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a b s t r a c t

By building on our earlier work, we establish uncertainty principles in terms of Heisenberg
inequalities and of the ambiguity functions associated with magnetic structures on certain
coadjoint orbits of infinite-dimensional Lie groups. These infinite-dimensional Lie groups
are semidirect products of nilpotent Lie groups and invariant function spaces thereon. The
recently developed magnetic Weyl calculus is recovered in the special case of function
spaces on abelian Lie groups.
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1. Introduction

The relationship between theWeyl calculus of pseudo-differential operators on Rn and the Heisenberg group Rn+1 o Rn
is a classical topic (see for instance [1,2], or [3]). In fact, the Weyl calculus provides a quantization of a nontrivial coadjoint
orbit for the Heisenberg group. On the other hand, a magnetic gauge-covariant pseudo-differential calculus on Rn has also
been recently developed by using techniques of hard analysis; see [4,5]. As our alternative approach has shown [6], this
magnetic calculus can be set up for any nilpotent Lie group G and can be understood as a quantization of a certain coadjoint
orbit for some Lie group F o G, which is infinite dimensional unless the magnetic field is polynomial. More specifically, by
adapting ideas of [7], the cotangent bundle T ∗G has been symplectomorphically realized as a coadjoint orbit of F o G and
the pseudo-differential calculus has been constructed as a Weyl quantization of that orbit. (We refer to [8] for a discussion
on Weyl quantizations.) In our case, the semidirect product is needed in order to deal with rather general perturbations of
invariant differential operators on G. The semidirect products have also turned out to be an important tool in mechanics;
see for instance [9].
In the present paper we investigate some uncertainty principles for the magnetic Weyl calculus developed in [6]. The

uncertainty principles have been an active area of research. We refer to the survey [10] for a comprehensive introduction
to this circle of ideas, to [11] for the case of families of pseudo-differential operators, and to [12,13] for Hardy’s uncertainty
principles on Lie groups. The main point of the present approach is that the aforementionedWeyl quantization allows us to
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obtain versions of Heisenberg’s inequality —taking into account magnetic momenta— and Lieb’s uncertainty principle [14]
for a certain wavelet transform associated with the coadjoint orbit T ∗G of F o G.
Let us describe the contents of our paper in some more detail. Section 2 is devoted to establishing Heisenberg’s

uncertainty inequality in themagnetic setting on nilpotent Lie groups. In Section 2.1, after describing the necessary notation
used throughout the paper,we introduce the ambiguity function and the cross-Wigner distribution in thepresent framework
and prove some of their main properties including Moyal’s identity (Theorem 2.8). Preliminary material on magnetic Weyl
calculus from [6] is provided in Section 2.2 along with additional properties in connection with the Wigner distribution.
Thus, in Proposition 2.18 we indicate the significance of its marginal distributions for the functional calculus with both the
position operators and the ‘‘noncommutative magnetic momentum’’ operators. Let us point out that using the usual Fourier
transform does not seem very natural in the present context. This is due both to the presence of the magnetic potential and
to the fact that the invariant vector fields on a nilpotent Lie group may not have constant coefficients (see Example 4.2).
Versions for Heisenberg’s inequality are established in Theorem 2.19 and Corollary 2.20.
Section 3 deals with a version of Lieb’s uncertainty principle in the present setting. The main result is Theorem 3.5 and is

stated in terms of magnetic ambiguity functions and mixed-norm Lebesgue spaces on the cotangent bundle of a nilpotent
Lie group. In the case of abelian Lie groups and no magnetic potential we recover one of the results of [15]. (See also [16,17]
for related results in this classical case.) Among the consequences of Theorem 3.5 we mention an embedding theorem for
the natural versions of the modulation spaces in our setting (Corollary 3.6).
Finally, in Section 4 we illustrate the main ideas by considering the special case of two-step nilpotent Lie algebras.

2. Heisenberg’s uncertainty inequality in the magnetic setting on nilpotent Lie groups

2.1. Moyal’s identity on nilpotent Lie groups

In this subsection we introduce the ambiguity function and the cross-Wigner distribution in the present setting and
prove some of their main properties including Moyal’s identity (Theorem 2.8). This property occurs in connection with a
finite-dimensional coadjoint orbit of a semidirect productwhich is in general an infinite-dimensional Lie group (see Prop. 2.9
in [6]). It corresponds to the orthogonality relations proved in [1] for thematrix coefficients of any irreducible representation
of a nilpotent Lie group. Let us also note that otherwavelet transforms associatedwith semidirect products of locally compact
(or finite-dimensional Lie) groups appeared in [18,19].

Setting 2.1. Throughout the present paper we work in the setting of Section 4 in [6]. Let us briefly recall the main notation
involved therein.
• A connected, simply connected, nilpotent Lie group G is identified to its Lie algebra g by means of the exponential map.
We denote by ∗ the Baker-Campbell-Hausdorff multiplication on g, so that G = (g, ∗).
• The cotangent bundle T ∗G is a trivial bundle and we perform the identification

T ∗G ' g× g∗ (2.1)

by using the trivialization by left translations.
• F is an admissible function space on the Lie group G (see Def. 2.8 in [6]); in particular, F is invariant under translations
to the left on G,

λX :F → F , φ 7→ φ((−X) ∗ ·)

for all X ∈ g, and F is endowed with a locally convex topology such that we have continuous inclusions g∗ ↪→ F ↪→
C∞(G). For instanceF can be the whole space C∞(G) or the space C∞pol(G) of smooth functions with polynomial growth.
See however Example 4.1 below for specific situations when dimF <∞.
• The semidirect product M = F oλ G is an infinite-dimensional Lie group in general, whose Lie algebra is m = F oλ̇ g.
We refer to [20] or [21] for basic facts on infinite-dimensional Lie groups.
• We endow g and its dual space g∗ with Lebesgue measures suitably normalized such that the Fourier transform L2(g)→
L2(g∗) is a unitary operator, and we denoteH = L2(g).
• We define a unitary representation π :M → B(H) by

(π(φ, X)f )(Y ) = eiφ(Y )f ((−X) ∗ Y )

for (φ, X) ∈ M , f ∈ H , and Y ∈ g.
• The magnetic potential is a smooth mapping A: g→ g∗, X 7→ AX , with polynomial growth such that for every X ∈ g we
have 〈A•, (R•)′0X〉 ∈ F .
• We also need the mappings

θ0: g× g∗ → F , θ0(X, ξ) = ξ + 〈A•, (R•)′0X〉

and

θ : g× g∗ → m, (X, ξ) 7→ (θ0(X, ξ), X).

