertion (1) is a consequence of (2.9) along with Definition 2.7. Then Asser-
tion (2) follows by Assertion (1) along with Proposition 2.8(1). In fact,

(
Opπ

(
W (φ1, φ2)

)
f | φ) = (

W (φ1, φ2) | W (φ,f )
) = (φ1 | φ) · (f | φ2)

= (
(f | φ2)φ1 | φ)

for arbitrary φ ∈ H. �

Remark 2.12 We can define the cross-Wigner distribution W (f1, f2) ∈ S ′(O) for ar-
bitrary f1, f2 ∈ H−∞ as follows. An application of Theorem 1.3(b) in [6] shows that
if A ∈ B(H)∞ and f ∈ H−∞, then Af ∈ H∞, in the sense that there exists a smooth
vector denoted Af such that for every φ ∈ H∞ we have (f | A∗φ) = (Af | φ). More-
over, we thus get a continuous linear map A : H−∞ → H∞ whose restriction to H is
the original operator A ∈ B(H)∞. Then for f1, f2 ∈ H−∞ we can define the contin-
uous antilinear functional

Tf1,f2 : B(H)∞ → C, Tf1,f2(A) := (f1 | Af2).

That is, Tf1,f2 ∈ B(H)∗∞, and then Theorem 4.1.4(5) in [31] shows that there exists a
unique distribution af1,f2 ∈ S ′(O) such that Opπ (af1,f2) = Tf1,f2 . Now define

W (f1, f2) := af1,f2 .

We can consider the rank-one operator Sf1,f2 := (· | f2)f1 : H∞ → H−∞ and for
arbitrary A ∈ B(H)∞ thought of as a continuous linear map A : H−∞ → H∞ as
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above we have

Tr(Sf1,f2A) = (f1 | Af2) = Tf1,f2(A).

Thus the trace duality pairing allows us to identify the functional Tf1,f2 ∈ B(H)∗∞
with the rank-one operator (· | f2)f1, and then we can write

(∀f1, f2 ∈ H−∞) Opπ
(

W (f1, f2)
) = (· | f2)f1. (2.11)

In particular, it follows that the above extension of the cross-Wigner distribution to
a mapping W (·,·) : H−∞ × H−∞ → S ′(O) allows us to generalize the assertion of
Corollary 2.11(2) to arbitrary φ1, φ2 ∈ H−∞.

Definition 2.13 Recall from Theorem 4.1.4(5) in [31] that the Weyl-Pedersen calcu-
lus Opπ : S ′(O) → B(H)∗∞ is a linear isomorphism and a weak∗-homeomorphism.
We introduce the linear space

S 0(O) := {
a ∈ S ′(O) | Opπ (a) ∈ B(H)

}

(see (2.3)). Then the mapping Opπ induces a linear isomorphism S 0(O) → B(H),
hence there exists an uniquely defined bilinear associative Moyal product

S 0(O) × S 0(O) → S 0(O), (a, b) �→ a#b

such that
(∀a, b ∈ S 0(O)

)
Opπ (a#b) = Opπ (a)Opπ (b).

The space of distributions S 0(O) is thus made into a W ∗-algebra such that the map-
ping S 0(O) → B(H), a �→ Opπ (a) is a ∗-isomorphism.

With Definition 2.13 at hand, we can say that one of the main problems addressed
in the present paper is to describe large classes of distributions belonging in the
space S 0(O).

Example 2.14 Here are some examples of distributions in S 0(O) which are already
available.

(1) It follows at once by (2.9) and (2.10) that
{
a ∈ S ′(O) | â ∈ L1(ge)

} ⊆ S 0(O).

(2) The Schwartz space S(O) is a ∗-subalgebra of S 0(O) and the mapping
Opπ : S(O) → B(H)∞ is an algebra ∗-isomorphism by Theorem 4.1.4 in [31].

(3) The space L2(O) is a ∗-subalgebra of S 0(O), and Opπ :L2(O) → S2(H) is a
unitary operator and an algebra ∗-isomorphism as an easy consequence of Theo-
rem 4.1.4 in [31]; see also [24].

(4) For every Y ∈ g we have ei〈·,Y 〉 ∈ S 0(O) since it follows at once by (2.9) and
(2.10) that Opπ (ei〈·,Y 〉) = π(expG Y).

See also Corollary 2.26 for the important example M
∞,1
� (π#) ↪→ S 0(O).
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2.3 Modulation Spaces

Definition 2.15 Let φ ∈ H∞ \ {0} be fixed and assume that we have a direct sum
decomposition ge = g1

e � g2
e .

Then let 1 ≤ r, s ≤ ∞ and for arbitrary f ∈ H−∞ define

‖f ‖M
r,s
φ (π) =

(∫

g2
e

(∫

g1
e

|(Aφf )(X1,X2)|r dX1

)s/r

dX2

)1/s

∈ [0,∞]

with the usual conventions if r or s is infinite. Then we call the space

M
r,s
φ (π) := {f ∈ H−∞ | ‖f ‖M

r,s
φ (π) < ∞}

a modulation space for the irreducible unitary representation π :G → B(H) with
respect to the decomposition ge � g1

e × g2
e and the window vector φ ∈ H∞ \ {0}.

Remark 2.16 Assume the setting of Definition 2.15 and recall the mixed-norm space
Lr,s(g1

e × g2
e) consisting of the (equivalence classes of) Lebesgue measurable func-

tions 	 :g1
e × g2

e → C such that

‖	‖Lr,s :=
(∫

g2
e

(∫

g1
e

|	(X1,X2)|r dX1

)s/r

dX2

)1/s

< ∞

(cf. [17]). It is clear that M
r,s
φ (π) = {f ∈ H−∞ | Aφf ∈ Lr,s(g1

e × g2
e)}.

Example 2.17 For any choice of φ ∈ H∞ \ {0} in Definition 2.15 we have

M
2,2
φ (π) = H.

Indeed, this equality holds since ‖Aφf ‖L2(ge)
= ‖φ‖ ·‖f ‖ for every f ∈ H (see (2.7)

in the proof of Proposition 2.8 above).

2.4 Continuity of Weyl-Pedersen Calculus on Modulation Spaces

In the following lemma we use notation introduced in Example 2.3(4) and Re-
mark 2.6.

Lemma 2.18 Let G be any Lie group with a unitary irreducible representation
π :G → B(H) and define

π� :G � G → B
(
S2(H)

)
, π�(g,h)T = π(gh)T π(g)−1.

Then the following assertions hold:
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(1) The diagram

G � G
π�

μ

B(S2(H))

G × G

π⊗π̄

is commutative and π� is a unitary irreducible representation of G � G.
(2) The space of smooth vectors for the representation π� is B(H)∞.
(3) Let us denote by ḡ = g � g and define

X̄j =
{

(Xj ,0) for j = 1, . . . , n,

(Xj−n,Xj−n) for j = n + 1, . . . ,2n.

