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Introduction

Introduction

The origins of potential theory may be situated in the 18" century when
Lagrange remarked in 1773 that the gravitational forces have as components
the partial derivatives of function( which was called potential function or
potential by Green in (1828) respectively Gauss (1840) and when Laplace
(1782) showed that outside the mass generating these forces, this function
satisfies the partial differential equation A= 0, so called Laplace equation
The fundamental principles of potential theory were elaborated during
the 19™ century and constitutes so called “Classical potential theory”.
Essential contributions to this classical potential theory were made by
1. S. D. Poisson (1823) with his famous formula which solve the
Dirichlet Problem in the sphere

2. G. Green who introduce so called “Green Function * for domains
with sufficiently smooth boundary and applied such kind of
functions to solve the same Dirichlet Problem for much more
complicated open subset of R"

3. S. Earnshow (1839) who discovered the minimum principal for the

harmonic function, solutions of the Laplace equation

4. C.F. Gauss who solved (1840) the equilibrium problem
W. Thomson , H.A. Schwarz (1870) , L. Dirichlet and B. Riemann:
studied the behaviour at the boundary of the Poisson Integral in the
plane

6. A. Poincaré who invented the balayage method (1887) for solving
the Dirichlet problem in R3 and A. Harnak (1986) who discovered
his famous inequality and applied it in the studied of convergence
for monotone sequences of harmonic functions

These three principles: minimum principles, existence of a sufficiently
large class (for instance the ball) of the solutions for Dirichlet problem and
the principle of convergence for monotone sequences of harmonic functions
turned out to be axioms that allow obtaining the main results from the study
of harmonic functions and these principles are also fulfilled by the solutions
of any elliptic or parabolic equation.

So in the middle of the 20™ century G. Tautz, J.L.. Doob, M. Brelot and

H. Bauer developed their axiomatic potential theory starting with the above
three principles. The difference between them consists essentially in
formulating the axiom of convergence for monotone sequences. The
stronger of them is Brelot convergence which asserts that an increasing
sequence of harmonic functions which converges only in one point of a
domain, has as limit a harmonic function on this domain. For the same result
we arrive if we suppose the sequence converging uniformly on compact
subsets ( Bauer axiomatic) or on a dense subset (Doob axiomatic).

e
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In this line of development of potential theory we remember the
remarkable contribution of Romanian mathematician who elaborated the
theory of poliharmonic and policaloric functions ( M. Nicolescu) which are
solutions of the n — iterated Laplace operator or heat operator and also
constructed their own axiomatic theory (N. Boboc, C. Constantinescu, A.
Cornea) and published the Springer monograph” Potential theory on
harmonic spaces (1972). In order to cover the harmonic theory for the
parabolic equation their starting point was a sheaf of hyperharmonic
functions instead of a sheaf of harmonic functions.

Besides the studies of potential theory on harmonic spaces, starting with
6" decade of 19" century and based essentially on the new achievements in
mathematics as for example : The Choquet theory of capacity, Choquet
theory of convexity allowing the integral representation on the set of
extremal points of a compact convex sets, Hunt potential theory for Markov
processes, the achievements of R-M Hervé in the carrier theory, etc... many
mathematicians began to study some type of ordered convex cones which
have similar properties as the convex cone of positive superharmonic
functions or supermedinan functions with respect to a kernel or with respect
to a supermedian function associated with a resolvent family of kernels. The
cones of potentials introduced by G. Mokobodzki turned out to be useful
tool for developing an abstract potential theory on the line of above
potential theory on harmonic spaces of N. Boboc, C. Constantinescu and A.
Cornea.

Among the mathematicians who contributed at this new axiomatic
potential theory we mention G. Mokobodzki, D. Sibony, A. de la Pradel, D.
Feyel, W. Hansen, 1. Bliedtner, K. Jansen, Sewinking, I. Netuke, J. Vessely,
J. Lukes, B. Fuglede and others .

Again the Romanian School in potential theory has an important role.
We remark here the theory of duality they managed to build and publish it
in the springer monograph “ order and convexity: H-cone” 1982 written by
N. Boboc, Gh. Bucur and A. Cornea that illustrate their remarkable
contribution. Later, in a more general frame N. Boboc and L. Beznea
published a kluwer academic publishers monograph “Potential Theory and
Right Processes” 2004.

In this new frame of potential theory, the réduite (resp. balayage)
operator play an important role which may be justified just from its origin
method for solving Dirichlet problem. Also the regular elements in this
theory which replace the continuous potentials in the theory of harmonic
spaces are important since they may be the origin of some associated kernels
with complete maximum principle.

To those elements we may associate a carrier theory and to build a
specific multiplication i.e. an integral on a measurable space with respect to
a measure with values in the cone of regular elements.

The thesis presented here mainly concerns with this objects.

Chapter 1. In the first chapter we present a summary of the well known
results in the theory of “Cones of Potentials” or more precisely cones of
excessive or supermedian functions with respect to a sub-Markovian
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resolvent family of kernels on a measurable space. Among the results
obtained here we mention:

1.

A Choquet type assertion in the frame of supermedian functions as
well as in the frame of excessive functions with respect to this
resolvent.
A decomposition of supermedian function as a sum of two
supermedians which are stable with respect to the réduite operation
on a borel set respectively its complement.
For any finite supermedian function .8 we associate a map B, from §
into § given by:
Bt =sup{fu e S/u<t andu < as for some a > 0}

and we prove that this map is a pseudo-balayage i.e. it is increasing,
additive, idempotent, contractive andB,8 = 3.

We prove that By is the smallest increasing, additive, idempotent
and contractive map T from § into § such that T8 = .

Similar assertions are valid replacing S by the cone £ of excessive
functions.
We develop a fine carrier theory on the set £ of excessive functions
in the following conditions: (X,B) is a measurable space, v =
(Vi) a>o 1s a proper sub-Markovian resolvent, the convex cone € is
min-stable, contains the positive constant functions, and the space X
is supposed to be nearly saturated i.e. any balayage B on £ is
representable.
Among others we characterize the regular excessive elements as
being those excessives for which the pseudo-balayages associated
with are balayages.
Many assertions presented in this chapterhave similar versions in
varius monographs, such as, e.g. [4], [5], [8], [10],[16],[17], [19],
[20], [21],[22],[23]

Chapter 2. In the second chapter we present a theory of Lebesgue integral
on a measurable space with respect to a measure having its values in the
cone of regular excessive functions with respect to a standard resolvent on

this measurable space i.e. ¥ = (V)40 1S a resolvent family of kernels on
(X, B) such that:

a.
b.

d.
e.

2 1s a proper sub-Markovian resolvent

The convex cone £ of all excessive functions with respect to v is
min-stable and contains the positive constant functions

There exists a distance d on X such that the associated topology 74
is smaller than the fine topology on X ( i.e. the coarsest topology T
on X making continuous all functions of £)

The Borel structure associated with the distance d coincides with B
The space (X,B) is nearly saturated with respect to £ i.e. any
o —balayage on £ is representable on X.

We construct a map (f,8) ~ f.8 from pbB X E" —» E" such that it is
bilinear and has the following properties:

1.

The sequence (f;,. 8),, is specifically increasing (resp. decreasing) to
f. 8 whenever (f;,),, increases (resp. decreases) to f
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2. If (f),, is uniformly bounded and (f;,), is pointwisely convergent
to f then the sequence (f;,.8), converges to f..8 with respect to the
specific order relation in £.
If p, € € and }p,, € E"then we have .8 = Y, f.p, Vf € pbB
carr f.8 c [f > 0] N carr s (A means the fine closure of A)
t > f.s8 whenevert € Eandt > f..s on the set [f > 0]
If 8€ E° and f, > 0 is such that Vf, is bounded then the kernel
W,:pbB — E" by W,(f) = f. (s + Vf,) has the complete maximum
principle, Ey = &€, and 8is a W — potential.

7. f.(g.8) =(fg).sforany f,g € pbB and any 8 € E"
This construction generalize a similar one given in [7], [11]
Similar results presented in this chapter may be found in [6], [7], [8],
[9L[10],[11],[12],[16],[17].

SNk

Chapter 3. In this chapter we present a study of so called Darboux-
Stieltjes integral for the functions taking values in a Banach space with
respect to a real function. For the scalar case this notion was introduce by
[15] and deepened by 1. Bucur [13], [14], [15]

Here we give the proof of some well known assertions in the particular
case of Riemann-Stieltjes integrability but which are not so trivial in our
case. At the end of this chapter we suggest by an example how to use this
type of integration in potential theory ( the duality in a particular case of
potential theory)



NEARLY SATURATION, BALAYAGE AND FINE CARRIER IN
EXCESSIVE STRUCTURES

CHAPTER 1

NEARLY SATURATION, BALAYAGE AND FINE
CARRIER IN EXCESSIVE STRUCTURES

In this chapter, we give minimal conditions on the space X, such that a good part
of potential theory in the frame of excessive structure, associated with a proper
submarkovian resolvent family of kernels on X , may be developed. We characterize
the regular excessive elements as being those excessive functions for which the
pseudo-balayages associated with, are balayages and we construct a fine carrier
theory without using any kind of compactification.

1.1. PRELIMINARIES AND FIRST RESULTS

In this paragraph v = (Vy)as0 1S @ proper sub-Markovian resolvent of
kernels on a measurable space(X, B). As usually we denote by § = §,, the set
of all positive B — measurable functions &: X — [0,+0o0] such that
avy8 < sfor all @ >0 and by S/ the set of all finite elements of . In
addition, we denote by € = £, the set off all excessive, B —measurable
functions, which are finite v — a.e. i.e.

