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Abstract We develop a pseudo-differential Weyl calculus on nilpotent Lie groups, which
allows one to deal with magnetic perturbations of right invariant vector fields. For this pur-
pose, we investigate an infinite-dimensional Lie group constructed as the semidirect product
of a nilpotent Lie group and an appropriate function space thereon. We single out an appro-
priate coadjoint orbit in the semidirect product and construct our pseudo-differential calculus
as a Weyl quantization of that orbit.
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1 Introduction

The Weyl calculus of pseudo-differential operators on R” initiated in [17] is a central topic
in the theory of linear partial differential equations and has been much studied and extended
in several directions, among which we mention the pseudo-differential Weyl calculus on
nilpotent Lie groups systematically developed in [31]. In the present article, we focus on
a circle of ideas with a similar flavor and show that the coadjoint orbits of certain locally
convex infinite-dimensional Lie groups (in the sense of [35]) can be employed in order to fill
in the gap between two different lines of investigation motivated by the quantum theory:

— the magnetic pseudo-differential Weyl calculus on R”, initiated independently in [21]
and in [28], and further developed in [20] and other works;
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— the program of Weyl quantization for coadjoint orbits of some finite-dimensional Lie
groups including the nilpotent ones ([38,36]) and semidirect products involving certain
semisimple Lie groups (see [§—10], and the references therein).

Recall that a magnetic potential on a Lie group G is simply a 1-form A € Q!(G), and the
corresponding magnetic field is B = dA € Q*(G). The purpose of a magnetic pseudo-
differential calculus on G is to facilitate the investigation on first-order linear differential
operators of the form

—iPy+ A(Q)Po, (1.1)

where Py is a right invariant vector field on G and A(Q) Py stands for the operator defined
by the multiplication by the function obtained by applying the (non-invariant) 1-form A to
the vector field Py at every pointin G.

In the special case of the abelian Lie group G = (R", +), we have A = Ajdx; + --- +
Andx, € QU(R") and the operators (1.1) on R”" are precisely the linear partial differential
operators determined by the vectors Py = (p1, ..., pn) € R,

3 3 . d
i(pl— ++pa ) + (P1ALQ) + - + PuAn(Q) = D p; (ia— +A,-(Q))
j=1

dx1 dx, 4 Xj
(1.2)

where we denote by A((Q), ..., A,(Q) the operators of multiplication by the coefficients
of the 1-form A. We refer to [20] for the pseudo-differential calculus of the operators (1.2)
extending the Weyl calculus constructed in the non-magnetic case (that is, A = 0) in the
paper [17].

On the other hand, a version of the Weyl calculus for right invariant differential operators on
nilpotent Lie groups has been developed in a series of papers including [31-33,27,36,12,13],
and there are remarkable applications of this calculus to various problems on partial differ-
ential equations on Lie groups. See also [2,19,29,30, 14], and [7] for other interesting results
related to this circle of ideas.

For these reasons it is quite natural to try to provide a unifying approach to the areas
of research mentioned in the preceding two paragraphs. It is one of the aims of the present
article to do that by proposing a pseudo-differential calculus on simply connected nilpo-
tent Lie groups which takes into account a given magnetic field. Our strategy is to pick an
appropriate left-invariant space F of functions containing the “coefficients of the magnetic
field” on the Lie group G under consideration and then to work within the semidirect product
M = F x, G. The latter is, in general, an infinite-dimensional Lie group, and yet, we can
single out a suitable coadjoint orbit O of M, which is a finite-dimensional symplectic man-
ifold endowed with the Kirillov—Kostant—Souriau 2-form and is actually symplectomorphic
to the cotangent bundle 7*G (see Proposition 2.9). The spaces of symbols for our pseudo-
differential calculus will be function spaces on the orbit O, which does not depend on the
magnetic field. However, we have to take into account a magnetic predual O, for the orbit
O (Definition3.4). The set O is just a “copy” of O contained in the Lie algebra m of the
infinite-dimensional Lie group M and is the image of O by a certain mapping 6 defined
in terms of a magnetic potential A € QL(G). In the case G = (R", +), the mapping 6 is
(x,8) — (¢ + A(x), x).

In the general case, if two magnetic potentials give rise to the same magnetic field, then
the corresponding copies of O in the Lie algebra m are moved to each other by the adjoint
action of the Lie group M. This leads to the gauge covariance of the pseudo-differential
calculus, which we are going to attach to the copy O, by the formula
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op'@f = [ aymexpywf dutw
Oy

for suitable symbols a: O — C and functions f: G — C, where a stands for the inverse
symplectic Fourier transform of a. (It will be actually convenient to work with the above
integral after the change of variables v = 0(x, &) with (x, &) € T*G; compare (4.7) and
(4.1).) Here, p is the Liouville measure corresponding to the symplectic structure on the
magnetic predual O, € m and 7 is a natural irreducible unitary representation of the infi-
nite-dimensional Lie group M on L?(G) which corresponds to the coadjoint orbit © as in the
orbit method [22,23]. We show in Theorem 4.4 that the magnetic pseudo-differential Weyl
calculus on a nilpotent Lie group G possesses appropriate versions of the basic properties
pointed out in the abelian case G = (R", +) in [28], however, the proofs in the present
situation are considerably more difficult and require proving properties of the nilpotent Lie
algebras, which may also have an independent interest (see for instance Proposition 3.2).
We mention that when G = (R”, +), if F is the (n + 1)-dimensional vector space of affine
functions then one recovers the classical Weyl calculus for pseudo-differential operators,

while for F = ngl (R™) the magnetic Weyl calculus of [28] is recovered.

It is noteworthy that, just as in the abelian case, there exists a magnetic Moyal product #*
on the Schwartz space S(O), and—as a consequence of the gauge covariance—the isomor-
phism class of the associative Fréchet algebra (S(©), #4) depends only on the magnetic field
B = dA e Q%(G). Our Theorem 4.7 records an explicit formula for #4 in the case when G is
a two-step nilpotent Lie group, which extends the corresponding formula established in [28]
and [21] and already covers the important situation of the Heisenberg groups. We postpone
to forthcoming papers both the formula for magnetic Moyal product in the case of a general
(simply connected) nilpotent Lie group and the description and applications of more general
classes of symbols for the magnetic pseudo-differential Weyl calculus. We aim to apply these
techniques to more general function spaces F to obtain more general radiation conditions
for various Hamiltonian operators appearing in mathematical physics (see for instance [5]
and [6]).

Notation Throughout the article, we denote by S()), the Schwartz space on a finite-dimen-
sional real vector space V. That is, S(V) is the set of all smooth functions that decay faster
than any polynomial together with their partial derivatives of arbitrary order. Its topological
dual—the space of tempered distributions on V—is denoted by S’(V). We use the notation

Sgl(]/) for the space of smooth functions that grow polynomially together with their partial
derivatives of arbitrary order. We use (-, -) to denote any duality pairing between finite-dimen-
sional real vector space whose meaning is clear from the context. In particular, this may stand
for the self-duality given a symplectic bilinear form.

2 Semidirect products
2.1 One-parameter subgroups in topological groups

Definition 2.1 For an arbitrary topological group G, we define
L(G) = {X: R — G | X homomorphism of topological groups}
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and endow this set with the topology of uniform convergence on compact intervals in R. The
adjoint action of G on L(G) is the continuous mapping

AdG: G x L(G) — L(G), (g, X)r Adg(g)X :=gX (g "
The exponential function of G is the continuous mapping
expg: L(G) = G, X expgX = X(1).

If H is another topological group, then every homomorphism of topological groups ¢ : G —
H induces a continuous mapping L(y/): L(G) — L(H), X — v o X and itis easy to see
that the diagram

LG) —Y Lm)
expGl lepo 2.1
v

G — H

is commutative. In fact, L(-) is a functor from the category of topological groups to the cat-
egory of topological spaces, and exp is a natural transformation. We refer to [15] and Chap.
IT in [16] for these concepts and related results.

Remark 2.2 If G is a finite-dimensional Lie group, then every one-parameter group X €
L(G) is actually smooth and there exists a bijective map

L(G) ~ThG

which takes every one-parameter subgroup X € L(G) into its infinitesimal generator X(0) €
T1G. More generally, this assertion holds if G is a locally exponential Lie group (modeled
on a locally convex space); see Def. I1.5.1, Def. IV.1.1, and Th. IV.1.18 in [35].

Remark 2.3 Let G be a topological group and ) a complex Banach space. We denote
C(Y)={T:D(T) CY — Y | Tclosed, densely defined, linear operator}.