Then X̄1, . . . , X̄2n is a Jordan-Hölder basis in ḡ and the corresponding predual
for the coadjoint orbit Ō ⊆ ḡ∗ associated with the representation π� is

ḡē = ge × ge ⊆ ḡ,

where ē is the set of jump indices for Ō.

Proof (1) It is clear that the diagram is commutative, and then the mapping π� is a
representation since π ⊗ π̄ is a representation and μ :G � G → G × G is a group
isomorphism. It is well-known that the representation π ⊗ π̄ is irreducible, hence
π� is irreducible as well. For the sake of completeness, we recall the corresponding
reasoning. Let arbitrary A ∈ B(S2(H)) satisfying

(∀(g,h) ∈ G � G
)

Aπ�(g,h) = π�(g,h)A. (2.12)

We have to show that A is a scalar multiple of the identity operator on S2(H). For
that purpose, let us define the operators LB,RB :S2(H) → S2(H) by LBX = BX

and RBX = XB for X,B ∈ B(H). Note that if h ∈ G, then π�(1, h) = Lπ(h). It
then follows by (2.12) that ALπ(h) = Lπ(h)A for every h ∈ G. On the other hand,
the representation π is irreducible, the linear space span{π(h) | h ∈ G} is dense in
B(H) in the strong operator topology, and then it easily follows that ALB = LB A for
every B ∈ B(H). This property implies that there exists A ∈ B(H) such that A = RA

(see for instance [33]). Now, by using (2.12) for h = 1, we get π(g)Xπ(g)−1A =
π(g)XAπ(g)−1 for every g ∈ G and X ∈ B(H), which implies Aπ(g) = π(g)A for
arbitrary g ∈ G. Since π is an irreducible representation, it follows that A is a scalar
multiple of the identity operator on H, hence A = LA is a scalar multiple of the
identity operator on S2(H), as we wished for.

(2) This assertion follows since the space of smooth vectors for π ⊗ π̄ is B(H)∞,
as defined in Remark 2.6.

(3) It is easy to see that the sequence

(0,X1), . . . , (0,Xn), (X1,0), . . . , (Xn,0)
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is a Jordan-Hölder basis in the direct product g × g, and the coadjoint orbit corre-
sponding to the representation π ⊗ π̄ :G × G → B(S2(H)) is O × O. (This follows
for instance by the theorem in Sect. 6, Chap. II, Part 2 in [32].) Then the assertion
follows by Example 2.3(4) along with the above Assertion (1). �

In the following definition we use an idea similar to one used in [26].

Definition 2.19 Let G be a simply connected, nilpotent Lie group with a unitary
irreducible representation π :G → B(H). Assume that O ⊆ g∗ is the coadjoint orbit
associated with this representation and define

π# :G � G → B
(
L2(O)

)
,

π#(expG X, expG Y)f = ei〈·,X〉#ei〈·,Y 〉#f #e−i〈·,X〉,

where # is the Moyal product associated with π (see Definition 2.13). We note the
following equivalent expression

(∀X,Y ∈ g) π#(expG�G(X,Y )
)
f = ei〈·,X+Y 〉#f #e−i〈·,X〉 (2.13)

which follows by Example 2.3(3). The corresponding ambiguity function is given by

A#
�F :ge × ge → C,

(
A#

�F
)
(X,Y ) = (

F | π#(expG�G(X,Y )
)
�

)

for �,F ∈ L2(O) or for a function � ∈ S(O) and a continuous antilinear functional
F : S(O) → C denoted by 
 �→ (F | 
).

Remark 2.20 To explain the terminology of Definition 2.19, let us see that we really
have to do with the ambiguity function of a unitary representation. To this end, re-
call the unitary operator Opπ :L2(O) → S2(H) (see e.g., Example 2.14(3)) and the
representation π� :G � G → B(S2(H)) from Lemma 2.18. It follows by Defini-
tion 2.13 and Example 2.14(4) that the unitary operator Opπ intertwines π# and π�,
hence we get by Lemma 2.18 that π# is also a unitary irreducible representation. It
also follows that ge × ge ⊆ g � g is a predual to the coadjoint orbit O# ⊆ (g � g)∗
associated with the representation π#.

Let us note that the space of smooth vectors for the representation π# is equal to
S(O), as a consequence of Lemma 2.18(2), since Opπ : S(O) → B(H)∞ is a linear
isomorphism by Theorem 4.1.4 in [31].

The next statement points out the representation theoretic background of the com-
putation carried out in the proof of Lemma 14.5.1 in [17].

Proposition 2.21 Let G be a simply connected, nilpotent Lie group with a unitary
irreducible representation π :G → B(H). Pick any predual ge ⊆ g for the coadjoint
orbit O ⊆ g∗ corresponding to the representation π . If either φ1, φ2, f1, f2 ∈ H or
φ1, φ2 ∈ H∞ and f1, f2 ∈ H−∞, then

(∀X,Y ∈ ge) A#
�

(
W (f1, f2)

)
(X,Y ) = (Aφ1f1)(X + Y) · (Aφ2f2)(X),
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where � := W (φ1, φ2) ∈ L2(O), while W (·,·) and Aφj
fj :ge → C for j = 1,2 are

cross-Wigner distributions and ambiguity functions for the representation π , respec-
tively.

Proof If we denote F = W (f1, f2), then for arbitrary X,Y ∈ ge we have by Defini-
tion 2.19, Example 2.3(3), and Remark 2.20,
(

A#
�F

)
(X,Y ) = (

F | π#(expG�G(X,Y )
)
�

)
L2(O)

= (
F | π#(expG X, (expG X)−1 expG(X + Y)

)
�

)
L2(O)

= (
Opπ (F ) | π�

(
expG X, (expG X)−1 expG(X + Y)

)
Opπ (�)

)
S2(H)

= (
Opπ (F ) | π(

expG(X + Y)
)

Opπ (�)π(expG X)−1)
S2(H)

.

On the other hand Remark 2.12 (particularly (2.11)) shows that

Opπ (F ) = (· | f2)f1

and Opπ (�) = (· | φ2)φ1, whence

π
(
expG(X + Y)

)
Opπ (�)π(expG X)−1 = (· | π(expG X)φ2

)
π

(
expG(X + Y)

)
φ1.

Then the above computation leads to the formula
(

A#
�F

)
(X,Y ) = (

π(expG X)φ2 | f2
) · (f1 | π(

expG(X + Y)
)
φ1

)
,

which is equivalent to the equation in the statement. �

We now prove a generalization of Theorem 4.1 in [34] to irreducible representa-
tions of nilpotent Lie groups.

Theorem 2.22 Let G be a simply connected, nilpotent Lie group with a unitary ir-
reducible representation π :G → B(H). Let O be the corresponding coadjoint orbit,
pick φ1, φ2 ∈ H∞ \ {0}, and denote � = W (φ1, φ2) ∈ S(O). Assume that ge is a pre-
dual to the coadjoint orbit O, and let ge = g1

e � g2
e be any direct sum decomposition.