Here RY : g→ g, Z 7→ Z ∗ Y , is the translation to the right defined by any Y ∈ g. �
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Remark 2.2. We wish to explain here the relationship between the objects introduced in Setting 2.1 and themagnetic field
B := dA ∈ Ω2(g), where the magnetic potential is thought of as a 1-form A ∈ Ω1(g). Specifically, for arbitrary φ ∈ F and
X ∈ g, let us define the function θ̄A0 (φ, X) ∈ F by

(∀Y ∈ g) (θ̄A0 (φ, X))(Y ) = φ(Y )+ 〈AY , (RY )
′

0X〉.

Now consider the continuous linear mapping

θ̄A:F oλ̇ g = m→ m, θ̄A(φ, X) = (θ̄A0 (φ, X), X)

and the differential 2-forms ω̄, B̄ ∈ Ω2(F × g) defined by

ω̄(φ0,X0)((φ1, X1), (φ2, X2)) = (φ2)
′

X0(X1)− (φ1)
′

X0(X2)

and

B̄(φ0,X0)((φ1, X1), (φ2, X2)) = BX0(X1, X2),

respectively. Then the following assertions hold:

(1) The operator θ̄A:m→ m is invertible and (θ̄A)−1 = θ̄−A.
(2) We have dω̄ = 0 and (θ̄A)∗(ω̄) = ω̄ + B̄. If we restrict the latter equality to g∗ × g (⊆ F × g), then we see that
the magnetic perturbation (ω̄ + B̄)|g∗×g of the canonical symplectic form ω̄|g∗×g ∈ Ω

2(g × g∗) can be recovered as the
pull-back of the universal form ω̄ ∈ Ω2(F × g) by a mapping constructed in terms of a magnetic potential, namely
θ̄A|g∗×g: g∗ × g→ F × g. (The 2-form ω̄ is universal in the sense that it does not depend on the magnetic field.) Note
that θ̄A(ξ , X) = θ(X, ξ)whenever ξ ∈ g∗ ⊆ F and X ∈ g.

(3) Here is a way to describe the mutual relationship between the aforementioned mappings constructed out of different
potentials of the same magnetic field: If A1, A2 ∈ Ω1(g) are magnetic potentials then there exists m0 ∈ M such that
θ̄A1 = AdM(m0) ◦ θ̄A2 if and only if dA1 = dA2.

We refer to Prop. 3.3 and Rem. 3.5 in [6] for some more details. �

Notation 2.3. We shall denote for every X ∈ g,

ΨX : g→ g, ΨX (Y ) =
∫ 1

0
Y ∗ (sX)ds

(see Prop. 3.2 in [6]) and also

τA(X, Y ) = exp
(
i
∫ 1

0
〈A(−sX)∗Y , (R(−sX)∗Y )′0X〉ds

)
for X, Y ∈ g. �

Remark 2.4. We note that for arbitrary (φ, X) ∈ m and f ∈ L2(g)we have

π(expM(θ̄
A(φ, X)))f (·) = τA(X, ·)π(expM(φ, X))f (·),

since

expM(θ̄
A(φ, X)) =

(∫ 1

0
λsXφds+

∫ 1

0
λsX 〈A•, (R•)′0X〉ds, X

)
while expM(φ, X) = (

∫ 1
0 λsXφds, X). It follows by associativity of themultiplication and the above formula that themapping

X 7→ τA(X, ·) gives rise to a cocycle with values in the multiplicative group {eiφ | φ ∈ F }. We refer to [4] for a discussion of
this circle of ideas in the case when g is abelian. �

Lemma 2.5. For every (X, ξ) ∈ g× g∗ and f ∈ L2(g) we have

(π(expM(θ(X, ξ)))f )(Y ) = τA(X, Y )e
−i〈ξ,ΨX (−Y )〉f ((−X) ∗ Y ), (2.2)

(π(expM(−θ(X, ξ)))f )(Y ) = τA(X, X ∗ Y )
−1ei〈ξ,ΨX (−(X∗Y ))〉f (X ∗ Y ) (2.3)

for arbitrary Y ∈ g.



84 I. Beltiţă, D. Beltiţă / Journal of Geometry and Physics 60 (2010) 81–95

Proof. Formula (2.2) follows at once by Remark 2.4, Notation 2.3, and the fact that

(∀ξ ∈ g∗)(∀X, Y ∈ g)

∫ 1

0
(λsXξ)(Y )ds = −〈ξ,ΨX (−Y )〉.

In order to prove the second formula, note that for φ ∈ L2(g)we have by (2.2)

(π(expM(θ(X, ξ)))f )(Y ) = φ(Y )
⇐⇒ τA(X, Y ) exp(−i〈ξ,ΨX (−Y )〉)f ((−X) ∗ Y ) = φ(Y )
⇐⇒ f ((−X) ∗ Y ) = τA(X, Y )−1 exp(i〈ξ,ΨX (−Y )〉)φ(Y )

for arbitrary Y ∈ g, which is further equivalent to

(∀Y ∈ g) f (Y ) = τA(X, X ∗ Y )−1 exp(i〈ξ,ΨX (−(X ∗ Y ))〉)φ(X ∗ Y )

and this concludes the proof. �

Definition 2.6. For arbitrary φ, f ∈ L2(g)we define the function

Aφ f : g× g∗ → C, (Aφ f )(X, ξ) = (f | π(expM(θ(X, ξ)))φ).

We shall callAφ f the ambiguity function defined by φ, f ∈ L2(g). By using the canonical symplectic structure on g×g∗ given
by

(g× g∗)× (g× g∗)→ R, ((X1, ξ1), (X2, ξ2)) 7→ 〈ξ1, X2〉 − 〈ξ2, X1〉

we also define the symplectic Fourier transform of the ambiguity function

W(f , φ) := Âφ f ∈ L2(g× g∗)

and we call it the cross-Wigner distribution (function) of φ, f ∈ L2(g). The definition ofW(f , φ)makes sense since it follows
by Theorem 2.8 below thatAφ f ∈ L2(g). �

Remark 2.7. Letφ ∈ S(g). Formula (2.2) shows that for every (X, ξ) ∈ g×g∗wehaveπ(expM(θ(X, ξ)))φ ∈ S(g).Moreover,
the mapping

g× g∗ → S(g), (X, ξ) 7→ π(expM(θ(X, ξ)))φ

is continuous. Thus we can extend the definition ofAφ f for every f ∈ S′(g) to obtain the continuous function

Aφ f : g× g∗ → C, (Aφ f )(X, ξ) = 〈f , π(expM(θ(X, ξ)))φ〉,

where 〈·, ·〉: S′(g)× S(g)→ C is the usual duality pairing.
We also note that if f , φ ∈ S(g), thenAφ f ∈ S(g× g∗) as an easy consequence of Lemma 2.5. �

The second equality in Theorem 2.8(1) below will be referred to asMoyal’s identity just as in the classical situation when
the Lie algebra g is abelian (see for instance [2]).