If m: G — B()) is a so-continuous representation which is uniformly bounded (that

is, sup ||[7(g)|| < o0), then for every X € L(G) we get a bounded, so-continuous one-
geG
parameter group 7 o X : R — B())). Thus, we can define a mapping

L(@): L(G) > CQ), Xt E T (X(1))
dr l1=0

by means of the Hille—Yosida theorem, and we have
(VX € L(G)) m(expgX) = exp(L(m)X) 2.2)

(which should be compared with (2.1)). Now assume that V is a linear subspace of ) and
for every X € L(G) we have V C D(L(rr)X) and (L(w)X)V C V. If, moreover, G is a
topological group with Lie algebra in the sense of Chap.II in [16], then it follows by the
Trotter formulas that L(;r) induces a representation of the Lie algebra L(G) by linear maps
on V.
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2.2 Semidirect products and their exponential maps

Definition 2.4 Let G be a topological group and F be a real topological vector space with
the unital associative algebra of continuous endomorphisms denoted by End (F). Assume
that «: G — End (F), g +> «a, is a continuous representation of G on F, that is, ay =
idF, ag g, = ag g, forall g1, g2 € G, and the mapping G x F — F,(g,¢) > agd
is continuous. Then the semidirect product of groups denoted F xo G (or G x4 F) is the
topological group whose underlying topological space is F x G (respectively, G x F) with
the multiplication

(@1, 81)(92. 82) = (P1 + g, 2, 8182) (2.3)

(respectively, (g1, ¢1)(82, #2) = (8182, ¢1 + g, p2)) whenever g1, g2 € G and ¢y, ¢ € F.
It is easy to see that (0, 1) is the unit element in the group F x, G, while the inversion is
given by

¢, 9" = (—ag1¢.g7") (24)

forevery ¢ € Fand g € G.

Now let g be any real topological Lie algebra and assume that &: g — End (), X —
a(X), is a continuous representation of g on F, that is, & is a linear mapping such that
a([X1, X2]) = [a(X1), a(X2)] = a(Xa(X2) — a(X2)a(Xy) for all X1, X, € g and the
mapping g x F — F, (X, ¢) — &(X)¢ is continuous. Then the semidirect product of Lie
algebras denoted F x g is the topological Lie algebra whose underlying topological vector
space is F x g with the bracket

[(d1, X1), (92, X2)] = (a(X )2 — a(X2)¢1, [ X1, X2]) (2.5)

forevery X1, X»> € gand ¢1, ¢» € F. One can similarly define the semidirect product of Lie
algebras g x4 F.

Remark 2.5 In the setting of Definition 2.4, if G is a locally convex Lie group (see [35]), F
is a complete locally convex vector space and the mapping G x F, (g, ¢) = ag¢ is smooth,
then it is straightforward to prove the following assertions:

(1) The semidirect product M := F x4 G is a locally convex Lie group whose Lie algebra
ism := F x4 g, where g = L(G) is the Lie algebra of G and &: g — End (F) is
defined by the condition that for every ¢ € F the linear mapping g — F, X > & (X)¢
is the differential of the smooth mapping G — F, g > a,¢ at the point 1 € G.

(2) The adjoint action of the Lie group M on its Lie algebra m is given by

Ady: M xm—m, (Ady(9, 8)(W, X) = (ag¥ — a(Adg(8)X)¢, Adg(8)X)

for (¢,g) € F o G=Mand (Y, X) € F Xg g =m.
(3) The coadjoint action of the Lie group M on the dual of its Lie algebra m* = F* x g*
is given by

Ady: M xm* — m*,  (Ad}, (¢, ) (v, &) = (oc;,,v, Adf(g)é + d;’;a;,,v)

for (¢, g) € FxqG=Mand (v,&) € F*xg* = m*,wherea;’;: F* — g*isthe dual
of the linear mapping arg := &()¢p: g — F (see item (1) above) and @’ , : F* — F*
is the dual of the mapping otp-1: F — F.
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Example 2.6 Let n > 1 and assume that F is a linear subspace of the space of real Borel
functions Br (R") which is invariant under translations and is endowed with a linear topology
such that the mapping

R'xF—>F, (g, ) al@f:=flg+)

is continuous. If we denote by « the corresponding action of the additive group (R", +) by
endomorphisms of the group (F, +), then we can construct the semidirect product

G :=F x4 R,

which is a topological group with the multiplication defined by (2.3). Moreover, G has a
natural unitary representation on the Hilbert space H := L?(R"), defined by

7:G— BH), n(f,q)¢p=eTp(q+-) wheneverp € H, f € F,andq € R". (2.6)

If the topology of the function space F is stronger than the topology of pointwise conver-
gence, then it follows by Lebesgue’s dominated convergence theorem that the representation
7 is so-continuous.

Here are some special cases of this construction:

(1) For any integer k > 1, let us consider the following space of polynomial functions on R”

Pc(R") ={f €Rlq1,....qnl | deg f < k}.

The linear space Py (R") is finite-dimensional and is invariant under translations, hence
we can form the semidirect product Gy := Py (R") x4 R, which is a finite-dimensional,
nilpotent, and simply connected Lie group. The special case k = 1 of this construction is
particularly important, since G is precisely the (2n 4 1)-dimensional Heisenberg group.

(2) If F = Cx°(R") with the natural Fréchet topology, then it follows by Ex. IL.5.9 in [35]
that G = CR°(R") x¢ R" is a (Fréchet-)Lie group whose Lie algebra is the semidirect
product

0= CPR") x4 R,

where

3
¥: R" — Der (C2(R™)) , > pp— 4 .
@ CR®M). (pi pn) > pi o0 4+ pa %,

The Lie algebra g fails to be abelian or even nilpotent; however, it is solvable since
[g, 9] = C°(R") and hence [[g, g], [g, g]] = {0}. As regards the finite-dimensional Lie

groups Gy := Pr(R") xoR" fork > 1,wealsonotethat Gy C G, C --- C |J Gy =G.
k>1

The following statement partially extends Theorem49.6 and Remark 38.9 in [24] and
some facts noted in ExampleI1.5.9 in [35]. See also Sect. 3 in [34] for the expression of the
exponential map for a semidirect product of finite-dimensional Lie groups.

Proposition 2.7 Let G be a topological group acting on a topological space D by an action
denoted simply by

GxD—D, (g,x)>g-x
and assume that F is a linear subspace of the space of real Borel functions Bgr (D), which

is invariant under the translation operators ag: Br(D) — Br(D) defined by (ag¢p)(x) =
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d(g ! x) for g € G,x € D, and ¢ € Br(D). Also assume that F is endowed with a
complete, locally convex topology such that the mapping

GXF—>F, (g¢)— agd 2.7
is continuous. Then the following assertions hold:
(1) The mapping
1
FxLG) = F, (@.X)— B(X)¢p = /ax(s)¢ds (2.8)
0

is well-defined and continuous.
(2) For every pair (¢, X) € F x L(G), the function
t
Zpx  R=>FxG, Zyx(t)= X)), X (1)) = /ax(s)qb ds, X (1)
0
has the property Zy x € L(F xq G). Moreover, t — tB(tX)¢ is a differentiable curve
in F and & L BUX)9) = ¢,

(3) Lety € F and X € L(G) such that the curve R — F,t > ax) V¥ is differentiable,
and denote (X)) 1= éj—l Oax(,)w € F. Then

1=l
Vo € F) (Adru,cV) Zp.x = Zg—ax)p,x € L(F xq G).

(4) Ifwe assume that G is a finite-dimensional Lie group acting on itself by left translations
(hence D = G and (ag¢)(x) = (Agd)(x) = o(g %) for g, x € G and ¢ € F)
and there exists the continuous inclusion F — C*°(G) such that the mapping (2.7) is
smooth, then F x, G is a locally convex Lie group with the following properties:

(a) The Lie algebra of F %, G is the semidirect product of Lie algebras F x; g,
where g := L(G), F is thought of as an abelian Lie algebra and the mapping
A g — Der (F) is defined as in (3) above. (That is, A is induced by the natural
representation of the elements in g as right-invariant vector fields on G.)

(b) The exponential map of the Lie group F x, G is defined by the formula

eXPry, G ' Fxza—>F G, (¢,X) = (B(X)p, expgX).

(c) Assume G = (R", 4) with the generic point denoted by (q1, ..., qn)- If
Aj,Aj, ¥ € Fand j € {1, ...,n}satisfyA’j = Aj +0vy/dq;, then

(Ad(expry,pi¥) (A, pj) = (A}, pj) € F x; R".
Proof

(1) For every (¢, X) € F x L(G), the function [0, 1] — F,s + ax()¢ is Riemann
integrable, since it is continuous and the locally convex space F is complete; see for
instance, Lemma 2.5 in Chap. I of [24]. The continuity of the mapping (¢, X) +—
B(X)¢ follows by the continuity of (2.7) and the continuity properties of the Riemann
integral.