If 1 ≤ r ≤ s ≤ ∞ and r1, r2, s1, s2 ∈ [r, s] satisfy 1
r1

+ 1
r2

= 1
s1

+ 1
s2

= 1
r

+ 1
s
, then

the cross-Wigner distribution defines a continuous sesquilinear map

W (·,·) :Mr1,s1
φ1

(π) × M
r2,s2
φ2

(π) → M
r,s
�

(
π#).

Proof Let f1, f2 ∈ H−∞. We have, by Definition 2.15 for the representation π# (see
also Remark 2.20), that

‖W (f1, f2)‖M
r,s
� (π#) =

(∫

ge

(∫

ge

|A#
�(W (f1, f2))(X,Y )|r dX

)s/r

dY

)1/s

with the usual conventions if r or s is infinite. Note that for every X ∈ ge we have

(Aφ2f2)(X) = (
f2 | π(expG X)φ2

) = (Af2φ2)(−X). (2.14)
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Therefore by Proposition 2.21 we get

‖W (f1, f2)‖M
r,s
� (π#) =

(∫

g2
e

F (Y2)dY2

)1/s

, (2.15)

where

F(Y2) =
∫

g1
e

(∫

g2
e

∫

g1
e

|(Aφ1f1)(X1 + Y1,X2 + Y2)

× (Af2φ2)(−X1,−X2)|r dX1 dX2

)s/r

dY1. (2.16)

On the other hand, it follows by Minkowski’s inequality that for every measurable
function � :g1

e × g2
e × g2

e → C and every real number t ≥ 1 we have

(∫

g1
e

(∫

g2
e

|�(Y1,X2, Y2)|dX2

)t

dY1

)1/t

≤
∫

g2
e

(∫

g1
e

|�(Y1,X2, Y2)|t dY1

)1/t

dX2 (2.17)

whenever Y2 ∈ g2
e . By (2.16) and (2.17) with t := s/r and

�(Y1,X2, Y2) :=
∫

g2
e

|(Aφ1f1)(Y1 − X1, Y2 − X2) · (Af2φ2)(X1,X2)|r dX1

we get

F(Y2) ≤
(∫

g2
e

(∫

g1
e

�(Y1,X2, Y2)
s/r dY1

)r/s

dX2

)s/r

=
(∫

g2
e

‖�(·,X2, Y2)‖Ls/r (g1
e )

dX2

)s/r

. (2.18)

Now note that �(·,X2, Y2) is equal to the convolution product of the functions
|(Aφ1f1)(·, Y2 − X2)|r and |(Af2φ2)(·,X2)|r . It follows by Young’s inequality that

‖�(·,X2, Y2)‖Ls/r (g1
e)

≤ ‖|(Aφ1f1)(·, Y2 − X2)|r‖Lt1 (g1
e )

· ‖|(Af2φ2)(·,X2)|r‖Lt2 (g1
e )

= ‖(Aφ1f1)(·, Y2 − X2)‖r
Lrt1 (g1

e )
· ‖(Af2φ2)(·,X2)‖r

Lrt2 (g1
e)

whenever t1, t2 ∈ [1,∞] satisfy 1
t1

+ 1
t2

= 1 + r
s
. By using the above inequality with

tj = rj
r

for j = 1,2, and taking into account (2.18), we get

F(Y2) ≤
(∫

g2
e

‖(Aφ1f1)(·, Y2 − X2)‖r
Lrt1 (g1

e)
‖(Af2φ2)(·,X2)‖r

Lrt2 (g1
e )

dX2

)s/r

= : θ(Y2)
s/r , (2.19)
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where θ(·) is the convolution product of the functions X2 �→ ‖(Aφ1f1)(·,X2)‖r
Lrt1 (g1

e)

and X2 �→ ‖(Af2φ2)(·,X2)‖r
Lrt2 (g1

e )
. It follows by Young’s inequality again that

‖θ‖Ls/r (g2
e)

≤
(∫

g2
e

‖(Aφ1f1)(·,X2)‖r
Lrt1 (g1

e)
dX2

)1/m1

×
(∫

g2
e

‖(Af2φ2)(·,X2)‖r
Lrt2 (g1

e )
dX2

)1/m2

provided that m1,m2 ∈ [1,∞] and 1
m1

+ 1
m2

= 1 + r
s
. For mj = sj

r
, j = 1,2, we get

‖θ‖Ls/r (g2
e )

≤ (‖f1‖M
r1,s1
φ1

(π)
)r (‖f2‖M

r2,s2
φ2

(π)
)r ,

where we also used (2.14). Then by (2.15) and (2.19) we get

‖W (f1, f2)‖M
r,s
� (π#) ≤ ‖f1‖M

r1,s1
φ1

(π)
· ‖f2‖M

r2,s2
φ2

(π)
,

and this concludes the proof. �

Remark 2.23 A particularly sharp version of Theorem 2.23 holds for r1 = s1, r2 = s2,
and r = s. That is, let r, r1, r2 ∈ [1,∞] such that 1

r1
+ 1

r2
= 1

r
. It follows at once by

Proposition 2.21 that for arbitrary f1, f2 ∈ H−∞ we have

‖W (f1, f2)‖M
r,r
� (π#) = ‖f1‖M

r1,r1
φ1

(π)
· ‖f2‖M

r2,r2
φ2

(π)
,

which in turn implies that W (f1, f2) ∈ M
r,r
� (π#) if and only if for j = 1,2 we have

fj ∈ M
rj ,rj
φj

(π).

Corollary 2.24 Let G be a simply connected, nilpotent Lie group with a uni-
tary irreducible representation π :G → B(H), pick φ1, φ2 ∈ H∞ \ {0}, and denote
� = W (φ1, φ2) ∈ S(O). If r, r1, r2 ∈ [1,∞] and 1

r
= 1

r1
+ 1

r2
, then the cross-Wigner

distribution associated with any predual to the coadjoint orbit of the representation π

defines a continuous sesquilinear map

W (·,·) :Mr1,r1
φ1

(π) × M
r2,r2
φ2

(π) → M
r,∞
�

(
π#).

Proof One can apply Theorem 2.22 with r1 = s1, r2 = s2, and s = ∞. Alternatively,
a direct proof proceeds as follows. Let f1, f2 ∈ H−∞. It follows by Proposition 2.21
along with Hölder’s inequality that for every Y ∈ ge we have

∥∥A#
�

(
W (f1, f2)

)
(·, Y )

∥∥
Lr(ge)

≤ ‖Aφ1f1‖Lr1 (ge) · ‖Aφ2f2‖Lr2 (ge)

whence ‖W (f1, f2)‖M
r,∞
� (π#) ≤ ‖f1‖M

r1,r1
φ1

(π)
· ‖f2‖M

r2,r2
φ2

(π)
, and the conclusion fol-

lows. �

The next corollary provides a partial generalization of Theorem 4.3 in [34].
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Corollary 2.25 Let G be a simply connected, nilpotent Lie group with a unitary
irreducible representation π :G → B(H), pick φ1, φ2 ∈ H∞ \ {0}, and denote � =
W (φ1, φ2) ∈ S(O). Assume that ge is a predual to the coadjoint orbit O associated
with the representation π , and let ge = g1

e � g2
e be any direct sum decomposition. If

r, s, r1, s1, r2, s2 ∈ [1,∞] satisfy the conditions

r ≤ s, r2, s2 ∈ [r, s], and
1

r1
− 1

r2
= 1

s1
− 1

s2
= 1 − 1

r
− 1

s
,

then the following assertions hold:

(1) For every symbol a ∈ M
r,s
� (π#) we have a bounded linear operator

Opπ (a) :Mr1,s1
φ1

(π) → M
r2,s2
φ2

(π).