Theorem 2.8. The following assertions hold:

(1) For every φ, f ∈ L2(g) we haveAφ f ∈ L2(g× g∗) and

(Aφ1 f1 | Aφ2 f2)L2(g×g∗) = (f1 | f2)L2(g) · (φ2 | φ1)L2(g)
= (W(f1, φ1) | W(f2, φ2))L2(g×g∗)

whenever φ1, f1, φ2, f2 ∈ L2(g).
(2) If φ0 ∈ L2(g) with ‖φ0‖ = 1, then the operator Aφ0 : L

2(g)→ L2(g× g∗), f 7→ Aφ0 f , is an isometry and we have∫∫
g×g∗

(Aφ0 f )(X, ξ) · π(expM(θ(X, ξ)))φ d(X, ξ) = (φ | φ0)f

for every φ, f ∈ L2(g). In particular,∫∫
g×g∗

(Aφ0 f )(X, ξ) · π(expM(θ(X, ξ)))φ0 d(X, ξ) = f

for arbitrary f ∈ L2(g).
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Proof. (1) We may assume f1, f2, φ1, φ2 ∈ S(g). Let X ∈ g be fixed for the moment. We have by Lemma 2.5∫
g∗

Aφ1 f1(X, ξ) ·Aφ2 f2(X, ξ)dξ = lim
ε→0

∫
g∗
e−ε|ξ |

2
·Aφ1 f1(X, ξ) ·Aφ2 f2(X, ξ)dξ

= lim
ε→0

∫∫∫
g×g×g∗

e−ε|ξ |
2
· f1(Y1) · τA(X, Y1) · φ1((−X) ∗ Y1) · f2(Y2)

× τA(X, Y2) · φ1((−X) ∗ Y2) · ei〈ξ,ΨX (−Y1)−ΨX (−Y2)〉dY1dY2dξ
= lim

ε→0
〈Uε, FX 〉

where 〈·, ·〉: S′(g× g)× S(g× g)→ C stands for the usual duality between the tempered distributions and the Schwartz
space. Here we think of the function

Uε(Y1, Y2) =
∫

g∗
e−ε|ξ |

2
· ei〈ξ,ΨX (−Y1)−ΨX (−Y2)〉dξ

as a tempered distribution on g× g, while the function

FX (Y1, Y2) = f1(Y1) · τA(X, Y1) · φ1((−X) ∗ Y1) · f2(Y2) · τA(X, Y2) · φ1((−X) ∗ Y2)

belongs to S(g× g). Since ΨX : g→ g is a polynomial diffeomorphism of g whose inverse is again a polynomial diffeomor-
phism (by Prop. 3.2 in [6]), it follows by standard reasoning that for a certain constant C0 > 0 depending on the choice of
the Lebesgue measure on gwe have

lim
ε→0
Uε = C0 δ(Y1 − Y2) (2.4)

in the weak topology of the space S′(g × g), where δ(·) is the Dirac distribution at 0 ∈ g. Specifically, let φ ∈ S(g × g)
arbitrary. Then a change of variables shows that

lim
ε→0
〈Uε, φ〉 = lim

ε→0

∫∫∫
g×g×g∗

e−ε|ξ |
2
e−i〈ξ,Z1〉+i〈ξ,Z2〉ψ(Z1, Z2)dZ1dZ2dξ

= lim
ε→0

∫
g∗
e−ε|ξ |

2
(F ψ)(ξ,−ξ)dξ =

∫
g∗
(F ψ)(ξ,−ξ)dξ,

whereF : S(g×g)→ S(g∗×g) is the usual Fourier transform. Here we have setψ(Z1, Z2) =: φ(−Ψ−1X (−Z1),−Ψ−1X (−Z1))
and used Lebesgue’s convergence theorem. On the other hand,∫

g∗
(F ψ)(ξ,−ξ)dξ = C0

∫
g

ψ(Y , Y )dY .

This can be seen by applying the equality
∫

g∗
(F χ)(ξ, 0)dξ = C0

∫
g
χ(0, Y )dY with the functionχ(X, Y ) := ψ(Y+X, Y−X).

Now (2.4) follows at once by the above computations.
We then obtain by (2.4)∫

g∗
Aφ1 f1(X, ξ) ·Aφ2 f2(X, ξ)dξ = C0

∫
g

FX (Y , Y ) dY

= C0

∫
g

f1(Y ) · φ1((−X) ∗ Y ) · f2(Y ) · φ2((−X) ∗ Y ) dY

since |τA(X, Y )| = 1. By integrating the above equality with respect to X ∈ g and taking into account our convention on the
relationship between the Lebesgue measures on g and g∗, we eventually get

(Aφ1 f1 | Aφ2 f2)L2(g×g∗) = (f1 | f2)L2(g) · (φ2 | φ1)L2(g).

This is just the first equation we wished for. The second equality in the assertion follows from this one by using the well-
known fact that the symplectic Fourier transform L2(g× g∗)→ L2(g× g∗) is a unitary operator.
(2) It follows at once by Assertion (1) that the operator Aφ0 : L

2(g) → L2(g × g∗) is an isometry if ‖φ0‖ = 1. The other
properties then follow by general arguments; see for instance Proposition 2.11 in [22]. �

Proposition 2.9. If f , φ ∈ S(g), then the following assertions hold:

(1) For every (X, ξ) ∈ g× g∗ we have

(Aφ f )(X, ξ) =
∫

g

e−i〈ξ,Y 〉τA(X,−Ψ−1X (−Y ))f (−Ψ−1X (−Y ))φ((−X) ∗ (−Ψ−1X (−Y ))) dY .
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(2) For every (Y , η) ∈ g× g∗ we have

W(f , φ)(Y , η) =
∫

g

e−i〈η,X〉τA(X,−Ψ−1X (−Y ))f (−Ψ−1X (−Y ))φ((−X) ∗ (−Ψ−1X (−Y ))) dX .

Proof. It follows by Definition 2.6 and Lemma 2.5 that

(Aφ f )(X, ξ) =
∫

g

f (Z)τA(X, Z)ei〈ξ,ΨX (−Z)〉φ((−X) ∗ Z) dZ .

Since ΨX : g → g is a diffeomorphism with the Jacobian function equal to 1 everywhere, we can change variables and set
Y = −ΨX (−Z) in the above integral. Then Z = −Ψ−1X (−Y ) and we get the formula in Assertion (1). Then recall from
Definition 2.6 that

W(f , φ)(Y , η) =
∫∫

g×g∗
e−i(〈η,X〉−〈ξ,Y 〉)(Aφ f )(X, ξ) dξdX

If we plug in the formula of Assertion (1) in the above equation and use the Fourier inversion formula, then we get the
formula forW(f , φ)(Y , η) as claimed. �

Remark 2.10. It follows by Proposition 2.9(1) that the functionAφ f (X, ·): g∗ → C is equal to the inverse Fourier transform
of the function

τA(X,−Ψ−1X (·))f (−Ψ−1X (·))φ((−X) ∗ (−Ψ−1X (·))): g→ C. �

Remark 2.11. We can use the above Proposition 2.9 along with Prop. 3.2 in [6] to check that the sesquilinear mappings

A(·, ·),W(·, ·): S(g)× S(g)→ S(g× g∗)

are continuous. �

2.2. Magnetic pseudo-differential operators and Wigner distributions

This subsection includes backgroundmaterial from [6] togetherwith some new properties of themagneticWeyl calculus
on nilpotent Lie groups.

