INSTITUTE OF MATHEMATICS OF THE ROMANIAN ACADEMY "SIMION STOILOW"

DOCTORAL THESIS

APPLICATIONS OF POTENTIAL THEORY:
 FINE CARRIER ON CONES OF POTENTIALS

ADVISOR:
Prof. Dr. BUCUR Gheorghe
PhD STUDENT
BENFRIHA Habib

Contents

Contents

Introduction 4
Chapter 1. Nearly saturation, balayage and fine carrier in excessive Structures
1.1. Preliminaries and first results 8
1.2. A Choquet type lemma 11
1.3. Pseudo-balayages associated with supermedian functions 13
1.4. Fine carrier for excessive functions 15
1.5. The regular excessive elements 18
Chapter 2. The specific multiplication in excessive structures
2.1. Preliminaries and first results 22
2.2. The specific restriction to the open sets of regular element 25
2.3. Calculus with specific restriction of a regular element 26
2.4. Extension of specific restriction to the σ - algebra of measurable sets 32
2.5. The specific multiplication with positive Borel function of regular element 38
Chapter 3. Darboux-Stieltjes calculus on Banach spaces
3.1. Preliminaries and first results 41
3.2. Relation between $R S$ and $D S$ integrability 44
3.3. Hereditary properties and the formula of integration by parts 49
3.4. Application in potential theory 52
BIBLIOGRAPHY 53

Introduction

The origins of potential theory may be situated in the $18^{\text {th }}$ century when Lagrange remarked in 1773 that the gravitational forces have as components the partial derivatives of function(which was called potential function or potential by Green in (1828) respectively Gauss (1840) and when Laplace (1782) showed that outside the mass generating these forces, this function satisfies the partial differential equation $\Delta=0$, so called Laplace equation

The fundamental principles of potential theory were elaborated during the $19^{\text {th }}$ century and constitutes so called "Classical potential theory". Essential contributions to this classical potential theory were made by

1. S. D. Poisson (1823) with his famous formula which solve the Dirichlet Problem in the sphere
2. G. Green who introduce so called "Green Function" for domains with sufficiently smooth boundary and applied such kind of functions to solve the same Dirichlet Problem for much more complicated open subset of \mathbb{R}^{n}
3. S. Earnshow (1839) who discovered the minimum principal for the harmonic function, solutions of the Laplace equation
4. C. F. Gauss who solved (1840) the equilibrium problem
5. W. Thomson, H.A. Schwarz (1870), L. Dirichlet and B. Riemann: studied the behaviour at the boundary of the Poisson Integral in the plane
6. A. Poincaré who invented the balayage method (1887) for solving the Dirichlet problem in \mathbb{R}^{3} and A. Harnak (1986) who discovered his famous inequality and applied it in the studied of convergence for monotone sequences of harmonic functions
These three principles: minimum principles, existence of a sufficiently large class (for instance the ball) of the solutions for Dirichlet problem and the principle of convergence for monotone sequences of harmonic functions turned out to be axioms that allow obtaining the main results from the study of harmonic functions and these principles are also fulfilled by the solutions of any elliptic or parabolic equation.

So in the middle of the $20^{\text {th }}$ century G. Tautz, J.L. Doob, M. Brelot and H. Bauer developed their axiomatic potential theory starting with the above three principles. The difference between them consists essentially in formulating the axiom of convergence for monotone sequences. The stronger of them is Brelot convergence which asserts that an increasing sequence of harmonic functions which converges only in one point of a domain, has as limit a harmonic function on this domain. For the same result we arrive if we suppose the sequence converging uniformly on compact subsets (Bauer axiomatic) or on a dense subset (Doob axiomatic).

Introduction

In this line of development of potential theory we remember the remarkable contribution of Romanian mathematician who elaborated the theory of poliharmonic and policaloric functions (M. Nicolescu) which are solutions of the n - iterated Laplace operator or heat operator and also constructed their own axiomatic theory (N. Boboc, C. Constantinescu, A. Cornea) and published the Springer monograph" Potential theory on harmonic spaces (1972). In order to cover the harmonic theory for the parabolic equation their starting point was a sheaf of hyperharmonic functions instead of a sheaf of harmonic functions.

Besides the studies of potential theory on harmonic spaces, starting with $6^{\text {th }}$ decade of $19^{\text {th }}$ century and based essentially on the new achievements in mathematics as for example : The Choquet theory of capacity, Choquet theory of convexity allowing the integral representation on the set of extremal points of a compact convex sets, Hunt potential theory for Markov processes, the achievements of R-M Hervé in the carrier theory, etc... many mathematicians began to study some type of ordered convex cones which have similar properties as the convex cone of positive superharmonic functions or supermedinan functions with respect to a kernel or with respect to a supermedian function associated with a resolvent family of kernels. The cones of potentials introduced by G. Mokobodzki turned out to be useful tool for developing an abstract potential theory on the line of above potential theory on harmonic spaces of N. Boboc, C. Constantinescu and A. Cornea.

Among the mathematicians who contributed at this new axiomatic potential theory we mention G. Mokobodzki, D. Sibony, A. de la Pradel, D. Feyel, W. Hansen, I. Bliedtner, K. Jansen, Sewinking, I. Netuke, J. Vessely, J. Lukes, B. Fuglede and others .

Again the Romanian School in potential theory has an important role. We remark here the theory of duality they managed to build and publish it in the springer monograph " order and convexity: H-cone" 1982 written by N. Boboc, Gh. Bucur and A. Cornea that illustrate their remarkable contribution. Later, in a more general frame N. Boboc and L. Beznea published a kluwer academic publishers monograph "Potential Theory and Right Processes" 2004.

In this new frame of potential theory, the réduite (resp. balayage) operator play an important role which may be justified just from its origin method for solving Dirichlet problem. Also the regular elements in this theory which replace the continuous potentials in the theory of harmonic spaces are important since they may be the origin of some associated kernels with complete maximum principle.

To those elements we may associate a carrier theory and to build a specific multiplication i.e. an integral on a measurable space with respect to a measure with values in the cone of regular elements.

The thesis presented here mainly concerns with this objects.
Chapter 1. In the first chapter we present a summary of the well known results in the theory of "Cones of Potentials" or more precisely cones of excessive or supermedian functions with respect to a sub-Markovian
resolvent family of kernels on a measurable space. Among the results obtained here we mention:

1. A Choquet type assertion in the frame of supermedian functions as well as in the frame of excessive functions with respect to this resolvent.
2. A decomposition of supermedian function as a sum of two supermedians which are stable with respect to the réduite operation on a borel set respectively its complement.
3. For any finite supermedian function s we associate a map B_{s} from \mathcal{S} into \mathcal{S} given by:

$$
B_{s} t=\sup \{u \in \mathcal{S} / u \leq t \text { and } u \preccurlyeq \alpha s \text { for some } \alpha>0\}
$$

and we prove that this map is a pseudo-balayage i.e. it is increasing, additive, idempotent, contractive $\operatorname{and} B_{s} s=s$.

We prove that B_{s} is the smallest increasing, additive, idempotent and contractive map T from \mathcal{S} into \mathcal{S} such that $T s=s$.

Similar assertions are valid replacing \mathcal{S} by the cone \mathcal{E} of excessive functions.
4. We develop a fine carrier theory on the set \mathcal{E} of excessive functions in the following conditions: (X, \mathcal{B}) is a measurable space, $v=$ $\left(V_{\alpha}\right)_{\alpha>0}$ is a proper sub-Markovian resolvent, the convex cone \mathcal{E} is min-stable, contains the positive constant functions, and the space X is supposed to be nearly saturated i.e. any balayage B on \mathcal{E} is representable.
5. Among others we characterize the regular excessive elements as being those excessives for which the pseudo-balayages associated with are balayages.
Many assertions presented in this chapterhave similar versions in varius monographs, such as, e.g. [4], [5], [8], [10],[16],[17], [19], [20], [21],[22],[23]

Chapter 2. In the second chapter we present a theory of Lebesgue integral on a measurable space with respect to a measure having its values in the cone of regular excessive functions with respect to a standard resolvent on this measurable space i.e. $v=\left(V_{\alpha}\right)_{\alpha>0}$ is a resolvent family of kernels on (X, \mathcal{B}) such that:
a. v is a proper sub-Markovian resolvent
b. The convex cone \mathcal{E} of all excessive functions with respect to v is min-stable and contains the positive constant functions
c. There exists a distance d on X such that the associated topology τ_{d} is smaller than the fine topology on X (i.e. the coarsest topology τ on X making continuous all functions of \mathcal{E})
d. The Borel structure associated with the distance d coincides with \mathcal{B}
e. The space (X, \mathcal{B}) is nearly saturated with respect to \mathcal{E} i.e. any σ-balayage on \mathcal{E} is representable on X.
We construct a map $(f, s) \mapsto f . s$ from $p b \mathcal{B} \times \mathcal{E}^{r} \rightarrow \mathcal{E}^{r}$ such that it is bilinear and has the following properties:

1. The sequence $\left(f_{n} \cdot s\right)_{n}$ is specifically increasing (resp. decreasing) to $f . s$ whenever $\left(f_{n}\right)_{n}$ increases (resp. decreases) to f

Introduction

2. If $\left(f_{n}\right)_{n}$ is uniformly bounded and $\left(f_{n}\right)_{n}$ is pointwisely convergent to f then the sequence $\left(f_{n} . s\right)_{n}$ converges to $f . s$ with respect to the specific order relation in \mathcal{E}.
3. If $p_{n} \in \mathcal{E}$ and $\sum p_{n} \in \mathcal{E}^{r}$ then we have $f . s=\sum_{n} f . p_{n} \forall f \in p b \mathcal{B}$
4. carr $f . s \subset \overline{[f>0]} \cap \operatorname{carr} s(\bar{A}$ means the fine closure of $A)$
5. $t \geq f . s$ whenever $t \in \mathcal{E}$ and $t \geq f . s$ on the set $[f>0]$
6. If $s \in \mathcal{E}^{0}$ and $f_{0}>0$ is such that $V f_{0}$ is bounded then the kernel $W_{s}: p b \mathcal{B} \rightarrow \mathcal{E}^{r}$ by $W_{s}(f)=f .\left(s+V f_{0}\right)$ has the complete maximum principle, $\mathcal{E}_{W_{s}} \equiv \mathcal{E}_{v}$ and s is a W - potential.
7. f. $(g . s)=(f g) . s$ for any $f, g \in p b \mathcal{B}$ and any $s \in \mathcal{E}^{r}$

This construction generalize a similar one given in [7] , [11]
Similar results presented in this chapter may be found in [6], [7], [8], [9],[10],[11],[12],[16],[17].

Chapter 3. In this chapter we present a study of so called DarbouxStieltjes integral for the functions taking values in a Banach space with respect to a real function. For the scalar case this notion was introduce by [15] and deepened by I. Bucur [13], [14] , [15]

Here we give the proof of some well known assertions in the particular case of Riemann-Stieltjes integrability but which are not so trivial in our case. At the end of this chapter we suggest by an example how to use this type of integration in potential theory (the duality in a particular case of potential theory)

CHAPTER 1

NEARLY SATURATION, BALAYAGE AND FINE CARRIER IN EXCESSIVE STRUCTURES

In this chapter, we give minimal conditions on the space X, such that a good part of potential theory in the frame of excessive structure, associated with a proper submarkovian resolvent family of kernels on X, may be developed. We characterize the regular excessive elements as being those excessive functions for which the pseudo-balayages associated with, are balayages and we construct a fine carrier theory without using any kind of compactification.

1.1. PRELIMINARIES AND FIRST RESULTS

In this paragraph $v=\left(\mathrm{v}_{\alpha}\right)_{\alpha \geq 0}$ is a proper sub-Markovian resolvent of kernels on a measurable space $(\mathrm{X}, \mathcal{B})$. As usually we denote by $\mathcal{S}=\mathcal{S}_{v}$ the set of all positive \mathcal{B} - measurable functions $s: \mathrm{X} \rightarrow[0,+\infty]$ such that $\alpha \mathrm{v}_{\alpha} s \leq s$ for all $\alpha>0$ and by \mathcal{S}^{f} the set of all finite elements of \mathcal{S}. In addition, we denote by $\mathcal{E}=\mathcal{E}_{\vartheta}$ the set off all excessive, \mathcal{B}-measurable functions, which are finite $v-a . e$. i.e.

$$
\mathcal{E}=\left\{s \in \mathcal{S} / \sup _{\alpha} \alpha \mathrm{v}_{\alpha} s=s \quad \text { and } \quad \mathrm{v}_{\alpha}\left(\mathbb{I}_{[s=\infty]}\right)=0 \quad \forall \alpha \in \mathbb{R}_{+}\right\}
$$

It is known that for any $s \in \mathcal{S}$ the family $\left(\alpha v_{\alpha} s\right)_{\alpha \in \mathbb{R}_{+}}$is increasing and the function $\widehat{\mathcal{s}}$ defined by:

$$
\widehat{s}=\lim _{\alpha \rightarrow \infty} \alpha v_{\alpha} s=\lim _{n \rightarrow \infty} n v_{n} s=\sup _{n} n v_{n} s
$$

called the regularized of s (w.r to v) is dominated by s and the set [$\widehat{s}<s$] is $v-$ negligible i.e. $\mathrm{v}_{\alpha}\left(\mathbb{I}_{[\hat{s}<s]}\right)=0$ for any $\alpha \in \mathbb{R}_{+}$or for some $\alpha_{0} \in \mathbb{R}_{+}$. Moreover, the following properties hold:

1. $\alpha \widehat{s_{1}+\beta} s_{2}=\alpha \widehat{s_{1}}+\beta \widehat{s_{2}} \quad \forall \alpha, \beta \in \mathbb{R}_{+}, s_{1}, s_{2} \in \mathcal{S}$ whenever the algebraic operations make sense
2. $s_{1} \leq s_{2} \Rightarrow \widehat{s_{1}} \leq \widehat{s_{2}} \forall s_{1}, s_{2} \in \mathcal{S}$
3. $\widehat{\hat{s}}=\widehat{\delta} \quad \forall s \in \mathcal{S}$ and $s=\widehat{s} \forall s \in \mathcal{E}$
4. $\widehat{s_{n}} \uparrow \widehat{s} \quad \forall s, s_{n} \in \mathcal{S}$ such that $s_{n} \uparrow s$
5. If $s_{1}, s_{2} \in \mathcal{S}$ and $s_{1}+s_{2} \in \mathcal{E}^{f}$ then $s_{1}, s_{2} \in \mathcal{E}$
6. For any increasing sequence $\left(s_{n}\right)_{n}$ from \mathcal{S} (respectively \mathcal{E}) the function $\sup _{n} s_{n}$ belongs to \mathcal{S} (respectively \mathcal{E}, if $\sup _{n} s_{n}<\infty$ v.a.e.)
7. For any sequence $\left(s_{n}\right)_{n}$ from \mathcal{S}, the function $\operatorname{in} f_{n} s_{n}$ belongs to \mathcal{S}
8. For any sequences $\left(s_{n}\right)_{n}$ from \mathcal{E} the function $l \overline{n f_{n} s_{n}}$ is the infimum in \mathcal{E} of the set $\left\{s_{n} / n \in \mathbb{N}\right\}$ and will be denoted by $\Lambda_{n} s_{n}$ We have $s+\Lambda_{n} s_{n}=\Lambda_{n}\left(s+s_{n}\right) \quad \forall s \in \mathcal{E}$
9. For any \mathcal{B} - measurable function f on X the set

$$
\{s \in \mathcal{S} / s \geq f\}
$$

possesses the smallest element denoted by ${ }^{\delta} R f$ or $R f$
Particularly if f is of the form $s_{2}-s_{1}$ with $s_{1}, s_{2} \in \mathcal{S}$ then we have:

$$
R\left(s_{2}-s_{1}\right)=s^{\mathcal{L}} R\left(s_{2}-s_{1}\right) \underset{\mathcal{s}}{\preccurlyeq}
$$

where we have written $u \underset{\mathcal{S}}{\preccurlyeq} v$ if there exists $s \in \mathcal{S}$ such that:
$v=u+s, u$ and v being positive functions on X.
The relation $\underset{\mathcal{S}}{ }$ is so called the specific order given by \mathcal{S}
If $A \in \mathcal{B}$ and $s \in \mathcal{S}$ then the element $R\left(\mathbb{I}_{A} \cdot s\right)$ is called the réduite of s on the set A and will be noted by $R^{A} s$. The following properties of the reduite operation are well known:
a. The map $\mathcal{s} \rightarrow R^{A} \mathcal{s}$ from \mathcal{S} to \mathcal{S} is a σ - balayage on \mathcal{S} i.e. it is additive, increasing, σ-continous in order from below $\left(R s_{n}\right)_{\mathrm{n}} \uparrow R s$ whenever $\left.s_{n} \in \mathcal{S}, s_{n} \uparrow s\right)$
b. If $\left(A_{n}\right)_{n}$ is an increasing sequence from \mathcal{B} and $A=\cup_{n} A_{n}$ then we have:

$$
R^{A_{n}} \mathcal{S} \uparrow R^{A_{\mathcal{S}}} \forall \mathcal{S} \in \mathcal{S}
$$

c. $R^{A} \mathcal{s}=\mathcal{s}$ on A and $R^{A_{1} \cup A_{2}}+R^{A_{1} \cap A_{2}} \leq R^{A_{1}} \mathcal{S}+R^{A_{2}} \mathcal{S}$ for any $A_{1}, A_{1} \in \mathcal{B}$ and any $s \in \mathcal{S}$
10. If $s_{1}, s_{2} \in \mathcal{E}_{v}$ then $R^{A}\left(s_{2}-s_{1}\right) \in \varepsilon_{v}$ and $R^{A}\left(s_{2}-s_{1}\right) \preccurlyeq \varepsilon_{v} s_{2}$ where $\underset{\varepsilon_{v}}{\leqslant}$ is the specific order given by ε_{v}
11. The set $\left(\mathcal{E}_{v}, \underset{\varepsilon_{v}}{\lessgtr}\right)$ is a conditionally σ - complete lattice i.e. for any sequence $\left(s_{n}\right)_{n} \in \mathcal{E}_{v}$ there exists the greatest lower bound noted by $\wedge_{n} s_{n}$ and we have:

$$
s+\hat{n}_{n} s_{n}=\hat{n}_{n}\left(s+s_{n}\right) \quad \forall s \in \mathcal{E}
$$