(2) The linear mapping Opπ (·) :Mr,s
� (π#) → B(M

r1,s1
φ1

(π),M
r2,s2
φ2

(π)) is continu-
ous.

Proof We may assume that ‖φ1‖ = ‖φ2‖ = 1, hence ‖�‖L2(O) = 1.

For every t ∈ [1,∞] we are going to define t ′ ∈ [1,∞] by the equation 1
t
+ 1

t ′ = 1.
With this notation, the hypothesis implies 1

r1
+ 1

r ′
2

= 1
s1

+ 1
s′
2

= 1
r ′ + 1

s′ and moreover

r1, s1, r
′
2, s

′
2 ∈ [r ′, s′]. Therefore we can apply Theorem 2.22 to obtain

‖W (f2, f1)‖
M

r′,s′
� (π#)

≤ ‖f1‖M
r1,s1
φ1

(π)
· ‖f2‖

M
r′2,s′2
φ2

(π)
(2.20)

whenever f1, f2 ∈ H−∞.
On the other hand, if a ∈ M

r,s
� (π#), then

(
Opπ (a)f1 | f2

) = (
a | W (f2, f1)

)
L2(O)

= (
A#

�a | A#
�

(
W (f2, f1)

))
L2(ge×ge)

by Corollary 2.11(1) and Proposition 2.8(1). Then Hölder’s inequality for mixed-
norm spaces (see for instance Lemma 11.1.2(b) in [17]) shows that

|(Opπ (a)f1 | f2)| ≤ ‖A#
�a‖Lr,s (ge×ge) · ‖A#

�(W (f2, f1))‖Lr′,s′ (ge×ge)

= ‖a‖M
r,s
� (π#) · ‖W (f2, f1)‖

M
r′,s′
� (π#)

≤ ‖a‖M
r,s
� (π#) · ‖f1‖M

r1,s1
φ1

(π)
· ‖f2‖

M
r′2,s′2
φ2

(π)
,

where the latter inequality follows by (2.20). Now the assertion follows by a
straightforward argument that uses the duality of the mixed-norm spaces (see
Lemma 11.1.2(d) in [17]). �

Corollary 2.26 If G be a simply connected, nilpotent Lie group with a unitary irre-
ducible representation π :G → B(H), then the following assertions hold whenever
� = W (φ1, φ2) with φ1, φ2 ∈ H∞ \ {0}:
(1) For every a ∈ M

∞,1
� (π#) we have Opπ (a) ∈ B(H).

(2) The linear mapping Opπ (·) :M∞,1
� (π#) → B(H) is continuous.
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Proof This is the special case of Corollary 2.25 with r1 = s1 = r2 = s2 = 2, r = 1,
and s = ∞, since Example 2.17 shows that M2,2(π) = H. �

We conclude this section by a sufficient condition for a pseudo-differential opera-
tor to belong to the trace class. In the special case of the Schrödinger representation
of a Heisenberg group, a proof for this result can be found for instance in [16] or [18].

Proposition 2.27 Let G be a simply connected, nilpotent Lie group with a unitary
irreducible representation π :G → B(H), pick φ1, φ2 ∈ H∞ with ‖φ1‖ = ‖φ2‖ = 1,
and denote � = W (φ1, φ2) ∈ S(O). Then for every symbol a ∈ M

1,1
� (π#) we have

Opπ (a) ∈ S1(H) and ‖Opπ (a)‖1 ≤ ‖a‖
M

1,1
� (π#)

.

Proof For arbitrary a ∈ S ′(O) we have by Corollary 2.9(1) and Remark 2.20,

a =
∫∫

ge×ge

(
A#

�a
)
(X,Y ) · π#(expG�G(X,Y )

)
�dX dY,

whence by Corollary 2.11

Opπ (a) =
∫∫

ge×ge

(
A#

�a
)
(X,Y ) · Opπ

(
π#(expG�G(X,Y )

)
�

)
dX dY (2.21)

where the latter integral is weakly convergent in L(H∞, H−∞). On the other hand,
for arbitrary X,Y ∈ ge we get by (2.13) and Corollary 2.11(2)

Opπ
(
π#(expG�G(X,Y )

)
�

) = π
(
expG(X + Y)

) ◦ Opπ (�) ◦ π(expG X)−1

= (· | π(expG X)φ2
)
π

(
expG(X + Y)

)
φ1.

In particular, Opπ (π#(expG�G(X,Y ))�) ∈ S1(H) and

‖Opπ (π#(expG�G(X,Y ))�)‖1 = ‖π(expG(X + Y))φ1‖ · ‖π(expG X)φ2‖ = 1.

It then follows that the integral in (2.21) is absolutely convergent in S1(H) for a ∈
M

1,1
� (π#) and moreover we have

‖Opπ (a)‖1 ≤
∫∫

ge×ge

|(A#
�a)(X,Y )|dX dY = ‖a‖

M
1,1
� (π#)

which concludes the proof. �

3 The Case of Square-Integrable Representations

In this section we focus on square-integrable representations of nilpotent Lie groups.
Here and throughout the next sections by square-integrable representations of a nilpo-
tent Lie group we actually mean a representation which is square-integrable modulo
the center. In fact, a simply connected nilpotent Lie group has the center of infinite
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Haar measure, therefore an irreducible representation cannot be square-integrable on
the center. A discussion of the crucial role of these representations along with many
examples can be found for instance in [27] and in the monograph [8].

3.1 Independence of the Modulation Spaces on the Window Vectors

Lemma 3.1 Let G1 and G2 be unimodular Lie groups and assume that we have
a group homomorphism α :G1 → AutG2, g1 �→ αg1 such that for every g1 ∈ G1,
the automorphism αg1 preserves the Haar measure of G2. Consider the semidirect
product G = G1 �α G2 and for every h ∈ G and φ :G → C define Rhφ :G → C,
(Rhφ)(g) = φ(gh). Fix r, s ∈ [1,∞] and consider the mixed-norm space Lr,s(G)

consisting of the equivalence classes of functions φ :G → C such that

‖φ‖Lr,s (G) :=
(∫

G2

(∫

G1

|φ(g1, g2)|r dg1

)s/r

dg2

)1/s

< ∞,

with the usual conventions if r or s is infinite. Then the space Lr,s(G) is invariant
under the right-translation operator Rh for every h ∈ G, and the mapping

ρ :G → B
(
Lr,s(G)

)
, h �→ Rh|Lr,s (G)

is representation of the Lie group G by isometries on the Banach space Lr,s(G).