Definition 2.12. For every a ∈ S(g× g∗) the correspondingmagnetic pseudo-differential operator is defined by

Op(a)f =
∫∫

g×g∗
â(X, ξ) · π(expM(θ(X, ξ)))f d(X, ξ) (2.5)

for every f ∈ S(g), where θ : g× g∗ → m is described in Setting 2.1. �

We record in the following proposition some immediate properties of the magnetic pseudo-differential operators con-
structed in Definition 2.12.

Proposition 2.13. The following assertions hold:
(1) For each a ∈ S(g× g∗) we have

(Op(a)f | φ)L2(g) = (̂a | Af φ)L2(g×g∗) = (a | W(φ, f ))L2(g×g∗)

whenever f , φ ∈ S(g).
(2) If φ1, φ2 ∈ S(g) and a := W(φ1, φ2) ∈ S(g× g∗), then Op(a) is a rank-one operator, namely

Op(a)f = (f | φ2)L2(g) · φ1 for every f ∈ S(g).

Proof. Assertion (1) is a consequence of formula (2.5) along with Definition 2.6. Then Assertion (2) follows by Assertion (1)
by taking into account Moyal’s identity (Theorem 2.8(1)). In fact, we get

(Op(W(φ1, φ2))f | φ) = (W(φ1, φ2) | W(φ, f )) = (φ1 | φ) · (f | φ2)
= ((f | φ2)φ1 | φ)

for arbitrary φ ∈ S(g), and the conclusion follows since S(g) is dense in L2(g). �

Remark 2.14. We can use the equations in above Proposition 2.13(1) and Remark 2.11 to define for every a ∈ S′(g × g∗)
the corresponding magnetic pseudo-differential operator as a continuous linear operator Op(a): S(g) → S′(g). It follows
by this definition that the following assertions hold:
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(1) If limj∈J aj = a in the weak∗-topology in S′(g × g∗), then for every f ∈ S(g) we have limj∈J Op(aj)f = Op(a)f in the
weak∗-topology in S′(g).

(2) The distribution kernel Ka ∈ S′(g× g) of the operator Op(a): S(g)→ S′(g) is given by the formula

Ka = αA · (((1⊗ F−1g )a) ◦Σ), (2.6)

where the function αA multiplies the composition between partial inverse Fourier transform (1 ⊗ F−1g )a ∈ S′(g × g)
and the polynomial diffeomorphism

Σ: g× g→ g× g, Σ(X, Y ) =
(∫ 1

0
(s(Y ∗ (−X))) ∗ X ds, X ∗ (−Y )

)
whose inverse is again polynomial. In fact, this follows by Th. 4.4 and eq. (4.14) in [6] for a ∈ S(g× g∗). Then the general
case can be obtained by the preceding continuity property, since S(g× g∗) is weakly∗-dense in S′(g× g∗).

For the sake of completeness, let us write (2.6) explicitly as

Ka(X, Y ) = αA(X, Y )
∫

g∗
ei〈ξ,X∗(−Y )〉a

(∫ 1

0
(s(Y ∗ (−X))) ∗ X ds, ξ

)
dξ (2.7)

which makes sense whenever a ∈ S′(g× g∗) is defined by a function such that the right-hand side is well defined. Here we
have used the notation

αA(X, Y ) = exp
(
i
∫ 1

0
〈A((s(Y ∗ (−X))) ∗ X), (R(s(Y∗(−X)))∗X )′0(X ∗ (−Y ))〉 ds

)
(2.8)

for every X, Y ∈ g (see eq. (4.13) in [6]). �

Example 2.15. We wish to use Remark 2.14 in order to compute the magnetic pseudo-differential operators defined by
some special types of symbol.
(1) Let a: g → C be a smooth function of polynomial growth and look at it as a symbol in S′(g × g∗) depending only on
the variable in g. Since αA(X, X) = 1, it the follows at once from (2.6) that Op(a) is the multiplication operator in L2(g)
defined by the function a.

(2) Let X0 ∈ g and define aX0 : g× g∗ → C, aX0(X, ξ) = 〈ξ, X0〉. Then it follows by Th. 4.4(1) (and its proof) in [6] that

Op(aX0) = −iλ̇(X0)+ A(Q )X0
and this operator is the infinitesimal generator of a 1-parameter group of unitary operators, hence it is essentially
self-adjoint in L2(g). Here λ̇(X0) is the first-order differential operator defined by the right-invariant vector field X0
on the nilpotent Lie group (g, ∗) whose value at 0 ∈ g is X0. On the other hand, A(Q )X0 stands for the multiplication
operator given by the function whose value at an arbitrary point is obtained by applying the 1-form A ∈ Ω1(g) to the
aforementioned vector field X0. Let us note that an explicit formula for λ̇(X0) can be easily obtained by Lemma 5 in [23],
namely for every f ∈ C∞(g) and Y ∈ gwe have (λ̇(X0)f )(Y ) = 〈f ′Y , X0(Y )〉, which is the first-order differential operator
defined by the vector field X0: g→ g,

X0(Y ) = R(adgY )X0 = X0 −
1
2
[Y , X0] +

1
12
[Y , [Y , X0]] + · · · . (2.9)

Here we use the holomorphic function R:C \ 2π iZ∗ → C, R(z) = z/(ez − 1) whose power series around 0 is
1− 1

2 z +
1
12 z

2
+ · · ·.

(3) Now assume that the magnetic potential A vanishes. Let a ∈ L1(g∗) and think of it as a symbol in S′(g× g∗) depending
only on the variable in g∗. If we denote by b ∈ L∞(g) the inverse Fourier transform of a, then it follows by (2.7) that
Ka(X, Y ) = b(X ∗ (−Y )), hence

(∀f ∈ S(g)) (Op(a)f )(X) =
∫

g

b(X ∗ (−Y ))f (Y ) dX .

Thus Op(a) is a convolution operator on the nilpotent Lie group (g, ∗). �

Our next aim is to show that the Weyl calculus with real symbols gives rise to symmetric pseudo-differential operators;
see Proposition 2.17 below.