(2) The second equality in the definition of Zy x () follows by a change of variables in
the Riemann integral (Corollary 2.6(3) in Chap. I of [24]), and Zy x: R — F x G
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is continuous by the previous Assertion (1). Moreover, for arbitrary t1,7, € R, we

have
Zy x(11)Z¢,x(12) = (1 B(11X)P, X(11))(02B8(02X)p, X (22))
= B X)p +ax)(2B(HX)P), X(t1)X (2))
= B X)¢ + naxq)BtX)p, X(t1 +12)).
On the other hand,

1 1

nBnmX)¢ + baxe)BLX)p = tl/aX(tls)¢ds+t205X(t1)/aX(tzs)¢dS
0 0

1 15)
:/aX(x)¢dS+05X(11)/05X(s)¢ds

0 0

I3l n
=/01X(s)¢dS+/aX(z1+s)¢dS

0 0

3l H+n
Z/le(s)(f)ds—i- / axs)¢ds

0 4l

Hn+n

ax)¢ds

0
(n +)B(1 + 1) X)¢

and it follows that Z¢’x(l‘1)Z¢,x(l‘2) = Z¢,x(l‘1 + t2). Thus, Z¢,x € L(F x4 G).
The equality %‘ O(tﬁ (tX)¢) = ¢ follows by Lemma 2.5 in Chap. I of [24] again.
1=
(3) First, note that ax 1, +1,) = @x(1)®x (1») for every ¢, t, € R, hence, we have

d
(Vs € R) P t:sax([)lﬂ = oy () (X)Y. 2.9)

On the other hand, it follows by (2.3) and (2.4) that (v, D! = (=, D and (v, 1) (¢, g)
WD '=w+¢— agyr, g) whenever ¢ € F and g € G. Therefore, for arbitrary
¢ € Fandt € R we get

((AdFx,6¥)Zg x) (1) = (Y, 1) Zg x (1) (¥, n!
t
W, 1) / axeods, X@) | (v, )7

0
t

¥ +/0lX(s)¢dS —axp¥, X(@)

0
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t t

d
/05X(s)¢ds_/a‘rzv(aX(r)W)dsaX(Z)
0 0

t

/OéX(s)(¢ —a(X)y)ds, X(1)
0
= Zyp—ax)y,x (1),

where the next-to-last equality follows by (2.9).

(4) Letus denote M = F x; G and m = F xj g. Itis clear that m = T(g,1)M so in order
to prove that m = L(M), we still have to check that the operations of sum and bracket
in these spaces agree. The latter fact follows, since for every (¢, X) e mand ¢ € R, we
have expy, (t(¢, X)) = Zy x(t) by the above Assertion(2). This shows that (4a)—(4b)
hold. The remaining property (4c) follows by Assertion (3). O

2.3 Coadjoint orbits of semidirect products

The symplectic structures on coadjoint orbits of semidirect products defined by finite-dimen-
sional representations of Lie groups were thoroughly investigated in [3]. As we are interested
in semidirect product M = F x; G, where A: G — End (F) is a representation on a func-
tion space F, which is, in general, infinite-dimensional, in this subsection we shall study a
coadjoint orbit O of M that is not covered by the results in [3]. This orbit will play a central
role in our construction of magnetic pseudo-differential operators.

Definition 2.8 Let G be a finite-dimensional Lie group and F be a linear subspace of Br(G)
endowed with a locally convex topology. We say that the function space F is admissible, if
it satisfies the following conditions:

(1) The linear space F is invariant under the representation of G by left translations,
h: G — End (Br(G)), (e¢)(x) =g 'x).

Thatis,if ¢ € 7 and g € G then Ag¢ € F. We denote again by A: G — End (F) the
restriction to F of the aforementioned representation of G.

(2) We have F C C*°(G) and the topology of F is stronger than the topology induced
from C*°(G). In other words, the inclusion mapping F < C*°(G) is continuous.

(3) The mapping G x F — F, (g, ¢) = Ag¢ is smooth. For every ¢ € F, we denote by
A()¢: g — F the differential of the mapping g —> Ag¢ at the point 1 € G. Thus, for
all X € gand g € G, we have

. d
A (X)9)(8) = T o PexpG(—1X)g) = —(do Rg) 0(X)

= —(@'g 0 (R)0)(X) = —{((R)0)* (#'5), X), (2.10)

where (-, -): g* x g — Ris the canonical duality pairing and R, : G — G, x — xg.
(4) The points in G are separated by the functions in F, that is, for every g, g2 € G with

g1 # g» there exists ¢ € F with ¢ (g1) # ¢ (g2).
(5) Wehave {¢y | ¢ € F} = T;G forevery g € G.

It is clear that C*°(G) itself is admissible.
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Proposition 2.9 Let G be a finite-dimensional Lie group and F — C°°(G) be an admis-
sible function space on G. Denote M = F x; G,m = L(M) and for every g € G let
8g: F — R, ¢ = ¢(g). Define

0:=1{0.8)|geG g} CF xg'=m"

Then O is a coadjoint orbit of the locally convex Lie group M, which has the following
properties:

(1) The orbit O is a smooth finite-dimensional manifold such that for every u € O the
coadjoint action defines a trivial smooth bundle T1,,: M — O, m — Ad},(m)pu.

(2) There exists a canonical symplectic form w € Q*(O) invariant under the coadjoint
action of M on O, such that for every i € O the pull-back H;(a)) € QX(M) is a left
invariant 2-form on M whose value at 1 € M is the bilinear functional (HZ(a))) 1:mXx
m—>R,(X,Y)— —u(X,Y)].

(3) The symplectic manifold (O, w) is symplectomorphic to the cotangent bundle T*G
endowed with its canonical symplectic structure.

Proof Set 81 := (81,0) € O. It follows by Remark 2.5(3) that for every (¢, g) € M =
F %, G, we have

5,9, 8) = (A} (@, £)81 = (s (50), A5 (1% (51)
= (8, 15(80)) = (0, (R (9})) € F* x g* (2.11)

since, if we denote again by (-, -): g* x g — R the canonical duality pairing, then for every
X € g, we get

(h5(8)), X) = 8 (A (X)) = (A(X))(8) = —(((Re)o) " ($g), X),

where the latter equality follows by (2.10). Note that ((Rg)é))* : T; G — T{G = g*isalinear
isomorphism, hence by (2.11) and condition (5) in Definition 2.8, we get {(Ad}, (¢, g))gl |
(¢, g) € M} = O. Thus, the set O is indeed a coadjoint orbit in m*.

We now proceed to proving the other properties of O mentioned in the statement. Note
that the natural surjective mapping

TG - O, (8,§) > (84,8) (2.12)

is also injective since points of G are separated by the functions in F (property (4) in Defini-
tion 2.8). We shall endow O with the structure of smooth finite-dimensional manifold such
that the mapping (2.12) is a diffeomorphism. Let @ € ©2(O) be the symplectic form obtained
by transporting the canonical symplectic form of 7*G by the diffeomorphism (2.12).

Recall that 7*G is a trivial vector bundle over G with the fiber g* and, by using the left
trivialization, we may perform the identification 7*G = G x Ad, g*. This makes 7*G into
a finite-dimensional Lie group whose Lie algebra is L(T*G) = g x ad, g*. Then the tangent
bundle 7(T*G) = T*G X ady«; L(T*G) is atrivial bundle over T*G with the fiber L(T*G),
by using again the left trivialization, hence

T(T*G)=T"G x (g x g*) = (G x ¢g*) x (g x g%)

with the natural projection 7(T*G) — T*G given by ((go, &), (X, &)) — (g0, &). Then
the Liouville 1-form o € Q1 (T*G) is o : T(T*G) — R, ((g0, &), (X, £)) — (€0, X), and
the canonical symplectic form on T*G is —do € Q2(T*G) (see for instance, Chap. V, Sect. 7
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in [25], Example43.9 in [24], or Subsect. 6.5 in [11]). It is easily seen that the value of the
2-form —do on T(g, £)(T*G) > g x g* is given by

— (do) (50,60 Tigo.e0)(T*G) X T(gy.6)(T*G) — R,
(X1, 81), (X2, 8)) = (52, X1) — (&1, X2). (2.13)

Note that the symplectic 2-form —do is invariant under the action of the Lie group 7*G on
itself under left translations, while the 1-form 7 is not. (See also [26].)
For arbitrary u € O let

M, :={me M| Adym)n = pn}
be the corresponding coadjoint isotropy group. It follows by (2.11) that
M ={peF o =0 x{l}CFxG=M. (2.14)

We now prove that the smooth mapping I1 5 M — O,m — Ad}, (m)8y is a trivial bundle
with the fiber Mj, . In fact, since dim g* < o0, it easily follows by condition (5) in Defini-
tion 2.8 that there exists a linear mapping g* — F, £ — ¢, such that for every &£ € g*, we
have (¢¢); = £.1f ¢, x, ¥ € F, ¥y = 0,and g € G, then the equation (¢, g) (v, 1) = (x, &)
in M = F x, G isequivalent to ¢ + Ay = x, whence A,-1¢ + ¢ = A -1 x. Since Yy =0,
it then follows (A,—1$)] = (A,—1 ). This equation is satisfied for ¢ = A;(¢s) € F, where
&= (Ag_l X)’l. Then, we can take ¢ := hg=1 X — Pt = Ag-1X —Ag-19. This shows that the
smooth cross-section of I1 5, defined by

O— Fx,G, (8;,8) > (Ag(d2), 8)

has the property that every element in F %, G can be uniquely factorized as the product
of an element in the image of this cross-section and an element in the isotropy subgroup
M, . This implies that 15 : M — O is a trivial bundle. For an arbitrary element u € O
let m € M such that Ad’;l(m)gl = w. Then the inner automorphism V: M — M,n +—>
mnm ™! has the property W (M 5,) = My, whence we easily get a factorization property in
M with respect to M,,, similar to the one just proved for Mj . Thus, the smooth mapping
,: M — O,m +— Adj},;(m)u is a trivial bundle with the fiber M. It then follows that
the classical Kirillov—Kostant—Souriau construction of symplectic forms on coadjoint orbits
works (see for instance Example 4.31 in [4]) and leads to a symplectic form @ € Q2(0) with
the properties mentioned in Assertion (2) in the statement.