E={8€S8/supavys =8 and vo(I[;=)) =0 Va €R,}
a

It is known that for any 8 € § the family (avy8)qer, is increasing and the
function 8 defined by:
8 = lim avys = lim nv,8 = supnv,s
a—00 n—oo n
called the regularized of 8 (w.r to « ) is dominated by 8 and the set
[8 < s] is v — negligible i.e. vo(I[5<5)) = 0 for any a € R, or for some
a, € R,. Moreover, the following properties hold:
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EXCESSIVE STRUCTURES

as,+pBs, = as +B3% Va,BER,, 8,8, ES whenever the
algebraic operations make sense
81X 8; = B8 <3, V8,8,ES
3=35 VseESands=8VsEE
3, 18 V8,8, €Ssuchthat s, Ts
If 8,8, €ESand 8, +38, €E then 5;,8, €EE
For any increasing sequence (8,), from § (respectively &) the
function sup, 8, belongs to S(respectively E&,if sup, 8, < ©
v.a.e.)
For any sequence (8,),from §, the function inf,, 5, belongs to §
For any sequences (&,,), from € the function inf, 8, is the infimum
in € of the set {5,/ n € N} and will be denoted by A,, 8,
We have &+ A, 8, = A (8 + 8,) Vs EE
For any B — measurable function f on X the set
{s€S/s8=f}
possesses the smallest element denoted by SRf or Rf
Particularly if f is of the form 8, — 8; with 8;, 8, € § then we have:
R(s; — 81) = *R(s; — 1) ?52

where we have written u ? v if there exists 8 € § such that:

v = u + 8,u and v being positive functions on X.
The relation ? is so called the specific order given by S

If A € B and s € S then the element R(Il4.8) is called the réduite of
& on the set A and will be noted by R4.s. The following properties of
the reduite operation are well known:

a. The map 8 — R4s from § to S is a 0 — balayage on S i.e.
it is additive, increasing, 6 —continous in order from below
(R8y)n T R8s whenever s, €8, 8, T.8)

b. If (A,), is an increasing sequence from B and A = U, 4,
then we have:

R4ns TR48 Vs€ES

c. R4 =5 on A and R41VY42 4 RA1N42 < RA1 g 4 R425 for

any A;,A; €EBandany 8 €S
If 51,8, €E, then R4(s, — ;) €E, and RA(s, —81) <¢, 52
where gs is the specific order given by £,

The set (€, 5) is a conditionally 0 — complete lattice i.e. for any

v

sequence (8,), € €, there exists the greatest lower bound noted by
An 8, and we have:
8+ A8, =AN8+38,) VEBEE
n n

If (8,)n € &, is specifically dominated in € there exists the smaller
upper bound noted by Y,, 8, and we have:
5+X5" =X(5+5") V8 EE
Moreover, if the sequence (8,), is specifically increasing (resp.
decreasing) then we have:
Y 8, = sup 8, (resp.As, =inf s,)
n n n n

9
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where sup, 8, (resp.inf, &,) is the pointwise supremum ( resp.
infimum) of the sequence of functions (8,), on X.

Particularly the Riesz decomposition property holds in € and S i.e.
for any 8,%;,%, belonging to & (resp. §) with 8 < £; + %, there
exist 81,8, in € (resp. §) such that 8; < £;, 8, < 1,, 8 = 81 + 385.
In fact the same o —Riesz decomposition property may be
immediately shown

oo co
5<Zti=>5=25i ,8i 1, VIEN
i=1 i=1

Other well known assertion from the o — vector lattices may be
restated in the convex cones £ and S.

Among them the following one will be used in the sequel: For any
81,8, 1n € (resp. §) we have

51/\52 +51Y52 = 381 +432

12. The Riesz decomposition property with respect to the pointwise order
relation holds in S(respectively £) i.e. for any 8,%;,%, in S (resp. £)
with 8 < £, + 1, there exist 81,8, in § (resp. € ) such that
8 =811 85,8 <11, 8, = %, .

The following decomposition property is inspired by similar one used by
Mokobodzki in the study of subordination resolvents (see [22] )

Lemmal.l.1. For any 8 € S, and any A € B there exist 8, and 8j in S
such that

8=238,+ 8, and R4s, = 58, RX\5) = 5

Proof: We define inductively two sequences (8y), and (8;), in § as
follows:

87 =R(8—R%5), 8} =8—R(8—R"5)
Sne1 = R(8y — RA83), 8541 = 83— R(8, — R%s;,

Obviously, we have &, = 8,,1 + 8n417 and one may show that
8h.1 <R4s, < &, ands,,, = R¥\Ms!/ .. So the sequence (8&}), is
specifically decreasing in § and the sequence (Q7L;8; ), is specifically
increasing in § and we have

n
5=5;+25{' vn € N*

i=1
Therefore, 8 = 84 + 8, where we have noted

10
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From the preceding considerations we deduce
R4 (Aa;l) = AR%48), = As8), ,R48, =5,
n n n

ROM(EZ, 8)) = 21 RMVs = B2, 8/ RM\Vsy = s)  m

1.2. A CHOQUET TYPE LEMMA

Lemma 1.2.1. Let (8,,), be a sequence in S and for any n € N let (8,m)nm
be a sequence in S which is specifically increasing to &,, .

1. We have
Y {8n/nEN} =Y {t, /nEN]}
where
th =1 Y &j
i,jsn

2. If 8, < oo and for any sequence 6 = (My)nen in N we denote
g :é {"Snmn/nE N}
then we have
AMsn /1 €N} = sup{s; /o € XN}
where sup stands for the pointwise supremum and YN for the set
of all sequences of natural numbers.

Proof. 1. Obviously we have

8y = \S/{snm /m € N} < \S/{tk /k N} < \5/{45,c /k € N}
and therefore
Y{8n /n € N} = Y{t, /n € N}

2. Let x € X and let € be a real number, € > 0. Since the sequence
(8nm)m 1s specifically increasing (in §) to the element 8,, of S we have

8 (X) = Sup 8pym (x) = lim 8, (x)
m m—oo
and therefore we may consider m,, € N such that

€
8 (x) < By, (X) + zin or t,(x) < o

where t, € S is such that 8, = 8, +tp
If we denote 85 = As{8, / n € N}, from the preceding consideration we

have
k
89 N Spm,, T 80 A (Z tl-> vn €N,

i=1

11
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k

80 < Snm, + \5/{50 A (Z tl-> /k € N},

i=1
k

S0 < Mbum, /1 € N} + {50 A (2 tl-) /k € N}

i=1
On the other hand at the point x € X the following inequality holds

k

k
Y{50 A (Z tl-) /k €N)@) = Jim (so A <Z tl-) ) ()

i=1 i=1

=

and therefore
So(x) < 85,(x)+ € where g = (My)nen-
The number ¢ being arbitrary we get

So(x) = suZ%I Ss(x) VxeX [
(S

Lemma 1.2.2. Let (8,,), be a sequence in € and for any n € N let (8pm)m
be a sequence in € which is E- specifically increasing to 8,
1. If the sequence (8,)y has a specific majorant in € then

Yn =Yty
where
tn =:Y{8i; /i,j =71}
2. If 8, < o and for any sequence 0 = (My)nen > in N, we denote
S5 = é{‘snm /m € N}

then we have

M8n /n € N} = sup{s, /o € XN}
where sup stands for the pointwise supremum and YN for the set of
all sequences of natural numbers.

Proof. We apply Lemma 1.2.2. we have

1. \gsn=§5n, \gtn=§tn
2. /g\{snm /m € N} = {S\{anm /m € N} ]

12
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We remember also the following definition

A map u: € — R, which is additive ,increasing, o —continuous in order
from below and for any 8 € & there exists a sequence (8,)y in E, increasing
to 8 such that u(8,) < oo for all n, is called 0 — H — integral.

1.3. PSEUDO-BALAYAGES ASSOCIATED WITH
SUPERMEDIAN FUNCTIONS

We remember that a map B: S — § is called pseudo-balayage on S if it is
increasing (with respect to the pointwise order relation), additive,
contractive (B8 < 8) and idempotent (B*s = B(Bs) = Baforall €S .

A pseudo-balayage B is called balayage if it is 0 — continuous in order from
below i.e. the sequence (BS,), increases to B8 whenever the sequence
(8n)n increases to 8.

A typical example of balayage on S is the map:

8 — R4s
where A € B.

In the sequel, for any element 8 € S/ we associate a pseudo-balayage
Bgsuch that B8 = 8. The procedure is inspired from a similar one developed
in the frame of satandard H-cones.

Proposition 1.3.1. Let 8 € S be a finite element. Then for any t € S the
set

Di={u€esS/ust andu< as for some a > 0}

has an upper bound in S with respect to the pointwise order relation and the
map

t — sup D, =Bt
t

Is a pseudo-balayage with By(8) = 8. Moreover if B is a pseudo-balayage
with B(8) = 8 we have B; < Bi.e. Bt < Bt Vt€ES
Proof. We consider the subset D of D, given by
D? = {ns — R(ns —t)/n € N*}

The set D? is countable an co-final in D, i.e. for any u € D, there exists
n € N such that

13
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u<ns—R(ns—u)
Indeed, let @ € R, such that u < a8 and <t . We have u < ns for n €
N,n = a and we remark that

u=ns—R(ns—u)
On the other hand we notice that the sequence (ns8 — R(ns —t)), is
increasing. Hence, the supremum of the set D? belongs to S and we have

Bt = supD, = supD? < 't
If = 8, obviously 8 € D, and therefore B,8 = 8
The fact that the map B, is increasing follows from the definition of B,
because if t; < t, then D, € Dy,
Using the definition of the sets D; ,D¢,and D, .. for t;,t, € S we deduce,

using Riesz decomposition property(with respect to the pointwise order
relation) that
D¢, + Di, = Dy 4,

So we have
By(ty + t3) = supDy, 4, = supDy, + supD;, = B,(t1) + B,(t;)

For any t € § and any u € D; we have u < B,t and by the definition of Dp .
we have u € Dg ;. Hence
u < B,(Bst), B,(t) < Bi(B,(1)), B,(t) = Blt

If B is a pseudo-balayage on S such that B8 = &, then for any u € S,u < a8
for some a > 0 we have

B(as) = aBs = as,
B(u)+ B(as —u) =B(as) =as =u+ (as —u),
Bu < u, Blas —u) < au— 238

And therefore Bu = u,B(as —u) = as —u
Letnow t € § and u € D;. From the preceding consideration we deduce

Bu=u Vu€D:,B,t=supu=supBu<Bt ]
uEDt— uEDt

Remark 1.3.2. For the convex cone £ we have similar definition of the
pseudo-balayge or balayage operator B: £ — £

Corollary 1.3.3. For any element 8 € £/, the restriction of the map B,
defined as above is a pseudo-balayage on & .

Proof. We remark that for any t € § which is finite v — a.e we have
B,t € £. Indeed, we have D, € £ and therefore the supremum of the
increasing and dominated sequence (n8 — R(ns — t)),, is an element of € m

14
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1.4. FINE CARRIER FOR EXCESSIVE FUNCTIONS

In the sequel we shall denote by £° the set of all finite excessive functions
8 on X such that for any specific minorant u € £ (u < 8) the associated
pseudo-balayage B,, is a balayage on E.

As in the introduction of this chapter for any subset A of X and any element
t € £ we denote

ERAt = inf{t' €EJt' >t on A}

Generally, the function €RAt is not B — measurable but if it is then this

function belongs to S, and the function
x — sup aV, ( °R4t)(x)

is denoted by B4t. Obviously B4t € &.

Definition 1.4.1. The set A is called subbasic if the function BAt is
defined for all 8 € £ and we have B4s = 8 on A.
A subbasic set M is called a basic set if we have

M = {x € X/ BMs(x) = 8(x),V8 € £}

Remark 1.4.2. It is obvious that a subset M of X is a subbasic if and only if
the function R4 belongs to € and therefore R4t = BAs forall s € €.

Remark 1.4.3. If M is subbasic then the map on £

s+— BMs
is a balayage on £.