If $\left(s_{n}\right)_{n} \in \mathcal{E}_{v}$ is specifically dominated in \mathcal{E} there exists the smaller upper bound noted by $\vee_{n} s_{n}$ and we have:

$$
s+\vee_{n}^{\vee} s_{n}=\vee_{n}\left(s+s_{n}\right) \quad \forall s \in \mathcal{E}
$$

Moreover, if the sequence $\left(s_{n}\right)_{n}$ is specifically increasing (resp. decreasing) then we have:

$$
\underset{n}{\vee} s_{n}=\sup _{n} s_{n}\left(\operatorname{resp} \cdot \hat{n}_{n} s_{n}=\inf _{n} s_{n}\right)
$$

where $\sup _{n} s_{n}\left(\operatorname{resp} . \inf f_{n} s_{n}\right)$ is the pointwise supremum (resp. infimum) of the sequence of functions $\left(s_{n}\right)_{n}$ on X.
Particularly the Riesz decomposition property holds in \mathcal{E} and \mathcal{S} i.e. for any s, t_{1}, t_{2} belonging to \mathcal{E} (resp. \mathcal{S}) with $s \leqslant t_{1}+t_{2}$ there exist s_{1}, s_{2} in \mathcal{E} (resp. \mathcal{S}) such that $s_{1} \leqslant t_{1}, s_{2} \leqslant t_{2}, s=s_{1}+s_{2}$. In fact the same σ-Riesz decomposition property may be immediately shown

$$
s \leqslant \sum_{i=1}^{\infty} t_{i} \Rightarrow s=\sum_{i=1}^{\infty} s_{i}, s_{i} \leqslant t_{i} \quad \forall i \in \mathbb{N}
$$

Other well known assertion from the σ - vector lattices may be restated in the convex cones \mathcal{E} and \mathcal{S}.
Among them the following one will be used in the sequel: For any s_{1}, s_{2} in \mathcal{E} (resp. \mathcal{S}) we have

$$
s_{1} \wedge s_{2}+s_{1} \vee s_{2}=s_{1}+s_{2}
$$

12. The Riesz decomposition property with respect to the pointwise order relation holds in \mathcal{S} (respectively \mathcal{E}) i.e. for any $\boldsymbol{s}, t_{1}, t_{2}$ in \mathcal{S} (resp. \mathcal{E}) with $s \leq t_{1}+t_{2}$ there exist s_{1}, s_{2} in \mathcal{S} (resp. \mathcal{E}) such that

$$
s=s_{1}+s_{2}, s_{1} \leq t_{1}, s_{2} \leq t_{2}
$$

The following decomposition property is inspired by similar one used by Mokobodzki in the study of subordination resolvents (see [22])

Lemma1.1.1. For any $s \in \mathcal{S}^{f}$, and any $A \in \mathcal{B}$ there exist s_{A} and s_{A}^{\prime} in \mathcal{S} such that

$$
s=s_{A}+s_{A}^{\prime} \text { and } R^{A} s_{A}=s_{A}, R^{X \backslash A} s_{A}^{\prime}=s_{A}^{\prime}
$$

Proof: We define inductively two sequences $\left(s_{n}^{\prime}\right)_{n}$ and $\left(s_{n}^{\prime \prime}\right)_{n}$ in \mathcal{S} as follows:

$$
\begin{aligned}
& s_{1}^{\prime \prime}=R\left(s-R^{A} s\right), \quad s_{1}^{\prime}=s-R\left(s-R^{A} s\right) \\
& s_{n+1}^{\prime \prime}=R\left(s_{n}^{\prime}-R^{A} s_{n}^{\prime}\right), \quad s_{n+1}^{\prime}=s_{n}^{\prime}-R\left(s_{n}^{\prime}-R^{A} s_{n}^{\prime}\right)
\end{aligned}
$$

Obviously, we have $s_{n}^{\prime}=s_{n+1}^{\prime}+s_{n+1}^{\prime \prime}$ and one may show that $s_{n+1}^{\prime} \leq R^{A} s_{n}^{\prime} \leq s_{n}^{\prime}$ and $s_{n+1}^{\prime \prime}=R^{X \backslash A} s_{n+1}^{\prime \prime}$. So the sequence $\left(s_{n}^{\prime}\right)_{n}$ is specifically decreasing in \mathcal{S} and the sequence $\left(\sum_{i=1}^{n} s_{i}^{\prime \prime}\right)_{n}$ is specifically increasing in \mathcal{S} and we have

$$
s=s_{n}^{\prime}+\sum_{i=1}^{n} s_{i}^{\prime \prime} \quad \forall n \in \mathbb{N}^{*}
$$

Therefore, $s=s_{A}+s_{A}^{\prime}$ where we have noted

$$
s_{A}=\inf _{n} s_{n}^{\prime}=\hat{s} s_{n}^{\prime}, s_{A}^{\prime}=\sum_{i=1}^{\infty} s_{i}^{\prime \prime}:=\sup _{n} \sum_{i=1}^{n} s_{i}^{\prime \prime}=v_{n} \sum_{i=1}^{n} s_{i}^{\prime \prime}
$$

NEARLY SATURATION, BALAYAGE AND FINE CARRIER IN EXCESSIVE STRUCTURES

From the preceding considerations we deduce

$$
\begin{aligned}
& R^{A}\left({ }_{n} s_{n}^{\prime}\right)=\hat{n} R^{A} s_{n}^{\prime}=\hat{n} s_{n}^{\prime}, R^{A} s_{A}=s_{A} \\
& R^{X \backslash A}\left(\sum_{i=1}^{\infty} s_{i}^{\prime \prime}\right)=\sum_{i=1}^{\infty} R^{X \backslash A} s_{i}^{\prime \prime}=\sum_{i=1}^{\infty} s_{i}^{\prime \prime}, R^{X \backslash A} s_{A}^{\prime}=s_{A}^{\prime}
\end{aligned}
$$

1.2. A CHOQUET TYPE LEMMA

Lemma 1.2.1. Let $\left(s_{n}\right)_{n}$ be a sequence in \mathcal{S} and for any $n \in \mathbb{N}$ let $\left(s_{n m}\right)_{n m}$ be a sequence in \mathcal{S} which is specifically increasing to s_{n}.

1. We have

$$
\underset{\mathcal{S}}{\mathcal{Y}}\left\{s_{n} / n \in \mathbb{N}\right\}=\mathcal{S}_{\mathcal{S}}\left\{t_{n} / n \in \mathbb{N}\right\}
$$

where

$$
t_{n}=: \underset{i, j \leq n}{\vee} s_{i, j}
$$

2. If $s_{n}<\infty$ and for any sequence $\sigma=\left(m_{n}\right)_{n \in \mathbb{N}}$ in \mathbb{N} we denote

$$
s_{\sigma}=\hat{S}_{\mathcal{S}}\left\{s_{n m_{n}} / n \in \mathbb{N}\right\}
$$

then we have

$$
\hat{S}_{s}\left\{s_{n} / n \in \mathbb{N}\right\}=\sup \left\{s_{\sigma} / \sigma \in \sum \mathbb{N}\right\}
$$

where sup stands for the pointwise supremum and $\sum \mathbb{N}$ for the set of all sequences of natural numbers.

Proof. 1. Obviously we have

$$
\left.s_{n}={\underset{S}{\mathrm{~V}}}_{\mathrm{V}}^{\text {s }} \text { nm } / m \in \mathbb{N}\right\} \preccurlyeq \underset{\delta}{\mathrm{V}}\left\{t_{k} / k \in \mathbb{N}\right\} \preccurlyeq \underset{\delta}{\mathrm{V}}\left\{s_{k} / k \in \mathbb{N}\right\}
$$

and therefore

$$
\underset{S}{\vee}\left\{s_{n} / n \in \mathbb{N}\right\}=\underset{S}{\vee}\left\{t_{n} / n \in \mathbb{N}\right\}
$$

2. Let $x \in X$ and let ε be a real number, $\varepsilon>0$. Since the sequence $\left(s_{n m}\right)_{m}$ is specifically increasing (in \mathcal{S}) to the element s_{n} of \mathcal{S} we have

$$
s_{n}(x)=\sup _{m} s_{n m}(x)=\lim _{m \rightarrow \infty} s_{n m}(x)
$$

and therefore we may consider $m_{n} \in \mathbb{N}$ such that

$$
s_{n}(x) \leq s_{n m_{n}}(x)+\frac{\varepsilon}{2^{n}} \quad \text { or } t_{n}(x)<\frac{\varepsilon}{2^{n}}
$$

where $t_{n} \in \mathcal{S}$ is such that $s_{n}=s_{n m_{n}}+t_{n}$
If we denote $s_{0}=\wedge_{s}\left\{s_{n} / n \in \mathbb{N}\right\}$, from the preceding consideration we have

$$
s_{0} \leqslant s_{n m_{n}}+s_{0} \wedge\left(\sum_{i=1}^{k} t_{i}\right) \quad \forall n \in \mathbb{N},
$$

$$
\begin{gathered}
s_{0} \leqslant s_{n m_{n}}+\underset{\mathcal{S}}{\vee}\left\{s_{0} \wedge\left(\sum_{i=1}^{k} t_{i}\right) / k \in \mathbb{N}\right\}, \\
s_{0} \leqslant \hat{S}\left\{s_{n m_{n}} / n \in \mathbb{N}\right\}+\underset{\mathcal{S}}{\vee}\left\{s_{0} \wedge\left(\sum_{i=1}^{k} t_{i}\right) / k \in \mathbb{N}\right\}
\end{gathered}
$$

On the other hand at the point $x \in X$ the following inequality holds

$$
\begin{align*}
\underset{\mathcal{S}}{\vee}\left\{s_{0} \wedge\left(\sum_{i=1}^{k} t_{i}\right) / k \in \mathbb{N}\right\}(x) & =\lim _{k \rightarrow \infty}\left(s_{0} \wedge\left(\sum_{i=1}^{k} t_{i}\right)\right)(x) \tag{x}\\
& \leq \lim _{k \rightarrow \infty} \sum_{i=1}^{k} t_{i}(x) \leq \varepsilon
\end{align*}
$$

and therefore
$s_{0}(x) \leq s_{\sigma}(x)+\varepsilon \quad$ where $\sigma=\left(m_{n}\right)_{n \in \mathbb{N}}$.
The number ε being arbitrary we get

$$
s_{0}(x)=\sup _{\sigma \in \Sigma^{\mathbb{N}}} s_{\sigma}(x) \quad \forall x \in X
$$

Lemma 1.2.2. Let $\left(s_{n}\right)_{n}$ be a sequence in \mathcal{E} and for any $n \in \mathbb{N}$ let $\left(s_{n m}\right)_{m}$ be a sequence in \mathcal{E} which is \mathcal{E}-specifically increasing to s_{n}

1. If the sequence $\left(s_{n}\right)_{n}$ has a specific majorant in \mathcal{E} then

$$
\underset{\mathcal{E}}{\vee_{n}} s_{n}=\underset{\varepsilon}{\vee} t_{n}
$$

where

$$
t_{n}=: \underset{\varepsilon}{\vee}\left\{s_{i j} / i, j \leq n\right\}
$$

2. If $s_{n}<\infty$ and for any sequence $\sigma=\left(m_{n}\right)_{n \in \mathbb{N}}$, in \mathbb{N}, we denote

$$
s_{\sigma}=\hat{\varepsilon}_{\varepsilon}\left\{s_{n_{m}} / m \in \mathbb{N}\right\}
$$

then we have

$$
{\underset{\varepsilon}{\varepsilon}}^{\varepsilon}\left\{s_{n} / n \in \mathbb{N}\right\}=\sup \left\{s_{\sigma} / \sigma \in \sum \mathbb{N}\right\}
$$

where sup stands for the pointwise supremum and $\sum \mathbb{N}$ for the set of all sequences of natural numbers.

Proof. We apply Lemma 1.2.2. we have

1. $\quad \underset{\mathcal{E}}{\vee} s_{n}={\underset{\mathcal{S}}{ }}_{\vee} s_{n}, \quad{\underset{\mathcal{E}}{ }}_{\vee} t_{n}={\underset{\mathcal{S}}{ }}_{V} t_{n}$
2. $\hat{\varepsilon}^{\{ }\left\{s_{n_{m}} / m \in \mathbb{N}\right\}=\hat{\delta}^{\{ }\left\{s_{n_{m}} / m \in \mathbb{N}\right\}$

We remember also the following definition
A map $\mu: \mathcal{E} \rightarrow \overline{\mathbb{R}}_{+}$which is additive , increasing, $\sigma-$ continuous in order from below and for any $s \in \mathcal{E}$ there exists a sequence $\left(s_{n}\right)_{n}$ in \mathcal{E}, increasing to s such that $\mu\left(s_{n}\right)<\infty$ for all n, is called $\sigma-H-$ integral.

1.3. PSEUDO-BALAYAGES ASSOCIATED WITH SUPERMEDIAN FUNCTIONS

We remember that a map $B: \mathcal{S} \rightarrow \mathcal{S}$ is called pseudo-balayage on \mathcal{S} if it is increasing (with respect to the pointwise order relation), additive, contractive $(B s \leq s)$ and idempotent $\left(B^{2} s=B(B s)=B s\right.$ for all $\in \mathcal{S}$.
A pseudo-balayage B is called balayage if it is σ - continuous in order from below i.e. the sequence $\left(B s_{n}\right)_{n}$ increases to $B s$ whenever the sequence $\left(s_{n}\right)_{n}$ increases to s.
A typical example of balayage on \mathcal{S} is the map:

$$
s \rightarrow R^{A} s
$$

where $A \in \mathcal{B}$.
In the sequel, for any element $s \in \mathcal{S}^{f}$ we associate a pseudo-balayage B_{s} such that $B_{s} s=s$. The procedure is inspired from a similar one developed in the frame of satandard H -cones.