In order to complete the proof, we still have to show that the symplectic forms w, @ €
Q2(0O) constructed so far actually coincide. It follows by (2.11) that if we identify O to T*G
by means of the mapping (2.12), then the differential of the mapping IT5 at (0,1) € M is
the linear map

m=Fx; g Ta0(T*G) =g xg", (¢, X)) (X, ).
Then (2.13) shows that the value of the 2-form H%‘l (w) = H§1 (—do) at (0,1) € M is the
bilinear functional
mxm—R, (o1, X1), (2, X2)) > (($2)g, X1) — (($1)g, X2)
= =31 (@1, X1), (2, X2)])
(see (2.5)). Thus, l'[(’.;1 (w) = H;fl (@) on m = Tp1yM, and then v = @ on T30 ~

T(1,0)(T*G). By using the fact that l'[glz M — O =~ T*G is a trivial bundle, it is then
straightforward to check that w = @ (see the proof of Theorem4.7 in [3]), and we are done.
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2.4 Induced representations of semidirect products

This is a classical topic for locally compact groups (see for instance, Chap. 5 in [37]). How-
ever, in the semidirect product M = F %, G, we are working with, the factor F is generally
infinite-dimensional. Therefore, in this section, we shall provide a detailed construction of
an appropriate induced representation of M.

In order to construct the unitary representation associated with the coadjoint orbit O =
Ady, (M )81 in Proposition 2.9, we need to find a real polarization of the functional 51 € m*.
It is not difficult to check that actually the abelian Lie algebra 7 >~ F x {0} € F x; g = mis
such a polarization, and the corresponding group is F >~ F x {1} € F x, G = M. Therefore,
the representation of the locally convex Lie group M associated with its coadjoint orbit O
should be the one induced from the representation 7 — C, ¢ — exp(id1(¢)) = eldM Wwe
now describe this induced representation in a more general setting.

Assume the setting of Proposition 2.7 with G an arbitrary topological group and F <
Br(G), which is invariant under the left translation operators, and denote M := F x; G.
Recall that the multiplication and the inversion in the topological group M are defined by
the equations

(91, 81)(¢2, 82) = (1 + Ag P2, 8182) and (¢, 9 = (—)xg—1¢,g71),

respectively. There exist the embeddings of topological groups F — M, ¢ +— (¢, 1), and
G — M, g — (0, g), and the property

V(@.8) e M) (¢.8)=(0,8)(Ag-19.1) (2.15)

shows that every element in the semidirect product M = F x; G can be uniquely written as
a product of elements in the images of G and F into M.

Now, let ug: F — R be a linear continuous functional and define 7o: F — T, ¢ —
e"0@ which is a character of the abelian topological group (F, +). We also define

MxrC:=(M xC)/ ~
where ~ is the equivalence relation on M x C defined by
(m(¢,1),z) ~ (m, mo(¢p)z) wheneverm € M, ¢ € F, andz € C. (2.16)

We are going to denote by [(m, z)] the equivalence class of any (m, z) € M x C. Note that
there exists a natural homeomorphism

M/F— G, (p,8)F g
(this map is well-defined because of (2.15)) and a continuous surjection
[: M xygC—- M/F, [(m,2)]+—> mF,

which is actually a locally trivial bundle with the fiber C.

There exists a bijective correspondence between the sections o: M/F — M x z C (that
is, functions satisfying IT o 0 = id /) and the functions o : G — C. This correspondence
is defined by

Vx € G) o ((0,x)F) =[((0,x),5(x))]. 2.17)

Let us denote by I'porel (M /F, M x £ C) the space of Borel measurable sections, so that
there exists a linear isomorphism from this space onto the space of complex-valued, Borel
measurable functions on G,
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I'Boret(M/F, M x5 C) — Bc(G), o o0. (2.18)
The representation 7 := IndA]_-” (o) of M induced by mo: F — T is
w: M — End (I'goret(M /F, M x £ C))
defined by
(m(m)o)(n) = ma(m_l,u) form e M, o0 € I'goret(M/F, M xxC), and u € M/ F.

We will denote again by 7w : M — End (B¢ (G)) the corresponding representation obtained
by (2.18). In order to get a specific description of the latter representation 7, note that for
every ¢ € F and g, x € G, we have

(7 (. 8)o ((0,x)F)) = (¢, 8)o (¢, )~ (0, x)F)

= (¢, 80 ((—hg-10, 870, x) F)

= (¢.8)0 ((=hg-10.87'X) F)

= (¢.9) ((0,g7'X)F)  (by (2.15)

= (0,9 [((0, g7"x),5(g7"0))] by 2.17)

= [(@. )0, g7 'x),5(g7"0)]
[((¢,x),5(¢"x)]
[((0.x)(A-10,1),5(g"'x))] (by (2.15))
= [((0, x), 7oy 1)T (g7 0))]  (by (2.16))

whence by (2.17) again we get
(m(¢p, g)o)(x) = no(Ax_1¢)5(g_]x) forg,x € G, ¢ € F, and o € Bc(G).
For instance, if up = §1: F - R, ¢ — ¢ (1), then we get
7= M=Fx;, G— End(Bc(G)), (m1(¢,g)d) (x) =e?M5(g  x).

If we define U : Bc(G) — Be(G), (US)(x) = o(x~ 1), then we get the equivalent repre-
sentation Uy (-)U ! with the specific expression

Umi($, 9)U ') (x) = (mi($, U '5)(x ™) = w15y (g %)
= e D5 (xg)

forg,x € G,¢ € F,and 5 € Bc(G).

3 Magnetic preduals of the coadjoint orbit O
3.1 Auxiliary properties of nilpotent Lie algebras

Definition 3.1 Let g be a nilpotent finite-dimensional real Lie algebra of dimension > 1 and
define go := g and

(Vk = 1) gk =span {[Xk, ..., [X1, Xol...1| Xo, X1,..., Xk € 9}.
Then go 2 g1 2 g2 2 - - and, since g is a nilpotent Lie algebra, there exists n > 0 with

gn % {0} = gn+1. The number n > 0 is called the nilpotency index of g.
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Note that [g, g,] = g.+1 = {0}, hence g, is contained in the center of g. In particular, g,
is an ideal of g, and then there exists a natural Lie bracket on g/g, which makes the quotient
map g: g — g/g, into a homomorphism of Lie algebras. It is also easily seen that g/g, is a
nilpotent Lie algebra whose nilpotency index is n — 1, provided that n > 1.

Proposition 3.2 If g is a nilpotent finite-dimensional real Lie algebra, then for every V € g,
the mapping
1

Yyv:ig— g, YI—>/Y>!<(sV)ds
0

is a polynomial diffeomorphism whose inverse is also polynomial and which preserves the
Lebesgue measure.

Proof Recall that the multiplication * defined by the Baker—Campbell-Hausdorff (BCH)
formula is a polynomial mapping in the case of the nilpotent Lie algebras, and therefore,
the mapping in the statement is polynomial. In order to prove the other properties, we shall
proceed by induction on the nilpotency index of the Lie algebra under consideration.

If the nilpotency index of g is 0, then this algebra is abelian, so the BCH multiplication *
reduces to the vector sum. Then for every V € g, we have

/ 1
(VY eg) Ygav(Y) :/Y +sVds=Y + EV’
0
which clearly has the properties we wish for.