Remark 1.4.4. If M is a subbasic set and b(M) is given by
b(M) = {x € X/ BMs(x) = s(x) V8 € £}

then B g = s forall s € € and b(M) € B.
The last assertion follows immediately from the fact that

b(M) = [BMVfy = Vfy]
where f, is a B —measurable, 0 < f; < 1 and Vf,; < oo.

On the space X, we consider as usually the fine topology i.e. the coarsest
topology 7 on X making continuous all functions of the vector lattice
Ep — &, of bounded functions on X. We suppose here that £ is min-stable
and [y € €.

15
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We remember that all elements .8 € £ are continuous with respect to T and
any point x, € X has a base of neighbourhoods of the form x, € [8 —t > 0]
with 8,t € £,t < 8 < 1. Obviously, the elements of this base belong to B.

Definition 1.4.5. We say that a balayage B on £ is representable if there
exists a basic set in X denoted by b(B) such that

Bs = BP®)g

forall s € €.

The space X is called nearly saturated if all balayages on & are
representable.
From now on, we suppose that X is nearly saturated and the convex cone € is
min-stable and contains the constant functions.

Definition 1.4.6. For any element 8 € £° we associate the subset b(B;)
the base of the balayage B,. We shall denote it by carr 8 and we shall call it
the (fine) carrier of 8 (with respect to E).

From the preceding remark 1.4.4., we deduce that the set carr 8 is fine
closed and we have
carrs=0 < s=0

Proposition 1.4.7. The following assertions hold
1. EY%is a solid convex sub-cone of E with respect to the specific order
2. carr (8, + 8,) = carr 8; U carr s, V8,8, €E°
3. If (8)n is a sequence in E° such that the function Y., 8, is finite
then this function belongs to E° and the set carr( Yo, 8y) is the
closure (with respect to T) of the set Up—, carr 8,

Proof. 1. and 2. We remark firstly that M; U M, is also a basic set and for
any element t € £ we have

BMiWMz2¢ = pMit v pMzt
Hence if we take M, = carr 8;, M, = carr 8, then

81 + 8y = BM151 + BM152 < BM]'UM251 + BMlUM252 = BIWIUIWZ (51 + 52)
< 81+ 8y,
BIVIlUIVI2 (51 + 52) = 381 + 89

And therefore for any u € €, u < a(8; + 3;,) we have
BMiUMay —

Hence forany t € Eandanyu € £, u < t,u < a(8; + 8,) forsome a > 0
we have

u=BMUMay < BMiWMog B | ¢ < BMiUMz¢

11382

We have also BM1YM2t < B, .t because By, < By 4, fori=1,2.

16



NEARLY SATURATION, BALAYAGE AND FINE CARRIER IN
EXCESSIVE STRUCTURES

Hence the map on €

t +— By 45t = BMUM2t
Is a balayage on €. The preceding considerations show that 8; + 8, € £° for
all 81,8, € €% and

carr (8, + 8,) = b(Bélﬂz) = b(Bs,) U b(Béz) = carr 8; U carr 8,

The last assertion may be proved using the proposition 1.3.1 and the fact that
a countable union of basic set is a subbasic set ]

Proposition 1.4.8. For any element u € E° we have
a. 8=2uon carru=s8=>uonkX
b. The set carr u is fine closed and B-measurable subset of X
c. If Fisa fine closed subset of X such that
8€&E 82U > 82U onX
then we have carru C F
d carru={x € X/uo—H—integral,u <¢ &, u(u) = u(x)
= U =g & }

Proof. a) We have
U=Bu=BYTUY < BYTUs <8 if tEE B8 gy
The assertion b) follows from the fact that

carru =b(B,) = {x € X/Bys(x) = 8(x) Vs €E}
={x €X/B,Vf(x) =Vf(x)}

where f is a B —measurable 0 < f < 1,Vf < oo,

¢) Let us denote for simplicity by R,*s = *R4s.
Using the hypothesis, we have

u>RFu Zu,RoFu =u,RoFau = qu Va € Ry
Since generally we have R, s < s we deduce that
Rfv=v wwegvsxu
and therefore forany v € £, v < 8, v < au for some @ > 0 we have
RFs=Rfv=v

The element v being arbitrary we get B8 < BF s forany s € &.

Let now xy € carr u \ F and let 84, 8, € £,8; < 1 be such that

81 < 84,81(xg) < 852(x0),8, =8, onF

From the preceding considerations, we have the contradictory relations:
17
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Rfs, =RFs, onX
0 < 85(xg) — 81(x0) = B %85 (x0) — B“Y" 81 (x0)
8 =RFs; > Bys; i =12 8;(xq) = RF5,(x9) = B,8;(x0) = 8;(x)
Hence carr u \ F = Q.

d) let xy € X such that if 4 is an 0 — H — integral on € with u < & on &
and p(u) = u(xp) then u = &, on E.
If x, € carr u then using b) we may consider two functions

81,8 € E,81 < 8,0nkX,8:(xg) < 8,(x0) and 8; = 8, oncarru
We take as a 0 — H — integral p on £ the map
8 Bys(xo) = p1(s)

Obviously we have u(s) < 8(xg) for all s € € and u(u) = u(x,) and
therefore, using the hypothesis u(8) = 8(x,) for all s € €

The last assertion gives us
B, 81 = Bys; on X,Bys; = pu(s;) = &;(x) =12
81(x0) = 2(x0),

This contradicts the choice of .8; and 8,.
Let now xy € carruand let u be an ¢ —h —integral such that pu <
gx,0n E, u(u) = u(x,). We get the relation

u(v) = v(x,) forall v € €, v < au for some a € R,
Hence taking 8 € £, v € €, v < 8,v < au for some a € R, we have
u(s) = u(w) =v(xo)
The element v being arbitrary we get
1(8) 2 Bys(xo) = 5(xo), i = &, ONE .

1.5. THE REGULAR EXCESSIVE ELEMENTS

Definition 1.5.1. An element 8 € £/ is called regular if for any increasing
sequence (8,), With sup 8, = .8 we have

AR(s—8,)=0

The potentials are regular elements.

18
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The following result is well known in standard H-cones .A similar result may
be found in [6] (therem 3.2.9)

Proposition 1.5.2. If 8 is a regular element of € then the associated
pseudo-balayage B, is a balayage.

Proof. Let (8,), be a sequence in £ increasing to 8 and for any n € N let
u, € &€ be such that
R(8—8y) +u, =23

The sequence (R(8 —38,)), is decreasing and the sequence (u,), is
increasing with respect to the pointwise order relation.

Therefore, we have

u:=supu, € £ and infR(s —8,) €S
n n

But since
u+infR(8 —8,) =3
n

We deduce that inf, R(8 — 8,,) € £. Hence using the regularity of 8 we have
iIT}fR(a —8y) = QR(zs —8,)=0, u=3s
With the above notations we have
U, <8, < 8, u, = Bsu, < B;8, Vn€N

Therefore sup B, 8,, = 8. Obviously for any @ € R, and any sequence (3,)
in € increasing to a8 we have sup B; 8, = a8
Now if u € £, u < 8 and (u,), is a sequence in € increasing to u we have

supB,zu, =u

Indeed if we denote v = 8 — u then the sequence (u, + v),, increases to 8
and therefore

sup B;(u, +v) = 8,supB,u, +v =3, supB,u, =u
n n n

To finish the proof we consider an arbitrary element t of € and a sequence
(tp)y in € increasing to t. Let u € D; where

Di={u€esS/u<t andu < as for some a > 0}
Since u < t then the sequence (inf(u, t,)),is in £ and increases to
inf(u,t) =u

But u < as for some a € R,. From the preceding considerations we have

sup B, (inf(u,t,)) = Bsu =u
n
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Hence

sup B,t, = sup B,(inf(u,t,)) = B;u=u
n n

But u being arbitrary we get
sup, Bst, = Bgt, sup Bst,, = Bt [

Theorem 1.5.3. The element 8 € E is regular if and if for any u € &,
u < & the pseudo-balayage B,, is a balayage on € i.e. 5 € E°

Proof. let s € E° and let (8,),be a sequence in & increasing to 8. For
€ €ER,e>0andn € N,n > 0 we denote by A,, the subset of X given by

An=[5<5n+<1—%>6]={xEX/5(x)</5n(x)+<1—%>e}

Obviously we have A,, € A,,,and A,, is fine open for every n € N, n > 0.
Moreover Up—1 A, =X .

Let us denote u,, = R (5 — 8, — (1 — %) e) and v,, = 8 — u,, obviously

1
U, = RNy, = RNy since [5 > 8, + (1 - ;) e] cX\A,

And therefore
un+m = RX\An+mun+m S RX\Anun+m Vn,m E N*
Upem = R¥Vy, . ¥n,m € N*

Since u, + v, = &, and the sequence (u,), is decreasing it follows that the
sequence (v,), is increasing to an element v € £, and if we denote u =
inf,, u,, we have

ueES,utv=80+0v =8, +v=8u=1
Hence u € £%nd from the preceding consideration, it follows
R¥NAY (U + Vi) = R¥\Vs  ¥n,m € N7,
Upsm + R (v, 0) = R¥\ng  wn,m € N7,
Making m — oo we obtain
u 4 RX¥\ny = RX\Ang
But on the other hand

RX\Any + R¥\Any = RX\Ang
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And therefore R¥\Any = u. The set X \ A,, being finely closed we deduce
carru c X \ A, for any n € N. But N;-; X \ A, = @ and therefore u = 0,

infnR(s—én — (1—%)6) =0
The relations
‘R(s—5,) < “R(s— s, — (1 —%)e) + (1—%)6 Vvn=1lande >0
give us the relations
i;lf ‘R(s — 8,) <, irr}f R(s—5,) =0

that is 8 is a regular element of £

Conversely, if 8 is regular then any element u € £, u < 8 is regular and
by proposition 1.5.2. the pseudo-balayage B, is a balayage i.e. 8 € £°m

Remark 1.5.4. In their papers concerning the semi-polar sets and regular
excessive functions respectively balayages on excessive measures L. Beznea
and N. Boboc (see [4] and [5]) show that for any basic set M which is
analytic there exists a bounded regular excessive function g, such that its fine
carrier, is contains in M

Remark 1.5.5. We may prove the following assertion :
If v = (V,)e>0 1s a standard resolvent family of kernels on a measurable
space (X,B) i.e.
a. v is a proper sub-Markovian resolvent
b. The convex cone £ of all excessive functions with respect to
4 1s min-stable and contains the positive constant functions
c. There exists a distance d on X such that the associated
topology 74 is smaller than the fine topology on X ( i.e. the
coarsest topology 7 on X making continuous all functions of
€)
d. The Borel structure associated with the distance d coincides
with B

and if the space (X,B) is such that for any regular and bounded excessive

function p with respect to the resolvent ¢+ , the balayage associated as above
to p 1is representable then all balayages on &£ are representable.
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CHAPTER 2

THE SPECIFIC MULTIPLICATION IN EXCESSIVE
STRUCTURE

In this chapter, we construct so called specific multiplication in the frame of
excessive structure i.e. if v = (V),>0 1S a standard resolvent on a measurable space
(X, B) then noting by E" the set of all regular excessive elements of the convex cone € of
all excessive functions we construct a map (f, 8) = f..8 from pbB X E" = E" such that
it is bilinear and has the following properties:

1. The sequence (f;,.8), is specifically increasing (resp. decreasing) to
f. 8 whenever (f;,),, increases (resp. decreases) to f

2. If (f)n is uniformly bounded and (f;,), is pointwisely convergent
to f then the sequence (f,,. 8),, converges to f..8 with respect to the
specific order relation in £.