Proof Let φ :G → C be any measurable function and h = (h1, h2) ∈ G. We have
(Rhφ)(g1, g2) = φ(g1h1, αh−1

1
(g2)h2). Since the group G1 is unimodular, it then fol-

lows that for every g2 ∈ G2 we have
∫

G1

|(Rhφ)(g1, g2)|r dg1 =
∫

G1

∣∣φ
(
g1h1, αh−1

1
(g2)h2

)∣∣r dg1

=
∫

G1

∣∣φ
(
g1, αh−1

1
(g2)h2

)∣∣r dg1.

By integrating on G2 both extreme terms in above equality and taking into account
that G2 is unimodular, we get ‖Rhφ‖Lr,s (G) = ‖φ‖Lr,s (G) for all h ∈ G. �

Remark 3.2 In the setting of Lemma 3.1, the representation ρ is not continuous, in
general; see for instance the case r = s = ∞.

For latter use, we note that for every ψ ∈ L1(G) with compact support and χ ∈
Lr,s(G) we can define the measurable function

(
ρ(ψ)χ

)
(g) =

∫

G

χ(gh)ψ(h)dh for a.e. g ∈ G. (3.1)

Let r ′, s′ ∈ [1,∞] such that 1
r

+ 1
r ′ = 1

s
+ 1

s′ = 1. If ϕ ∈ Lr ′,s′
(G), then by using

Lemma 3.1 we get
∫

G

|ρ(ψ)χ(g)ϕ(g)|dg ≤ ‖ψ‖L1(G) · ‖χ‖Lr,s (G)‖ϕ‖
Lr′,s′ (G)

.
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By using results in [4] (Sect. 5 Corollary to Theorem 1, Sect. 2 Theorem 1) we get
ρ(ψ)χ ∈ Lr,s(G) and

‖ρ(ψ)χ‖Lr,s (G) ≤ ‖ϕ‖L1(G) · ‖φ‖Lr,s (G). (3.2)

Then it is straightforward to see that we may extend (3.1) to arbitrary ψ ∈ L1(G),
and (3.2) is preserved.

We are now ready to prove a theorem that covers many cases when the modulation
spaces for square-integrable representations do not depend on the choice of a window
function. The second stage in the proof is inspired by the methods of the theory of
coorbit spaces (see [11–13], and also the proof of Proposition 11.3.2(c) in [17]).

Theorem 3.3 Let G1 and G2 be simply connected, nilpotent Lie groups and a unipo-
tent homomorphism α :G1 → AutG2. Define G = G1 �α G2 and assume that the
center z of g satisfies the condition

z = (z ∩ g1) + (z ∩ g2). (3.3)

Assume the irreducible representation π :G → B(H) is square-integrable modulo
the center of G, and pick any Jordan-Hölder basis in g such that for the cor-
responding predual ge for the coadjoint orbit associated with π we have ge =
(ge ∩ g1) + (ge ∩ g2).

Then the modulation spaces for the representation π with respect to the decompo-
sition ge � (ge ∩ g1) × (ge ∩ g2) are independent on the choice of a window vector
φ ∈ H∞ \ {0}.

Proof The proof has two stages.

1◦ For the sake of simplicity let us identify the Lie group Gj to its Lie algebra gj by
means of the exponential map expGj

, so that Gj will be just gj with the group
operation ∗ defined by the Baker-Campbell-Hausdorff series. Let Z be the center
of G, whose Lie algebra z is the center of g. Since the representation π is square-
integrable, then for arbitrary ξ0 in the corresponding orbit O, we have gξ0 = z.
(See [8].) Thus, if ge is the predual, as in Setting 2.4, then we have a linear iso-
morphism ge � g/z, X �→ X + z, and we shall endow ge with the Lie algebra
structure which makes this map into an isomorphism of Lie algebras.

If we define Ge := G/Z, then Ge is a connected, simply connected nilpotent
Lie group, whose Lie algebra is just ge. Let ∗e denote the multiplication in Ge,
which is just the Baker-Campbell-Hausdorff multiplication in ge.

Now use assumption (3.3) to see that if (Y1, Y2) ∈ z ⊆ g = g1 �α̇ g2, then
(Y1,0), (0, Y2) ∈ z. Now formula (2.2) shows that for every (X1,X2) ∈ g we have
0 = [(X1,X2), (Y1,0)] = ([X1, Y1],−α̇(Y1)X2), hence Y1 belongs to the center
z1 of g1 and α̇(Y1) = 0. This shows that the closed subgroup Z1 := Z ∩ G1 is
contained in the center of G1 and satisfies

Z1 ⊆ Kerα. (3.4)
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Also 0 = [(X1,X2), (0, Y2)] = (0, α̇(X1)Y2 + [X2, Y2]) for every (X1,X2) ∈ g,
whence we see that Y2 belongs both to the center z2 of G2 and to Ker(α̇(X1)) for
arbitrary X1 ∈ g1. Therefore the closed subgroup Z2 := Z ∩ G2 is contained in
the center of G2 and we have

(∀g1 ∈ G1) αg1(Z2) ⊆ Z2. (3.5)

It follows by (3.4) and (3.5) that the group homomorphism α :G1 → AutG2 in-
duces a group homomorphism ᾱ :G1/Z1 → Aut(G2/Z2) and we have the iso-
morphisms of Lie groups

Ge � G/Z � (G1/Z1) �ᾱ (G2/Z2).

Moreover Z � Z1 × Z2.
2◦ We now come back to the proof. Fix r, s ∈ [1,∞] and let φ1, φ2 ∈ H∞ be any

window functions with ‖φ1‖ = ‖φ2‖ = 1. For j = 1,2 and every f ∈ H−∞ we
have by Corollary 2.9

(Aφ2f )(X) = (
f | π(expG X)φ2

)

=
∫

ge

χ(Y )
(
π(expG Y)φ1 | π(expG X)φ2

)
dY

=
∫

ge

χ(Y )
(
φ1 | π(

expG

(
(−Y) ∗ X

))
φ2

)
dY

=
∫

ge

χ(Y )eiα(−Y,X)
(
φ1 | π(

expG

(
(−Y) ∗e X

))
φ2

)
dY,

=
∫

ge

χ(Y )eiα(−Y,X)(Aφ2φ1)
(
(−Y) ∗e X

)
dY,

=
∫

ge

χ(X ∗e Y )eiα((−Y)∗e(−X),X)(Aφ2φ1)(−Y)dY,

for every X ∈ ge, where χ := Aφ1f ∈ Lr,s(ge × ge) and α :ge × ge → R is a suit-
able polynomial function defined in terms of the central character of the represen-
tation π (see e.g., [24]). Now note that Aφ2φ1 ∈ S(ge) by Corollary 2.9(3). It then
follows by Lemma 3.1 and (3.2) in Remark 3.2 that there exists a constant C > 0
such that for every f ∈ H−∞ we have ‖Aφ2f ‖Lr,s (ge×ge) ≤ C‖Aφ1f ‖Lr,s (ge×ge).
Thus we get the continuous inclusion map M

r,s
φ1

(π) ↪→ M
r,s
φ2

(π). Now the conclu-
sion follows by interchanging φ1 and φ2. �

The previous theorem allows us to omit the window vector in the notation for
modulation spaces associated to square-integrable representations.