Now let n > 1 and assume that the assertion holds for the Lie algebras of nilpotency
index < n. Let g be a nilpotent Lie algebra with g, # {0} = g,+1 (see the notation in
Definition 3.1) and take V € g arbitrary. In order to show that the mapping Wy v: g — g
is injective, let Y1, Y2 € g such that Wy v (Y1) = Wy v(Y2). If we transform both sides of
the latter equation by the Lie algebra homomorphism g: g — g/g, which preserves the
BCH multiplication, then we get [} (Y1) % (sq(V))ds = [ ¢(Y2) * (s¢(V)) ds. Since the
mapping Wq/q, ¢(V): /92 —> 8/9x is injective by the induction hypothesis, it follows that
q(Y1) = q(Y), thatis, Yy := Y — Y» € Kerq = g,. Then

1 1
Woy(Y1) =Yg yv(Ya+Yy) = /(Yo + 1) (sV)ds = / Yo+ (Y2 (sV))ds
0 0
1

=Y +/Y2 *(sV)ds =Yy + Vg v (Y2),
0

so the assumption Wy v (Y1) = Wy v (¥2) implies Yo = 0, whence Y| = Y>. We note that the
above equalities follow by using the definition of the BCH multiplication * along with the
fact that Yy € g,, hence [Yy, g] = {0}.

It remains to check that the mapping Wy v : g — g is surjective and its inverse is polyno-
mial. For that purpose, lett: g/g, — g be any linear mapping satisfying g ot = idg/q, . (SO
¢ can be any linear isomorphism of g/g, onto a linear complement of g,, in g.) Denote

1

~VZeg) AZ):=Z —/t(@(q(Z))) * (sV)ds, 3.1
0
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where @ := (\Ilg/g,,,q(\/))71 1 g/9n — 9/gn is a polynomial map which exists because of the
induction hypothesis. Note that for every Z € g we have

1

1

q9(A(2)) =q(Z) —q /t@(q(z)))*(sV)dS =q(Z)—/q(t(<I>(q(Z))))*q(sV)dS

0 0
1

=q(Z) - / ®(q(2)) * (sq(V))ds =0,
0
where we used the equality ¢ o ¢ = idg/g, and again the fact that g: g — g/g, is a Lie
algebra homomorphism, hence preserves the BCH multiplications. Since Kerq = g, and
(9. gn] = gn+1 = {0}, we get
(VZ eg) [A(Z),g]={0}.
We can use this property to see that (as in the above proof of the fact that ¥y v is injective)
we have for every Z € g,
1 1

Z = A(2) +/L(d>(q(Z))) * (sV)ds =/A(Z) +(toDog)(Z)*(sV)ds
0 0

1
= /(A(Z) + (Lo ®og)(Z)) *(sV)ds = Wy v(A(Z) + (Lo P oq)(Z)).
0

This shows that the mapping Wy v : g — g is indeed surjective and
(VZeg) (Wgv) ' (2) = AZ)+ (Lo oq)(2). (3.2

In order to conclude the proof, just recall that ® = (\I/g/gn,q(v))_l: g/gn — g/gn is a
polynomial map by the induction hypothesis, while the BCH multiplication is a polynomial
mapping on every nilpotent Lie algebra. Since both ¢ and ¢ are linear, it follows by (3.1) that
A': g — gis a polynomial mapping, and then (3.2) shows that so is (\Ilg,v)’l g—g.

As regards the measure-preserving property, it will be enough to show that for an arbitrary
Yy € g, the differential (Wg v)'y,: g — gis alinear map whose determinant is equal to 1. To
this end note that for every Y € g,, we have [g, Y] = {0} hence W, v (Y) = fol Y+sVds =
Y + %V, which implies that g,, is invariant under the differential (\IJg,V)’ Yy~ Actually, the
latter map restricted to g, is equal to the identity map on g, and in particular, the determinant
of that restriction is equal to 1. On the other hand, as above in the proof of injectivity of ¥y v,
we getq o Wy y = Wy /4. 4(v) © q. By differentiating this equality at Yy € g and taking into
account that g: g — g/g, is a linear map, we get ¢ o (Wq v) v, = (Wg/q,.¢(v)) q(Yo) © 4
and then, we get the following commutative diagram

q
gn ——> 8 —> 9/

lidgn y‘l’ng)’yO l%/wwv;(ym

q
g ——> 9 — 9/

whose rows are short exact sequences. Since the determinant of (W /gn,q(V)); Yo) is equal

to 1 by the induction hypothesis, it follows that the determinant of the middle vertical arrow
is also equal to 1. This completes the induction step and the proof. O
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3.2 Magnetic preduals

Here, we work in the following setting:

(1) Inorderto simplify the notation, the connected and simply connected nilpotent Lie group
G is identified with its Lie algebra g by means of the exponential map and * denotes the
Baker—Campbell-Hausdorff multiplication on g.

(2) We denote by (-, -): g* x g — R the canonical duality pairing.

(3) We also denote by F an admissible space of functions on g which contains both g*
and the constant functions. As usual, we denote by M = F x, g the corresponding
semidirect product of groups, which is a locally convex Lie group with the Lie algebra
T0,00M = m = F x; g. Here we shall distinguish m from the set L. (M) of one-parameter
subgroups in M.

(4) The magnetic potential A € Q'(g) is a smooth differential 1-form whose coefficients
belong to F. That is, A: g — ¢g*, X — Ax := A(X), is a smooth mapping such
that for every X € g the function Y +— (Ay, (Ry)E)X) belongs to F, where Ry: g —
g, Ry(W)y=W=xY.

(5) The magnetic field is the 2-form B = dA € Q2(g). Hence, B is a smooth mapping
X +— By from g into the space of all skew-symmetric bilinear functionals on g such
that

(VX, X1, X2 € 9) Bx(X1, X2) = (A% (X1), X2) — (Ax(X2), X1).

Proposition 3.3 For every ¢ € F and X € g define 9_64 (¢, X) € Fby

Y en) (8@ ) () = p() + (A, (RHX),
and then consider the continuous linear mapping

0 Frasg=m—m, 046, X = (66, %), X)
and the differential 2-forms

@ € QUF x 9), Do xo) (B1. X1), (92, X2)) = (A(X1)$2 — L(X2)¢1) (Xo)
and
B e QX(F x9). Bgxo (1. X1), (92, X2)) = By, (X1, X2).
Then the following assertions hold:

(1) The operator 64 m — m is invertible and (64)~! = 64,
(2) If g is a two-step nilpotent Lie algebra, then

» € Q(F x9), Dgoxo (@1, X1). ($2. X2)) = ($2)y, (X1) — (61)'y, (X2).
Moreover, di = 0 and (64)*(&) = & + B.

Proof The first assertion is easily seen. For the second assertion, note that if g is two-step
nilpotent, then (Ry); = idq for every ¥ € g; hence, the specific expression of @ follows
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by (2.10). If we regard @ as a mapping from F X g into the skew-symmetric bilinear func-
tionals on F x g, then we may differentiate it as such and get

dax gy, x) (D1, X1), (92, X2), (93, X3)) = Wy x) (D1, X1) (P2, X2), (¢3, X3))
— @ gy x0) (@2, X2) (91, X1), (63, X3))
+ D4y x0) (D35 X3) (D1, X1), ($2, X2))
= (#3)%, (X1, X2) — (¢2)y, (X1, X3)
— (#3)%, (X2, X1) + (¢1), (X2, X3)
+ (92, (X3, X1) — (91, (X3, X2)
=0,

since the second differentials of the smooth functions ¢y, ¢2, ¢3 € F are symmetric. Further,
since 6 is a linear map, we get

0™ (&) (o, x0) (@1, X1), (92, X2)) = @54, x,) (O(¢1, X1), 092, X2))
= W(go+(A(). Xo). X0) (@1 + (AC), X1), X1), (¢2 + (A(), X2), X2))
= ($2)x, (X1) + (A, (X1), X2) — (PD)x, (X2) — (A, (X2), X1)
= (g Xo) (D1, X1), (92, X2)) + By, x0) (@1, X1, (¢2, X2)),

and this completes the proof. O

Definition 3.4 Assume the notation introduced in Proposition 3.3. The set
0, =08 ={0)'6. X). X) [ X €g b g} CFxjg=m

will be called the magnetic predual of the coadjoint orbit O (associated with the magnetic
potential A). Let I: g x g* <> F X g be the natural embedding 7 (X, &) = (&, X). Then the

mapping
6401:gxg"— O, (3.3)

is a linear isomorphism which (by Proposition 3.3) takes the canonical symplectic structure
of g x g* to a certain symplectic structure on O,, which will be called the natural symplectic
structure of the magnetic predual O,. Thus, (3.3) is an isomorphism of symplectic vector
spaces.

Remark 3.5 The magnetic predual O2, essentially, depends only on the magnetic field

B = dA. Specifically, if Aj, As € Ql(g) are magnetic potentials then there exists mo =
(¢0, Xo) € M such that 041 = Ady;(m) o 842 if and only if dA| = dA,. This follows by
using Remark 2.5(2).

In the following statement, we need some notation from Propositions2.7 and 2.9. Thus,
80: F — R is the functional ¢ — ¢ (0).