3. Ifp, € €and Yp, € E"then we have f.8 =), f.p, Vf € pbB

4. carr f.8 < [f > 0] N carr 8 (A means the fine closure of A)

5. t>f.s8 whenevert € Eandt > f.s on the set [f > 0]

6. If 8 € £% and f > 0 is such that V f; is bounded then the kernel
W,:pbB — E" by W(f) = f. (8 + V) has the complete maximum
principle, Ey = &, and 8is a W — potential.

7. f.(g.8) = (fg).sforany f,g € pbB and any 8 € E”

2.1. PRELIMINARIES AND FIRST RESULTS

Definition 2.1.1. If (X, B) is a measurable space and v = (V)40 is a resolvent family
of kernels on (X, B) we shall say that v is a standard resolvent if
a. v is aproper sub-Markovian resolvent
b. The convex cone £ of all excessive functions with respect to ¢ is min-
stable and contains the positive constant functions
c. There exists a distance d on X such that the associated topology 74 is
smaller than the fine topology on X ( i.e. the coarsest topology T on X
making continuous all functions of &)
d. The Borel structure associated with the distance d coincides with B
e. The space (X, B) is nearly saturated with respect to € i.e. any
o —balayage on £ is representable.
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Remark 2.1.2. In the case where the above properties a), b) are fulfilled and B
is separable and B coincides with the o —algebra generated by € then there exists
a distance d as before.

Throughout this chapter v+ will be a standard resolvent on (X, B) and we shall
mark by § or §, the convex cone of all v-supermedian functions i.e. all positive
B — measurable functions & : X — [0, +o0] such that av,8 < s for all a >0
and by S/ the set of all finite elements of S.

We remember that an element 8, € £ is called weak unit in € if for any 8 € £
the sequence 8, = 8A(n8;) increases to 8. Obviously 8, is a weak unit in £ if
and only if 85 > 0 on X.

If 8, is a weak unit then an element 8 of £ is called 8, —bounded if there
exists @« € R, such that 8 < a.3.

Lemma 2.1.3. For any element 3 € E/ and any subset A of B there exist 8,
and 8, in € such that

8=6,+8) RAs,=RAs, =25, RMs,=R"\g, =3,
where for any t € € and A € B we have noted
Rit=influe E/u>t onA}
Rt =influ€eS,/u=>t onA}

Proof. Using lemma 1.1.1. we deduce that for the function & € £/ we may
construct 84 and 84 in S, with the following properties

8=28,+38) RAs,=2s8,  R¥\4s, =35,

Since 8 € £ and 84, 84 are in S, we deduce that s, = &;, 84 =, and
therefore 8, € £,.8, € €. Obviously we have

’SA = RA5A S RéqﬁA S ’SAJ RéqﬁA = ’SA = RA5A

X\4 X\4
sy = R¥\s, < RV < 54 RV s, = 54 = R*\s, m

We remember that an element p € € is called regular if for any sequence (8,), in
& which increases to p we have

AR(p—5,) =0

We denote by £7 the convex cone of all regular elements of £ and by £/ the
convex cone of all regular finite element of €.

The following statement shows that generally in the study of regular elements
we may restrict our self to the finite regular elements.

Lemma 2.1.4. For any weak unit 8y in € and any regular element p of E there
exists a sequence (p,)n © E"such that p,, is 8, —bounded for any n € N and

P = Xn=1Pn
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Proof. For any n € N, n > 1 we consider the regular element .8,, which is
8y —bounded given by

Sn+R(p—nsy) =n, 8p < N8y
Since the sequence (t,,), of § given by

tn = pA(nso)

increases to p, the sequence

R(p —ns9) = R(p — tn)

decreases to zero in £.
Foranyn € N,n > 1 we put

un = Y?=1 5i; vn =A7i1=1 R(p - tl)

Obviously, u; +v; =p for any i>1, the sequence (u, ), is specifically
increasing, the sequence (v, ), is specifically decreasing and since
v, < R(p-—t,) wegetA,v, =0
Hence the sequence (u, ), is specifically increasing to p. We put now

py = U =8
Ppy1 = Un+r — Un

We have

gk
=

Il
£
N
o~

Il
2 <
£

Il

e

i=1 n=1

and for any n € N we have

- . nn+1)
PuSun S ) p S ) Ly =
i=1 [

Corollary2.1.5. Any regular element p of € is a sum of sequence (p,)n of E"
with p, bounded for anyn € N

We choose a weak unit the constant function 1.
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2.2 THE SPECIFIC RESTRICTION TO THE OPEN SETS OF
REGULAR ELEMENTS

Lemma 2.2.1. For any p € £ and any G € t4 there exist p; and py, in E"such
that

pg tPg =D carrp, € X\ G
pgAgd =0 Vg €E with carrg c X\G

Such a decomposition is unique. Moreover there exists a sequence (p,)q in € r

specifically increasing and a sequence (F,), of t4 —closed subsets of X such
that

FocFu1cG  and Rfp =p .
Proof. We consider the sequence (G,,), in T4 defined by
Gn = {x € G/d(x,X\G) >}

One can easily verify that (G,), is increasing to G and G,, € G,y for all
n € N,n > 1. (we denoted by A the closer of the set A with respect to the
topology t,).

Using lemma 2.1.3. there exist p,, and p; in E" such that

p=p,+p,, REwp, =p, R¥\Cnpl =p/

Since  p, = Ranpn > Rann =p, we deduce, using lemma 2.1.3. , that
carrp, C G,, € G,,41. Analogously we deduce that carr P, € X\ Gp.

The sequence (p,,)n, respectively (p;, )y, is specifically increasing, respectively
specifically decreasing. Indeed, from the equality

o ! —
Py + Pn = Pns1 +pn+1 =P
we deduce that there exist u, v in €7 such that
Pp=UtV, USSP, VS Py,

Since carr v € X \ Gp41 € X\ G,, and carr v c carr p, € G,, we get

carr v = @ and therefore v =0,p, =u<p, .,

We denote
pc==\7{pn=\r{pn=sgppn
PG = A py = Ap, =infp,
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We have

p =pc+pg carrp’GcUp;ch\G
Let now g € E" be such that carr ¢ € X \ G "~
For any n € N we have
carr (g App) € carrg Ncarrp, € (X\G) NG, =0
Hence g A p,, = 0 for any n € N and therefore
@A pe=Y(@G@Apy) =0

As for the uniqueness, we consider t,t" € E" suchthatp =t +t',carrt’ c
X\ G (or R¥\6t' =t')and t A g = O for any g € E” with carr ¢ € X \ G.

From the equality
Po+Pg=p =L+t
and from the hypotheses we get
Pc At =0,pg < t;
pc At =0,t<pg

and therefore pg = t,p; = t'.
We finish the proof taking as F, the set G, m

2.3. CALCULUS WITH SPECIFIC RESTRICTION OF A
REGULAR ELEMENT

In the sequel, for any element p € £, any closed subset F of X we shall denote
by pg the element p, where G = X \ F from lemma 2.2.1. uniquely determined by
the properties :

P =pc+Pr; P, Pr € E carr pg € F,pg A g = 0for g € E” with carr g C F.

Proposition 2.3.1.
a. Letp € E" and Gy, G, be open subsets of X such that G; € G,. We have

Pc, = Pg,
b. If Fi,F, are closed subsets of X such that F; C F,, we have
Pr, = Pr,

c. For any sequence (Gy)y, of open sets of X ( resp. any sequence (F,), of
closed subset of X) we have
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PUP Gy = Y PG, (Tesp.Pnyr, = ADE, )
d. Forany G € t4 we have
Pc =Y {g € /g <p,carr g < G} =Y {pg/F =F c G}

and there exists an increasing sequence (Fp,), of closed sets of X, F, € G
such that the sequence (P, )y is specifically increasing to pg

e. Forany closed set F of X we have
pr =A {pg/G open,F c G}

and there exists a decreasing sequence (Gy),, of open sets in X such that
F c G, for any n € N and such that the sequence (pg,, )nis specifically

decreasing to pg
f. If Gi, G, are open and if F1,F, are closed then we have

pG1 A pGZ = pG]_ﬂGz’ pFl Y pFZ = pFlqu
Proof. a. From the relations
P = Pa, + g, = P6, TP,

and using the fact that for any g € £,¢ < p and carrg < X \ G, we have
pg, A g = 0 (lemma 2.2.1)

we deduce that pg, A pg, = 0 and therefore pg, < pg,

b. This assertion follows from a. because if F; c F; then taking G; = X \ Fq,
G, = X \ F, we have G, < G; and therefore pg, < pg, < p. Hence we have

P — P, S P —DPg, I-€. Pr, < Pr,

c. Since Gy € Up=; Gy, for any k € N we deduce pg, < Py G, and therefore
Yn DG, = Puc,- On the other hand using the relation

p=pGn+p’Gn vn €N
we deduce
P = Ypg, + Abg,
n n

Since for any k € N we have carr A, p(’3n C carr p{;k c X\ Gg
we deduce

carr Ay pg, € Ng=1(X \ Gi) = X\ (U Gr)

Using again lemma 2.2.1. and the preceding considerations, from the relation
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PUnG, S P = YDe, T ADg,

we deduce

PUnGy A (ﬁ pén) =0, Pune, <Y Py
and finally p, 6, = Yn Pa,

If (E,),, is a sequence of closed subsets of X and if we denote G, = X \ F,, we
have

Pu,G, * Pn,r, =P =DPc, T Pr, VN EN
and therefore
PUnGn, T PNpFy = YD, + A Dr,,

The equality pn_ g, = A, g, follows now from the equality p, ¢, = Va Dg,

d. letg € €, g < p with carr g c G. From the relations

g<p=pc+p; andcarrgn (X\G) =@, carrp; < X\ G

we get g < pg

From lemma 2.2.1. there exists a sequence (p,), in £, a sequence (F,),of

closed subsets of X , F,, © G such that carr p,, € F,, foranyn € N and
Y, Pn = Pg- Much more than this we have, using again the same lemma,

Pn = Pr, S Pa
and therefore vV, pg, = pg.
e. Let F = F be aclosed subset of X and G = X \ F.