Example 3.4 Theorem 3.3 applies to a wide variety of situations. Let us mention here
just a few of them:

(1) In the case of the Schrödinger representation of the Heisenberg group H2n+1 =
R

n
� R

n+1 we recover the well-known property that the classical modulation



J Fourier Anal Appl (2011) 17: 290–319 311

spaces used in the time-frequency analysis are independent on the choice of a
window function (see for instance Proposition 11.3.2(c) in [17]).

(2) We shall see below (see Sect. 3.3) that one can give sufficient conditions for
the continuity of the operators constructed by the Weyl-Pedersen calculus for
the square-integrable representation π :G → B(H) by using spaces of symbols
which are modulation spaces Mr,s(π#) ⊆ S ′(O). Here π# :G � G → B(L2(O))

is in turn a square-integrable representation to which Theorem 3.3 applies and
ensures that the corresponding modulation spaces do not depend on the choice of
a window function.

3.2 Covariance Properties of the Weyl-Pedersen Calculus

We now record the covariance property for the cross-Wigner distributions and its con-
sequence for the Weyl-Pedersen calculus. In the very special case of the Schrödinger
representation for the Heisenberg group we recover a classical fact (see e.g., [17]).

Theorem 3.5 Assume that the representation π :G → B(H) associated with O is
square-integrable modulo the center of G. Then the following assertions hold:

(1) For every f,h ∈ H and X ∈ g we have

W
(
π(expG X)f,π(expG X)h

)
(ξ) = W (f,h)

(
ξ ◦ eadg X

)
for a.e. ξ ∈ O.

(2) For every symbol a ∈ S ′(O) and arbitrary g ∈ G we have

Op
(
a ◦ Ad∗

G

(
g−1)|O

) = π(g)Op(a)π(g)−1.

Proof (1) Let ξ0 ∈ O. Note that the following assertions hold:

(∀X ∈ z) π(expG X) = ei〈ξ0,X〉 idH, (3.6)

(∀ξ ∈ O) ξ |z = ξ0|z, (3.7)

ξ0|ge = 0. (3.8)

Also, it easily follows by Definition 2.7 that for arbitrary f,h ∈ H we have

W (f,h)(ξ) =
∫

ge

ei〈ξ,X〉(f | π(expG X)h
)

dX for a.e. ξ ∈ O.

It then follows that for arbitrary X0 ∈ ge and a.e. ξ ∈ O we have

W
(
π(expG X0)f,π(expG X0)h

)
(ξ)

=
∫

ge

ei〈ξ,X〉(f | π((
expG(−X0)

)
(expG X)(expG X0)

)
h
)

dX

=
∫

ge

ei〈ξ,X〉(f | π(
expG

(
eadg(−X0)X

))
h
)

dX.
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If we denote by prz :g → z the natural projection corresponding to the direct sum
decomposition g = z � ge , then we have for every X ∈ ge,

eadg(−X0)X = eadge (−X0)X + prz
(
eadg(−X0)X

)
,

where we have endowed ge with the Lie algebra structure which makes the linear
isomorphism ge � g/z into an isomorphism of Lie algebras (see also [24]). Therefore,
by using (3.6) and (3.8), we get

(∀X ∈ ge) π
((

expG

(
eadg(−X0)X

))) = ei〈ξ0,eadg(−X0)X〉π
(
expG

(
eadge (−X0)X

))

and then the above computation leads to

W
(
π(expG X0)f,π(expG X0)h

)
(ξ)

=
∫

ge

ei〈ξ,X〉e−i〈ξ0,eadg(−X0)X〉(f | π(
expG

(
eadge (−X0)X

))
h
)

dX

=
∫

ge

ei〈ξ,X〉e−i〈(eadg(−X0))∗ξ0,X〉(f | π(
expG

(
eadge (−X0)X

))
h
)

dX

=
∫

ge

ei〈ξ,eadge X0Y 〉e−i〈(eadg(−X0))∗ξ0,eadge X0 Y 〉(f | π(expG Y)h
)

dY,

where we used the change of variables X �→ Y = eadge (−X0)X, which is a measure-
preserving diffeomorphism since ge is a nilpotent Lie algebra. Now note that by using
(3.7) we get for a.e. ξ ∈ O and every Y ∈ ge,

〈
ξ, eadgeX0Y

〉 − 〈(
eadg(−X0)

)∗
ξ0, eadgeX0Y

〉

= 〈
ξ, eadgX0Y

〉 − 〈
ξ,prz

(
eadgX0Y

)〉 − 〈
ξ0, eadg(−X0)

(
eadgX0Y − prz

(
eadgX0Y

))〉

= 〈
ξ, eadgX0Y

〉 − 〈
ξ0, eadgX0Y

〉 − 〈ξ0, Y 〉 + 〈
ξ0, eadgX0Y

〉

= 〈
ξ, eadgX0Y

〉

since 〈ξ0, Y 〉 = 0 by (3.8). Thus the conclusion follows by the formula we had ob-
tained above for W (π(expG X0)f,π(expG X0)h)(ξ), and this completes the proof
for X ∈ ge . Then the formula extends to arbitrary X ∈ g by using the fact that
g = ge � z and taking into account (3.6).

(2) If a ∈ S(O), then for every f,φ ∈ H we have
(
Op

(
a ◦ Ad∗

G

(
g−1)|O

)
φ | f )

H = (
a ◦ Ad∗

G

(
g−1)|O | W (f,φ)

)
L2(O)

= (
a | W (f,φ) ◦ Ad∗

G(g)|O
)
L2(O)

= (
a | W

(
π(g)−1f,π(g)−1φ

))
L2(O)

= (
Op(a)π(g)−1φ | π(g)−1f

)
H

= (
π(g)Op(a)π(g)−1φ | f )

H,
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where the first and the fourth equalities follow by Corollary 2.11(1), the second equal-
ity is a consequence of the fact that the coadjoint action preserves the Liouville mea-
sure on O, while the third equality follows by Assertion (1) which we already proved.

Thus we obtained the conclusion for a ∈ S(O), and then it can be easily extended
by duality to any a ∈ S ′(O) by using equation (2.10) in Definition 2.10. �

3.3 Continuity of Weyl-Pedersen Calculus

In the case of square-integrable representations modulo the center, we now obtain
continuity properties of the Weyl-Pedersen calculus in modulation spaces which are
independent on the window function.

Lemma 3.6 Let G be any Lie group with a unitary irreducible representation
π :G → B(H) and

π� :G � G → B
(
S2(H)

)
, π�(g,h)T = π(gh)T π(g)−1.

If G is a unimodular group and π is square-integrable modulo the center of G, then
π� is square-integrable modulo the center of G � G.