Proposition 1.3.1. Let $s \in \mathcal{S}$ be a finite element. Then for any $t \in \mathcal{S}$ the set

$$
D_{t}:=\{u \in \mathcal{S} / u \leq t \text { and } u \leqslant \alpha s \text { for some } \alpha>0\}
$$

has an upper bound in \mathcal{S} with respect to the pointwise order relation and the map

$$
t \rightarrow \sup _{t} D_{t}:=B_{s} t
$$

Is a pseudo-balayage with $B_{s}(s)=s$. Moreover if B is a pseudo-balayage with $B(s)=s$ we have $B_{s} \leq B$ i.e. $B_{s} t \leq B t \quad \forall t \in \mathcal{S}$

Proof. We consider the subset D_{t}^{0} of D_{t} given by

$$
D_{t}^{0}=\left\{n s-R(n s-t) / n \in \mathbb{N}^{*}\right\}
$$

The set D_{t}^{0} is countable an co-final in D_{t} i.e. for any $u \in D_{t}$ there exists $n \in \mathbb{N}$ such that

$$
u \leq n s-R(n s-u)
$$

Indeed, let $\alpha \in \mathbb{R}_{+}$such that $u \leqslant \alpha s$ and $\leq t$. We have $u \leqslant n s$ for $n \in$ $\mathbb{N}, n \geq \alpha$ and we remark that

$$
u=n s-R(n s-u)
$$

On the other hand we notice that the sequence $(n s-R(n s-t))_{n}$ is increasing. Hence, the supremum of the set D_{t}^{0} belongs to \mathcal{S} and we have

$$
B_{s} t=\sup D_{t}=\sup D_{t}^{0} \leq t
$$

If $=s$, obviously $s \in D_{s}$ and therefore $B_{s} s=s$
The fact that the map B_{s} is increasing follows from the definition of B_{s} because if $t_{1} \leq t_{2}$ then $D_{t_{1}} \subset D_{t_{2}}$
Using the definition of the sets $D_{t_{1}}, D_{t_{2}}$ and $D_{t_{1}+t_{2}}$ for $t_{1}, t_{2} \in \mathcal{S}$ we deduce, using Riesz decomposition property(with respect to the pointwise order relation) that

$$
D_{t_{1}}+D_{t_{2}}=D_{t_{1}+t_{2}}
$$

So we have

$$
B_{s}\left(t_{1}+t_{2}\right)=\sup D_{t_{1}+t_{2}}=\sup D_{t_{1}}+\sup D_{t_{2}}=B_{s}\left(t_{1}\right)+B_{s}\left(t_{2}\right)
$$

For any $t \in \mathcal{S}$ and any $u \in D_{t}$ we have $u \leq B_{s} t$ and by the definition of $D_{B_{s} t}$ we have $u \in D_{B_{s} t}$. Hence

$$
u \leq B_{s}\left(B_{s} t\right), \quad B_{s}(t) \leq B_{s}\left(B_{s}(t)\right), B_{s}(t)=B_{s}^{2} t
$$

If B is a pseudo-balayage on \mathcal{S} such that $B s=s$, then for any $u \in \mathcal{S}, u \preccurlyeq \alpha s$ for some $\alpha>0$ we have

$$
\begin{aligned}
& B(\alpha s)=\alpha B s=\alpha s \\
& B(u)+B(\alpha s-u)=B(\alpha s)=\alpha s=u+(\alpha s-u), \\
& B u \leq u, \quad B(\alpha s-u) \leq \alpha u-s
\end{aligned}
$$

And therefore $B u=u, B(\alpha s-u)=\alpha s-u$
Let now $t \in \mathcal{S}$ and $u \in D_{t}$. From the preceding consideration we deduce

$$
B u=u \quad \forall u \in D_{t}, B_{s} t=\sup _{u \in D_{t}} u=\sup _{u \in D_{t}} B u \leq B t
$$

Remark 1.3.2. For the convex cone \mathcal{E} we have similar definition of the pseudo-balayge or balayage operator $B: \mathcal{E} \rightarrow \mathcal{E}$

Corollary 1.3.3. For any element $s \in \mathcal{E}^{f}$, the restriction of the map B_{s} defined as above is a pseudo-balayage on \mathcal{E}.

Proof. We remark that for any $t \in \mathcal{S}$ which is finite $v-a . e$ we have $B_{s} t \in \mathcal{E}$. Indeed, we have $D_{t} \subset \mathcal{E}$ and therefore the supremum of the increasing and dominated sequence $(n s-R(n s-t))_{n}$ is an element of \mathcal{E}

1.4. FINE CARRIER FOR EXCESSIVE FUNCTIONS

In the sequel we shall denote by ε^{0} the set of all finite excessive functions s on X such that for any specific minorant $u \in \mathcal{E}(u \preccurlyeq s)$ the associated pseudo-balayage B_{u} is a balayage on \mathcal{E}.
As in the introduction of this chapter for any subset A of X and any element $t \in \mathcal{E}$ we denote

$$
{ }^{\varepsilon} R^{A} t:=\inf \left\{t^{\prime} \in \mathcal{E} / t^{\prime} \geq t \text { on } A\right\}
$$

Generally, the function ${ }^{\varepsilon} R^{A} t$ is not \mathcal{B} - measurable but if it is then this function belongs to S_{v} and the function

$$
x \mapsto \sup \alpha V_{\alpha}\left({ }^{\varepsilon} R^{A} t\right)(x)
$$

is denoted by $B^{A} t$. Obviously $B^{A} t \in \mathcal{E}$.

Definition 1.4.1. The set A is called subbasic if the function $B^{A} t$ is defined for all $s \in \mathcal{E}$ and we have $B^{A} s=s$ on A. A subbasic set M is called a basic set if we have

$$
M=\left\{x \in \mathrm{X} / B^{M} s(x)=s(x), \forall s \in \mathcal{E}\right\}
$$

Remark 1.4.2. It is obvious that a subset M of X is a subbasic if and only if the function ${ }^{\varepsilon} R^{A} s$ belongs to \mathcal{E} and therefore ${ }^{\varepsilon} R^{A} t=B^{A} s$ for all $s \in \mathcal{E}$.

Remark 1.4.3. If M is subbasic then the map on \mathcal{E}

$$
s \mapsto B^{M} s
$$

is a balayage on \mathcal{E}.
Remark 1.4.4. If M is a subbasic set and $b(M)$ is given by

$$
b(M)=\left\{x \in \mathrm{X} / B^{M} s(x)=s(x) \forall s \in \mathcal{E}\right\}
$$

then $B^{b(M)} s=s$ for all $s \in \mathcal{E}$ and $b(M) \in \mathcal{B}$.
The last assertion follows immediately from the fact that

$$
b(M)=\left[B^{M} V f_{0}=\mathrm{V} f_{0}\right]
$$

where f_{0} is a \mathcal{B}-measurable, $0<f_{0}<1$ and $V f_{0}<\infty$.
On the space X, we consider as usually the fine topology i.e. the coarsest topology τ on X making continuous all functions of the vector lattice $\varepsilon_{b}-\mathcal{E}_{b}$ of bounded functions on X. We suppose here that \mathcal{E} is min-stable and $\mathbb{I}_{X} \in \mathcal{E}$.

NEARLY SATURATION, BALAYAGE AND FINE CARRIER IN EXCESSIVE STRUCTURES

We remember that all elements $s \in \mathcal{E}$ are continuous with respect to τ and any point $x_{0} \in X$ has a base of neighbourhoods of the form $x_{0} \in[s-t>0]$ with $s, t \in \mathcal{E}, t \leq s \leq 1$. Obviously, the elements of this base belong to \mathcal{B}.

Definition 1.4.5. We say that a balayage B on \mathcal{E} is representable if there exists a basic set in X denoted by $b(B)$ such that

$$
B s=B^{b(B)} s
$$

for all $s \in \mathcal{E}$.
The space X is called nearly saturated if all balayages on \mathcal{E} are representable.
From now on, we suppose that X is nearly saturated and the convex cone \mathcal{E} is min-stable and contains the constant functions.

Definition 1.4.6. For any element $s \in \mathcal{E}^{0}$ we associate the subset $b\left(B_{s}\right)$ the base of the balayage B_{s}. We shall denote it by carr s and we shall call it the (fine) carrier of \mathcal{s} (with respect to \mathcal{E}).
From the preceding remark 1.4.4., we deduce that the set carr s is fine closed and we have

$$
\operatorname{carr} s=\emptyset \Leftrightarrow s=0
$$

Proposition 1.4.7. The following assertions hold

1. \mathcal{E}^{0} is a solid convex sub-cone of \mathcal{E} with respect to the specific order
2. $\operatorname{carr}\left(s_{1}+s_{2}\right)=\operatorname{carr} s_{1} \cup \operatorname{carr} s_{2} \quad \forall s_{1}, s_{2} \in \mathcal{E}^{0}$
3. If $\left(s_{n}\right)_{n}$ is a sequence in \mathcal{E}^{0} such that the function $\sum_{n=1}^{\infty} s_{n}$ is finite then this function belongs to \mathcal{E}^{0} and the set $\operatorname{carr}\left(\sum_{n=1}^{\infty} s_{n}\right)$ is the closure (with respect to τ) of the set $\bigcup_{n=1}^{\infty}$ carr s_{n}

Proof. 1. and 2. We remark firstly that $M_{1} \cup M_{2}$ is also a basic set and for any element $t \in \mathcal{E}$ we have

$$
B^{M_{1} \cup M_{2}} t=B^{M_{1}} t \vee B^{M_{2}} t
$$

Hence if we take $M_{1}=\operatorname{carr} s_{1}, M_{2}=\operatorname{carr} s_{2}$ then

$$
\begin{aligned}
& s_{1}+s_{2}=B^{M_{1}} s_{1}+B^{M_{1}} s_{2} \leq B^{M_{1} \cup M_{2}} s_{1}+B^{M_{1} \cup M_{2}} s_{2}=B^{M_{1} \cup M_{2}}\left(s_{1}+s_{2}\right) \\
& \leq s_{1}+s_{2}, \\
& B^{M_{1} \cup M_{2}}\left(s_{1}+s_{2}\right)=s_{1}+s_{2}
\end{aligned}
$$

And therefore for any $u \in \mathcal{E}, u \preccurlyeq \alpha\left(s_{1}+s_{2}\right)$ we have

$$
B^{M_{1} \cup M_{2}} u=u
$$

Hence for any $t \in \mathcal{E}$ and any $u \in \mathcal{E}, u \leq t, u \preccurlyeq \alpha\left(s_{1}+s_{2}\right)$ for some $\alpha>0$ we have

$$
u=B^{M_{1} \cup M_{2}} u \leq B^{M_{1} \cup M_{2}} t, B_{s_{1}+s_{2}} t \leq B^{M_{1} \cup M_{2}} t
$$

We have also $B^{M_{1} \cup M_{2}} t \leq B_{s_{1}+s_{2}} t$ because $B_{s_{i}} \leq B_{s_{1}+s_{2}}$ for $i=1,2$.

Hence the map on \mathcal{E}

$$
t \mapsto B_{s_{1}+s_{2}} t=B^{M_{1} \cup M_{2}} t
$$

Is a balayage on \mathcal{E}. The preceding considerations show that $s_{1}+s_{2} \in \mathcal{E}^{0}$ for all $s_{1}, s_{2} \in \mathcal{E}^{0}$ and

$$
\operatorname{carr}\left(s_{1}+s_{2}\right)=b\left(B_{s_{1}+s_{2}}\right)=b\left(B_{s_{1}}\right) \cup b\left(B_{s_{2}}\right)=\operatorname{carr} s_{1} \cup \operatorname{carr} s_{2}
$$

The last assertion may be proved using the proposition 1.3.1 and the fact that a countable union of basic set is a subbasic set

Proposition 1.4.8. For any element $u \in \mathcal{E}^{0}$ we have
a. $s \geq u$ on $\operatorname{carr} u \Rightarrow s \geq u$ on X
b. The set carr u is fine closed and \mathcal{B}-measurable subset of X
c. If F is a fine closed subset of X such that
$s \in \mathcal{E}, s \geq_{F} u \Rightarrow s \geq u$ on X then we have carr $u \subset F$
d. carru $=\left\{x \in X / \mu \sigma-H-\right.$ integral, $\mu \leq_{\varepsilon} \varepsilon_{x}, \mu(u)=u(x)$ $\left.\Rightarrow \mu={ }_{\varepsilon} \varepsilon_{x}\right\}$

Proof. a) We have

$$
u=B_{u} u=B^{\text {carr } u} u \leq B^{\text {carr }} u_{s} \leq s \text { if } t \in \mathcal{E}, s \geq_{\text {carr } u} u
$$

The assertion b) follows from the fact that

$$
\begin{aligned}
\operatorname{carr} u=b\left(B_{u}\right) & =\left\{x \in X / B_{u} s(x)=s(x) \forall s \in \mathcal{E}\right\} \\
& =\left\{x \in X / B_{u} V f(x)=V f(x)\right\}
\end{aligned}
$$

where f is a \mathcal{B}-measurable $0<f<1, V f<\infty$.
c) Let us denote for simplicity by $R_{\circ}{ }^{A} \mathcal{S}={ }^{\varepsilon} R^{A} s$. Using the hypothesis, we have

$$
u \geq R_{\circ}{ }^{F} u \geq u, R_{\circ}{ }^{F} u=u, R_{\circ}{ }^{F} \alpha u=\alpha u \quad \forall \alpha \in \mathbb{R}_{+}
$$

Since generally we have $R_{\circ}{ }^{F} \delta \leq s$ we deduce that

$$
R_{0}{ }^{F} v=v \quad \forall v \in \mathcal{E}, v \leqslant u
$$

and therefore for any $v \in \mathcal{E}, v \leq s, v \leqslant \alpha u$ for some $\alpha>0$ we have

$$
R_{\circ}{ }^{F} \mathcal{S} \geq R_{\circ}{ }^{F} v=v
$$

The element v being arbitrary we get $B_{u} s \leq B^{F} s$ for any $s \in \mathcal{E}$.
Let now $x_{0} \in \operatorname{carr} u \backslash F$ and let $s_{1}, s_{2} \in \mathcal{E}, s_{i} \leq 1$ be such that

$$
s_{1} \leq s_{2}, s_{1}\left(x_{0}\right)<s_{2}\left(x_{0}\right), s_{1}=s_{2} \text { on } F
$$

From the preceding considerations, we have the contradictory relations:

$$
\begin{aligned}
& \qquad R^{F} s_{1}=R^{F} s_{2} \quad \text { on } X \\
& 0<s_{2}\left(x_{0}\right)-s_{1}\left(x_{0}\right)=B^{\text {carru }} s_{2}\left(x_{0}\right)-B^{\text {carr }} s_{1}\left(x_{0}\right) \\
& s_{i} \geq R^{F} s_{i} \geq B_{u} s_{i} i=1,2 \quad s_{i}\left(x_{0}\right) \geq R^{F} s_{i}\left(x_{0}\right) \geq B_{u} s_{i}\left(x_{0}\right)=s_{i}\left(x_{0}\right) \\
& \text { Hence carr } u \backslash F=\emptyset .
\end{aligned}
$$

d) let $x_{0} \in X$ such that if μ is an $\sigma-H-$ integral on \mathcal{E} with $\mu \leq \varepsilon_{x_{0}}$ on \mathcal{E} and $\mu(u)=u\left(x_{0}\right)$ then $\mu=\varepsilon_{x_{0}}$ on \mathcal{E}.
If $x_{0} \notin \operatorname{carr} u$ then using b) we may consider two functions

$$
s_{1}, s_{2} \in \mathcal{E}, s_{1} \leq s_{2} \text { on } X, s_{1}\left(x_{0}\right)<s_{2}\left(x_{0}\right) \text { and } s_{1}=s_{2} \text { on carr } u
$$

We take as a $\sigma-H-$ integral μ on \mathcal{E} the map

$$
s \mapsto B_{u} s\left(x_{0}\right)=\mu(s)
$$

Obviously we have $\mu(s) \leq s\left(x_{0}\right)$ for all $s \in \mathcal{E}$ and $\mu(u)=u\left(x_{0}\right)$ and therefore, using the hypothesis $\mu(s)=s\left(x_{0}\right)$ for all $s \in \mathcal{E}$

The last assertion gives us

$$
\begin{aligned}
& B_{u} s_{1}=B_{u} s_{2} \text { on } X, B_{u} s_{i}=\mu\left(s_{i}\right)=s_{i}\left(x_{0}\right) \quad i=1,2 \\
& s_{1}\left(x_{0}\right)=s_{2}\left(x_{0}\right)
\end{aligned}
$$

This contradicts the choice of s_{1} and s_{2}.
Let now $x_{0} \in \operatorname{carr} u$ and let μ be an $\sigma-h$-integral such that $\mu \leq$ $\varepsilon_{x_{0}}$ on $\mathcal{E}, \mu(u)=u\left(x_{0}\right)$. We get the relation

$$
\mu(v)=v\left(x_{0}\right) \text { for all } v \in \mathcal{E}, v \leqslant \alpha u \text { for some } \alpha \in \mathbb{R}_{+}
$$

Hence taking $s \in \mathcal{E}, v \in \mathcal{E}, v \leq s, v \leqslant \alpha u$ for some $\alpha \in \mathbb{R}_{+}$we have

$$
\mu(s) \geq \mu(v)=v\left(x_{0}\right)
$$

The element v being arbitrary we get

$$
\mu(s) \geq B_{u} s\left(x_{0}\right)=s\left(x_{0}\right), \mu=\varepsilon_{x_{0}} \text { on } \varepsilon
$$

1.5. THE REGULAR EXCESSIVE ELEMENTS

Definition 1.5.1. An element $s \in \mathcal{E}^{f}$ is called regular if for any increasing sequence $\left(s_{n}\right)_{n}$ with $\sup s_{n}=s$ we have

$$
\bigwedge_{n} R\left(s-s_{n}\right)=0
$$

The potentials are regular elements.