We consider as in the preceding point d. a sequence (F,),, of closed subset of X,
E, c G for all n € N and such that Y, pr, = pg. From the relations

Pr, * Px\r, =P =Pc +Pr VN EN
we deduce
YPr, + APx\r, = P6 + Pr.Pr = APg, where Gy =X\ F

Obviously, For any G € t; with F € G we have, using the point d. pr < pg and
from the preceding considerations

Pr = A D, =A{Pc/G open,F c G}.

f. Since PGinG, < pGi i =1,2we get PGiNG, < PG, A pa,
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Let now (p,), be a sequence in E", p, < p, carr p, € Gy, such that (p,,),is
specifically increasing to pg, and let (g,), be a sequence in £, g, <

p,carr g, < G, such that (g,), is specifically increasing to pg,. We have
Pe, APc, = Y(Pn A Gn)

Since for any n € N we have carr (p, A ¢,,) € G1NG,, using the point d., we
have p, A g < Pg,nc, and therefore

pG1 A pGZ s pG]_ﬂGz’ pG1 A pGZ = pG]_nGZ

If F;, F, are two closed subsets of X, noting G; = X \ F;,G, = X \ F, and using
the first part of the point f. and the following relations

PG, t Pr, =P = PG, T Pr,
we get
PG, APG, T Pr, Y PE, = P = PG,NG, T PFRUF, PF, Y Pr, = Pryur, W

Preposition 2.3.2. _
a. Ifp,q € E" and G € T4 respectively F = F then

(p + 4)c = pc + g¢ (respectively.(p + ¢)r = pr + gr
b. ifG; €ty (resp. F; = E) i=1,2 and p € E" then we have
(P66, = Pc, A PG, = PG,NGyr
(Pr,)FR, = PR, A PR, = Pr0Fy (6 )F = P, APr, = (PR ),

c. If (pn)n is asequence in £ such that 3, p, € E"then forany G € T4
(resp. F = F ) we have
Qn=1Pn)c = Xn=1 Png (resp. Xn=1Pn)F = Xn=1 Pnp

d. Ifa sequence (py)y isin ET specifically increasing and dominated in €
then forany G € 1,4 (resp. F = F ) we have

YDne = (YDp)g (resp. Y pnp = (YP)F
n n n n

e. Ifasequence (py)n isin € " specifically decreasing then for any G € 14
(resp. F = F ) we have

ADng = (APn)g (resp.Apn, = (ADn)r
n n n n
Proof. a. Let s, t be elements in £" such that 8 < p,t < g and

carrs C carrt € G
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Obviously we have
s+tsp+gqg,carr(s+t)cGs+t<(p+4g)g
From the proposition 2.3.1 we deduce that

pctac < ®@+4g)g

Letnow u € E,u < p + g, carr u c G. Using Riesz decomposition property
with respect to the specific order, we may choose s,t € &, such that

sSptsgu=s8+t
Since carr 8 C carru € G,carrt c carru c G we get
8 Ppet < 4gg
and therefore, 8 and t being arbitrary
P +4)c <pct+dc,P+3a)c =Pc+dc

If F = F we take F = X\ G and we remark that that we have

t+a)et+t@+ta)r=p+q=c+prr)+ (Gc+ar)
= (pg + g9¢) + (pr + gr)

and therefore
P+ 4)r =pr+4ar
b. Using the point a. we have successively
Pe, =0, (0c,)e, = P6, (Pc)c, = P, (P6,)6, = Pg, ADg,
Since pg, A pg, < Pg,and using a. we get
(Pc, APy, = (Pc,)a,

But since (pg,)g, =ps, We deduce that for any g € £",q < pg, we have
4 +a' = pg, for some g’ € E" and therefore using a. we get

g+a'=@+q)c=a9c+t49' .96 =99 ;=49
Particularly we have
(P, AP:,)c, = P, APq, Pc, AP, = (Pc,)c, P, APc, = (Pc,)c,

The relations (pr,)r, = Pr, APF, = Pr,nF, a0d (06, )F, = P, APr, = (PF,)G, May
be similarly shown.
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c. Since for any k € N we have YX_, p,, < ¥_, p,, we get (Zﬁzlpn)c <
(Z;.lo=1 pn)G’

Y1 Png S Qn=1Pn)6 Ln=1 Png = (n=1Pn)c
On the other hand, for any k € N we have
Erz1Pn)e = En=1Pnde + Enikr1Pn)e = Znz1Png + Enzke1 P :
(Znt1Pn)e S Xn=1Png + Znmk+1Pn
The last inequality holds for all k € N and therefore
Qn=1Pn)6 = 2n=1Png T Aken Bin=k+1Pn) = Xn=1Png
Qn=1Pn)c = Xn=1 Png
A similar arguments may be used for showing that
Qn=1Pn)F = Xn=1 Pngp
for any closed subset F of X.

The assertion d. follows from c. since Y{° p, = Yip—1 (P, — Pn_1) Where py = 0

and therefore
(VT Pn)e = Zn=1(Pn — Pn-1)6 =T Qk=1Pr — Pr-1)c6) =Y7 (Xk=1Pk — Pk-1)c)
= Xpn(;
VT Pu)r = Za=1(Pn = Pn-1)F =V =1 @i = Pre=1)r) =V1° (ER=1 P = P-1)r)
= Xpnp
f. If we denote p =A;-, p, and g, = p; — P, for any n € N then (g,), is a
sequence in E" specifically increasing top; —p. Using the point d. we have

successively

X%nc = (X %n)G 'X(pl(; - pnG) =Pig — PcAn Png = PG = (An pn)G

(resn;g Gnp = (;{ %)F Y(P1p = Pnp) = Pip = PaAn Pnp = Pr = (An pn)p) u
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2.4. Extension of specific restriction to the o —algebra of
measurable sets
Lemma 2.4.1. let us denote by A(t,) the algebra of subsets of X generated by
T4. Then for any A € A(t,) there exists an increasing sequence (E,), of closed

subsets, F, € A for any n € N and there exists a decreasing sequence (Gp)n
inty, A C Gy for anyn € N, such that

Y Pp, = SUp pp, = Apg, = inf pg,
n n n n
Proof. If we denote by A, the set of all subsets A of X for which there exists

an increasing sequence (F,),, of closed subsets, F,, € A for any n € N, and there
exists a decreasing sequence (D), in 74, A € D,, for any n € N such that

¥ Pr, = SUP Pr, = APp, = inf pp,

then A, is an algebra of subsets of X. Indeed, we remark that if A € A, and the
sequences (F,), and (D,,), are as before then the sequences (F,),, (Dy), given
by E, =X\D, , D;, =X\E, are such that F, = F/ c X\ A c D}, € 14, the
sequence (F,), is increasing, the sequence (Dy), is decreasing and from the
relations

Pk, + Pp, =P =P, +Pp, YNEN
we obtain
YDE, T ADp, =P =YPg, + APp,,Y PR, = ADp)
n n n n n n
ie. X \ A € Ay. We show now that for A, B € A, we have AU B € A,.
Let (F)n, (E,')n two increasing sequences of closed subsets with F, C A,

E,' € B for any n € N, let (D;)n, (Dy))n be two decreasing sequences in 74 with
A c Dy ,B c D, foranyn € N and such that

Y Pg, = ADpl,YPr = ADpy
n n n n
Using proposition 2.3.1 c., f. we have successively
(X pF,Q) v (X PF,Q’) = ({l\ PD,Q) v ({l\ Ppy)
M (PR, Y PRy) = i,j/e\N (pni’ v pD]'-') = 7/1\(190,’1 Y pp1r),
Y Prury = APpjupy
The fact that the set A U B belongs to A follows now from the definition of A
and from the fact that the sequence (F,UF,"), of closed subsets of X is increasing
E,UE," c AUB for any n € N and the sequence (D,,UD),),, from 7, is decreasing

and AU B c D,UDy foralln € N.
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The fact that t; € A, follows from Proposition 2.3.1. d. Hence A(t4) € A,.

Lemma 2.4.2. If for any subset A of X we denote
p(A) = sup {pp/F = F c A}
p(A) = inf{pp/D € 14, A C D}

where p € E",p < o we have
a. p(A)<p(4) VAcX

b. P(Up=14y) < Yoo (4,) for any sequence (Ap)nof pairwise disjoint
subsets A, in X
c. plUp=14,) = X721 p (Ay) for any sequence (Ay)yqof pairwise disjoint

subsets A, in X
d. p(A)+p(X\A) =p forallAcX

I/Pn € € andp = $p, then p(A) = 55, p (A), 5(4) = $5.,,, (4)

Proof. This assertion follows from the definition of p,p and using proposition
23.1.ie.pr<pp foranyF=Fc D €1y

d. Let F=F be such that F c A. Obviously X\ A c X\ F and therefore
pr + px\r = p- Hence if we fix Dy € 74 with X \ A © D, and we denote
Fy = X \ Dy we have

Pr, t Pp, = p,sup{pp/F = F < A} + pp, = p,p(4) + pp, 2 p

and since D, is arbitrary we get p(4) + p(X \ A) = p.
If we fix Fy = F, € A we have

Pr, + Px\F, = P, PR, +Inf{pp/D €74, X\ A c D} < p,pp, + p(X\ A) <p
Since Fj is arbitrary we deduce
p(A) + X\ A) <p,. p(A)+BE\A) =p

b. Let x be a pointin X, let € € R, e > 0 and for any G,, be an open set such that
Ap € Gy and pg, (x) < p(4n) +

Obviously, U, 4, € U, G, € T4 and therefore using PROPOSITION 2.3.1. c.

p(Un4,) < PUnG, = YnDg, = Vn(Visn ka)

But for any n € N we have

n n
Veen P < ) Do (MianPo)® S ) a0 S ) po,()

and therefore
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o)

puz, 6, (¥) = suppyn_ ¢, (x) = sup(Vysn pg, ) (x) < Ek P ()
n n =

<) Pl e
Hence we have
P(Undn)(x) < Xnp (A)(x) +€
The number € being arbitrary we get
P(Undp) < Xnp (An), p(UnApn) = Xnp (45)
c. This assertion is equivalent with the inequality
ZﬁzlE(An) = E(U%Oﬂ A,) Vk €N

Let now k € N and for any n < k let F,, be a closed subset of X, F,, € 4,,. We
remark now that if F', F"" are two disjoint closed subsets of X we have

Priur" = Pp' + Dpr
Indeed, Using proposition 2.3.1 c. f. we have
Pp + Ppr = Ppr APprt + Ppr Y Dprt = Dpiap” t PE'UE” = PEUFY
since FFNF" =0Q.