Proposition 3.6 Let us define
Bo:9xg" = F, (Bo(X,6)(Y)=(5Y)+ (Ay, (Ry)oX)
and

0:gxg"— LM), 0(X,§)=Zoxe).x
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Then the mapping
Mz oexpyof:gxg" —>m" (X,§) > Ad}, (expy (0(X, £)))d0
is a diffeomorphism of g x g* onto the coadjoint orbit O of 8y = (89, 0) € F* x g* = m*.

Proof Let M, be the coadjoint isotropy group at 8o € m*. To prove that ®: g x g* — m* is

abijection onto Ad}, (M Y80 ~ M/M 5o’ it is necessary and sufficient to see that the following
assertions hold:

(1) The mapping g x g* — M, (X, &) — expy, (0(X, &§)) is injective.
(2) The multiplication mapping

expy (0(g x g%)) x Mgo - M (3.4)

is bijective, and additionally, if m, my € exp,;(6(g x g*)) satisfy m| € szgo, then
necessarily m = my.

In order to prove these assertions, we shall use fact that by Proposition 2.7, we have
(V(X, &) e gxg") expy(0(X,§) = (a(X,§),X) e F xpg=M. (3.5

Here, the function o (X, §&) € F at an arbitrary point Y € g can be computed in the following
way:

1 1
((X, 5)(Y) = /(sz(9o(X, £)(Y)ds = /(GO(X,é))((—SX) * Y)ds
0 0

1 1

= /5((—SX) * Y)ds +/<A((—SX) #Y), (Ri—sx)xy)o X )ds
0

0
By using the notation introduced in Proposition 3.2, we get

1

1
<§, /(—sX) * Yds> + </ A((=sX) * Y)ds, (R(_sx)*y)6X>
0

0

(a(X, &)(Y)

1

— (£, W x (=) + < / A((=sX) % Y)ds, (R(—.sX)*Y)6X> . (6

0

Now, to prove assertion (1), just note that if exp,,(0(Xy, 1)) = expy(0(X2,&)), then
by (3.5) we get X| = X, =: X and a(X, &) = a(X, &). Then by (3.6), we get & o Wy x =
&roW, x.Since Wy x : g — gisadiffeomorphism by Proposition 3.2, it follows that & = &;.

We now proceed to proving the above assertion(2). In order to prove the second part
of that assertion, let us assume that exp,,(0(X1, £1)) € expy (0(X2, ég))MgO. It then fol-
lows by (2.14) and (3.5) that there exists ¢ € F such that ¢(’) = 0 and (@(X1, &), X1) =
(x(X2,&2), X2)(¢,0). Thence, X1 = X7 =: X and @ (X, &1) = (X, &) + Ax ¢, so by (3.6)
we get (52 — &1, Wy x(=Y)) = ¢((—X) * Y) for every Y € g. By means of the change of
variable (—X)*Y = —W wehave W *(—X) = —Y, and then (§, — &, Vg x (W *(—X))) =
¢ (—W) for every W € g. Now note that
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1 1 1
Wy x (W (=X)) = /W* (=X) * (sX)ds :/W* (1 = 5)X)ds :/W* (sX)ds
0 0 0
= lIJg,X(vV),

hence (§&; — &1, Wy x(W)) = ¢ (—W) forevery W € g. By differentiating the latter equation
at W = 0 we get (5 — &) o (Wq x)y = ¢, = 0. Now recall that Uy x: g — g is a dif-
feomorphism by Proposition 3.2, hence (Wg x)q: g — g is a linear isomorphism, and then
& — 6 =0.

This proves the second part of assertion (2) which, in particular, shows that the multi-
plication mapping (3.4) is injective. In order to prove that mapping is surjective as well, let
(¢, X) € M arbitrary. It follows by (2.14) and (3.5) again that it will be enough to find
£ € g* and ¢ € F such that ) = 0 and («(X, £), X)(¢, 0) = (¢, X). The latter equation
is equivalent to o (X, &) + Ax ¥ = ¢, thatis, A_x (x¢(X, §)) + ¥ = A_x 1, whence by (3.6)
we get

1 1
(VY € g) <.§, /(—sx) * X % Yds> + </ A((—sX) % X % Y)ds, (R(SX)*X*y)6X>
0 0
+Y(Y) = (X + ).

Since (—sX) * X = (1 — 5)X, the above equation is further equivalent to

1 1
(VY € g) <g, /(SX) * Yds> + </ A((sX) % Y)ds, (R(‘YX)*y)6X> +Y ) =p(X *Y).
0 0
(3.7)

Since the mapping ¥ +— fol (sX)*Yds = —W, _x(—Y) is adiffeomorphism by Proposition
3.2, it follows that its differential at ¥ = 0 is a linear isomorphism on g. Now by differen-
tiating (3.7) at ¥ = 0 and using the condition ¥, = 0, we see that £ € g* can be uniquely
determined in terms of the given function ¢ € F. Then, we just have to solve equation (3.7)
for . This completes the proof of the fact that the multiplication mapping (3.4) is surjective.

‘We now know that the mapping I1 5,°¢XPy 00: gxg* — Ointhe statement is a bijection.
In order to see that it is actually a diffeomorphism, first, note that expy; 0 0: g x g* — M
is smooth as an easy consequence of (3.5) and (3.6), and then IT 5, © €XPyy © 0 is smooth. In
order to prove that its inverse is also smooth, we just have to use the fact that the solution &
of (3.7) depends smoothly on the data ¢ € F (as a direct consequence of our way to solve
Eq. (3.7)).

Corollary 3.7 Let 8y = (89, 0) € m*. The mapping
Adj{,[(expM())So: 0, — O
is a diffeomorphism.

Proof Use Propositions 3.3 and 3.6. O

@ Springer



312 Ann Glob Anal Geom (2009) 36:293-322

4 Magnetic Weyl calculus on Lie groups
4.1 Localized Weyl calculus

In this subsection, we sketch a general setting, inspired by [1] and [2], for the Wey] calculus
associated with continuous representations of any topological groups, which may be infinite-
dimensional Lie groups. We shall apply this construction, in the next subsection, in the case
of a semidirect product M = F x; G, where F is a certain function space on the nilpotent
Lie group G.

Definition 4.1 Let M be a topological group and 7 : M — ()) a so-continuous, uniformly
bounded representation on the complex separable Banach space ). Assume the setting defined
by the following data:

*

(1) aduality pairing (-, -): B
E and E*;

(2) amap 6: E — L(M) which is measurable with respect to the natural Borel structures
of E and L(M).

x B — R between two real finite-dimensional vector spaces

Denote by

LY E) —» L®(E®), b() > b(-) :/e_i("x)b(x)dx

the Fourier transform with respect to the duality (-, -), and the inverse Fourier transform

LY EY) > L®(E), a()— a() = /ei<5")a(é)d§

*

[&9)]

where the Lebesgue measures on E and E* are suitably normalized.
Then the corresponding localized Weyl calculus for w along 0 is defined by

—

op’: LI(E) — BY). op’ (a)y= /é(é)n(eXpM(G(%‘)))y dé fory e Yanda € L'(8),

4.1)

where we use Bochner integrals of )-valued functions.

Remark 4.2 In the setting of Definition4.1, we note the following:

(1) We need the Banach space ) to be separable to define the Bochner integral. Instead,
we could have assumed ) a reflexive Banach space (for instance a Hilbert space) and
defined Op? (a) € B(Y) as a weakly convergent integral.

(2) It follows by (2.2) that

Op’(@y = [ a®exp (L(M)(O))) ydé 4.2)

B

fory €e Yanda € L/‘(E), hence the localized Weyl functional calculus actually
depends on the mapping L(7): L(M) — C()), rather than on the representation
m: M — B(Y) itself. If Y is a Hilbert space, 7w is a unitary representation, and
0: E — L(M) is continuous, it easily follows that (4.2) makes sense for every bounded
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=]

continuous function a: E* — C whose inverse Fourier transform ¢ is a finite Radon

-

measure on Z. It thus follows that for every &y € E*, we get the usual functional
calculus of the self-adjoint operator L(7 )8 (£o) by suitably extending Op? to functions
of the form & — b((&y, &)) withb: R — C.

(3) The localized Weyl functional calculus for 7 along 6 has the following covariance

=%

property: If 6': 8* — L(M) is another measurable map such that there exists m € M
satisfying Ady;(m) o 0’ = 0, then

(VaeLl(@) Op@ =mmOop” @m(m . (4.3)
In fact, for every £ € E*, we have
expy (0(€)) = (0(€)(1) = (Adp (m)) 6'(E))(1) = m(6' &) (1))m ™"
= mexpy (0'E)m ™",
l(lzr}c)e m(expy (0(§))) = m(m)m(expy (6'(§))m(m)~", and now (4.3) follows by

4.2 Magnetic pseudo-differential calculus on nilpotent Lie groups

We are going to specialize here the ideas of Subsect.4.1 in order to construct a magnetic
Weyl calculus. We work in the setting of Subsect. 3.2, keeping, however, for the moment the
distinction between the Lie group and its Lie algebra. Thus, G is a (connected and) simply
connected nilpotent Lie group with L(G) = g. Then the exponential map exp;: g — Gisa
diffeomorphism, and we use the notation log; = exp&l. We recall that the Haar measure on
the group G is taken by log into the Lebesgue measure on g, consequently, the Lebesgue
measure on g is invariant under the transformations ¥ + Y * X and Y — (-=Y).