The following result is well known in standard H-cones .A similar result may be found in [6] (therem 3.2.9)

Proposition 1.5.2. If s is a regular element of \mathcal{E} then the associated pseudo-balayage B_{s} is a balayage.

Proof. Let $\left(s_{n}\right)_{n}$ be a sequence in \mathcal{E} increasing to s and for any $n \in \mathbb{N}$ let $u_{n} \in \mathcal{E}$ be such that

$$
R\left(s-s_{n}\right)+u_{n}=s
$$

The sequence $\left(R\left(s-s_{n}\right)\right)_{n}$ is decreasing and the sequence $\left(u_{n}\right)_{n}$ is increasing with respect to the pointwise order relation.

Therefore, we have

$$
u:=\sup _{n} u_{n} \in \mathcal{E} \text { and } \inf _{\mathrm{n}} \mathrm{R}\left(s-s_{n}\right) \in \mathcal{S}
$$

But since

$$
u+\inf _{\mathrm{n}} \mathrm{R}\left(s-s_{n}\right)=s
$$

We deduce that $\inf _{\mathrm{n}} \mathrm{R}\left(s-s_{n}\right) \in \mathcal{E}$. Hence using the regularity of s we have

$$
\inf _{n} R\left(s-s_{n}\right)=\wedge_{n} R\left(s-s_{n}\right)=0, u=s
$$

With the above notations we have

$$
u_{n} \leq s_{n} \leq s, \quad u_{n}=B_{s} u_{n} \leq B_{s} s_{n} \quad \forall n \in \mathbb{N}
$$

Therefore $\sup B_{s} s_{n}=s$. Obviously for any $\alpha \in \mathbb{R}_{+}$and any sequence $\left(s_{n}\right)$ in \mathcal{E} increasing to αs we have $\sup B_{s} s_{n}=\alpha s$
Now if $u \in \mathcal{E}, u \preccurlyeq s$ and $\left(u_{n}\right)_{n}$ is a sequence in \mathcal{E} increasing to u we have

$$
\sup B_{s} u_{n}=u
$$

Indeed if we denote $v=s-u$ then the sequence $\left(u_{n}+v\right)_{n}$ increases to s and therefore

$$
\sup _{n} B_{s}\left(u_{n}+v\right)=s, \sup _{n} B_{s} u_{n}+v=s, \sup _{n} B_{s} u_{n}=u
$$

To finish the proof we consider an arbitrary element t of \mathcal{E} and a sequence $\left(t_{n}\right)_{n}$ in \mathcal{E} increasing to t. Let $u \in D_{t}$ where

$$
D_{t}:=\{u \in \mathcal{S} / u \leq t \text { and } u \leqslant \alpha s \text { for some } \alpha>0\}
$$

Since $u \leq t$ then the sequence $\left(\inf \left(u, t_{n}\right)\right)_{n}$ is in \mathcal{E} and increases to $\inf (u, t)=u$
But $u \leqslant \alpha s$ for some $\alpha \in \mathbb{R}_{+}$. From the preceding considerations we have

$$
\sup _{n} B_{s}\left(\inf \left(u, t_{n}\right)\right)=B_{s} u=u
$$

Hence

$$
\sup _{n} B_{s} t_{n} \geq \sup _{n} B_{s}\left(\inf \left(u, t_{n}\right)\right)=B_{s} u=u
$$

But u being arbitrary we get

$$
\sup _{n} B_{s} t_{n} \geq B_{s} t, \sup B_{s} t_{n}=B_{s} t
$$

Theorem 1.5.3. The element $s \in \mathcal{E}^{f}$ is regular if and if for any $u \in \mathcal{E}$, $u \leqslant s$ the pseudo-balayage B_{u} is a balayage on \mathcal{E} i.e. $s \in \mathcal{E}^{0}$

Proof. let $s \in \mathcal{E}^{0}$ and let $\left(s_{n}\right)_{n}$ be a sequence in \mathcal{E} increasing to s. For $\epsilon \in \mathbb{R}, \varepsilon>0$ and $n \in \mathbb{N}, n>0$ we denote by A_{n} the subset of X given by

$$
\mathrm{A}_{n}=\left[s<s_{n}+\left(1-\frac{1}{n}\right) \epsilon\right]=\left\{x \in X / s(x)<s_{n}(x)+\left(1-\frac{1}{n}\right) \epsilon\right\}
$$

Obviously we have $\overline{\mathrm{A}}_{n} \subset \mathrm{~A}_{n+1}$ and A_{n} is fine open for every $n \in \mathbb{N}, n>0$. Moreover $\cup_{n=1}^{\infty} \mathrm{A}_{n}=X$.

Let us denote $u_{n}=R\left(s-s_{n}-\left(1-\frac{1}{n}\right) \epsilon\right)$ and $v_{n}=s-u_{n}$, obviously

$$
u_{n}=R^{X \backslash A_{n}} u_{n}={ }^{\varepsilon} R^{X \backslash A_{n}} u_{n} \text { since }\left[s>s_{n}+\left(1-\frac{1}{n}\right) \epsilon\right] \subset X \backslash \mathrm{~A}_{n}
$$

And therefore

$$
\begin{aligned}
& u_{n+m}=R^{X \backslash \mathrm{~A}_{n+m}} u_{n+m} \leq R^{X \backslash \mathrm{~A}_{n}} u_{n+m} \quad \forall n, m \in \mathbb{N}^{*} \\
& u_{n+m}=R^{X \backslash \mathrm{~A}_{n}} u_{n+m} \quad \forall n, m \in \mathbb{N}^{*}
\end{aligned}
$$

Since $u_{n}+v_{n}=s$, and the sequence $\left(u_{n}\right)_{n}$ is decreasing it follows that the sequence $\left(v_{n}\right)_{n}$ is increasing to an element $v \in \mathcal{E}$, and if we denote $u=$ $\inf _{n} u_{n}$, we have

$$
u \in \mathcal{S}, u+v=s, \widehat{u}+\widehat{v}=\widehat{s}, \widehat{u}+v=s, u=\widehat{u}
$$

Hence $u \in \mathcal{E}^{0}$ and from the preceding consideration, it follows

$$
\begin{array}{ll}
R^{X \backslash \mathrm{~A}_{n}}\left(u_{n+m}+v_{n+m}\right)=R^{X \backslash A_{n}} & \forall n, m \in \mathbb{N}^{*}, \\
u_{n+m}+R^{X \backslash A_{n}}\left(v_{n+m}\right)=R^{X \backslash A_{n}} & \forall n, m \in \mathbb{N}^{*},
\end{array}
$$

Making $m \rightarrow \infty$ we obtain

$$
u+R^{X \backslash \mathrm{~A}_{n}} v=R^{X \backslash \mathrm{~A}_{n}} \mathcal{S}
$$

But on the other hand

$$
R^{X \backslash \mathrm{~A}_{n}} u+R^{X \backslash \mathrm{~A}_{n}} v=R^{X \backslash \mathrm{~A}_{n}} \mathcal{S}
$$

And therefore $R^{X \backslash \mathrm{~A}_{n}} u=u$. The set $X \backslash \mathrm{~A}_{n}$ being finely closed we deduce carr $u \subset X \backslash A_{n}$ for any $n \in \mathbb{N}$. But $\cap_{n=1}^{\infty} X \backslash A_{n}=\varnothing$ and therefore $u=0$, $\inf _{n} R\left(s-s_{n}-\left(1-\frac{1}{n}\right) \epsilon\right)=0$

The relations

$$
\varepsilon_{R\left(s-s_{n}\right) \leq}{ }^{\varepsilon} R\left(s-s_{n}-\left(1-\frac{1}{n}\right) \epsilon\right)+\left(1-\frac{1}{n}\right) \epsilon \quad \forall n \geq 1 \text { and } \epsilon>0
$$

give us the relations

$$
\inf _{n} \varepsilon^{\varepsilon} R\left(s-s_{n}\right) \leq \epsilon, \inf _{n}^{\varepsilon} R\left(s-s_{n}\right)=0
$$

that is s is a regular element of \mathcal{E}
Conversely, if s is regular then any element $u \in \mathcal{E}, u \leqslant s$ is regular and by proposition 1.5.2. the pseudo-balayage B_{u} is a balayage i.e. $s \in \mathcal{E}^{0}$

Remark 1.5.4. In their papers concerning the semi-polar sets and regular excessive functions respectively balayages on excessive measures L. Beznea and N . Boboc (see [4] and [5]) show that for any basic set M which is analytic there exists a bounded regular excessive function q such that its fine carrier, is contains in M

Remark 1.5.5. We may prove the following assertion :
If $v=\left(V_{\alpha}\right)_{\alpha>0}$ is a standard resolvent family of kernels on a measurable space (X, \mathcal{B}) i.e.
a. v is a proper sub-Markovian resolvent
b. The convex cone \mathcal{E} of all excessive functions with respect to v is min-stable and contains the positive constant functions
c. There exists a distance d on X such that the associated topology τ_{d} is smaller than the fine topology on X (i.e. the coarsest topology τ on X making continuous all functions of $\mathcal{E})$
d. The Borel structure associated with the distance d coincides with \mathcal{B}
and if the space (X, \mathcal{B}) is such that for any regular and bounded excessive function p with respect to the resolvent v, the balayage associated as above to p is representable then all balayages on \mathcal{E} are representable.

CHAPTER 2

THE SPECIFIC MULTIPLICATION IN EXCESSIVE STRUCTURE

In this chapter, we construct so called specific multiplication in the frame of excessive structure i.e. if $v=\left(V_{\alpha}\right)_{\alpha>0}$ is a standard resolvent on a measurable space (X, \mathcal{B}) then noting by \mathcal{E}^{r} the set of all regular excessive elements of the convex cone \mathcal{E} of all excessive functions we construct a map $(f, s) \mapsto f .8$ from $p b \mathcal{B} \times \mathcal{E}^{r} \rightarrow \mathcal{E}^{r}$ such that it is bilinear and has the following properties:

1. The sequence $\left(f_{n} . s\right)_{n}$ is specifically increasing (resp. decreasing) to $f . s$ whenever $\left(f_{n}\right)_{n}$ increases (resp. decreases) to f
2. If $\left(f_{n}\right)_{n}$ is uniformly bounded and $\left(f_{n}\right)_{n}$ is pointwisely convergent to f then the sequence $\left(f_{n} . s\right)_{n}$ converges to $f . s$ with respect to the specific order relation in \mathcal{E}.
3. If $p_{n} \in \mathcal{E}$ and $\sum p_{n} \in \mathcal{E}^{r}$ then we have $f . s=\sum_{n} f . p_{n} \forall f \in p b \mathcal{B}$
4. carr $f . s \subset \overline{[f>0]} \cap \operatorname{carr} s(\bar{A}$ means the fine closure of $A)$
5. $t \geq f . s$ whenever $t \in \mathcal{E}$ and $t \geq f . s$ on the set $[f>0]$
6. If $s \in \mathcal{E}^{0}$ and $f_{0}>0$ is such that $V f_{0}$ is bounded then the kernel $W_{s}: p b \mathcal{B} \rightarrow \mathcal{E}^{r}$ by $W_{s}(f)=f .\left(s+V f_{0}\right)$ has the complete maximum principle, $\mathcal{E}_{W_{s}} \equiv \mathcal{E}_{v}$ and s is a W - potential.
7. f. $(g . s)=(f g) . s$ for any $f, g \in p b \mathcal{B}$ and any $s \in \mathcal{E}^{r}$

2.1. PRELIMINARIES AND FIRST RESULTS

Definition 2.1.1. If (X, \mathcal{B}) is a measurable space and $v=\left(V_{\alpha}\right)_{\alpha>0}$ is a resolvent family of kernels on (X, \mathcal{B}) we shall say that v is a standard resolvent if
a. v is a proper sub-Markovian resolvent
b. The convex cone \mathcal{E} of all excessive functions with respect to v is minstable and contains the positive constant functions
c. There exists a distance d on X such that the associated topology τ_{d} is smaller than the fine topology on X (i.e. the coarsest topology τ on X making continuous all functions of \mathcal{E})
d. The Borel structure associated with the distance d coincides with \mathcal{B}
e. The space (X, \mathcal{B}) is nearly saturated with respect to \mathcal{E} i.e. any σ-balayage on \mathcal{E} is representable.

Remark 2.1.2. In the case where the above properties a), b) are fulfilled and \mathcal{B} is separable and \mathcal{B} coincides with the σ-algebra generated by \mathcal{E} then there exists a distance d as before.

Throughout this chapter v will be a standard resolvent on (X, \mathcal{B}) and we shall mark by \mathcal{S} or \mathcal{S}_{v} the convex cone of all v-supermedian functions i.e. all positive $\mathcal{B}-$ measurable functions $s: \mathrm{X} \rightarrow[0,+\infty]$ such that $\alpha \mathrm{v}_{\alpha} s \leq s$ for all $\alpha>0$ and by \mathcal{S}^{f} the set of all finite elements of \mathcal{S}.

We remember that an element $s_{0} \in \mathcal{E}$ is called weak unit in \mathcal{E} if for any $s \in \mathcal{E}$ the sequence $s_{n}=s \wedge\left(n s_{0}\right)$ increases to s. Obviously s_{0} is a weak unit in \mathcal{E} if and only if $s_{0}>0$ on X.

If s_{0} is a weak unit then an element s of \mathcal{E} is called s_{0}-bounded if there exists $\alpha \in \mathbb{R}_{+}$such that $s \leq \alpha s_{0}$.

Lemma 2.1.3. For any element $s \in \mathcal{E}^{f}$ and any subset A of \mathcal{B} there exist s_{A} and s_{A}^{\prime} in \mathcal{E} such that

$$
s=s_{A}+s_{A}^{\prime}, \quad R_{\circ}^{A} s_{A}=R^{A} s_{A}=s_{A}, \quad R_{\circ}^{X \backslash A} s_{A}^{\prime}=R^{X \backslash A} s_{A}^{\prime}=s_{A}^{\prime}
$$

where for any $t \in \mathcal{E}$ and $A \in \mathcal{B}$ we have noted

$$
\begin{aligned}
& R_{o}^{A} t=\inf \{u \in \mathcal{E} / u \geq t \text { on } A\} \\
& R^{A} t=\inf \left\{u \in \mathcal{S}_{v} / u \geq t \text { on } A\right\}
\end{aligned}
$$

Proof. Using lemma 1.1.1. we deduce that for the function $s \in \mathcal{E}^{f}$ we may construct s_{A} and s_{A}^{\prime} in δ_{v} with the following properties

$$
s=s_{A}+s_{A}^{\prime}, \quad R^{A} s_{A}=s_{A}, \quad R^{X \backslash A} s_{A}^{\prime}=s_{A}^{\prime}
$$

Since $s \in \mathcal{E}$ and s_{A}, s_{A}^{\prime} are in δ_{v} we deduce that $s_{A}=\widehat{s_{A}}, s_{A}^{\prime}=\widehat{s_{A}^{\prime}}$ and therefore $s_{A} \in \mathcal{E}, s_{A}^{\prime} \in \mathcal{E}$. Obviously we have

$$
\begin{aligned}
& s_{A}=R^{A} s_{A} \leq R_{\circ}^{A} s_{A} \leq s_{A}, R_{\circ}^{A} s_{A}=s_{A}=R^{A} s_{A} \\
& s_{A}^{\prime}=R^{X \backslash A} s_{A}^{\prime} \leq R_{\circ}^{X \backslash A} s_{A}^{\prime} \leq s_{A}^{\prime}, R_{\circ}^{X \backslash A} s_{A}^{\prime}=s_{A}^{\prime}=R^{X \backslash A} s_{A}^{\prime}
\end{aligned}
$$

We remember that an element $p \in \mathcal{E}$ is called regular if for any sequence $\left(s_{n}\right)_{n}$ in \mathcal{E} which increases to p we have

$$
\bigwedge_{n} R\left(p-s_{n}\right)=0
$$

We denote by \mathcal{E}^{r} the convex cone of all regular elements of \mathcal{E} and by \mathcal{E}^{f} the convex cone of all regular finite element of \mathcal{E}.

The following statement shows that generally in the study of regular elements we may restrict our self to the finite regular elements.