In our case the subsets F,,n < k are pairwise disjoint since A,,n < k are
pairwise disjoint. Hence

k [ee)
Z Pr, = pUﬁlen = B(U An)
n=1 n=1

Since the closed subset F,, was arbitrary with F,, € A, . We conclude that we

have
k e’ 00 [
E(An) < E(U“h{)r E(An) < B(UAn)

k=1 n=1
The assertion e. Follows from the definition and using Proposition 2.3.2. c.

Theorem 2.4.3. With the above notation we have
a. The set M, defined by

M, ={Ac X/p(A) =p(A)}

is a 0 —algebra of subsets of X and the map
A= py=p(4) =p(4)
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Sfrom M, into the convex cone of positive real functions on X is countable
additive.

b. If p, g are finite regular elements then M, ., = M, N M and for any
A € M4 we have

(P+d)a=Dbat+3da
c. If pn € € are such that p = Y571 pn then My, = Ny=y M, and for any

A€ Mp we have
ba = Z pnA
n=1

Proof. a. First we remark that A € M, if and only if X \ A € M, because we
have

P(X\A) +p(4) =p=pX\A4)+p(4)

We show that if A, B € M, then A U B € M,,. Let x € X be arbitrary and for
e €ER, € >01let F',F" be closed subset of X, D', D" open subsets of X such that

F’CACD,,F”CBCD”

Pp'(x) = pa(x) < €pa(x) < ppr(x) + €,ppr(x) —pp(x) < €pp(x) <ppr(x)+e€

We have
Pp'up” (X) =Py 7 (X) = (Pp' Y Pprr — ppr Y Ppr)(x)

< ((PD’ —pp) + (Ppr — pF”))(x) <4e
And therefore
(AU B)(X) = p(A U B)(%) < pprypr (1) — oy () < 4e
Hence € being arbitrary we deduce AU B € M. From the preceding

consideration it follows that M, is an algebra of subsets of X. To finish the point
a. we consider a sequence (A,), inM,, of pairwise disjoint subsets. We have

U An) < 522 (An) = $521p () < p(USy An) < BUZ1 An)
21 P (An) = p(Use An) = B(UZ-1 An)

So Un=14n € My and pye_ 4, = P(UnZ14n) = Xnz1 P (An) = XnZ1Pa,
b. From the definition of the maps p, p we get

p+4(A) =p(4) +4(A),p +q(4) =p(A) +g(4)
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So we have

pFa() - p+a ) = (5 -p) + @A) - a(4)

for any subsets A of X and therefore

AEM,

ig S AEM,NM,

Moreover we have obviously
AEMp= ®+a)a=p+q(4) =p(A) +q(A) =ps+ga

c. From the point b. We get M;,, € M, whenever p, g € ", g < p and therefore

Jv[p C ﬂ Mpn
n=1

Let now A be an element belonging to M, foralln € N.
Using lemma 2.4.2., e. We have

p(4) = i P (4) = i P, () =P()

Hence A € Mp and moreover

Pa = anlpnA

Theorem 2.4.4. If p € E",p < o then the o —algebra B (generated by t3) is
included in M, and for any A € B the element p, belongs to E"and we have

Pa+DPia =P,0a = sup {pp/F = F,F c A} = inf {p;/G € 74,4 < G}
Proof. First we show that the set ]V[,? defined by
My ={AEM,/pa € E,px\a € E}

is a monotone class of subsets of X. Indeed, let (4,), be an increasing sequence
in M. Since p 4, € € and the sequence (py, ), increases to pyx_ 4 it follows

that pye ,, € E". On the other hand the sequence (px\a,)n Of excessive
functions decreases to px\y, 4,- Hence px\y, 4, belongs to §,. But for any
n € N we have

Pa, T Px\a, =D
and therefore

PUE, 4, T P\US, 4, = P Px\U, 4, € ET) Unz1An € My
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Using now theorem 2.4.3. we deduce that the algebra A (7;) generated by 74 is
a part of Mg’. But Mg’ being a monotone class of subsets of X we deduce that the

o —algebra generated by 7,4 (or A(7,4)) is included in ]\/[19.

Corollary 2.4.5. a. If (pp)n is a sequence in E" such that the function p =
Yo Pn is finite. Then for any A € B we have

Pa = anA
n=1

b. Forany A,B in B and any p € E",p < o we have
(Pa)s = (PB)a = Pan = Pa A DB

Proof. The point a. was already shown. For the assertion b. We start by showing
that for any A € B we have

pa =V {pp/F =F,F c A} =A{p;/G € 14,A C G}

Indeed, for any F = F c A we have Pr + Pa\r = P4 and therefore pp < py.
Let now g € € a specific majorant of py for any F = F c A. We shall have

PFSPaAGSPys-
But

sup pr =p (4) =pa

F=FcA

by the definition of p(A) and p, , and therefore we get

PASPaAG=PauParG=DaDa= G
Now for any 4, B € B we have

Pa <D, (0a)s < P Pa)p < Da Pa)s < Da A D5

Let F', F" be two arbitrary closed subsets of X such that F' c A, F" < B. We
have F' N F' € A N B and therefore

Pp' AP = Pplnp!
On the other hand if F = F € A N B we have

Pr < PaPr = Or)r < Pa)r < (Da)s

and therefore

Pr App < (Pa)B) e (prr App) < (Pa)B
F''cB

PaADp = (F,\éA pF') A (F,)/CB PF”) =Y (ppr App) < (Pa)B
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Hence

PaAps = (a)s = (PB)a

The relation pynp < P4 A pp is obvious .

IfF=F cAF'"=F"cBwehave F'NF" c AN B and therefore

Pr'nr"" = Pang Pr’ APp" =X Pans
Passing now to the supremum with respect to the specific order, we get

(F,\QA PF’) A (F,)ch PF”) < Pang »Pa APp < Pang:PaAPp = Dans

2.5. THE SPECIFIC MULTIPLICATION WITH POSITIVE BOREL
FUNCTIONS OF REGULAR ELEMENT

Theorem 2.5.1. Let p € E",p < o and let f be a positive B —measurable and
bounded function. For any x € X we consider the finite positive measure p*on B
given by

p*(A) = pa(x)
The positive function f.p on X defined by

(F.p) () = f fdp*

belongs to E"and the map f — f.p defined on pbB with values in E"is a kernel
with the complete maximum principle and 1.p = 1.
Any element 8 € £ is a dominant function with respect to this kernel.
Moreover, if p = Y., 0n, Pn € € we have

fo=2nf-Pn VfEDbB
flg-v)=({g)r Vf,g€pbB

Proof. let f be a positive, bounded B —measurable function on X. We consider
an increasing sequence (f, ), of positive B —measurable functions of the form

kn

fo = Za}lﬂA?,a}‘ ER,, A €B
j=1

which increases to f. The functions f,,. p given by

kn

fur@ = [ fudp = @ @)

j=1

are element of £” and this sequence increases to

£.pG) = lim [ fudp® = sup £ p(0)
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And therefore f.p is a regular element of £. We mention that f being dominated
by the constant function || f|| we have

fiprsM

Let 8 be an element of € such that f.p < 8 on the [f > 0]. Certainly, using the
above notations, we have

8= fp.pon|[f, >0], 8= Zfﬁl a}‘pA? (x) on U; A}

and therefore the function 8" = min(s, Z a; p An) belongs to £ and we have

j=1
kn
and we have " = 3", ]pAn on U; A}

Since 8" is dominated by Z o1 p an We decompose 8’ under the form

5’=Z 5], -Sa}‘pA}; onX, Vj=12,... .k,
j

From the preceding considerations we have 8/ = aj'p,n on A}. If we consider
]

a closed subset F of A}l we have

— 8 = F

o 8j = pp on

and therefore from lemma 2.2.1 we get iéf > pr on X . Hence F being arbitrary
]

we deduce &; > a;'pp, 8 = q; pAn on X, 8; }l'pA}l onX,
kn
8 >8= Za}lpA}m = fo.p onX
j=1
The number n € N being arbitrary we have 8 = f,,.p on X.
The fact that

fo+a)=fpr+f.a VYpqge& fepbB
Follows from the equality (p + ¢)* = p* + ¢*
If p, € € and Xn Pn € €, noting P, = Z;‘lzl bj, Q. = Zj>n pj

we have

[ee)

ﬁ(ipn) = P+ Q2 Zn:f-p,-,Zf-p,- < ﬁ(ipn)
j=1 j=1 1

1

Since A, Q,, =A,, Q,, = 0 we have

f (2 pn) <. PutIFIQn VR EN,

1
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f (Z pn> <supf.P, + IIfII-;l\Qn =supf.pn < ) f.pj
n n -1

1 j

We finish the proof by the following remark
If A and B are in B w have

14,(1g.p) = (I41p).p = Nynp-p
(see corollary 2.4.5) [ ]
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CHAPTER 3

DARBOUX-STIELTJES CALCULUS ON BANACH SPACES

The purpose of this chapter is to extend in the vector case the study of
Darboux-Stieltjes integrability as it was initiated in [18] , then studied by I. Bucur
[13], [14] and to give some new results. Among them we note: the symmetry
principle, the formula of integration by parts, the extension integrability principle,
a convergence theorem. At the end we give an application of this type of
integration in describing the duality in a particular case of H — cones .

3.1. PRELIMINARIES AND FIRST RESULTS

For a given interval [a, b] of R we denote by D[a, b] the set of all divisions
d =(a=xy <x; <x, <...< x,, = b) of this interval. The norm of this
division is denoted by v(d), i.e. v(d) = max {x;4,1 — x;|i = 0,1,...,n — 1}.

By intermediary system of d we shall understand a new divison ¢ of [a, b],

§=(@=% <6 <8 <..8, < 8§41 = D)

where &; € [xg,%1],&2 € [x1,x2],--- & € [%n—1, X, ]- The set of all intermediary
systems of d will be noted by L (d). Obviously we have § € L(d)=> d € L(§)
andv($) < 2v(d),v(d) < 2v(¢).

Let X be a Banach space over R, letf: [a,b] — X, g : [a, b] — R be two arbitrary
bounded functions. For d € D[a,b], & € L (d) as below we denote by
o(f,g;d,¢) the element of X given by

o(f,9:d,8) = ) £ (9(x) = 9(xia)

The following reciprocity formula may be easily verified

a(f,g;d,§) = f(b)g(b) — f(a)g(a) — a(f,g; &, )

If dy,d, € D|a, b] we say that d, is finer than d; and we write d; < d, if for
any element of d; belongs to d,
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Definition 3.1.1. We say that the function f is Riemann-Stieltjes integrable with
respect to the function g if there exists an element I € X such that for any € > 0
there exists . > 0 such that

lo(f,g;d,é) —I|| <e€,Vd € D[a, b] withv(d) <n,,VE € L(d)

The element / of the Banach space X is uniquely determined and it is called the
Riemann-Stieltjes integral of f with respect to g.