Assume F an admissible space of real continuous functions on G, which is invariant under
the left regular action, hence the mapping

AMGXF—F, (ho)x)=0(g 'x)

is well-defined. Since F is endowed with a topology such that A is continuous, we may
consider the semidirect product M = F %, G. Proposition 2.7 shows that the Lie algebra
of M is the semidirect product F x; g and the exponential map exp,, is given by

1

expy (¢, X) = /)\GXPG(XXW) ds, expg (X)
0

We denote the duality between g and g* also by
g" x93 X)—~> (6. X) eR.
We set E = g x g*. The mapping
()P EXE =R, (X1, 81), (X2, 8)) = (&1, X2) — (&2, X1)

defines a symplectic structure on E. This is, in particular, a duality pairing, E being self-dual
with respect to this pairing. The Fourier transform associated to (-, -) is given by

(Fza)(X, &) = a(X, &) = / e HXOTmlgy, n)d(Y, ), aeL'(E).

=
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It extends to an invertible operator S'(E) — S'(E), F§1 = Fg and we denote a = FE_Ia.
Note that if Fy: S'(g*) — S'(g) is the Fourier transform associated to the duality between
g and g* (normalized such that it is unitary L2(g) — L2(g*)) then

*

Fe=1"(FR@F,") = (F;' @ Fg) (7)) (4.4)

where * is the pull-back by ¢: g* x g — g x g%, 1(&, X) = (X, &).

We need a natural representation on M by unitary operators in ) = L>(g), given by the
natural induced representation described in Subsect.2.4. Namely, 7: M — B()) is given
by

7@, &) f(X) =¥ X f((~logg g) * X),  fe. (4.5)

Then 7 (¢, g) is unitary for every (¢, g) € M.
Consider now 6y: E — F, a Borel measurable function. Then, we set

0: 8-> LWM), 0(X,8)=Zgyxex, X, §)eB=gxg", (4.6)

where Z, x with (¢, X) € F x g has been defined in Proposition 2.7.
We consider the Weyl calculus for 7 along 6 above. Recall that when a € FzL!(E)

op’(a) f = / (X, E)m (expy8(X. £)) fA(X.6)  f eV @.7)

We see that here

1
expy0(X. ) = (X, £)(1) = / hexpotex 00 (X, ) ds, expX | |

0
hence
i‘} 00(X,&)(expg (—sX)expgY) ds
7 (expy0(X, §)) f(¥) =e 0 fU(=X)*Y)
iflOO(X,’;')(expG((st)*Y)) ds
=e? fU(=X)*Y) (4.8)
when f € ).

We have, thus, obtained

1
i [60(X,8)(expg ((—sX)*Y))ds

Op’ (@) f(Y) =/6(X,$)e 0 F(=X)*Y)d(X,§). (49

=

By changing variables, we get that

1
i[00(Yx(—Z),6)(expg ((s(Zx(=Y)))*Y)) ds

op’ (@) f(Y) Z/é(Y*(—Z),S)e 0 F(2)d(Z,8).

(4.10)
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We may use Fubini’s theorem to see that the operator Op? (@) is an integral operator with
kernel

aY «(—=2),&)e 0 de.  (4.11)

9*

1
i [ 60(Y+(=2).6)(expg ((s(Z(=Y)))*Y)) ds
K.Y, Z) = /

In the case where 6y is of the form

f0(X, §)(x) = (&, logg x) + (A(logg x), (Riog, x)o X) (4.12)

where A: g — g* is continuous and x — (A(logG X), (Rlong)6X) belongs to F for every
X € g, the expressions above can be further simplified. Denote

1

as(Y, Z) = exp i/(A((S(Z * (=Y)) *Y), (Riszs(—rysr) oY * (—Z))) ds
0
(4.13)

This is a continuous complex valued function on g x g. With this notation (4.11) becomes

1
5 i [(E,(s(Z#(=Y))*Y) ds
Ky (Y, Z) = ax(Y, Z)/CZ(Y*(—Z),%“)(?0 dg.

g

Hence, in the case where 6 is as in (4.12), we get

1
i [(€,(s(Z+(=Y))*Y)ds
K.Y, Z) = au(Y, Z)/(Fg ® Fgra(&,Y x (=2Z))e ©
g*
1

= aa(Y, 2)1® F; Da /(s(z*(—y))) «V | ds, ¥ % (=2)). (4.14)
0

Definition 4.3 In the setting of Subsect. 3.2, the simply connected nilpotent Lie group G
is identified with its Lie algebra g by means of the exponential map. Let F an admissi-
ble space of functions on g which contains both g* and the constant functions. Assume that
A e Q!(g) is a magnetic potential such that for every X € g the function ¥ > (Ay, (Ry)pX)
belongs to F and define 0y: g x g* — F as in (4.12) (or Proposition 3.6). Then for every
a € S(gx g*) there exists a linear operator Op9 (a)in L( g) defined by (4.10). We will denote
Op?(a) := Op? (a) and will call it a magnetic pseudo-differential operator with respect to the
magnetic potential A. The function a is the magnetic Weyl symbol of the pseudo-differential
operator Op” (a), and the Weyl calculus with respect to the magnetic potential A is the map-
ping Op# which takes a function a € S(g x g*) into the corresponding pseudo-differential
operator.

Theorem 4.4 Assume that A € 2'(g) is a magnetic potential such that for every X € g the
function Y — (Ay, (Ry),X) belongs to F. Then, the Weyl calculus OpA has the following
properties:

(1) For Py € g let A(Q)Py be the multiplication operator defined by the function Y +—
(Ay, (R Y)6P0)~ Then the usual functional calculus for the self-adjoint operator —iA(Pyp)
+ A(Q)Py in Lz(g) can be recovered from OpA.
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(2)  Gauge covariance with respect to the magnetic potential A: If A\ € Q'(g) is another
magnetic potential with dA = dA| € Qz(g) and the function Y +— (Ay, (Ry)’OX)
belongs to F for every X € g, then there exists € F such that unitary operator
U: L*(g) — L>(g) defined by the multiplication by eV satisfies UOp*(a)U~! =
Op?1(a) for every symbol a € S(g x g*).

(3) chgl(g) C F and the function Y +— (Ay, (Ry),X) belongs to ngl(g)for every X € g,

then for every a € S(g x g*) the magnetic pseudo-differential operator Op™(a) is
bounded linear on L*(g) and is defined by an integral kernel K, € S(g x g) given by
Sformula (4.14).

(4)  Under the hypothesis of (3) the correspondence a +— K, is an isomorphism of Fréchet
spaces S(gx g*) — S(gx g) and extends to a unitary operator L*(g x g*) — L*(g % g).

Proof Assertion (1) follows by Remark 4.2(2) along with the fact that for the representation
(4.5) we get, by (4.8)

ifleo(tPo,O)((fstPo)*Y) ds
7 (expy (0P, 0))) f(¥Y) =e 0 f((=tPy) xY)
where
1 1

/QO(th 0)((=stPp) xY)ds = /(A((—StPo) Y, (R(—st pyy+v)o (1 Po)) ds

0 0
t

= /(A((—SPO) #Y), (R(—spy)«r)o Po) ds.
0

Hence

|7 expu@ar.0) £ =) f +iA@ P f

for f € L*(g) such that the right-hand side belongs to L2(g). See Remark 4.2(2) for the way

the functional calculus of the self-adjoint operator —iA(Py) + A(Q) Py can be recovered.
For assertion (2) note that if d(A — A1) = O on g, then di{y = A — A for the function

Y : g — Rdefined by ¥ (X) = fol((A — A1)rx, X) dt. In particular, ¥ € F and it follows

by Proposition 2.7(3) that in the group M = F x, g, we have

(Adyy)o(X, &) = 01(X, &)

forevery X € gand & € g*, where 01 (X, &) is obtained as in (4.6) with 6y (X, &) replaced by
the function Y — &(Y) + ((A1)y, (Ry)6X). Now Remark 4.2(3) shows that the assertion
holds with U = w(y): Lz(g) — Lz(g). Also note that, according to (4.5), U is actually the
multiplication operator by the function e'¥ .