Lemma 2.1.4. For any weak unit s_{0} in \mathcal{E} and any regular element p of \mathcal{E} there exists a sequence $\left(p_{n}\right)_{n} \subset \mathcal{E}^{r}$ such that p_{n} is s_{0}-bounded for any $n \in \mathbb{N}$ and $p=\sum_{n=1}^{\infty} p_{n}$

Proof. For any $n \in \mathbb{N}, n \geq 1$ we consider the regular element s_{n} which is s_{0}-bounded given by

$$
s_{n}+R\left(p-n s_{0}\right)=p, \quad s_{n} \leq n s_{0}
$$

Since the sequence $\left(t_{n}\right)_{n}$ of \mathcal{S} given by

$$
t_{n}=p \wedge\left(n s_{0}\right)
$$

increases to p, the sequence

$$
R\left(p-n s_{0}\right)=R\left(p-t_{n}\right)
$$

decreases to zero in \mathcal{E}.
For any $n \in \mathbb{N}, n \geq 1$ we put

$$
u_{n}=\vee_{i=1}^{n} s_{i}, \quad v_{n}=人_{i=1}^{n} R\left(p-t_{i}\right)
$$

Obviously, $u_{i}+v_{i}=p$ for any $i \geq 1$, the sequence $\left(u_{n}\right)_{n}$ is specifically increasing, the sequence $\left(v_{n}\right)_{n}$ is specifically decreasing and since

$$
v_{n} \leq R\left(p-t_{n}\right) \text { we get } \wedge_{n} v_{n}=0
$$

Hence the sequence $\left(u_{n}\right)_{n}$ is specifically increasing to p. We put now

$$
\begin{aligned}
& p_{1}=u_{1}=s_{1} \\
& p_{n+1}=u_{n+1}-u_{n}
\end{aligned}
$$

We have

$$
\sum_{i=1}^{n} p_{i}=u_{n}, \sum_{n=1}^{\infty} p_{n}=\underset{n}{\vee} u_{n}=p
$$

and for any $n \in \mathbb{N}$ we have

$$
p_{n} \leq u_{n} \leq \sum_{i=1}^{n} p_{i} \leq \sum_{i=1}^{n} i s_{0}=\frac{n(n+1)}{2} s_{0}
$$

Corollary2.1.5. Any regular element p of \mathcal{E} is a sum of sequence $\left(p_{n}\right)_{n}$ of \mathcal{E}^{r} with p_{n} bounded for any $n \in \mathbb{N}$

We choose a weak unit the constant function $\mathbb{1}$.

2.2 THE SPECIFIC RESTRICTION TO THE OPEN SETS OF REGULAR ELEMENTS

Lemma 2.2.1. For any $p \in \mathcal{E}^{r}$ and any $\mathrm{G} \in \tau_{d}$ there exist p_{G} and p_{G}^{\prime} in \mathcal{E}^{r} such that

$$
\begin{aligned}
& p_{\mathrm{G}}+p_{\mathrm{G}}^{\prime}=p, \quad \operatorname{carr} p_{\mathrm{G}}^{\prime} \subset X \backslash \mathrm{G} \\
& p_{\mathrm{G}} \wedge q=0 \quad \forall q \in \mathcal{E}^{r} \text { with } \operatorname{carr} q \subset X \backslash \mathrm{G}
\end{aligned}
$$

Such a decomposition is unique. Moreover there exists a sequence $\left(p_{n}\right)_{n}$ in \mathcal{E}^{r} specifically increasing and a sequence $\left(F_{n}\right)_{n}$ of τ_{d}-closed subsets of X such that

$$
F_{n} \subset \stackrel{\circ}{F}_{n+1} \subset \mathrm{G} \quad \text { and } \mathrm{R}^{F_{n}} p_{n}=p_{n}
$$

Proof. We consider the sequence $\left(\mathrm{G}_{n}\right)_{n}$ in τ_{d} defined by

$$
\mathrm{G}_{n}=\left\{x \in \mathrm{G} / d(x, \mathrm{X} \backslash \mathrm{G})>\frac{1}{n}\right\}
$$

One can easily verify that $\left(\mathrm{G}_{n}\right)_{n}$ is increasing to G and $\overline{\mathrm{G}}_{n} \subset \mathrm{G}_{n+1}$ for all $n \in \mathbb{N}, n \geq 1$. (we denoted by \bar{A} the closer of the set A with respect to the topology τ_{d}).

Using lemma 2.1.3. there exist p_{n} and p_{n}^{\prime} in \mathcal{E}^{r} such that

$$
p=p_{n}+p_{n}^{\prime}, \quad R^{\mathrm{G}_{n}} p_{n}=p_{n}, \quad R^{X \backslash \mathrm{G}_{n}} p_{n}^{\prime}=p_{n}^{\prime}
$$

Since $\quad p_{n} \geq R^{\overline{\mathrm{G}}_{n}} p_{n} \geq R^{\mathrm{G}_{n}} p_{n}=p_{n}$ we deduce, using lemma 2.1.3., that $\operatorname{carr} p_{n} \subset \overline{\mathrm{G}}_{n} \subset \mathrm{G}_{n+1}$. Analogously we deduce that $\operatorname{carr} p_{n}^{\prime} \subset X \backslash \mathrm{G}_{n}$.

The sequence $\left(p_{n}\right)_{n}$, respectively $\left(p_{n}^{\prime}\right)_{n}$, is specifically increasing, respectively specifically decreasing. Indeed, from the equality

$$
p_{n}+p_{n}^{\prime}=p_{n+1}+p_{n+1}^{\prime}=p
$$

we deduce that there exist u, v in \mathcal{E}^{r} such that

$$
p_{n}=u+v, \quad u \preccurlyeq p_{n+1}, \quad v \preccurlyeq p_{n+1}^{\prime}
$$

Since carr $v \subset X \backslash \mathrm{G}_{n+1} \subset X \backslash \overline{\mathrm{G}}_{n}$ and $\operatorname{carr} v \subset \operatorname{carr} p_{n} \subset \overline{\mathrm{G}}_{n}$ we get $\operatorname{carr} v=\emptyset$ and therefore $v=0, p_{n}=u \preccurlyeq p_{n+1}$

We denote

$$
\begin{gathered}
p_{\mathrm{G}}:=\vee_{n} p_{n}=\bigvee_{n} p_{n}=\sup _{n} p_{n} \\
p_{\mathrm{G}}^{\prime}:=\text { 人 }_{n} p_{n}^{\prime}=\wedge_{n} p_{n}^{\prime}=\inf _{n} p_{n}^{\prime}
\end{gathered}
$$

We have

$$
p=p_{\mathrm{G}}+p_{\mathrm{G}}^{\prime}, \quad \operatorname{carrp}_{\mathrm{G}}^{\prime} \subset \bigcup_{n=1}^{\infty} p_{n}^{\prime} \subset X \backslash \mathrm{G}
$$

Let now $\mathcal{q} \in \mathcal{E}^{r}$ be such that $\operatorname{carr} \mathcal{q} \subset X \backslash \mathrm{G}$ For any $n \in \mathbb{N}$ we have

$$
\operatorname{carr}\left(q \wedge p_{n}\right) \subset \operatorname{carr} q \cap \operatorname{carr} p_{n} \subset(X \backslash \mathrm{G}) \cap \overline{\mathrm{G}}_{n}=\emptyset
$$

Hence $q \wedge p_{n}=0$ for any $n \in \mathbb{N}$ and therefore

$$
q \wedge p_{\mathrm{G}}=\vee_{n}\left(q \wedge p_{n}\right)=0
$$

As for the uniqueness, we consider $t, t^{\prime} \in \mathcal{E}^{r}$ such that $p=t+t^{\prime}, \operatorname{carr}^{\prime} \subset$ $X \backslash \mathrm{G}\left(\right.$ or $\left.R^{X \backslash \mathrm{G}} t^{\prime}=t^{\prime}\right)$ and $t \wedge \mathcal{q}=0$ for any $q \in \mathcal{E}^{r}$ with $\operatorname{carr} q \subset X \backslash \mathrm{G}$.

From the equality

$$
p_{\mathrm{G}}+p_{\mathrm{G}}^{\prime}=p=t+t^{\prime}
$$

and from the hypotheses we get

$$
\begin{aligned}
p_{\mathrm{G}} \wedge t^{\prime} & =0, p_{\mathrm{G}} \leqslant t \\
p_{\mathrm{G}}^{\prime} \wedge t & =0, t \preccurlyeq p_{\mathrm{G}}
\end{aligned}
$$

and therefore $p_{\mathrm{G}}=t, p_{\mathrm{G}}^{\prime}=t^{\prime}$.
We finish the proof taking as F_{n} the set $\overline{\mathrm{G}}_{n}$

2.3. CALCULUS WITH SPECIFIC RESTRICTION OF A REGULAR ELEMENT

In the sequel, for any element $p \in \mathcal{E}^{r}$, any closed subset F of X we shall denote by p_{F} the element p_{G}^{\prime} where $\mathrm{G}=X \backslash \mathrm{~F}$ from lemma 2.2.1. uniquely determined by the properties :

$$
p=p_{\mathrm{G}}+p_{\mathrm{F}} ; p_{\mathrm{G}}, p_{\mathrm{F}} \in \mathcal{E}, \operatorname{carr} p_{\mathrm{F}} \subset \mathrm{~F}, p_{\mathrm{G}} \wedge q=0 \text { for } q \in \mathcal{E}^{r} \text { with } \operatorname{carr} q \subset \mathrm{~F} .
$$

Proposition 2.3.1.

a. Let $p \in \mathcal{E}^{r}$ and $\mathrm{G}_{1}, \mathrm{G}_{2}$ be open subsets of X such that $\mathrm{G}_{1} \subset \mathrm{G}_{2}$. We have

$$
p_{\mathrm{G}_{1}} \leqslant p_{\mathrm{G}_{2}}
$$

b. If $\mathrm{F}_{1}, \mathrm{~F}_{2}$ are closed subsets of X such that $\mathrm{F}_{1} \subset \mathrm{~F}_{2}$, we have

$$
p_{\mathrm{F}_{1}} \leqslant p_{\mathrm{F}_{2}}
$$

c. For any sequence $\left(\mathrm{G}_{n}\right)_{n}$ of open sets of X (resp. any sequence $\left(\mathrm{F}_{n}\right)_{n}$ of closed subset of X) we have

$$
p_{\cup_{1}^{\infty} \mathrm{G}_{n}}=\vee_{n}^{\vee} p_{\mathrm{G}_{n}}\left(\text { resp. } p_{\cap_{1}^{\infty} \mathrm{F}_{n}}=\wedge_{n} p_{\mathrm{F}_{n}}\right)
$$

d. For any $\mathrm{G} \in \tau_{d}$ we have

$$
p_{\mathrm{G}}=\vee\{q \in \mathcal{E} / q \leqslant p, \operatorname{carr} q \subset \mathrm{G}\}=\vee\left\{p_{\mathrm{F}} / \mathrm{F}=\overline{\mathrm{F}} \subset \mathrm{G}\right\}
$$

and there exists an increasing sequence $\left(\mathrm{F}_{n}\right)_{n}$ of closed sets of $X, \mathrm{~F}_{n} \subset \mathrm{G}$ such that the sequence $\left(p_{\mathrm{F}_{n}}\right)_{n}$ is specifically increasing to p_{G}
e. For any closed set F of X we have

$$
p_{\mathrm{F}}=\wedge\left\{p_{\mathrm{G}} / \mathrm{G} \text { open }, \mathrm{F} \subset \mathrm{G}\right\}
$$

and there exists a decreasing sequence $\left(\mathrm{G}_{n}\right)_{n}$ of open sets in X such that $\mathrm{F} \subset \mathrm{G}_{n}$ for any $n \in \mathbb{N}$ and such that the sequence $\left(p_{\mathrm{G}_{n}}\right)_{n}$ is specifically decreasing to p_{F}
f. If $\mathrm{G}_{1}, \mathrm{G}_{2}$ are open and if $\mathrm{F}_{1}, \mathrm{~F}_{2}$ are closed then we have

$$
p_{\mathrm{G}_{1}} \wedge p_{\mathrm{G}_{2}}=p_{\mathrm{G}_{1} \cap \mathrm{G}_{2}}, \quad p_{\mathrm{F}_{1}} \vee p_{\mathrm{F}_{2}}=p_{\mathrm{F}_{1} \cup \mathrm{~F}_{2}}
$$

Proof. a. From the relations

$$
p=p_{\mathrm{G}_{1}}+p_{\mathrm{G}_{1}}^{\prime}=p_{\mathrm{G}_{2}}+p_{\mathrm{G}_{2}}^{\prime}
$$

and using the fact that for any $q \in \mathcal{E}, q \leqslant p$ and $\operatorname{carr} q \subset X \backslash G$, we have $p_{\mathrm{G}_{1}} \wedge q=0$ (lemma 2.2.1)
we deduce that $p_{\mathrm{G}_{1}} \wedge p_{\mathrm{G}_{1}}^{\prime}=0$ and therefore $p_{\mathrm{G}_{1}} \leqslant p_{\mathrm{G}_{2}}$
b. This assertion follows from a. because if $\mathrm{F}_{1} \subset \mathrm{~F}_{1}$ then taking $\mathrm{G}_{1}=X \backslash \mathrm{~F}_{1}$, $\mathrm{G}_{2}=X \backslash \mathrm{~F}_{2}$ we have $\mathrm{G}_{2} \subset \mathrm{G}_{1}$ and therefore $p_{\mathrm{G}_{2}} \leqslant p_{\mathrm{G}_{1}} \leqslant p$. Hence we have

$$
p-p_{\mathrm{G}_{1}} \leqslant p-p_{\mathrm{G}_{2}} \text { i.e. } p_{\mathrm{F}_{1}} \leqslant p_{\mathrm{F}_{2}}
$$

c. Since $\mathrm{G}_{k} \subset \cup_{n=1}^{\infty} \mathrm{G}_{n}$ for any $k \in \mathbb{N}$ we deduce $p_{\mathrm{G}_{k}} \leqslant p_{\mathrm{U}_{1}^{\infty} \mathrm{G}_{n}}$ and therefore $\vee_{n} p_{\mathrm{G}_{n}} \leqslant p_{\mathrm{U}_{1}^{\infty} \mathrm{G}_{n}}$. On the other hand using the relation

$$
p=p_{\mathrm{G}_{n}}+p_{\mathrm{G}_{n}}^{\prime} \forall n \in \mathbb{N}
$$

we deduce

$$
p={\underset{n}{ }}_{\vee} p_{\mathrm{G}_{n}}+\wedge_{n} p_{\mathrm{G}_{n}}^{\prime}
$$

Since for any $k \in \mathbb{N}$ we have $\operatorname{carr} \wedge_{n} p_{\mathrm{G}_{n}}^{\prime} \subset \operatorname{carr} p_{\mathrm{G}_{k}}^{\prime} \subset X \backslash \mathrm{G}_{k}$ we deduce

$$
\operatorname{carr} \wedge_{n} p_{\mathrm{G}_{n}}^{\prime} \subset \cap_{k=1}^{\infty}\left(X \backslash \mathrm{G}_{k}\right)=X \backslash\left(\mathrm{U}_{n} \mathrm{G}_{n}\right)
$$

Using again lemma 2.2.1. and the preceding considerations, from the relation

$$
p_{\mathrm{U}_{n} \mathrm{G}_{n}} \leqslant p={\underset{n}{ } \vee_{\mathrm{G}_{n}}+\stackrel{\wedge}{n} p_{\mathrm{G}_{n}}^{\prime}}_{\prime}
$$

we deduce

$$
p_{\cup_{n} \mathrm{G}_{n}} \wedge\left({ }_{n}^{\wedge} p_{\mathrm{G}_{n}}^{\prime}\right)=0, \quad p_{\mathrm{U}_{n} \mathrm{G}_{n}} \leqslant \underset{n}{\vee} p_{\mathrm{G}_{n}}
$$

and finally $p_{\mathrm{U}_{n} \mathrm{G}_{n}}=\vee_{n} p_{\mathrm{G}_{n}}$
If $\left(F_{n}\right)_{n}$ is a sequence of closed subsets of X and if we denote $\mathrm{G}_{n}=X \backslash F_{n}$ we have

$$
p_{\cup_{n} \mathrm{G}_{n}}+p_{\cap_{n} F_{n}}=p=p_{\mathrm{G}_{n}}+p_{\mathrm{F}_{n}} \quad \forall n \in \mathbb{N}
$$

and therefore

$$
p_{\mathrm{U}_{n} \mathrm{G}_{n}}+p_{\cap_{n} F_{n}}={\underset{n}{ } \vee_{\mathrm{G}_{n}}+\hat{n}_{n} p_{\mathrm{F}_{n}} .}
$$

The equality $p_{\cap_{n} F_{n}}=\wedge_{n} p_{\mathrm{F}_{n}}$ follows now from the equality $p_{\mathrm{U}_{n} \mathrm{G}_{n}}=\vee_{n} p_{\mathrm{G}_{n}}$
d. let $q \in \mathcal{E}, q \preccurlyeq p$ with $\operatorname{carr} q \subset G$. From the relations

$$
q \preccurlyeq p=p_{\mathrm{G}}+p_{\mathrm{G}}^{\prime} \text { and } \operatorname{carr} q \cap(X \backslash \mathrm{G})=\emptyset \text {, } \operatorname{carr} p_{\mathrm{G}}^{\prime} \subset X \backslash \mathrm{G}
$$

we get $q \preccurlyeq p_{\mathrm{G}}$
From lemma 2.2.1. there exists a sequence $\left(p_{n}\right)_{n}$ in \mathcal{E}^{r}, a sequence $\left(\mathrm{F}_{n}\right)_{n}$ of closed subsets of $X, \mathrm{~F}_{n} \subset \mathrm{G}$ such that $\operatorname{carr} p_{n} \subset \mathrm{~F}_{n}$ for any $n \in \mathbb{N}$ and $\vee_{n} p_{n}=p_{\mathrm{G}}$. Much more than this we have, using again the same lemma,

$$
p_{n} \leqslant p_{F_{n}} \leqslant p_{\mathrm{G}}
$$

and therefore $\vee_{n} p_{F_{n}}=p_{\mathrm{G}}$.
e. Let $F=\bar{F}$ be a closed subset of X and $\mathrm{G}=X \backslash F$.