Lemma 2.16. If we define

Σ1: g× g→ g, Σ1(X, Y ) =
∫ 1

0
(s(Y ∗ (−X))) ∗ X ds,

then for every X, Y ∈ g we haveΣ1(X, Y ) = Σ1(Y , X).
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Proof. Note that for every X, Y ∈ gwe have

ΨX (Y ∗ (−X)) =
∫ 1

0
Y ∗ (−X) ∗ sX ds =

∫ 1

0
Y ∗ (−(1− s)X) ds = Ψ−X (Y ).

If we replace X by (−X) ∗ Y , then we get Ψ(−X)∗Y (Y ∗ (−Y ) ∗ X) = Ψ(−Y )∗X (Y ), that is,

(∀X, Y ∈ g) Ψ(−X)∗Y (X) = Ψ(−Y )∗X (Y ).

Now the conclusion follows since

Σ1(X, Y ) = −ΨX∗(−Y )(−X)

for every X, Y ∈ g. �

Proposition 2.17. Let a ∈ S′(g×g∗) be a real distribution, in the sense that its values on real valued functions are real numbers.
Then the distribution kernel Ka ∈ S′(g× g) has the following symmetry property:

(∀f , φ ∈ S(g)) 〈Ka, f ⊗ φ̄〉 = 〈Ka, φ ⊗ f̄ 〉.

Proof. First note that for every X, Y ∈ gwe have by (2.8)

αA(Y , X) = exp
(
i
∫ 1

0
〈A((s(X ∗ (−Y ))) ∗ Y ), (R(s(X∗(−Y )))∗Y )′0(Y ∗ (−X))〉 ds

)
= exp

(
i
∫ 1

0
〈A((−sZ) ∗ Z ∗ X), (R(−sZ)∗Z∗X )′0Z〉 ds

)
= exp

(
i
∫ 1

0
〈A(((1− s)Z) ∗ X), (R((1−s)Z)∗X )′0Z〉 ds

)
= exp

(
i
∫ 1

0
〈A((sZ) ∗ X), (R(sZ)∗X )′0Z〉 ds

)
= exp

(
i
∫ 1

0
〈A((s(Y ∗ (−X))) ∗ X), (R(s(Y∗(−X)))∗X )′0(Y ∗ (−X))〉 ds

)
= exp

(
−i
∫ 1

0
〈A((s(Y ∗ (−X))) ∗ X), (R(s(Y∗(−X)))∗X )′0(X ∗ (−Y ))〉 ds

)
= α(X, Y ),

where we used the notation X ∗ (−Y ) = −Z , hence Y = Z ∗ X . Now the assertion follows at once by using Lemma 2.16 and
formula (2.7). �

The next result shows the significance of themarginal distributions of the cross-Wigner function in our setting. It isworth
pointing out that this is a natural extension of the similar property in the classical case of the Schrödinger representation.
Actually, the functional calculus with both the position operators (see Assertion (1)) and the noncommutative magnetic
momentum operators−iλ̇(X0)+ A(Q )X0 (Assertion (2)) can thus be read off with the cross-Wigner distribution.

Proposition 2.18. If f , φ ∈ S(g), then the following assertions hold:

(1) For every Y ∈ g we have

f (Y )φ(Y ) =
∫

g∗
W(f , φ)(Y , η) dη.

(2) If we define

Γf ,φ: g∗ → C, Γf ,φ(η) =

∫
g

W(f , φ)(Y , η) dY ,

then for every X0 ∈ g and a0 ∈ S(R) we have

(a0(−iλ̇(X0)+ A(Q )X0)f | φ) =
∫

g∗
Γf ,φ(η)a0(〈η, X0〉) dη,

where the left-hand side involves the Borel functional calculus for the essentially self-adjoint operator −iλ̇(X0) + A(Q )X0
in L2(g).
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Proof. For Assertion (1) use Proposition 2.9(2) along with the Fourier inversion formula to get∫
g∗

W(f , φ)(Y , η) dη = τA(0,−Ψ−10 (−Y )) · f (−Ψ−10 (−Y )) · φ(0 ∗ (−Ψ−10 (−Y )))

= f (Y )φ(Y ).

The latter equality follows at once by the formulas in Notation 2.3.
In order to prove Assertion (2), let us denote by 1⊗ a0(〈·, X0〉) the function defined on g × g∗ by (X, ξ) 7→ a0(〈ξ, X0〉).

It then follows by Example 2.15(2) that 1⊗ a0(〈·, X0〉) = a0 ◦ aX0 and then

a0(−iλ̇(X0)+ A(Q )X0) = Op(1⊗ a0(〈·, X0〉))

(see also Sect. 5.1 in [21]). By using this equality along with Remark 2.14 and the formula in Proposition 2.13(1), we get

(a0(−iλ̇(X0)+ A(Q )X0)f | φ)L2(g) = (1⊗ a0(〈·, X0〉) | W(φ, f ))L2(g×g∗)

=

∫∫
g×g∗

a0(〈η, X0〉) ·W(f , φ)(Y , η) dYdη

=

∫
g∗
a0(〈η, X0〉)

(∫
g

W(f , φ)(Y , η) dY
)
dη,

and this leads to the asserted formula. �

2.3. Heisenberg’s inequality

In the following statement we shall use the symbols
aX0 : g× g∗ → C, aX0(X, ξ) = 〈ξ, X0〉,
aξ0 : g× g∗ → C, aξ0(X, ξ) = 〈ξ0, X〉.

for arbitrary X0 ∈ g and ξ0 ∈ g∗.

Theorem 2.19. Let X0 ∈ g and c0 ∈ R. Assume that the coadjoint orbit O ⊆ g∗ is contained in the affine hyperplane {ξ ∈ g∗ |

〈ξ, X0〉 = c0}. Then

[Op(aX0),Op(aξ0)] = ic0 · idL2(g) (2.10)

and

‖Op(aX0)f ‖ · ‖Op(aξ0)f ‖ ≥
1
2
|c0| (2.11)

for every ξ0 ∈ O, whenever f ∈ L2(g) with ‖f ‖ = 1 belongs to the domains of both operators Op(aX0) and Op(aξ0).

Proof. For the sake of simplicity we shall use the convention that the operator of multiplication by some function will be
denoted by the same symbol as that function. Then, according to Example 2.15(1)–(2) we have Op(aξ0) = ξ0 and Op(aX0)
= −iλ̇(X0) + A(Q )X0. Since iλ̇(X0) is a first-order linear differential operator on C∞(g), hence a derivation on C∞(g), it
easily follows that

[Op(aX0),Op(aξ0)] = −iλ̇(X0)ξ0. (2.12)

Now, by using eq. (2.10) in [6] we get for every X ∈ g

(λ̇(X0)ξ0)(X) =
d
dt

∣∣∣∣
t=0
〈ξ0, (−tX0) ∗ X〉. (2.13)

Note that the Baker–Campbell–Hausdorff formula gives that for every t ∈ R

(−tX0) ∗ X = −tX0 + X + t
∑
j≥1

bj(adgX)jX0 + t2P(t, X, X0), (2.14)

where {bj}j≥1 is sequence of real numbers while P:R× g× g→ g is a certain polynomial mapping.
On the other hand, for every X ∈ g and t ∈ Rwe have ξ0 ◦ etadgX ∈ O hence

c0 = 〈ξ0 ◦ etadgX , X0〉 =
∑
j≥0

t j

j!
〈ξ0 ◦ (adgX)j, X0〉.