Now assume the hypothesis of assertions (3) and (4) and remember that the first of these
properties have been already proved in the discussion preceding Definition4.3. Further, note
thataa(-), 2a()~! e CS;’] (g x g) by (4.13). Since, moreover |« (-)| = 1, we see from formula
(4.14) that in order to show prove the asserted properties of the correspondence a — K, it
will be enough to check that the mapping

1
Y:gxg—gxg XY, 2)= /(s(Z*(—Y)))*Y)ds,Y*(—Z)
0
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is a polynomial diffeomorphism whose inverse is polynomial and which preserves the
Lebesgue measure on g x g. For this purpose, let us note that ¥ = X, o X1, where the
mappings X1, 22: g X g — g X g are defined by
1
1(Y,Z2) = (=Y, Y*(=Z)) and X (V, W)= —/ Vs (sW)ds, W
0

By using the fact that g is a nilpotent Lie algebra it is straightforward to prove that X; is a
measure-preserving polynomial diffeomorphism whose inverse is polynomial, and so is X7
because of Proposition 3.2. This completes the proof. O

Definition 4.5 If we assume that ngl (g) € Fand A € Q'(g) has the property that the
function Y — (Ay, (Ry)6X) belongs to Cgfj] (g) for every X € g, then it follows by Theo-

rem 4.4(3) that forevery aj, ap € S(gx g*) there exists a unique function a#iay € S(gxg*)
such that OpA (a 1)OpA (ap) = OpA (a1#%a») and the magnetic Moyal product

S(g x ") x S(g x g*) > S(@x g, (a1,a) —> ai#'a

is a bilinear continuous mapping. For the sake of simplicity, we denote ai#as 1= aj#4ay,
whenever the magnetic potential A had been already specified.

4.3 The magnetic Moyal product for two-step nilpotent Lie algebras

In this subsection, we shall assume that g is a two-step nilpotent Lie algebra, that is,

[g, [g, g]] = {0}, and moreover, ngl(g) C Fand A € Ql(g) is a magnetic potential such

that (A(), X) € ggl(g) for every X € g.

Lemma 4.6 The following assertions hold in the two-step nilpotent Lie algebra g:
(1) Forevery X,Y € g, we have (s(X x (=Y))) * Y =sX + (1 — 5)Y for arbitrary s € R
1
and [(s(X % (=Y))) * Y ds = 2(X + Y).

0
(2) Forarbitrary X, Y, Z, T € g, we have

X=3Y+2) Y=03T)xX
T=Yx(-2) Z=(-AT)%X.

Moreover; the diffeomorphismgxg — gxg, (Y, Z) — (%(Y—i—Z), Y (—2Z)) preserves
the Lebesgue measure.
(3) Forarbitrary X,Z, T, z,t € g, we have

2GD X0 +2) =2 [T:Z(Z—t)-i—[X,z—t]
—
YZ+ (=i xx) =1 Z=z+1-X.

Moreover; the diffeomorphism g x g — g x g, (Z, T) — (z,t) preserves the Lebesgue
measure.

Proof

(1) Indeed, for arbitrary s € R, we have
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CX*x(=)))*xY =G6X-Y — %[X, YD) Y

=sX—sY—%[X,Y]+Y+%[X,Y]
=sX+ (1 —-ys)Y.
(2) For the implication “="note that T = Y % (—Z) actually means T =Y — Z — %[Y, Z].

If we apply —adyZ to both sides of the latter equation, then we get [T, Z] = [V, Z],
and then

T:Y—Z—%[T, Zl. (4.15)

On the other hand, the first of the assumed equations implies 2X = Y + Z, and then, we
can eliminate Y between this equation and (4.15). We, thus, get2X —T = 2Z+ % [T, 7],
and then by applying ady 7T to both sides of this equality we get [T, X| = [T, Z]. It
then follows by (4.15)that T =Y — Z — %[T, X]. Since 2X =Y + Z, we get

Y =X+ 43T+ 3T.X1=GT)*X
Z=X-3T —3[T,X]=(—3T) % X.

This concludes the proof of the implication “=>", and the converse implication can
be easily proved in a similar manner. The assertion regarding the measure-preserving
property can be easily checked by computing the Jacobian of the diffeomorphism.

(3) We have

[é(((éT)*X)JrZ):z [X+;T—}1[X,T]+Z:2z
—

T Z+ (=i xx) =1 X-lr+lix.mi+z=2,

and now the conclusion follows at once. ]

Theorem 4.7 Assume that g is a two-step nilpotent Lie algebra, Cgfjl () C F,and A € Q'(g)
is a magnetic potential such that (A(-), X) € ngl(g) for every X € g. Then the following
assertions hold:

(1) Foreverya € S(g x g*) the integral kernel of the operator OpA (a): L% (g) — L?(g)
is given by the formula

K.Y, Z)=aa(Y,2)(1® Fg_l)a (%(Y +2),Y % (—Z)) , (4.16)
where
1
as(Y,Z) =exp —i/(A(sZ + (1 —-9Y),Zx(-Y))ds |, 4.17)
0

foreveryY,Z € g.
(2) Set

Batgxgxg—C, BaX,Y,2) =0y (X,Vaa¥, Z)as(Z, X).
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Ifa,b € S(g x g*) then

(a#b)(X, &) = / / / / a(Z, Ob(T, r)e(F =X (= Xr=5)

gxgxg*xg*
x e WUEFEIX Z)HE 4T, [Z, T+ +&,[T.X1)
XBaZ—-T+X,T—2Z+X,Z+T — X)d¢drdZdT, (4.18)
forevery (X, &) € g x g*.

Proof Formulas (4.16) and (4.17) follow at once by using (4.14) and (4.13), respectively,
and taking into account Lemma 4.6(1).

In order to prove (4.18), note first that by (4.16) and Lemma 4.6(2), we have for every
ceS(gxg*and X, T € gthe equation

1 1 1 1
KC((ET) * X, (_ET) * X) = aA((ET) * X, (_ET) * X)(1® FQI)C(X, T),

whence

(X, &) = /e—i@’” (ozXlKC) ((%T) * X, (—%T) s X) dT.
g

for every ¢ € S(g x g*). Hence, by using the well-known formula for the integral kernel of
the product of two operators defined by integral kernels, we get

SiE Ty, 1 1 1
(a#b)(x,g)Z/e 1) (o Kanp) 5T * X, —ET x* X ) dT
g
—iery 1 (] 1 1
://e gy ( T *X,(—fT *X)Ka( “T)xX,Z
2 2 2
g 9
x K}, (Z, (—%T) < X) dzdT.

On the other hand, by (4.16) we get

(7)o x7) =an((Lr) ex.z

x (1®F;1)a(

| —
N— = —
—
I
~
*
N
N—"
+
N
N—"
I
~
N—
*
N3
*
T
N
N—
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and also by (4.16) we have similarly
Kp (z, (-;T) * x) =y (Z, (—%T) * X)
x (1@ F;')b (1(2 + ((—ET) * X)) Z % (—X) * (ET))
g 2 2 ) 2

=as(Z, (—%T) * X)/ei<f’z*(*x)*(%T)>
g*

()9 )

We plug in these formulas in the above expression of the magnetic Moyal product a#b and

get
B /({1 1
o= [ [ [ (4)x (-37))
can (L) o x.2) e (2. (-2r) )
cereena(3((Gr) 1) +2) o)
x b (% (z + ((—%T) * x)) , r) dedrdZdT
where

1 1
E(¢,t,2,T)=-¢,T) +<§, (ET) * X ok (—Z)>+<r, Zx(—=X)x* (QT)>'
We change of variables (Z, T') > (z,t) of Lemma4.6(3). In these new variables, we have
1
ET s X =27—Z=z—1t+ X,
1
(—ET)*X=21—Z=t—z+X.

It follows that

(a#b)(X,é):////ﬂA(z—t+x,z—z+X,z+t—X)

g g g* g*
x e BTt =x2@=0HX.2=1D g (- )p(r, T) dCdrdzdr.

Note that in the change of variables above we have
1
ET * Xx(—=2)=Qz—2)*x(—2)

=2(z—2Z)+ %[ZZ—Z, —-7]
=2X—-1t)+[z, X —1],
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and similarly
1
Z % (—X) * ET =Z*%(Z—-121)

1
=2(Z—1)+ E[Z,Z—Zt]
=2z —X)+1[t,z — X],
Thus,

E t,z4t—x,2z—0)+[X,z—1t]) = —(£,2(z—1) +[X,z—1])
+(t,2(X —t)+ [z, X —1])
+(1,2(z = X) +[t,z — X])
=20 —-8),z—-X)—-Q2¢ —-§&),1—X)
—i((§ +¢,[X, z])
+{¢& +7. [z, 1)+ (T + & [1, X])

and this completes the proof of (4.18). O

It is clear that in the case when g is an abelian Lie algebra, formula (4.18) specializes
to the formula for the magnetic Moyal product on R”; see [21] and [28]. If, moreover, the
magnetic potential A € '(g) vanishes, then one recovers the formula for the composition
of pseudo-differential operators in the framework of the Weyl calculus; see Sect. 18.5 in [18].
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