We consider as in the preceding point d. a sequence $\left(F_{n}\right)_{n}$ of closed subset of X, $F_{n} \subset G$ for all $n \in \mathbb{N}$ and such that $\vee_{n} p_{F_{n}}=p_{\mathrm{G}}$. From the relations

$$
p_{F_{n}}+p_{X \backslash F_{n}}=p=p_{\mathrm{G}}+p_{F} \quad \forall n \in \mathbb{N}
$$

we deduce

$$
\underset{n}{\vee} p_{F_{n}}+\wedge_{n}^{\wedge} p_{X \backslash F_{n}}=p_{\mathrm{G}}+p_{F}, p_{F}=\wedge_{n} p_{\mathrm{G}_{n}} \text { where } \mathrm{G}_{n}:=X \backslash F_{n}
$$

Obviously, For any $\mathrm{G} \in \tau_{d}$ with $F \subset \mathrm{G}$ we have, using the point d. $p_{F} \preccurlyeq p_{\mathrm{G}}$ and from the preceding considerations

$$
p_{F}=\wedge_{n} p_{\mathrm{G}_{n}}=\curlywedge\left\{p_{\mathrm{G}} / \mathrm{G} \text { open }, F \subset \mathrm{G}\right\} .
$$

f. Since $p_{\mathrm{G}_{1} \cap \mathrm{G}_{2}} \preccurlyeq p_{\mathrm{G}_{i}} i=1,2$ we get $p_{\mathrm{G}_{1} \cap \mathrm{G}_{2}} \preccurlyeq p_{\mathrm{G}_{1}} \wedge p_{\mathrm{G}_{2}}$

Let now $\left(p_{n}\right)_{n}$ be a sequence in $\mathcal{E}^{r}, p_{n} \leqslant p, \operatorname{carr} p_{n} \subset \mathrm{G}_{1}$, such that $\left(p_{n}\right)_{n}$ is specifically increasing to $p_{\mathrm{G}_{1}}$ and let $\left(q_{n}\right)_{n}$ be a sequence in $\mathcal{E}^{r}, q_{n} \preccurlyeq$ $p, \operatorname{carr} q_{n} \subset \mathrm{G}_{2}$ such that $\left(q_{n}\right)_{n}$ is specifically increasing to $p_{\mathrm{G}_{2}}$. We have

$$
p_{\mathrm{G}_{1}} \wedge p_{\mathrm{G}_{2}}=\vee_{n}\left(p_{n} \wedge q_{n}\right)
$$

Since for any $n \in \mathbb{N}$ we have $\operatorname{carr}\left(p_{n} \wedge q_{n}\right) \subset \mathrm{G}_{1} \cap \mathrm{G}_{2}$, using the point d., we have $p_{n} \wedge q_{n} \preccurlyeq p_{\mathrm{G}_{1} \cap \mathrm{G}_{2}}$ and therefore

$$
p_{\mathrm{G}_{1}} \wedge p_{\mathrm{G}_{2}} \leqslant p_{\mathrm{G}_{1} \cap \mathrm{G}_{2}}, \quad p_{\mathrm{G}_{1}} \wedge p_{\mathrm{G}_{2}}=p_{\mathrm{G}_{1} \cap \mathrm{G}_{2}}
$$

If F_{1}, F_{2} are two closed subsets of X, noting $\mathrm{G}_{1}=X \backslash F_{1}, \mathrm{G}_{2}=X \backslash F_{2}$ and using the first part of the point f . and the following relations

$$
p_{\mathrm{G}_{1}}+p_{F_{1}}=p=p_{\mathrm{G}_{2}}+p_{F_{2}}
$$

we get

$$
p_{\mathrm{G}_{1}} \wedge p_{\mathrm{G}_{2}}+p_{F_{1}} \vee p_{F_{2}}=p=p_{\mathrm{G}_{1} \cap \mathrm{G}_{2}}+p_{F_{1} \cup F_{2},}, p_{F_{1}} \vee p_{F_{2}}=p_{F_{1} \cup F_{2}}
$$

Preposition 2.3.2.

a. If $p, q \in \mathcal{E}^{r}$ and $G \in \tau_{d}$ respectively $F=\bar{F}$ then

$$
(p+q)_{\mathrm{G}}=p_{\mathrm{G}}+q_{\mathrm{G}} \text { (respectively. }\left(p+q^{)_{F}}=p_{F}+q_{F}\right.
$$

b. if $G_{i} \in \tau_{d}$ (resp. $\left.F_{i}=\bar{F}_{l}\right) i=1,2$ and $p \in \mathcal{E}^{r}$ then we have

$$
\begin{gathered}
\left(p_{\mathrm{G}_{1}}\right)_{\mathrm{G}_{2}}=p_{\mathrm{G}_{1}} \wedge p_{\mathrm{G}_{2}}=p_{\mathrm{G}_{1} \cap \mathrm{G}_{2}}, \\
\left(p_{F_{1}}\right)_{F_{2}}=p_{F_{1}} \wedge p_{F_{2}}=p_{F_{1} \cap F_{2}},\left(p_{\mathrm{G}_{1}}\right)_{F_{1}}=p_{\mathrm{G}_{1}} \wedge p_{F_{1}}=\left(p_{F_{1}}\right)_{\mathrm{G}_{1}}
\end{gathered}
$$

c. If $\left(p_{n}\right)_{n}$ is a sequence in \mathcal{E}^{r} such that $\sum_{n} p_{n} \in \mathcal{E}^{r}$ then for any $\mathrm{G} \in \tau_{d}$ (resp. $F=\bar{F}$) we have

$$
\left(\sum_{n=1}^{\infty} p_{n}\right)_{\mathrm{G}}=\sum_{n=1}^{\infty} p_{n_{\mathrm{G}}} \operatorname{resp} \cdot\left(\sum_{n=1}^{\infty} p_{n}\right)_{F}=\sum_{n=1}^{\infty} p_{n_{F}}
$$

d. If a sequence $\left(p_{n}\right)_{n}$ is in \mathcal{E}^{r} specifically increasing and dominated in \mathcal{E} then for any $\mathrm{G} \in \tau_{d}$ (resp. $F=\bar{F}$) we have

$$
\vee_{n}^{\vee} p_{n_{\mathrm{G}}}=\left(\vee_{n}^{\vee} p_{n}\right)_{\mathrm{G}}\left(r e s p \cdot{ }_{n}^{\vee} p_{n_{F}}=\left(\vee_{n} p_{n}\right)_{F}\right.
$$

e. If a sequence $\left(p_{n}\right)_{n}$ is in \mathcal{E}^{r} specifically decreasing then for any $\mathrm{G} \in \tau_{d}$ (resp. $F=\bar{F}$) we have

$$
\hat{n}_{n} p_{n_{\mathrm{G}}}=\left(\hat{n}_{n} p_{n}\right)_{\mathrm{G}}\left(\operatorname{resp} \cdot \hat{n}_{n} p_{n_{F}}=\left(\hat{n}_{n} p_{n}\right)_{F}\right.
$$

Proof. a. Let s, t be elements in \mathcal{E}^{r} such that $s \preccurlyeq p, t \leqslant q$ and

$$
\operatorname{carr} s \subset \operatorname{carr} t \subset \mathrm{G}
$$

Obviously we have

$$
s+t \preccurlyeq p+q, \operatorname{carr}(s+t) \subset \mathrm{G}, s+t \preccurlyeq(p+q)_{\mathrm{G}}
$$

From the proposition 2.3.1 we deduce that

$$
p_{\mathrm{G}}+q_{\mathrm{G}} \preccurlyeq(p+q)_{\mathrm{G}}
$$

Let now $u \in \mathcal{E}, u \preccurlyeq p+q$, carr $u \subset G$. Using Riesz decomposition property with respect to the specific order, we may choose $s, t \in \mathcal{E}$, such that

$$
s \leqslant p, t \leqslant q, u=s+t
$$

Since carr $s \subset \operatorname{carr} u \subset \mathrm{G}, \operatorname{carr} t \subset \operatorname{carr} u \subset \mathrm{G}$ we get

$$
s \preccurlyeq p_{\mathrm{G}}, t \leqslant q_{\mathrm{G}}
$$

and therefore, s and t being arbitrary

$$
(p+q)_{\mathrm{G}} \leqslant p_{\mathrm{G}}+q_{\mathrm{G}},(p+q)_{\mathrm{G}}=p_{\mathrm{G}}+q_{\mathrm{G}}
$$

If $F=\bar{F}$ we take $F=\mathrm{X} \backslash \mathrm{G}$ and we remark that that we have

$$
\begin{gathered}
(p+q)_{\mathrm{G}}+(p+q)_{F}=p+q=\left(p_{\mathrm{G}}+p_{F}\right)+\left(q_{\mathrm{G}}+q_{F}\right) \\
=\left(p_{\mathrm{G}}+q_{\mathrm{G}}\right)+\left(p_{F}+q_{F}\right)
\end{gathered}
$$

and therefore

$$
(p+q)_{F}=p_{F}+q_{F}
$$

b. Using the point a . we have successively

$$
p_{\mathrm{G}_{1}} \leqslant p,\left(p_{\mathrm{G}_{1}}\right)_{\mathrm{G}_{2}} \leqslant p_{\mathrm{G}_{2}},\left(p_{\mathrm{G}_{1}}\right)_{\mathrm{G}_{2}} \preccurlyeq p_{\mathrm{G}_{1}},\left(p_{\mathrm{G}_{1}}\right)_{\mathrm{G}_{2}} \leqslant p_{\mathrm{G}_{1}} \wedge p_{\mathrm{G}_{2}}
$$

Since $p_{\mathrm{G}_{1}} \wedge p_{\mathrm{G}_{2}} \preccurlyeq p_{\mathrm{G}_{1}}$ and using a. we get

$$
\left(p_{\mathrm{G}_{1}} \wedge p_{\mathrm{G}_{2}}\right)_{\mathrm{G}_{2}} \leqslant\left(p_{\mathrm{G}_{1}}\right)_{\mathrm{G}_{2}}
$$

But since $\left(p_{\mathrm{G}_{2}}\right)_{\mathrm{G}_{2}}=p_{\mathrm{G}_{2}}$ we deduce that for any $q \in \mathcal{E}^{r}, q \leqslant p_{\mathrm{G}_{2}}$ we have $q+q^{\prime}=p_{\mathrm{G}_{2}}$ for some $q^{\prime} \in \mathcal{E}^{r}$ and therefore using a. we get

$$
q+q^{\prime}=\left(q+q^{\prime}\right)_{\mathrm{G}}=q_{\mathrm{G}}+q_{\mathrm{G}}^{\prime}, q_{\mathrm{G}}=q, q_{\mathrm{G}}^{\prime}=q^{\prime}
$$

Particularly we have

$$
\left(p_{\mathrm{G}_{1}} \wedge p_{\mathrm{G}_{2}}\right)_{\mathrm{G}_{2}}=p_{\mathrm{G}_{1}} \wedge p_{\mathrm{G}_{2}}, p_{\mathrm{G}_{1}} \wedge p_{\mathrm{G}_{2}} \leqslant\left(p_{\mathrm{G}_{1}}\right)_{\mathrm{G}_{2}}, p_{\mathrm{G}_{1}} \wedge p_{\mathrm{G}_{2}}=\left(p_{\mathrm{G}_{1}}\right)_{\mathrm{G}_{2}}
$$

The relations $\left(p_{F_{1}}\right)_{F_{2}}=p_{F_{1}} \wedge p_{F_{2}}=p_{F_{1} \cap F_{2}}$ and $\left(p_{G_{1}}\right)_{F_{1}}=p_{G_{1}} \wedge p_{F_{1}}=\left(p_{F_{1}}\right)_{\mathrm{G}_{1}}$ may be similarly shown.
c. Since for any $k \in \mathbb{N}$ we have $\sum_{n=1}^{k} p_{n} \preccurlyeq \sum_{n=1}^{\infty} p_{n}$ we get $\left(\sum_{n=1}^{k} p_{n}\right)_{\mathrm{G}} \preccurlyeq$ $\left(\sum_{n=1}^{\infty} p_{n}\right)_{G}$,

$$
\sum_{n=1}^{k} p_{n_{\mathrm{G}}} \preccurlyeq\left(\sum_{n=1}^{\infty} p_{n}\right)_{\mathrm{G}}, \sum_{n=1}^{\infty} p_{n_{\mathrm{G}}} \preccurlyeq\left(\sum_{n=1}^{\infty} p_{n}\right)_{\mathrm{G}}
$$

On the other hand, for any $k \in \mathbb{N}$ we have

$$
\begin{aligned}
& \left(\sum_{n=1}^{\infty} p_{n}\right)_{\mathrm{G}}=\left(\sum_{n=1}^{k} p_{n}\right)_{\mathrm{G}}+\left(\sum_{n=k+1}^{\infty} p_{n}\right)_{\mathrm{G}}=\sum_{n=1}^{k} p_{n_{\mathrm{G}}}+\left(\sum_{n=k+1}^{\infty} p_{n}\right)_{\mathrm{G}} \\
& \quad\left(\sum_{n=1}^{\infty} p_{n}\right)_{\mathrm{G}} \leqslant \sum_{n=1}^{\infty} p_{n_{\mathrm{G}}}+\sum_{n=k+1}^{\infty} p_{n}
\end{aligned}
$$

The last inequality holds for all $k \in \mathbb{N}$ and therefore

$$
\begin{aligned}
& \left(\sum_{n=1}^{\infty} p_{n}\right)_{\mathrm{G}} \leqslant \sum_{n=1}^{\infty} p_{n_{\mathrm{G}}}+\wedge_{k \in \mathbb{N}}\left(\sum_{n=k+1}^{\infty} p_{n}\right)=\sum_{n=1}^{\infty} p_{n_{\mathrm{G}}} \\
& \left(\sum_{n=1}^{\infty} p_{n}\right)_{\mathrm{G}}=\sum_{n=1}^{\infty} p_{n_{\mathrm{G}}}
\end{aligned}
$$

A similar arguments may be used for showing that

$$
\left(\sum_{n=1}^{\infty} p_{n}\right)_{F}=\sum_{n=1}^{\infty} p_{n_{F}}
$$

for any closed subset F of X.
The assertion d. follows from c. since $\vee_{1}^{\infty} p_{n}=\sum_{n=1}^{\infty}\left(p_{n}-p_{n-1}\right)$ where $p_{0}=0$ and therefore

$$
\begin{aligned}
\left(\vee_{1}^{\infty} p_{n}\right)_{\mathrm{G}} & =\sum_{n=1}^{\infty}\left(p_{n}-p_{n-1}\right)_{\mathrm{G}}=\vee_{1}^{\infty}\left(\sum_{k=1}^{n}\left(p_{k}-p_{k-1}\right)_{\mathrm{G}}\right)=\vee_{1}^{\infty}\left(\left(\sum_{k=1}^{n} p_{k}-p_{k-1}\right)_{\mathrm{G}}\right) \\
& =\vee_{n} p_{n_{\mathrm{G}}} \\
\left(\vee_{1}^{\infty} p_{n}\right)_{F} & =\sum_{n=1}^{\infty}\left(p_{n}-p_{n-1}\right)_{F}=\vee_{1}^{\infty}\left(\sum_{k=1}^{n}\left(p_{k}-p_{k-1}\right)_{F}\right)=\vee_{1}^{\infty}\left(\left(\sum_{k=1}^{n} p_{k}-p_{k-1}\right)_{F}\right) \\
& =\vee_{n} p_{n_{F}}
\end{aligned}
$$

f. If we denote $p=\wedge_{n=1}^{\infty} p_{n}$ and $q_{n}=p_{1}-p_{n}$ for any $n \in \mathbb{N}$ then $\left(q_{n}\right)_{n}$ is a sequence in \mathcal{E}^{r} specifically increasing to $p_{1}-p$. Using the point d. we have successively

$$
\begin{aligned}
& \left(\operatorname{resp} \cdot{ }_{n}^{\vee} q_{n_{F}}=\left(\underset{n}{\vee} q_{n}\right)_{F}, \stackrel{\vee}{n}\left(p_{1_{F}}-p_{n_{F}}\right)=p_{1_{F}}-p_{G}, \wedge_{n} p_{n_{F}}=p_{F}=\left(\wedge_{n} p_{n}\right)_{F}\right)
\end{aligned}
$$