We write f € RS(g) instead of “f is Riemann-Stieltjes integrable with
respect to g” and

I=(RS)J:fdg=RSJ:fdg

It is well known that the function f is Riemann-Stieltjes integrable with respect
to g if and only if for any sequence (d,,),, in D[a, b] with lim,,_,,, v(d,) = 0 and
any &" € L(d,,), the sequence (a(f, g; dy, ™)), is convergent in X. One can see
that the above limit does not depend on the sequences (d,)n, (™), £ € L(d},)
with lim,,_,, v(d,,) = 0.

Also we have the following

Proposition 3.1.2. (Cauchy criterion ). One has f € RS(g) if and only ife > 0
there exists e > 0 such that

lo(f,g;d",¢") —a(f,g;d", &Nl <e,
forall d',d"with v(d") < n.,v(d") <n.,& € L(d"),&" € L(d").

As in the real case one can show that the set RS(g) is a linear vector space
over R and we have:a, 8 € R, f1, > € RS(g) = af; + Bf; € RS(g) and

(RS) [P (af, + Bfy) dg = a(RS) [ fi dg + B(RS) [* f, dg.

Using the above reciprocity formula, we have f € RS(g) = g € RS(f) and

b b
(RS) j fdg = F(B)g(®) — f(@)g(@) — (RS) f gdf

and moreover, if f € RS(g;) N RS(g,) and a, f € R we have:
f €RS(ag: + Bg2)
and
(RS) [, fd(agy + Bgz) = a(RS) [, f dgy + B(RS) [ f dgu.

Definition 3.1.3. The function f is called Darboux-Sieltjes integrale with respect
to g if there exists | € X and for any € > 0 there exists d. € D][a, b] such that

lo(f,g;d,é) —I|l <€Vd € D[a,b],d. < d,VE € L(d).
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It is not difficult to show that the element I € X in the above definition is
uniquely determined and it will be called the Darboux-Stieltjes integral of f with
respect to g.

We write f € DS(g) instead of “ the function f is Darboux-Stieltjes integrable
with respect to g “ and we denote the element I as follows

I=(D5)fbfdg orlszfdg

The following assertion generalizes a well-known Riemann-Stieltjes
integrability criterion using sequences of divisions.

Proposition 3.1.4. The function f is a Darboux-Stieltjes integrable with respect
to g if and only if there exists a sequence (d,), in D[a,b]such that for any
sequence (dy), in D[a,b], withd, <d, (Vn€N) andanyé&, € L(d;,) (
vn € N) the sequence (o(f, g; dy, &,))n converges in the Banach space X.

Proof. We suppose that f € DS(g). Just from the definition we deduce that
there exists I € X such that for any n € N*, there exists d,, € D[a, b] for which
we have

lo(f,g; dn &) — Il <2, Vdy € D[a,b],d, < dy, V&, € L(dy).
Hence, we deduce
lim o(f,g;dn. &) = 1.

Conversely, we suppose the existence of a sequence (d,), in D[a, b] such that
for any sequence (dy), in D[a,b], with d, < d,, for any Vn € N and any
&n € L(dy) the sequence (o(f,g;dn, &n))n converges in X. Using a mixing
procedure we deduce that that the element lim,,_,., o(f, g; d;,, &,) of X does not
depend on the above sequences (dy,), and (&,),. We denote by [ this limit and
we show that for any € > 0 there exists n, € N such that

lo(f,g;d’,¢") —Ill <e€,vd' € Dla,b],d’" < d,_, V¢ € L(d")

In the contrary case ther exists €y > 0 such that for any n € N there exists
d, € D[a,b], d, < d; and &, € L(d;,) such that

lo(f,g;:d", &) — Il = €.
The contradiction we have arrived shows that f € DS(g) ]
The following assertion, the Cauchy criterion, is almost obvious:

Proposition 3.1.5. The function f is Darboux-Stieltjes integrable with respect to
g if and only if for any € > 0 there exists a division d. of [a, b] such that

lo(f.g;d".§') —a(f,g:d".§M)l <€

foranyd',d" € D[a,b], d. < d',d. < d"and forany &' € L(d"),&" € L(d").
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Remark 3.1.6. It is easy to see that for X = R and g an increasing function on
[a, b] the fact that f € DS(g) is equivalent with the relation

fabfdg=fjfdg

where f: fdg (respectively f: fdg) means the lower (respectively upper)

Darboux-Stieltjes integral of f with respect to g; that is we get the well known
classical situation.

3.2. RELATION BETWEEN RS AND DS INTEGRABILITY

The function f and g will be as before. If the function f is Riemann-Stieltjes
integrable with respect to g then we consider an arbitrary sequence (d,)y,in
Di[a, b] such that lim,,,,, v(d,) = 0.

If we consider another sequence (dy,),, in D[a, b] with d,, < dj, forany n € N
then we have v(dy) < v(d,) and therefore lim,_,, v(dy,) = 0. In this case we
have

b
lim o(f, g5 di ) = RS) [ fdg,  vEn € ()

and therefore, using proposition 3.1.4 we deduce f € DS(g).
Hence we have the following assertion

Proposition 3.2.1. if f € RS(g) then f € DS(g) and

(DS) [ f dg = (RS) [, f dg.

Remark 3.2.2. The converse of thee above proposition is not always true. Indeed,
we consider an element y € X,y # Oy and the functions f:[0,2] = X, f:[0,2] -
R given by

(y, ifl1sx<2 _{1, if1<x<2

f(x)_{ox, ifo<x<1'9®= ifo<x<1

Let dy € D[0,2],dy = (0 = xy < x; < x5 = 2) be such that x; = 1 and let
d' € D[0,2],d" = d, be of the form

d'=0=xy<x;<x3 < <xp <1< xpyp <oxp =2)
If we consider
§'eL(d)E =0=5<{ <SS S <S8 =2)

where
a(f,g;d',§) = T1 fFED(G(D) = 9(xi-1)) = f Grer2) (9 (s2) = 9(D) =,

llo(f,g;d", &) —yll =0.
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From the definition we deduce f € DS(g) and (DS) (DS) f: fdg =y. On the
other hand, if we consider an arbitrary division d of [0, 2],

d=(0=x) <x1 <X < <X <Xppg <0< Xpyy =2

such that x, <1 < x,.1 and ' € L(d),§" € L(d),

EI = (0 = f(’) = fi = fé <= €1In+1 = 2)' fll € [xi—lixi])i € 1rm;
é—n — (O = (’)’ < f{l < fél <. < 57’1’1_'_1 — 2)'6{/ € [xi—l;xi],i c _1,777.
and E}I)+1 € (xpl 1), E},),+1 € (1, Xp+1), we have

a(f,g9;d,§") =0x,0(f,g:d4,") =y, y=+O0y.

Using now the Cauchy criterion of Riemann-Stieltjes integrability we deduce
that f is not Riemann-Stieltjes integrable with respect to g.

The non-(RS)-integrability in our previous remark is an immediate
consequence of the next result. The interested reader can easily find more
examples using our technique. The following statement shows how far is
Riemann-Stieltjes integrability from the Darboux- Stieltjes integrability

Proposition 3.2.3 a. If the functions f andg have a common point of
discontinuity on the left hand side (or on the right hand side) then the function f is
not Darboux-Stieltjes integrable with respect to g.

b. If the functions f and g have a common point of discontinuity then the
function f is not Riemann-Stieltjes integrable with respect to g.

Proof. a. We suppose that f and g are discontinuous on the left at the point
¢ € (a,b]. In this case there exists v’ > 0,r"” > 0 and two sequences (X;,)n,
(x5, )pwhich increase to ¢ and such that for any n € N we have

Xn < xn <Xpyr <G fFCR) = FOI > 7" llglxn) —g(Oll > r".
Let now d be an arbitray division of [a, b],
d=(a=x0<x1<---<xk0<---<xn=b),
such that x;,, = c. For n sufficiently large we have
Xpo-1 < Xp < Xpyq <C
and we consider the division d’ of [a, b] obtained from d adding the point x;,
with x;, _1 < xp, < c. We consider now &, ¢'in £L(d") which differ between them

only by the points &, = X 4+1,$k, = ¢ of the interval [x;,, c]of the division d'.
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We have
o(f,g:d',§) = o(f, g; d',&") = f(xny41) (9(xi) = 9(c)) = F(©)(g(xr,) — 9(c)),
lo(f,g;d", &) — a(f,g; d', NNl = ||f (chyer) — FO-lg(xn) — g(©)| > 77"

Now, using proposition 3.1.5. and the fact that the division d of [a, b] was
arbitrary we deduce that the function f is not Darboux-Stieltjes integrable with
respect to the function g.

An analogous treatement may be done for the case where f and g are
discontinuous on the right at a point ¢ € [a, b) .

b. The function f and g are both discontinuous on the same side of a point
¢ € [a, b]; this is a trivial consequence of the assertion a. So, let ¢ € (a, b) such
that f is discontinuous on the left but it is continuous on the right at the point ¢
whereas the function g is continuous on the left, but it is discontinuous on the
right at the point c. In this case there exists ' > 0,7" > 0 and there exist two
sequences: (Xx,,), strictly increasing to ¢ and (xj; ), strictly decreasing to ¢ such
that we have

If ) = fF(OI > 7, MlgCen) — g ()l > 7", vn €N.
Let now d € D[a, b] be an arbitrary division such that c is not a point of d

d= (a =X <Xy <o < XApy < Xpppr << Xy = b),xk0 <€ < Xgyt1-

For n, sufficiently large we have x; < xp, < ¢ < Xp, < Xg, 41 We add to the
division d the point x5, x, with n = ny and we denote by d,,this new division of
[a, b]. Further we consider ¢',&"in L(d,,) which differ between them only
intermediary point &, respectively &;' in the interval [x;, Xy, |, namely &, = x;,
&" = x;/. We shall have

a(f,g:dn ") = 0(f,g;dn, &) = () — F(&D)-(9(xn) — g (1)) =
= () = fe))- (9 Cen) — g ()
Since f is continuous ion the right and g is continuous on the left at the point ¢
and ||f (xp) — f(OIl > 7", llg(x)) — g(e)|l > r" ,foralln € N, we deduce that
IFGen) = FGanll > 5 g G = gGadll >

if n 1s sufficiently large. So we have

r

r'.r
llo(f, g5 dn,8") — o (f, g; dn, DN > (——)
for n is sufficiently large. Using the fact that the division d is arbitrary we can
deduce that f & RS(g) from the Cauchy criterion. [ ]
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Proposition 3.2.4. If f € DS(g) and the function f and g have no common point
of discontinuity then we have f € RS(g).

Proof. Let us denote

If Il = sup{llf COIl; x € [a, b1}, lIgll = sup {lg(x)]; x € [a, b]}

and € > 0 be arbitrary. We consider d, € D|a, b] such that for any d € D]a, b],
de < d and any & € L(d) we have

|otF g:d.8) = 05) [ fdg|| <e.