Proof If π is square-integrable modulo the center Z of G, then there is φ0 ∈ H \ {0}
such that the function gZ �→ |(π(g)φ0 | φ0)| is square-integrable on G/Z. Let us
define the rank-one projection T0 = (· | φ0)φ0. Then we have

∫∫

(G�G)/(Z×Z)

∣∣(π�(g,h)T0 | T0
)∣∣2 dg dh

=
∫

G/Z

(∫

G/Z

∣∣(π(gh)T0π(g)−1 | T0
)∣∣2 dh

)
dg

=
∫

G/Z

(∫

G/Z

∣∣(π(h)T0π(g)−1 | T0
)∣∣2 dh

)
dg.

Since T0 = (· | φ0)φ0, we get π(h)T0π(g)−1 = (· | π(g)φ0)π(h)φ0, and then

(
π(h)T0π(g)−1 | T0

) = (
π(h)φ0 | φ0

) · (φ0 | π(g)φ0
)
.

Therefore

∫∫

(G�G)/(Z×Z)

∣∣(π�(g,h)T0 | T0
)∣∣2 dg dh =

(∫

G/Z

∣∣(π(g)φ0 | φ0
)∣∣2 dh

)2

hence the function (g,h)(Z × Z) �→ |(π�(g,h)T0 | T0)| is square-integrable on the
quotient group (G � G)/(Z × Z), and this concludes the proof since Z × Z is the
center of G � G (see Example 2.3). �

Remark 3.7 Assume that π :G → B(H) is a square-integrable representation of
a simply connected, nilpotent Lie group, with the corresponding coadjoint orbit
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O ⊆ g∗. Recall the representation π# :G�G → B(L2(O)) from Definition 2.19 (see
also Remark 2.20). The assumption that π is square-integrable modulo the center of
G implies by Theorem 3.5(2) that π# is given by

π# :G � G → B
(
L2(O)

)
, π#(g, expY)f = (

ei〈·,Y 〉#f
) ◦ Ad∗

G

(
g−1)|O.

Since the unitary operator Opπ :L2(O) → S2(H) intertwines π# and π�, we get
by Lemma 3.6 that π# is also a unitary irreducible representation which is square-
integrable modulo the center Z × Z of G � G.

Corollary 3.8 Let G be a simply connected, nilpotent Lie group with a unitary irre-
ducible representation π :G → B(H) which is square-integrable modulo the center
of G. If r, r1, r2 ∈ [1,∞] and 1

r
= 1

r1
+ 1

r2
, then the cross-Wigner distribution asso-

ciated with any predual to the coadjoint of the representation π defines a continuous
sesquilinear map

W (·,·) :Mr1,r1(π) × Mr2,r2(π) → Mr,∞(
π#).

Proof Firstly use Corollary 2.24. Then the conclusion follows since both π and
π# are square-integrable representations (see also Remark 3.7), hence Theorem 3.3
shows that the topologies of the modulation spaces Mr1,r1(π), Mr2,r2(π), and
Mr,∞(π#) can be defined by any special choice of window functions. �

Corollary 3.9 If G be a simply connected, nilpotent Lie group with a unitary irre-
ducible representation π :G → B(H) which is square-integrable modulo the center
of G, then the cross-Wigner distribution associated with any predual to the coadjoint
of the representation π defines a continuous sesquilinear map

W (·,·) : H × H → M1,∞(
π#).

Proof Just apply Corollary 3.8 with r1 = r2 = 2 and r = 1; and recall from Exam-
ple 2.17 that M2,2(π) = H. �

In the special case of the Schrödinger representation for the Heisenberg group,
the following corollary recovers the assertion of Theorem 1.1 in [18] concerning
the boundedness of pseudo-differential operators defined by the classical Weyl-
Hörmander calculus on R

n.

Corollary 3.10 Let G be a simply connected, nilpotent Lie group with a unitary irre-
ducible representation π :G → B(H) which is square-integrable modulo the center
of G. If r, r ′, r1, r2 ∈ [1,∞] satisfy the equations 1

r
= 1

r1
+ 1

r2
= 1 − 1

r ′ , then the
following assertions hold:

(1) For every symbol a ∈ Mr ′,1(π#) we have a bounded linear operator

Opπ (a) :Mr1,r1(π) → Mr2,r2(π).
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(2) The linear mapping Opπ (·) :Mr ′,1(π#) → B(Mr1,r1(π),Mr2,r2(π)) is continu-
ous.

Proof Firstly use Corollary 2.25. Then the conclusion follows since Theorem 3.3
shows that the topologies of the modulation spaces involved in the statement can be
defined by any special choice of window functions. �

Corollary 3.11 If G be a simply connected, nilpotent Lie group with a unitary irre-
ducible representation π :G → B(H) which is square-integrable modulo the center
of G, then the following assertions hold:

(1) For every a ∈ M∞,1(π#) we have Opπ (a) ∈ B(H).
(2) The linear mapping Opπ (·) :M∞,1(π#) → B(H) is continuous.

Proof This is the special case of Corollary 3.10 with r1 = r2 = 2 and r = 1, since
Example 2.17 shows that M2,2(π) = H. �

4 Schrödinger Representations of the Heisenberg Groups

We show in the present section that, in the special case of the Heisenberg group, the
modulation spaces of symbols defined in our paper are in fact nothing else than the
modulation spaces widely used in time-frequency analysis.

4.1 Schrödinger Representations

Let V be a finite-dimensional vector space endowed with a nondegenerate bilinear
form denoted by (p, q) �→ p · q . The Heisenberg algebra hV = V × V × R is the Lie
algebra with the bracket

[
(q,p, t),

(
q ′,p′, t ′

)] = [(
0,0,p · q ′ − p′ · q)]

.

The Heisenberg group HV is just hV thought of as a group with the multiplication ∗
defined by

X ∗ Y = X + Y + 1

2
[X,Y ].

The unit element is 0 ∈ HV and the inversion mapping given by X−1 := −X. The
Schrödinger representation is the unitary representation πV : HV → B(L2(V )) de-
fined by

(
πV (q,p, t)f

)
(x) = ei(p·x+ 1

2 p·q+t)f (x + q) for a.e. x ∈ V (4.1)

for arbitrary f ∈ L2(V ) and (q,p, t) ∈ HV . This is a square-integrable representation
(modulo the center, as explained before) and the corresponding coadjoint orbit of HV
is

O = {
ξ :hV → R linear | ξ(0,0,1) = 1

}
. (4.2)
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Let ξ0 ∈ O be the functional satisfying ξ0(q,p,0) = 0 for every q,p ∈ V . If we
denote dim V = n, then any basis {x1, . . . , xn} in V naturally gives rise to the Jordan-
Hölder basis

(x1,0,0), . . . , (xn,0,0), (0, x1,0), . . . , (0, xn,0), (0,0,1)

in hV and the corresponding predual of O is

(hV )e = V × V × {0}.
For the sake of an easier comparison with the previously obtained results we shall
denote G = HV and g = hV from now on, and in particular we shall denote ge =
(hV )e .