2.4. Extension of specific restriction to the σ-algebra of measurable sets

Lemma 2.4.1. let us denote by $\mathcal{A}\left(\tau_{d}\right)$ the algebra of subsets of X generated by τ_{d}. Then for any $A \in \mathcal{A}\left(\tau_{d}\right)$ there exists an increasing sequence $\left(F_{n}\right)_{n}$ of closed subsets, $F_{n} \subset A$ for any $n \in \mathbb{N}$ and there exists a decreasing sequence $\left(G_{n}\right)_{n}$ in $\tau_{d}, A \subset G_{n}$ for any $n \in \mathbb{N}$, such that

$$
{\underset{n}{n}}_{\vee}^{p_{F_{n}}}=\sup _{n} p_{F_{n}}=\hat{n}_{n} p_{G_{n}}=\inf _{n} p_{G_{n}}
$$

Proof. If we denote by \mathcal{A}_{0} the set of all subsets A of X for which there exists an increasing sequence $\left(F_{n}\right)_{n}$ of closed subsets, $F_{n} \subset A$ for any $n \in \mathbb{N}$, and there exists a decreasing sequence $\left(D_{n}\right)_{n}$ in $\tau_{d}, A \subset D_{n}$ for any $n \in \mathbb{N}$ such that

$$
{\underset{n}{n}}_{\vee} p_{F_{n}}=\sup _{n} p_{F_{n}}=\hat{n}_{n} p_{D_{n}}=\inf _{n} p_{D_{n}}
$$

then \mathcal{A}_{0} is an algebra of subsets of X. Indeed, we remark that if $A \in \mathcal{A}_{0}$ and the sequences $\left(F_{n}\right)_{n}$ and $\left(D_{n}\right)_{n}$ are as before then the sequences $\left(F_{n}^{\prime}\right)_{n},\left(D_{n}^{\prime}\right)_{n}$ given by $F_{n}^{\prime}=X \backslash D_{n}, D_{n}^{\prime}=X \backslash F_{n}$ are such that $F_{n}^{\prime}=\overline{F_{n}^{\prime}} \subset X \backslash A \subset D_{n}^{\prime} \in \tau_{d}$, the sequence $\left(F_{n}^{\prime}\right)_{n}$ is increasing, the sequence $\left(D_{n}^{\prime}\right)_{n}$ is decreasing and from the relations

$$
p_{F_{n}}+p_{D_{n}^{\prime}}=p=p_{F_{n}^{\prime}}+p_{D_{n}} \quad \forall n \in \mathbb{N}
$$

we obtain

$$
\underset{n}{\vee} p_{F_{n}}+\hat{n}_{n} p_{D_{n}^{\prime}}=p=\underset{n}{\vee} p_{F_{n}^{\prime}}+\hat{n}_{n} p_{D_{n}}, \vee_{n}^{\vee} p_{F_{n}}=\hat{n}_{n} p_{D_{n}^{\prime}}
$$

i.e. $X \backslash A \in \mathcal{A}_{0}$. We show now that for $A, B \in \mathcal{A}_{0}$ we have $A \cup B \in \mathcal{A}_{0}$.

Let $\left(F_{n}^{\prime}\right)_{n},\left(F_{n}^{\prime \prime}\right)_{n}$ two increasing sequences of closed subsets with $F_{n}^{\prime} \subset A$, $F_{n}^{\prime \prime} \subset B$ for any $n \in \mathbb{N}$, let $\left(D_{n}^{\prime}\right)_{n},\left(D_{n}^{\prime \prime}\right)_{n}$ be two decreasing sequences in τ_{d} with $A \subset D_{n}^{\prime}, B \subset D_{n}^{\prime \prime}$ for any $n \in \mathbb{N}$ and such that

$$
\underset{n}{\vee} p_{F_{n}^{\prime}}=\wedge_{n} p_{D_{n}^{\prime}}, \vee_{n}^{\vee} p_{F_{n}^{\prime \prime}}={ }_{n} p_{D_{n}^{\prime \prime}}
$$

Using proposition 2.3 .1 c ., f. we have successively

$$
\begin{aligned}
& \left(\underset{n}{\vee} p_{F_{n}^{\prime}}\right) \vee\left(\underset{n}{\vee} p_{F_{n}^{\prime \prime}}\right)=\left(\hat{n}_{n} p_{D_{n}^{\prime}}\right) \vee\left(\wedge_{n}^{\wedge} p_{D_{n}^{\prime \prime}}\right) \\
& \vee \underset{n}{\vee}\left(p_{F_{n}^{\prime}} \vee p_{F_{n}^{\prime \prime}}\right)={ }_{i, j \in \mathbb{N}}\left(p_{D_{i}^{\prime}} \vee p_{D_{j}^{\prime \prime}}\right)=\hat{n}^{\wedge}\left(p_{D_{n}^{\prime}} \vee p_{D_{n}^{\prime \prime}}\right), \\
& \vee{ }_{n}^{\vee} p_{F_{n}^{\prime} \cup F_{n}^{\prime \prime}}=\hat{n}_{n} p_{D_{n}^{\prime} \cup D_{n}^{\prime \prime}}
\end{aligned}
$$

The fact that the set $A \cup B$ belongs to \mathcal{A}_{0} follows now from the definition of \mathcal{A}_{0} and from the fact that the sequence $\left(F_{n}^{\prime} \cup F_{n}^{\prime \prime}\right)_{n}$ of closed subsets of X is increasing $F_{n}^{\prime} \cup F_{n}^{\prime \prime} \subset A \cup B$ for any $n \in \mathbb{N}$ and the sequence $\left(D_{n}^{\prime} \cup D_{n}^{\prime \prime}\right)_{n}$ from τ_{d} is decreasing and $A \cup B \subset D_{n}^{\prime} \cup D_{n}^{\prime \prime}$ for all $n \in \mathbb{N}$.

The fact that $\tau_{d} \subset \mathcal{A}_{0}$ follows from Proposition 2.3.1. d. Hence $\mathcal{A}\left(\tau_{d}\right) \subset \mathcal{A}_{0}$.
Lemma 2.4.2. If for any subset A of X we denote

$$
\begin{aligned}
& \underline{p}(A)=\sup \left\{p_{F} / F=\bar{F} \subset A\right\} \\
& \bar{p}(A)=\inf \left\{p_{D} / D \in \tau_{d}, A \subset D\right\}
\end{aligned}
$$

where $p \in \mathcal{E}^{r}, p<\infty$ we have
a. $\quad p(A) \leq \bar{p}(A) \quad \forall A \subset X$
b. $\overline{\bar{p}}\left(\cup_{n=1}^{\infty} A_{n}\right) \leq \sum_{n=1}^{\infty} \bar{p}\left(A_{n}\right)$ for any sequence $\left(A_{n}\right)_{n}$ of pairwise disjoint subsets A_{n} in X
c. $\quad \underline{p}\left(\cup_{n=1}^{\infty} A_{n}\right) \geq \sum_{n=1}^{\infty} \underline{p}\left(A_{n}\right)$ for any sequence $\left(A_{n}\right)_{n}$ of pairwise disjoint subsets A_{n} in X
d. $\underline{p}(A)+\bar{p}(X \backslash A)=p$ for all $A \subset X$
e. If $p_{n} \in \mathcal{E}^{r}$ and $p=\sum p_{n}$ then $\underline{p}(A)=\sum_{n=1}^{\infty} \underline{p}_{n}(A), \bar{p}(A)=\sum_{n=1}^{\infty} \bar{p}_{n}(A)$

Proof. This assertion follows from the definition of \underline{p}, \bar{p} and using proposition 2.3.1 .i.e. $p_{F} \preccurlyeq p_{D}$ for any $F=\bar{F} \subset D \in \tau_{d}$
d. Let $F=\bar{F}$ be such that $F \subset A$. Obviously $X \backslash A \subset X \backslash F$ and therefore $p_{F}+p_{X \backslash F}=p$. Hence if we fix $D_{0} \in \tau_{d}$ with $X \backslash A \subset D_{0}$ and we denote $F_{0}=X \backslash D_{0}$ we have

$$
p_{F_{0}}+p_{D_{0}}=p, \sup \left\{p_{F} / F=\bar{F} \subset A\right\}+p_{D_{0}} \geq p, \underline{p}(A)+p_{D_{0}} \geq p
$$

and since D_{0} is arbitrary we get $\underline{p}(A)+\bar{p}(X \backslash A) \geq p$.
If we fix $F_{0}=\overline{F_{0}} \subset A$ we have

$$
p_{F_{0}}+p_{X \backslash F_{0}}=p, p_{F_{0}}+\inf \left\{p_{D} / D \in \tau_{d}, X \backslash A \subset D\right\} \leq p, p_{F_{0}}+\bar{p}(X \backslash A) \leq p
$$

Since F_{0} is arbitrary we deduce

$$
\underline{p}(A)+\bar{p}(X \backslash A) \leq p, . \underline{p}(A)+\bar{p}(X \backslash A)=p
$$

b. Let x be a point in X, let $\epsilon \in \mathbb{R}, \epsilon>0$ and for any G_{n} be an open set such that $A_{n} \subset G_{n}$ and $p_{G_{n}}(x) \leq \bar{p}\left(A_{n}\right)+\frac{\epsilon}{2^{n}}$

Obviously, $\mathrm{U}_{n} A_{n} \subset \mathrm{U}_{n} G_{n} \in \tau_{d}$ and therefore using PROPOSITION 2.3.1. c.

$$
\bar{p}\left(\cup_{n} A_{n}\right) \leq p_{\cup_{n} G_{n}}=\vee_{n} p_{G_{n}}=\vee_{n}\left(\vee_{k \leq n} p_{G_{k}}\right)
$$

But for any $n \in \mathbb{N}$ we have

$$
\vee_{k \leq n} p_{G_{k}} \leqslant \sum_{k=1}^{n} p_{G_{k}},\left(\vee_{k \leq n} p_{G_{k}}\right)(x) \leq \sum_{k=1}^{n} p_{G_{k}}(x) \leq \sum_{k=1}^{\infty} p_{G_{k}}(x)
$$

and therefore

$$
\begin{aligned}
p_{\cup_{n=1}^{\infty} G_{n}}(x)=\sup _{n} p_{\cup_{k=1}^{n} G_{k}}(x)=\sup _{n}\left(\vee_{k \leq n} p_{G_{k}}\right)(x) & \leq \sum_{k=1}^{\infty} p_{G_{k}}(x) \\
& \leq \sum_{n=1}^{\infty} \bar{p}\left(A_{n}\right)(x)+\epsilon
\end{aligned}
$$

Hence we have

$$
\bar{p}\left(\cup_{n} A_{n}\right)(x) \leq \sum_{n} \bar{p}\left(A_{n}\right)(x)+\epsilon
$$

The number ϵ being arbitrary we get

$$
\bar{p}\left(\cup_{n} A_{n}\right) \leq \sum_{n} \bar{p}\left(A_{n}\right), \bar{p}\left(\cup_{n} A_{n}\right)=\sum_{n} \bar{p}\left(A_{n}\right)
$$

c. This assertion is equivalent with the inequality

$$
\sum_{n=1}^{k} \underline{p}\left(A_{n}\right) \leq \underline{p}\left(\cup_{n=1}^{\infty} A_{n}\right) \forall k \in \mathbb{N}
$$

Let now $k \in \mathbb{N}$ and for any $n \leq k$ let F_{n} be a closed subset of $X, F_{n} \subset A_{n}$. We remark now that if $F^{\prime}, F^{\prime \prime}$ are two disjoint closed subsets of X we have

$$
p_{F^{\prime} \cup F^{\prime \prime}}=p_{F^{\prime}}+p_{F^{\prime \prime}}
$$

Indeed, Using proposition 2.3.1 c. f. we have

$$
p_{F^{\prime}}+p_{F^{\prime \prime}}=p_{F^{\prime}} \wedge p_{F^{\prime \prime}}+p_{F^{\prime}} \vee p_{F^{\prime \prime}}=p_{F^{\prime} \cap F^{\prime \prime}}+p_{F^{\prime} \cup F^{\prime \prime}}=p_{F^{\prime} \cup F^{\prime \prime}}
$$

since $F^{\prime} \cap F^{\prime \prime}=\emptyset$.
In our case the subsets $F_{n}, n \leq k$ are pairwise disjoint since $A_{n}, n \leq k$ are pairwise disjoint. Hence

$$
\sum_{n=1}^{k} p_{F_{n}}=p_{U_{n=1}^{k} F_{n}} \leq \underline{p}\left(\bigcup_{n=1}^{\infty} A_{n}\right)
$$

Since the closed subset F_{n} was arbitrary with $F_{n} \subset A_{n}$. We conclude that we have

$$
\sum_{n=1}^{k} \underline{p}\left(A_{n}\right) \leq \underline{p}\left(\bigcup_{k=1}^{\infty} A_{k}\right), \sum_{n=1}^{\infty} \underline{p}\left(A_{n}\right) \leq \underline{p}\left(\bigcup_{n=1}^{\infty} A_{n}\right)
$$

The assertion e. Follows from the definition and using Proposition 2.3.2. c.
Theorem 2.4.3. With the above notation we have a. The set \mathcal{M}_{p} defined by

$$
\mathcal{M}_{p}=\{A \subset X / \underline{p}(A)=\bar{p}(A)\}
$$

is a σ-algebra of subsets of X and the map

$$
A \rightarrow p_{A}:=\underline{p}(A)=\bar{p}(A)
$$

from \mathcal{M}_{p} into the convex cone of positive real functions on X is countable additive.
b. If p, q are finite regular elements then $\mathcal{M}_{p+q}=\mathcal{M}_{p} \cap \mathcal{M}_{q}$ and for any $A \in \mathcal{M}_{p+q}$, we have

$$
(p+q)_{A}=p_{A}+q_{A}
$$

c. If $p_{n} \in \mathcal{E}$ are such that $p=\sum_{n=1}^{\infty} p_{n}$ then $\mathcal{M}_{p}=\bigcap_{n=1}^{\infty} \mathcal{M}_{p_{n}}$ and for any $A \in \mathcal{M}_{p}$ we have

$$
p_{A}=\sum_{n=1}^{\infty} p_{n_{A}}
$$

Proof. a. First we remark that $A \in \mathcal{M}_{p}$ if and only if $X \backslash A \in \mathcal{M}_{p}$ because we have

$$
\underline{p}(X \backslash A)+\bar{p}(A)=p=\bar{p}(X \backslash A)+\underline{p}(A)
$$

We show that if $A, B \in \mathcal{M}_{p}$ then $A \cup B \in \mathcal{M}_{p}$. Let $x \in X$ be arbitrary and for $\epsilon \in \mathbb{R}, \epsilon>0$ let $F^{\prime}, F^{\prime \prime}$ be closed subset of $X, D^{\prime}, D^{\prime \prime}$ open subsets of X such that

$$
\begin{gathered}
F^{\prime} \subset A \subset D^{\prime}, F^{\prime \prime} \subset B \subset D^{\prime \prime} \\
p_{D^{\prime}}(x)-p_{A}(x)<\epsilon, p_{A}(x)<p_{F^{\prime}}(x)+\epsilon, p_{D^{\prime \prime}}(x)-p_{B}(x)<\epsilon, p_{B}(x)<p_{F^{\prime \prime}}(x)+\epsilon
\end{gathered}
$$

We have

$$
\begin{aligned}
p_{D^{\prime} \cup D^{\prime \prime}}(x)-p_{F^{\prime} \cup F^{\prime \prime}}(x) & =\left(p_{D^{\prime}} \vee p_{D^{\prime \prime}}-p_{F^{\prime}} \vee p_{F^{\prime \prime}}\right)(x) \\
& \leq\left(\left(p_{D^{\prime}}-p_{F^{\prime}}\right)+\left(p_{D^{\prime \prime}}-p_{F^{\prime \prime}}\right)\right)(x) \leq 4 \epsilon
\end{aligned}
$$

And therefore

$$
\bar{p}(A \cup B)(x)-\underline{p}(A \cup B)(x) \leq p_{D^{\prime} \cup D^{\prime \prime}}(x)-p_{F^{\prime} \cup F^{\prime \prime}}(x)<4 \epsilon
$$