Thence 〈ξ0 ◦ (adgX)j, X0〉 = 0 for every j ≥ 1 and X ∈ g. By combining this with (2.12)–(2.14), we get (2.10). Then the
inequality (2.12) follows by general arguments; see for instance Prop. 2.1 in [10]. �
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In the following statement we use the notation δjk for Kronecker’s delta.

Corollary 2.20. Let {X1, . . . , Xn} be a Jordan–Hölder basis in g and denote by {ξ1, . . . , ξn} the dual basis in g∗. If 1 ≤ k ≤ j ≤ n,
then we have

[Op(aXj),Op(aξk)] = iδjkidL2(g) (2.15)

and

‖Op(aXj)f ‖ · ‖Op(aξk)f ‖ ≥
δjk

2
(2.16)

whenever f ∈ L2(g) with ‖f ‖ = 1 belongs to the domains of both operators Op(aXj) and Op(aξk).

Proof. Thehypothesis that {X1, . . . , Xj} is a Jordan–Hölder basis in g implies that for j = 1, . . . , nwehave [Xj, g] ⊆ span {Xl |
j < l ≤ n}. Then we can apply Theorem 2.19 to get the conclusion. �

Remark 2.21. It is often the case that a coadjoint orbit of a nilpotent Lie group is contained in an affine subspace, like in
Theorem 2.19. Here are a few specific situations:

(1) When ξ0 ∈ g∗ vanishes on [g, g], its coadjoint orbit reduces to {ξ0}, hence it is clearly contained inmany affine subspaces.
(2) If g is a two-step nilpotent Lie algebra, then every coadjoint orbit is an affine subspace.
(3) For every coadjoint orbitO ⊆ g∗ and every Z0 in the center of g there exists c0 ∈ R such thatO ⊆ {ξ ∈ g∗ | 〈ξ, Z0〉 = c0}.

We also note that the hypothesis O ⊆ {ξ ∈ g∗ | 〈ξ, X0〉 = c0} in Theorem 2.19 is equivalent to the fact that some (actually,
every) ξ0 ∈ O vanishes on the ideal generated by [X0, g] in g. This implies that if g is a two-step nilpotent Lie algebra in
Corollary 2.20 then the conclusion holds for every j and k. �

3. Uncertainty principles for magnetic ambiguity functions

In this section we establish a version of Lieb’s uncertainty principle [14] along with some of its consequences in the
present setting. The main result is Theorem 3.5 and is stated in terms of magnetic ambiguity functions and mixed-norm
Lebesgue spaces on the cotangent bundle of a nilpotent Lie group.

3.1. Magnetic modulation spaces

We first introduce themagnetic modulation spaces on a simply connected nilpotent Lie group G. The natural tool for that
purpose proves to be the ambiguity function and not a short-time Fourier transform, as it is customary in the classical case
when the nilpotent Lie group G is the additive group (Rn,+) (see for instance [2]). Nevertheless, our notion of modulation
space agrees with the classical one because of the well-known relationship between the ambiguity function and the short-
time Fourier transform.

Definition 3.1. Assume 1 ≤ p, q ≤ ∞ and let φ ∈ S(g). For every tempered distribution f ∈ S′(g) define

‖f ‖Mp,qφ =
(∫

g

(∫
g∗
|(Aφ f )(X, ξ)|qdξ

)p/q
dX
)1/p
∈ [0,∞]

with the usual conventions if p or q is infinite. Then the space

Mp,qφ (g) := {f ∈ S′(g) | ‖f ‖Mp,q <∞}

will be called amagnetic modulation space on the Lie group G = (g, ∗). �

Remark 3.2. In the setting of Definition 3.1 let us introduce themixed-norm space Lp,q(g×g∗) consisting of the (equivalence
classes of) Lebesgue measurable functionsΘ: g× g∗ → C such that

‖Θ‖Lp,q :=

(∫
g

(∫
g∗
|(Θ(X, ξ))|qdξ

)p/q
dX
)1/p

<∞

(cf. [2]). It is clear thatMp,qφ (g) = {f ∈ S′(g) | Aφ f ∈ Lp,q(g× g∗)}. �

Example 3.3. For any choice of φ ∈ S(g) in Definition 3.1 we have

M2,2(g) := M2,2φ (g) = L2(g).
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To see this, just note that the operatorAφ: L2(g)→ L2(g× g∗) satisfies

‖Aφ f ‖L2(g×g∗) = ‖φ‖L2(g) · ‖f ‖L2(g)

for every f ∈ L2(g), by Theorem 2.8(1). Therefore

‖f ‖M2,2 = ‖φ‖L2(g) · ‖f ‖L2(g) ∈ [0,∞]

for each f ∈ S′(g). �

Notation 3.4. For every real number p ∈ (1,∞)we shall denote

p′ := p/(p− 1) ∈ (1,∞),

so that 1p +
1
p′ = 1. �

3.2. Uncertainty principles for ambiguity functions

In the following theorem we extend Lieb’s uncertainty principle [14] to the present setting that takes into account a
magnetic potential on a nilpotent Lie group G. In the special case when the magnetic potential vanishes, the Lie group is the
abelian group (Rn,+), and the estimate for Aφ1 f1 · Aφ2 f2 is an ordinary L

p one instead of a mixed-norm one, we recover
Th. 4.1 in [15], due to the simple relationship between the ambiguity functions and the short-time Fourier transforms on
abelian groups.

Theorem 3.5. Let g be a nilpotent Lie algebra with the corresponding simply connected Lie group G = (g, ∗).

(1) If the following conditions are satisfied:
(a) p1, p2 ∈ (1,∞);
(b) rj, sj ≥ max{pj, p′j}(≥ 2) for j = 1, 2;
(c) p = ( 1r1 +

1
r2
)−1 and q = ( 1s1 +

1
s2
)−1;

(d) tj = ( 1rj +
1
s′j
−

1
pj
)−1 for j = 1, 2,

then for every fj ∈ Lpj(g) and φj ∈ Ltj(g) for j = 1, 2 we have

‖Aφ1 f1 ·Aφ2 f2‖Lp,q(g×g∗) ≤ C · ‖f1‖Lp1 (g) · ‖f2‖Lp2 (g) · ‖φ1‖Lt1 (g) · ‖φ2‖Lt2 (g),

where C ∈ (0, 1) is a certain constant depending only on p1, p2, r1, r2, s1, s2, and dim g.
(2) For every p ≥ 1 and f1, f2, φ1, φ2 ∈ L2(g) we have

‖Aφ1 f1 ·Aφ2 f2‖Lp(g×g∗) ≤ (p−1/p)dim g
· ‖f1‖L2(g) · ‖f2‖L2(g) · ‖φ1‖L2(g) · ‖φ2‖L2(g).