Ifd, = (a =x9 <x; <x, < <xp =b), then using hypothesis concerning
the continuity we may consider n > 0 such that for any i € {0,1,2, ... , k} we have
at least one of the relations

Iz— x| <n=lf@ - fOl <= orlg(@ - glx)l <=,

where 7 := 4k (|| 1] [g]D-

Let now dy € D[a,b],dy =(a=y, <y, <y, <<y, =b)withv(d,) <n
and let E=(a=¢§ < <éE<<&,<&1=Db), &€L(dy) with
& € [yi—y,yi] foralli € {0,1,2, ... ,n}.

Suppose that one point x; of the division d. belongs to the interval [y; , ¥j,+1]-
We choose & € [yjo,xl-], i € [xl-,yj0+1] and we consider the division d,, €

D[a, b] obtained by adding the point Xx; to the division dy. As an intermediary
system §* € L(dy,) we take the following one

={a=6<& << <& <& <2 <3 < <&nyq = b
We shall have

o(f,9:do, &) = o(f, g;dx,, §7) =

= F(&os)@ (¥ 41) = 90;) = (&) (960 = 9(,)) = F(E1) (9(en) = 9)) =

= (FGior1) = 1)) (96D = 9(i0)) + (FGorn) = F(12)) @(jo1) = 9(x).

lo(f,g:do,§) — o(f, g5 duy §) < |f (&jos1) = FEIN- |9 — 9| +

|1 (6,0) = £ED| 9 (3, 4) — 9G] < 4CUFN-NgID-

We start with the divisions d and ¢ as before and taking i = 1 we construct as
above the division d; = d, U {x;} and the division & := &*. We have

loCf.g:do. & — o (f.9:d1, )| < 4CUfN- ).
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Then starting with the divisions d;, &' we construct in a similar manner
dz = d1 V) {xz}, 52 = (51)* € L(dz) We have

|o(f.9:d1,6") = o (£.9:d2,8) || < 4CUf 1L 1gD-=

We continue this procedure (k — 1) — times and we construct the divisions

(dli 61)1 (dZ' {:2), (d3) 63)) ey (dk—l; fk_l) such that di+1 = di U {xi+1}' fi+1 =
(¢YH*. By construction we have

|o(f.9:d08) = o (£ s dir§%)|| < 4CUFINGID. S i+1<k—1

and therefore, applying this k —times and taking into account the fact that
r=4k(lf1lllglD), we get

|otr. ;0.8 = o (.9 di-0,€71)|| < 2CUf 1 NgID-= = €
But d. < dj_, and therefore we have

o¢f,9; di-r, 6D = @S) [, fdg || < e
From the last two inequalities follows

< 2e

b
o(f.9:d0, )~ S) | fdg

for any dy € D[a, b] with v(dy) < n and any é € L(d,)

Corollary 3.2.5. If we have f € DS(g)and one of the functions f or g is
continuous on [a, b], then f € RS(g).

Remark 3.2.6. the PROPOSITION 3.2.4 and the COROLLARY 3.2.5 were
previously considered in the scalar case for g increasing ([13], [14])

The concept of Darboux-Stieltjes integrability is much more related with
the concept of Lebesgue(or Bochner) integrability than the Riemann-Stieltjes
concept is.

Let g be increasing and continuous on the left and let u,; be the measure on

([a, b], B) where B is the set of all Borel subsets of [a, b], for which we have
pg(lc,d]) = g(d) — g(c),Vc,d ER,a<c<d<bh.

If f:[a, b] = Ris a bounded function then, proceeding as in [14] and [15] we
can prove the following results:

Proposition 3.2.7. If the function f is Darboux-Stieltjes integrable with respect to
g then the function g is Bochner integrable and we have

ws) | fag = | 'Fduy
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Proposition 3.2.8. If (f,,), is a sequence of uniformly bounded real functions on
[a, b] such that f,, € DS(g), for all n and this sequence is pointwise convergent to
a function f such that f € DS(g), then we have

. b b
limy, o, (DS) fa fandg =DS fa fdg.

3.3 HEREDITARY PROPERTIES AND THE FORMULA OF
INTEGRATION BY PARTS

It is well known that if a bounded real function f on the interval [a, b] is
Riemann Stieltjes integrable with respect to the function g defined on the same
interval, then, for any ¢, d € [a, b], ¢ < d, the restriction of f to [c, d] is Riemann-
Stieltjes integrable with respect to the restriction of g to [c,d]. Generally the
converse assertion is not true i.e. the Riemann-Stieltjes integrability of f with
respect to g on the intervals [a, c] and [c, d] does not imply the RS-integrability
of the function f with respect to g on the whole interval [a, b]. From this point of
view the Darboux-Stieltjes integrale is more convenient.

Proposition 3.3.1. if f:[a,b] = X and g:[a, b] = R are bounded functions then
we have:
a. If f is Darboux-Stieltjes integrable with respect to g on [a,b]then f is
Darboux-Stieltjes integrable with respect to g on many subinterval [c, d]of
[a, b] i.e. the restriction of f to [c,d] is Darboux-Stieltjes integrable with
respect to the restriction of g to [c,d] .
Moreover, we have

(0S) f fdg = 0S) f Fdg + 0S) f “fdg + (0S) fd fag.

b. If c is a point in [a,b] and the function f is Darboux-Stieltjes integrable
with respect to g on the interval [a,c] and [c,b], then f is Darboux-
Stieltjes integrable with respect to g on [a, b].

Proof. For any divisions d' € D[a, b],d"” € D[a, b] we denote by d'Vd" the
division of [a, b] given by

dVd" =(a=x<x <2 < <xp=¢c=Yg <Y1 <Yy <<y, =b)
where
d=(a=x<x,<x, < <xp,=0),d"=(a=y, <y, <y, <+ <y, =b)

We use an analogous notation &' V&' for &' € £ (d,) &' € L(d”)
Obviously we have

a(f,g:dVvd ,§VE") = a(f,g;d,§) +o(f,g:d,§").

a. The proof follows using Cauchy criterion of Darboux-Stieltjes
integrability.
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b. Let (d,°),, (d2®),, be two sequences in [a, c] , respectively D[c, b] such
that for any sequences (d}), € Dla,c],d,’ < d., (d)), € Dlc,b], di° <
d,, and for any &, € L(dy,), respectively any &, € L(d;), we have

c b
a c

Let now (d,°),, be a sequence in D[a, b] such that d® = d,,°V d/'°,vn € N
and let (d,), be a sequence in D[a, b] such that d% < d,, for any n. If we
choose &,, € L(d,) and we denote d,, =d, N[a,cl, & =¢&,Nlac] d;, =
d,n[c,b] & =&,n[c,b] we have d,° <d., &, €L(d,), di°<dl,

n € L(d;,) and therefore

c b
lim o(f.,9: 0 = | fdg. Jim of, g5 ) = | fdg
a c
It is obvious that d;,Vd; = d,,, &, V&, = &,. We have

J(f'g; dn'fn) = O'(f'g; d;llf;l) + O-(f"g’ d7’1” fﬁ,)'vn € N'
c b
lim o(f,g:dn ) = [ fag+ [ rdg
a c

Hence using proposition 3.1.4, the function f is Darboux-Stieltjes
integrable with respect to g.

Definition 3.3.2 If g:[a,b] > R and f:[a,b] > X we say that g is D-S

integrable with respect to f there exists an element /* € X such that for any
€ > 0 there exists d, € D[a, b] with the property

I —alg.f;d. Ol <e

whenever d. < d and for any intermediary system ¢ in d. [* is called the
Darboux-Stieltjes integral of g with respect to f.

Proposition 3.3.3. (Symmetry principle) If the function f is Darboux-Stieltjes

integrable with respect to g is Darboux-Stieltjes integrable with respect to f
and we have

[} gdf = £.4|0— I3 fdg = F(DIg(b) - f(@)g(@) - [ fdg
(Integration by parts)

Proof. For € > 0 we consider d, € D[a,b],d, =(a=y, <y, <y, < <
Y = b) such that for any d € D[a, b],d, < d and any & € L(d) we have

<e€

b
o(f,g:d,&) — j fdg
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Using hypothesis and proposition 3.2.3- b. we deduce that for any y; ,
i € {1,2,..., k} at least one of the functions f and g is continuous on the left at
the point y;. Hence we may choose n > 0 such that, for any z € [a, b],
z € [y; —n,y;] we have

€ €
IfG) —F@I <1 or 190 - 9| < o
where M = k(|If Il + D(lgll + 1).
Let now d; be a division of [a,b] such that v(d;) <7n and such that
d; < d.. We take an arbitrary division d of [a, b] such that d, < d and we

consider an arbitrary § € L(d). We have

d=(@=x=Y) <X <X < <x;, <Yy < Xj 41 < <X}, <Y,
<41 < <X, <y =Db ; §=@=¢ <& < <4 =Db),
¢ € L(d) and we modify ¢ replacing the element & j, in the interval [xjp, yp]

by the element Vp> for all p =1,2,..,k. We obtain a new intermediary
division ¢’ of d and we have

17 (5,) ) = £ (x,) = 90 F ) = £ || =

|7 Gw) = G50 || |9 ) = 983,) | < 2001+ DA + 1.5

We deduce the relation

k
lof, 9:4,9) = o, g: €01 < ) [|FO) = £C5) || [9Gw) - 9665, |

p=1
lo(f. 94, ) = o(£, ;€01 < 201l + Dllgl + 1. = €

We remark that d. < &' and therefore we have

<e€

b

o(f.9:.6) - | fdg
a

On the other hand, using the reciprocity formula, we get

b
0(.0:.) = .92~ [ Fdo| < Notr.g5d.6) = o(Fgid 01 +

<e+ < 2e.

b b b
+lotr.g:a.6) - r.9]" - [ rag) [ rag-otr.g:ae)

Hence the function g is Darboux-Stieltjes integrable with respect to f and
we have the following rule
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[} gdf = £|>~ I} fdg .

3.4. APPLICATIONS IN POTENTIAL THEORY

Let £ be the convex cone of all increasing and lower semi-continuous
positive functions on the space X = (0,1).Itis known that £ is a standard
H —cone ( see [7] ) and its dual £* may be identified with the convex cone of
all positive, decreasing and lower semi-continuous on (0,1). We may extend

any function 8 € € by 8(0) = 0 and 8(1) = sup,«; 8(x) and also we extend
the element 8™ € £* by

8"(0) = sup s(x) ,8(1)=0
)

x€(0,1

The duality between £ and £ is the following one
1

[8,8%] = (DS)] 8" ds
0

Generally, the function 8™ is not (RS) integrable with respect to 8. But since
the functions 8 and 8™ has no one side common discontinuous points, the
function 8" is (DS) integrable with respect to 8.
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