4.2 Computing the Moyal Product Representation

Recall from [24] that for every f,h ∈ S(O) we have

(∀ξ ∈ O) (f #h)(ξ) =
∫∫

ge×ge

ei〈ξ,X+Y 〉e(i/2)〈ξ0,[X,Y ]〉f̂ (X)̂h(Y )dX dY.

It then follows by a duality argument that for every f ∈ S(O) and V ∈ g we have

(
f #e−i〈·,V 〉)(ξ) =

∫

ge

ei〈ξ,X−V 〉e(i/2)〈ξ0,[X,−V ]〉f̂ (X)dX,

whence

(∀V ∈ g) (∀ξ ∈ O)
(
f #e−i〈·,V 〉)(ξ) = e−i〈ξ,V 〉f

(
ξ + (1/2)ξ0 ◦ adgV

)
. (4.3)

Since f #h = h̄#f̄ , we also get

(∀V ∈ g) (∀ξ ∈ O)
(
ei〈·,V 〉#f

)
(ξ) = ei〈ξ,V 〉f

(
ξ + (1/2)ξ0 ◦ adgV

)
. (4.4)

Now for arbitrary X,Y ∈ g, f ∈ S(O), and ξ ∈ O we get
(
ei〈·,X+Y 〉#f #e−i〈·,X〉) = ei〈ξ,X+Y 〉(f #e−i〈·,X〉)(ξ + (1/2)ξ0 ◦ adg(X + Y)

)

= ei〈ξ,X+Y 〉e−i〈ξ+(1/2)ξ0◦adg(X+Y),X〉

× f
(
ξ + (1/2)ξ0 ◦ adg(X + Y) + (1/2)ξ0 ◦ adgX

)

= ei〈ξ,Y 〉e(i/2)〈ξ0,[X,Y ]〉

× f
(
ξ + (1/2)ξ0 ◦ adg

(
X + (1/2)Y

))
.

By taking into account (2.13), we now see that the unitary irreducible representation
π#

V :G � G → B(L2(O)) is given by

(
π#

V
(
expG�G(X,Y )

)
f

)
(ξ)

= ei(〈ξ,Y 〉+〈ξ0,[X,Y ]〉/2)f
(
ξ + ξ0 ◦ adg

(
X + (1/2)Y

))
(4.5)

where the latter equation follows by (4.2).
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4.3 Abstract Unitary Equivalence

Denote the center of G by Z, with the corresponding Lie algebra z. The above for-
mula yields expG�G(z × {0}) ⊆ Kerπ#

V , hence we get a unitary irreducible represen-

tation π#
V : (G � G)/(Z × {1}) → B(L2(O)). Also note that there exist the natural

isomorphisms of Lie groups

(G � G)/
(
Z × {1}) � (G/Z) � G � HV ×V . (4.6)

By specializing (4.5) for X,Y ∈ z we can see that the representation π#
V has the same

central character as the Schrödinger representation of the Heisenberg group HV ×V ,
hence they are unitarily equivalent to each other, as a consequence of the Stone-von
Neumann theorem.

4.4 Specific Unitary Equivalence

Alternatively, we can exhibit an explicit unitary equivalence as follows. Let us con-
sider the affine isomorphism O → (V × V )∗, ξ �→ ξ |V ×V ×{0}, and the natural em-
bedding V × V � V × V × {0} ↪→ hV . Now for X,Y ∈ V × V and t ∈ R we have
(X,Y, t) ∈ HV ×V � (G � G)/(Z × {1}) (see (4.6)) hence

(
π#

V
(
exp

HV ×V (X,Y, t)
)
f

)
(ξ) = (

π#
V
(
expG�G

(
(X,0), (Y, t)

))
f

)
(ξ)

= ei(〈ξ,Y 〉+t+ωξ0 (X,Y )/2)f
(
ξ + ξ0 ◦ adg

(
X + (1/2)Y

))
,

where ωξ0(V ,W) := 〈ξ0, [V,W ]〉 whenever V,W ∈ V × V ↪→ g. Thence we get

(
π#

V
(
exp

HV ×V

(
X − (1/2)Y,Y, t

))
f

)
(ξ) = ei(〈ξ,Y 〉+t+ωξ0 (X,Y )/2)f (ξ + ξ0 ◦ adgX).

Note that ψ :hV ×V → hV ×V , (X,Y, t) �→ (X − (1/2)Y,Y, t) is an automorphism of
the Heisenberg algebra hV ×V , hence, by denoting by 
 : HV ×V → HV ×V the corre-
sponding automorphism of the Heisenberg group HV ×V , we get

(
π̃

(
exp

HV ×V (X,Y, t)
)
f

)
(ξ) = ei(〈ξ,Y 〉+ωξ0 (X,Y )/2+t)f (ξ + ξ0 ◦ adgX),

where π̃ := π#
V ◦ 
 is again a representation of the Heisenberg group HV ×V . Then

for arbitrary V ∈ V × V we get

(
π̃

(
exp

HV ×V (X,Y, t)
)
f

)
(ξ0 + ξ0 ◦ adgV )

= ei(ωξ0 (V ,Y )+ωξ0 (X,Y )/2+t)f
(
ξ0 + ξ0 ◦ adg(V + X)

)
. (4.7)

Now let us define the affine isomorphism

A : V × V → O, V �→ ξ0 + ξ0 ◦ adgV
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and consider the unitary operator U :L2(V × V ) → L2(O), f �→ f ◦ A−1. It follows
by the above equation that if we define the Heisenberg group HV ×V by using the
nondegenerate bilinear map

(V × V ) × (V × V ) → R, (V ,W) �→ −ωξ0(V ,W),

then the unitary operator U intertwines the representation π̃ : HV ×V → B(L2(O))

and the Schrödinger representation πV ×V : HV ×V → B(L2(V × V )). In other words,

the operator U induces a unitary equivalence of the representation π#
V with the rep-

resentation πV ×V ◦ 
−1.

4.5 Determining the Modulation Spaces of Symbols

It follows by the above discussion that the operator U induces isomorphisms between
the modulation spaces for the representations

π#
V :G � G → B

(
L2(O)

)
and πV ×V ◦ 
−1 : HV ×V → B

(
L2(V × V )

)
.

Now note that for arbitrary r, s ∈ [1,∞] we have Mr,s(πV ×V ◦ 
−1) = Mr,s(πV ×V )

since the norm of any measurable function f : V × V → C in Lr,s(V × V ) is equal
to the norm of the function (X,Y ) �→ f (X + (1/2)Y,Y ) in the same space. There-
fore the operator f �→ f ◦ A−1 actually induces an isomorphism from the modu-
lation space Mr,s(π#

V ) onto the modulation space Mr,s(πV ×V ) of the Schrödinger
representation πV ×V : HV ×V → B(L2(V × V )). Finally, recall that Mr,s(πV ×V ) =
Mr,s(V × V ), where the latter is just the classical modulation space on V × V as used
for instance in [17].
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2. Beltiţă, I., Beltiţă, D.: Uncertainty principles for magnetic structures on certain coadjoint orbits.
J. Geom. Phys. 60(1), 81–95 (2010)
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