Proof. It is enough to prove these inequalities for f1, f2, φ1, φ2 ∈ S(g). Note that

‖Aφ1 f1 ·Aφ2 f2‖Lp,q(g×g∗) =

(∫
g

‖Aφ1 f1(X, ·) ·Aφ2 f2(X, ·)‖Lq(g∗)dX
)1/p

. (3.1)

Since 1q =
1
s1
+

1
s2
, we can use Hölder’s inequality to get

‖Aφ1 f1(X, ·) ·Aφ2 f2(X, ·)‖Lq(g∗) ≤ ‖Aφ1 f1(X, ·)‖Ls1 (g∗) · ‖Aφ2 f2(X, ·)‖Ls2 (g∗) (3.2)

for almost every X ∈ g. Now note that Proposition 2.9 implies that

Aφ f (X, ξ) =
∫

g

e−i〈ξ,Z〉τA(X,−Ψ−1X (−Z))f (−Ψ−1X (−Z))φ((−X) ∗ (−Ψ−1X (−Z)))dZ

for f , φ ∈ S(g). Therefore, since sj ≥ 2, we can apply the Hausdorff-Young inequality for the Fourier transform L
s′j (g) →

Lsj(g∗) to obtain

‖Aφj fj(X, ·)‖Lsj (g∗) ≤
(∫

g

∣∣∣τA(X,−Ψ−1X (−Z))fj(−Ψ−1X (−Z))φj((−X) ∗ (−Ψ−1X (−Z)))
∣∣∣s′j dZ)1/s′j

=

(∫
g

|fj(−Ψ−1X (−Z))φj((−X) ∗ (−Ψ−1X (−Z)))|s
′
jdZ
)1/s′j

=

(∫
g

|fj(Y )φj((−X) ∗ Y )|
s′jdY

)1/s′j
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where we have performed the change of variables Y = −Ψ−1X (−Z) and used the fact that ΨX : g → g is a diffeomorphism
with the Jacobian equal to 1 everywhere on g by Proposition 3.2 in [6]. If we define φ̃j(v) := φj(−v) for every v ∈ g, it then
follows that for almost every X ∈ gwe have

‖Aφj fj(X, ·)‖Lsj (g∗) ≤ ((|fj|
s′j ? |̃φj|

s′j )(X))1/s
′
j , (3.3)

where ? stands for the usual convolution product of functions on the nilpotent Lie group G.
On the other hand, by (3.1) and (3.2) we get

‖Aφ1 f1 ·Aφ2 f2‖Lp,q(g×g∗) ≤

(∫
g

‖Aφ1 f1(X, ·)‖
p
Ls1 (g∗)‖Aφ2 f2(X, ·)‖

p
Ls2 (g∗)dX

)1/p
≤

(∫
g

‖Aφ1 f1(X, ·)‖
r1
Ls1 (g∗)dX

)1/r1(∫
g

‖Aφ2 f2(X, ·)‖
r2
Ls2 (g∗)dX

)1/r2
, (3.4)

where the latter inequality follows by Hölder’s inequality since 1p =
1
r1
+

1
r2
. Now note that by (3.3) we get(∫

g

‖Aφj fj(X, ·)‖
rj
Lsj (g∗)

dX
)1/rj
≤

(∫
g

((|fj|
s′j ? |̃φj|

s′j )(X))rj/s
′
jdX

)1/rj
= ‖|fj|

s′j ? |̃φj|
s′j‖
1/s′j

L
rj/s
′
j (g)
. (3.5)

The Hausdorff inequality on the connected, simply connected, nilpotent Lie group G (see Corollary 2.5′in [24] or Corollary
to Th. 3 in [25]) implies that for a certain constant Cj ∈ (0, 1) depending only on pj, rj, sj, and dim gwe have

‖|fj|
s′j ? |̃φj|

s′j‖
1/s′j

L
rj/s
′
j (g)
≤ Cj · ‖|fj|

s′j‖
1/s′j
Lαj (g)
· ‖|̃φj|

s′j‖
1/s′j

Lβj (g)

= Cj · ‖fj‖
L
s′jαj (g)
· ‖φj‖

L
s′jβj (g)

= Cj · ‖fj‖Lpj (g) · ‖φj‖Ltj (g),

where αj := pj/s′j while βj is chosen such that
s′j
rj
+ 1 = 1

αj
+
1
βj
. It is easily checked that s′jβj = tj. It then follows by (3.4) and

(3.5) that the asserted estimate holds for the constant C := C1C2 that depends only on p1, p2, r1, r2, s1, s2, and dim g.
To prove Assertion (2), recall from Corollary 2.5′in [24] or Corollary to Th. 3 in [25] that if we denote

(∀l ∈ (1,∞)) Al =
( l1/l
l′1/l

′

)1/2
,

then for j = 1, 2 we have Cj = (AαjAβjAγj)
dim g, where γj :=

rj/s′j
(rj/s′j)−1

. By considering the special case p1 = p2 = 2 and

r1 = r2 = s1 = s2 = 2p = 2q ≥ 2, a careful analysis of the constants (which are the same as in the case when g is abelian)
then leads to the conclusion we wish for; see the proof of Th. 4.1 and Cor. 4.2 in [15] for details. �

With Theorem 3.5 at hand, one can obtain several versions of the uncertainty principle for the ambiguity function on the
nilpotent Lie group G in the present magnetic setting; see Corollaries 3.7 and 3.8 below. Before stating these consequences,
we note the relationship between the magnetic modulation spaces and the Lp spaces on the Lie group G. We refer to [26] for
more general properties of this type in the case when G is the abelian Lie group (Rn,+).

Corollary 3.6. Let G be a connected, simply connected, nilpotent Lie group with the Lie algebra g and assume that the following
conditions are satisfied:

(1) p ∈ (1,∞);
(2) r, s ≥ max{p, p′} (≥ 2);
(3) t = ( 1r +

1
s′ −

1
p )
−1.

Then for every f ∈ Lp(g) and φ ∈ Lt(g) for j = 1, 2 we have

‖Aφ f ‖Lr,s(g×g∗) ≤ C · ‖f ‖Lp(g) · ‖φ‖Lt (g),

where C ∈ (0, 1) is a certain constant depending only on p, r, s, and dim g. In particular, we have a continuous embedding

Lp(g) ↪→ Mr,sφ (g) if r, s ≥ max{p, p
′
}

for every φ ∈ S(g).

Proof. Just consider the special case of Theorem 3.5 with p1 = p2, r1 = r2, s1 = s2, φ1 = φ2, and f1 = f2. �
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The next corollary is the version in the present setting for Th. 4.2 and Remark 4.4 in [15] or Th. 3.3.3 in [2], which were
stated in terms of the short-time Fourier transforms on Rn.

Corollary 3.7. Assume the setting of Theorem 3.5 (1) with r1 = s1 and r2 = s2 and denote h = ( 1
max{p1,p′1}

+
1

max{p2,p′2}
)−1. If

the number ε > 0 and the Borel subset U ⊆ g× g∗ satisfy the inequality∫∫
U
|(Aφ1 f1 ·Aφ2 f2)(X, ξ)| dXdξ

≥ (1− ε)‖f1‖Lp1 (g) · ‖f2‖Lp2 (g) · ‖φ1‖Lp′1 (g) · ‖φ2‖Lp′2 (g),

then the Lebesgue measure of U is at least supp>h((1− ε)C)p/(p−1). If moreover p1 = p2 = 2, then the measure of U is greater
than supp>2(1− ε)p/(p−2)(p/2)(2 dim g)/(p−2).

Proof. Use the method of proof of Th. 4.2 in [15] or Th. 3.3.3 in [2], by relying on our Theorem 3.5. �

We now record an estimate for the entropy of the ambiguity function. This is obtained by a method similar to the one
indicated for obtaining (6.9) in [10].

Corollary 3.8. Let f , φ ∈ L2(g) such that ‖f ‖L2(g) · ‖φ‖L2(g) = 1, and denote

ρf ,φ(·) := |(Aφ f )(·)|2 ∈
⋂
p≥1

Lp(g× g∗).

Then we have

−

∫∫
g×g∗

ρf ,φ log ρf ,φ ≥ dim g ≥ 1.

Proof. For every p ≥ 1 denote

γ (p) =
∫∫

g×g∗
(ρf ,φ(·))

p and χ(p) = p− dim g.

Then Theorem 3.5(2) implies that γ (p) ≤ χ(p) for every p ≥ 1. On the other hand, it follows at once by Proposition 2.9(1)
that ρf ,φ(·) ≤ 1 on g× g∗, hence γ (·) is a nonincreasing function on [1,∞). Since so is the function χ(·), and γ (1) = χ(1)
by Theorem 2.8(1), it then follows that γ ′(1) ≤ χ ′(1), which is just the inequality we wish for. �

4. The case of two-step nilpotent Lie algebras

In this section we are going to point out some specific features of the above constructions in the special case of a two-step
nilpotent Lie algebra g (that is, [g, [g, g]] = {0}). The importance of this situation is partially motivated by the fact that it
covers the Heisenberg algebras, which are characterized by the property dim[g, g] = 1. On the other hand, this class of Lie
algebras contains many algebras which are neither abelian nor Heisenberg. In fact, the classification of two-step nilpotent
Lie algebras is still an open problem although it was raised a long time ago (see [27,28], and the references therein). To
emphasize the richness of the class of two-step nilpotent Lie algebras, let us just mention that in every dimension ≥ 9
there exist infinitely many algebras of this type which are nonisomorphic to each other (see [29]). By contrast, there exists
precisely one abelian Lie algebra and at most one Heisenberg algebra in each dimension.

Example 4.1. Here we show that nilpotent Lie algebras with arbitrarily high nilpotency index can be constructed as
semidirect products of two-step nilpotent Lie algebras and appropriate function spaces thereon. These algebras were
considered in several papers for the study of Schrödinger operatorswith polynomialmagnetic fields; see for instance [30,31]
and the references therein.
Let g be a two-step nilpotent Lie algebra and N ≥ 1 a fixed integer. Denote by PN(g) the finite-dimensional linear space

of real polynomial functions of degree ≤ N on g. Then F := PN(g) is an admissible function space in the sense of Def. 2.8
in [6] (see also Setting 2.1 above). Note that if we think of g as a Lie group with respect to the Baker-Campbell-Hausdorff
multiplication

(∀X, Y ∈ g) X ∗ Y = X + Y +
1
2
[X, Y ],

then PN(g) is invariant under the left translations on g since every left translation Y 7→ X ∗ Y is a polynomial mapping of
degree≤ 1.
By using the formula for the bracket in the semidirect product of Lie algebras m = F oλ̇ g,

[(f1, X1), (f2, X2)] = (λ̇(X1)f2 − λ̇(X2)f1, [X1, X2])
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it is easy to see that m is a nilpotent Lie algebra whose nilpotency index is at least max{N, 2}. It also follows that the center
of m is R · 1× {0}. Here we have denoted

(λ̇(X)f )(Y ) =
d
dt

∣∣∣∣
t=0
f ((−tX) ∗ Y ) = f ′Y (−X −

1
2
[X, Y ])

(compare formula (2.10) in [6]). �

Example 4.2. Let g be a two-step nilpotent Lie algebra again and denote the center of g by z. It follows by Example 2.15(2)
that for every X0 ∈ g the corresponding right-invariant vector field on g is

X0: g→ g, X0(Y ) = X0 −
1
2
[Y , X0].

(In particular, if X0 ∈ z, then X0 defines a first-order differential operator λ̇(X0)with constant coefficients in any coordinate
system on g.)
On the other hand, for every ξ0 ∈ g∗ we have

(∀Y ∈ g) (λ̇(X0)ξ0)(Y ) = 〈ξ0, X0(Y )〉 = 〈ξ0, X0〉 −
1
2
〈ξ0, [Y , X0]〉.

Since [g, [g, g]] = {0}, it follows that [X0, g] is an ideal in g. �

Corollary 4.3. Let g be a two-step nilpotent Lie algebra and f , φ ∈ S(g) be arbitrary.

(1) For every (X, ξ) ∈ g× g∗ we have

(Aφ f )(X, ξ) =
∫

g

e−i〈ξ,Y 〉 · τA(X, (X/2) ∗ Y ) · f ((X/2) ∗ Y ) · φ((−X/2) ∗ Y )dY .

(2) For every (Y , η) ∈ g× g∗ we have

W(f , φ)(Y , η) =
∫

g

e−i〈η,X〉 · τA(X, (X/2) ∗ Y ) · f ((X/2) ∗ Y ) · φ((−X/2) ∗ Y )dX .

Proof. Since [g, [g, g]] = {0}, it follows at once that for every X, Y ∈ g we have ΨX (Y ) = Y ∗ (X/2) and τA(X, Y ) =

exp
(
i
∫ 1
0 〈A(−sX)∗Y , X +

1
2 [X, Y ]〉ds

)
. Then use Proposition 2.9. �
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