Hence ϵ being arbitrary we deduce $A \cup B \in \mathcal{M}_{p}$. From the preceding consideration it follows that \mathcal{M}_{p} is an algebra of subsets of X. To finish the point a. we consider a sequence $\left(A_{n}\right)_{n} \operatorname{in} \mathcal{M}_{p}$ of pairwise disjoint subsets. We have

$$
\begin{aligned}
& \bar{p}\left(\cup_{n=1}^{\infty} A_{n}\right) \leq \sum_{n=1}^{\infty} \bar{p}\left(A_{n}\right)=\sum_{n=1}^{\infty} \underline{p}\left(A_{n}\right) \leq \underline{p}\left(\cup_{n=1}^{\infty} A_{n}\right) \leq \bar{p}\left(\cup_{n=1}^{\infty} A_{n}\right) \\
& \sum_{n=1}^{\infty} \bar{p}\left(A_{n}\right)=\underline{p}\left(\cup_{n=1}^{\infty} A_{n}\right)=\bar{p}\left(\cup_{n=1}^{\infty} A_{n}\right)
\end{aligned}
$$

$$
\text { So } \cup_{n=1}^{\infty} A_{n} \in \mathcal{M}_{p} \text { and } p_{\cup_{n=1}^{\infty} A_{n}}=\bar{p}\left(\cup_{n=1}^{\infty} A_{n}\right)=\sum_{n=1}^{\infty} \bar{p}\left(A_{n}\right)=\sum_{n=1}^{\infty} p_{A_{n}}
$$

b. From the definition of the maps \bar{p}, \underline{p} we get

$$
\underline{p+q}(A)=\underline{p}(A)+\underline{q}(A), \overline{p+q}(A)=\bar{p}(A)+\bar{q}(A)
$$

So we have

$$
\overline{p+q}(A)-\underline{p+q}(A)=(\bar{p}(A)-\underline{p}(A))+(\bar{q}(A)-\underline{q}(A))
$$

for any subsets A of X and therefore

$$
A \in \mathcal{M}_{p+q} \Leftrightarrow A \in \mathcal{M}_{p} \cap \mathcal{M}_{q}
$$

Moreover we have obviously

$$
A \in \mathcal{M}_{p+q} \Rightarrow(p+q)_{A}=\overline{p+q}(A)=\bar{p}(A)+\bar{q}(A)=p_{A}+q_{A}
$$

c. From the point b . We get $\mathcal{M}_{p} \subset \mathcal{M}_{q}$, whenever $p, q \in \mathcal{E}^{r}, q \preccurlyeq p$ and therefore

$$
\mathcal{M}_{p} \subset \bigcap_{n=1}^{\infty} \mathcal{M}_{p_{n}}
$$

Let now A be an element belonging to $\mathcal{M}_{p_{n}}$ for all $n \in \mathbb{N}$.
Using lemma 2.4.2., e. We have

$$
\underline{p}(A)=\sum_{n=1}^{\infty} \underline{p}_{n}(A)=\sum_{n=1}^{\infty} \bar{p}_{n}(A)=\bar{p}(A)
$$

Hence $A \in \mathcal{M}_{p}$ and moreover

$$
p_{A}=\sum_{n=1}^{\infty} p_{n_{A}}
$$

Theorem 2.4.4. If $p \in \mathcal{E}^{r}, p<\infty$ then the σ-algebra \mathcal{B} (generated by τ_{d}) is included in \mathcal{M}_{p} and for any $A \in \mathcal{B}$ the element p_{A} belongs to \mathcal{E}^{r} and we have

$$
p_{A}+p_{X \backslash A}=p, p_{A}=\sup \left\{p_{F} / F=\bar{F}, F \subset A\right\}=\inf \left\{p_{G} / G \in \tau_{d}, A \subset G\right\}
$$

Proof. First we show that the set \mathcal{M}_{p}^{0} defined by

$$
\mathcal{M}_{p}^{0}=\left\{A \in \mathcal{M}_{p} / p_{A} \in \mathcal{E}^{r}, p_{X \backslash A} \in \mathcal{E}^{r}\right\}
$$

is a monotone class of subsets of X. Indeed, let $\left(A_{n}\right)_{n}$ be an increasing sequence in \mathcal{M}_{p}^{0}. Since $p_{A_{n}} \in \mathcal{E}^{r}$ and the sequence $\left(p_{A_{n}}\right)_{n}$ increases to $p_{\cup_{n=1}^{\infty} A_{n}}$ it follows that $p_{\cup_{n=1}^{\infty} A_{n}} \in \mathcal{E}^{r}$. On the other hand the sequence $\left(p_{X \backslash A_{n}}\right)_{n}$ of excessive functions decreases to $p_{X \backslash \cup_{n} A_{n}}$. Hence $p_{X \backslash \cup_{n} A_{n}}$ belongs to \mathcal{S}_{v}. But for any $n \in \mathbb{N}$ we have

$$
p_{A_{n}}+p_{X \backslash A_{n}}=p
$$

and therefore

$$
p_{\cup_{n=1}^{\infty} A_{n}}+p_{X \backslash \cup_{n=1}^{\infty} A_{n}}=p, p_{X \backslash \cup_{n=1}^{\infty} A_{n}} \in \mathcal{E}^{r}, \cup_{n=1}^{\infty} A_{n} \in \mathcal{M}_{p}^{0}
$$

Using now theorem 2.4.3. we deduce that the algebra $\mathcal{A}\left(\tau_{d}\right)$ generated by τ_{d} is a part of \mathcal{M}_{p}^{0}. But \mathcal{M}_{p}^{0} being a monotone class of subsets of X we deduce that the σ-algebra generated by τ_{d} (or $\mathcal{A}\left(\tau_{d}\right)$) is included in \mathcal{M}_{p}^{0}.

Corollary 2.4.5. a. If $\left(p_{n}\right)_{n}$ is a sequence in \mathcal{E}^{r} such that the function $p:=$ $\sum_{n} p_{n}$ is finite. Then for any $A \in \mathcal{B}$ we have

$$
p_{A}=\sum_{n=1}^{\infty} p_{n_{A}}
$$

b. For any A, B in \mathcal{B} and any $p \in \mathcal{E}^{r}, p<\infty$ we have

$$
\left(p_{A}\right)_{B}=\left(p_{B}\right)_{A}=p_{A \cap B}=p_{A} \wedge p_{B}
$$

Proof. The point a. was already shown. For the assertion b. We start by showing that for any $A \in \mathcal{B}$ we have

$$
p_{A}=\vee\left\{p_{F} / F=\bar{F}, F \subset A\right\}=\wedge\left\{p_{G} / G \in \tau_{d}, A \subset G\right\}
$$

Indeed, for any $F=\bar{F} \subset A$ we have $p_{F}+p_{A \backslash F}=p_{A}$ and therefore $p_{F} \preccurlyeq p_{A}$. Let now $q \in \mathcal{E}$ a specific majorant of p_{F} for any $F=\bar{F} \subset A$. We shall have $p_{F} \preccurlyeq p_{A} \wedge q \preccurlyeq p_{A}$.
But

$$
\sup _{F=\bar{F} \subset A} p_{F}=\underline{p}(A)=p_{A}
$$

by the definition of $\underline{p}(A)$ and p_{A}, and therefore we get

$$
p_{A} \leq p_{A} \wedge q \leq p_{A}, p_{A} \wedge q=p_{A}, p_{A} \leqslant q
$$

Now for any $A, B \in \mathcal{B}$ we have

$$
p_{A} \preccurlyeq p,\left(p_{A}\right)_{B} \preccurlyeq p_{B},\left(p_{A}\right)_{B} \preccurlyeq p_{A},\left(p_{A}\right)_{B} \preccurlyeq p_{A} \wedge p_{B}
$$

Let $F^{\prime}, F^{\prime \prime}$ be two arbitrary closed subsets of X such that $F^{\prime} \subset A, F^{\prime \prime} \subset B$. We have $F^{\prime} \cap F^{\prime} \subset A \cap B$ and therefore

$$
p_{F^{\prime}} \wedge p_{F^{\prime \prime}}=p_{F^{\prime} \cap F^{\prime}}
$$

On the other hand if $F=\bar{F} \subset A \cap B$ we have

$$
p_{F} \preccurlyeq p_{A}, p_{F}=\left(p_{F}\right)_{F} \preccurlyeq\left(p_{A}\right)_{F} \preccurlyeq\left(p_{A}\right)_{B}
$$

and therefore

$$
\begin{gathered}
p_{F^{\prime}} \wedge p_{F^{\prime \prime}} \leqslant\left(p_{A}\right)_{B^{\prime}}, \underset{\substack{F^{\prime \prime} \subset A \\
F^{\prime \prime} \subset B}}{\vee}\left(p_{F^{\prime}} \wedge p_{F^{\prime \prime}}\right) \leqslant\left(p_{A}\right)_{B} \\
p_{A} \wedge p_{B}=\left(\underset{F^{\prime} \subset A}{\vee} p_{F^{\prime}}\right) \wedge\left(\underset{F^{\prime \prime} \subset B}{\vee} p_{F^{\prime \prime}}\right)=\vee\left(p_{F^{\prime}} \wedge p_{F^{\prime \prime}}\right) \leqslant\left(p_{A}\right)_{B}
\end{gathered}
$$

Hence

$$
p_{A} \wedge p_{B}=\left(p_{A}\right)_{B}=\left(p_{B}\right)_{A}
$$

The relation $p_{A \cap B} \preccurlyeq p_{A} \wedge p_{B}$ is obvious .
If $F^{\prime}=\overline{F^{\prime}} \subset A, F^{\prime \prime}=\overline{F^{\prime \prime}} \subset B$ we have $F^{\prime} \cap F^{\prime \prime} \subset A \cap B$ and therefore $p_{F^{\prime} \cap F^{\prime \prime}} \leqslant p_{A \cap B}, p_{F^{\prime}} \wedge p_{F^{\prime \prime}} \leqslant p_{A \cap B}$
Passing now to the supremum with respect to the specific order, we get

$$
\left(\vee_{F^{\prime} \subset A}^{\vee} p_{F^{\prime}}\right) \wedge\left(\underset{F^{\prime} \subset \subset B}{\vee} p_{F^{\prime \prime}}\right) \preccurlyeq p_{A \cap B}, p_{A} \wedge p_{B} \leqslant p_{A \cap B}, p_{A} \wedge p_{B}=p_{A \cap B}
$$

2.5. THE SPECIFIC MULTIPLICATION WITH POSITIVE BOREL FUNCTIONS OF REGULAR ELEMENT

Theorem 2.5.1. Let $p \in \mathcal{E}^{r}, p<\infty$ and let f be a positive \mathcal{B}-measurable and bounded function. For any $x \in X$ we consider the finite positive measure p^{x} on \mathcal{B} given by

$$
p^{x}(A)=p_{A}(x)
$$

The positive function $f . p$ on X defined by

$$
(f \cdot p)(x)=\int f d p^{x}
$$

belongs to \mathcal{E}^{r} and the map $f \mapsto f . p$ defined on $p b \mathcal{B}$ with values in \mathcal{E}^{r} is a kernel with the complete maximum principle and $1 . p=1$.

Any element $s \in \mathcal{E}$ is a dominant function with respect to this kernel.
Moreover, if $p=\sum_{n} p_{n}, p_{n} \in \mathcal{E}$ we have

$$
\begin{array}{ll}
f \cdot p=\sum_{n} f \cdot p_{n} & \forall f \in p b \mathcal{B} \\
f(g \cdot p)=(f g) \cdot p & \forall f, g \in p b \mathcal{B}
\end{array}
$$

Proof. let f be a positive, bounded \mathcal{B}-measurable function on X. We consider an increasing sequence $\left(f_{n}\right)_{n}$ of positive \mathcal{B}-measurable functions of the form

$$
f_{n}=\sum_{j=1}^{k_{n}} \alpha_{j}^{n} \mathbb{1}_{A_{j}^{n}}, \alpha_{j}^{n} \in \mathbb{R}_{+}, A_{j}^{n} \in \mathcal{B}
$$

which increases to f. The functions $f_{n} . p$ given by

$$
f_{n} \cdot p(x)=\int f_{n} d p^{x}=\sum_{j=1}^{k_{n}} \alpha_{j}^{n} p_{A_{j}^{n}}(x)
$$

are element of \mathcal{E}^{r} and this sequence increases to

$$
f \cdot p(x):=\lim _{n} \int f_{n} d p^{x}=\sup _{n} f_{n} \cdot p(x)
$$

And therefore $f . p$ is a regular element of \mathcal{E}. We mention that f being dominated by the constant function $\|f\|$ we have

$$
f . p \preccurlyeq M . p
$$

Let s be an element of \mathcal{E} such that $f . p \leq s$ on the $[f>0]$. Certainly, using the above notations, we have

$$
s \geq f_{n} \cdot p \text { on }\left[f_{n}>0\right], s \geq \sum_{j=1}^{k_{n}} \alpha_{j}^{n} p_{A_{j}^{n}}(x) \text { on } \cup_{j} A_{j}^{n}
$$

and therefore the function $s^{\prime}=\min \left(s, \sum_{j=1}^{k_{n}} \alpha_{j}^{n} p_{A_{j}^{n}}\right)$ belongs to \mathcal{E} and we have and we have $s^{\prime}=\sum_{j=1}^{k_{n}} \alpha_{j}^{n} p_{A_{j}^{n}}$ on $\cup_{j} A_{j}^{n}$.

Since s^{\prime} is dominated by $\sum_{j=1}^{k_{n}} \alpha_{j}^{n} p_{A_{j}^{n}}$ we decompose s^{\prime} under the form

$$
s^{\prime}=\sum_{j} s_{j}^{\prime}, s_{j}^{\prime} \leq \alpha_{j}^{n} p_{A_{j}^{n}} \quad \text { on } X, \quad \forall j=1,2, \ldots, k_{n}
$$

From the preceding considerations we have $s_{j}^{\prime}=\alpha_{j}^{n} p_{A_{j}^{n}}$ on A_{j}^{n}. If we consider a closed subset F of A_{j}^{n} we have

$$
\frac{1}{\alpha_{j}^{n}} s_{j}^{\prime} \geq p_{F} \text { on } F
$$

and therefore from lemma 2.2 .1 we get $\frac{1}{\alpha_{j}^{n}} s_{j}^{\prime} \geq p_{F}$ on X. Hence F being arbitrary we deduce $s_{j}^{\prime} \geq \alpha_{j}^{n} p_{F}, s_{j}^{\prime} \geq \alpha_{j}^{n} p_{A_{j}^{n}}$ on $X, s_{j}^{\prime}=\alpha_{j}^{n} p_{A_{j}^{n}}$ on X,

$$
s^{\prime} \geq s=\sum_{j=1}^{k_{n}} \alpha_{j}^{n} p_{A_{j}^{n}}=f_{n} \cdot p \text { on } X
$$

The number $n \in \mathbb{N}$ being arbitrary we have $s \geq f_{n}$. p on X.
The fact that

$$
f \cdot(p+q)=f \cdot p+f \cdot q \quad \forall p, q \in \mathcal{E}^{r}, f \in p b \mathcal{B}
$$

Follows from the equality $(p+q)^{x}=p^{x}+q^{x}$

$$
\text { If } p_{n} \in \mathcal{E} \text { and } \sum_{n} p_{n} \in \mathcal{E} \text {, noting } \mathrm{P}_{n}=\sum_{j=1}^{n} p_{j}, \mathrm{Q}_{n}=\sum_{j>n} p_{j}
$$

we have

$$
f \cdot\left(\sum_{1}^{\infty} p_{n}\right)=f \cdot \mathrm{P}_{n}+f \cdot \mathrm{Q}_{n} \geq \sum_{j=1}^{n} f \cdot p_{j}, \sum_{j=1}^{\infty} f \cdot p_{j} \leq f \cdot\left(\sum_{1}^{\infty} p_{n}\right)
$$

Since $\wedge_{n} Q_{n}=\wedge_{n} Q_{n}=0$ we have

$$
f \cdot\left(\sum_{1}^{\infty} p_{n}\right) \leq f \cdot \mathrm{P}_{n}+\|f\| \cdot \mathrm{Q}_{n} \quad \forall n \in \mathbb{N},
$$

THE SPECIFIC MULTIPLICATION IN EXCESSIVE STRUCTURE

$$
f \cdot\left(\sum_{1}^{\infty} p_{n}\right) \leq \sup _{n} f \cdot \mathrm{P}_{n}+\|f\| \cdot \wedge \wedge_{n} Q_{n}=\sup _{n} f \cdot p_{n} \leq \sum_{j=1}^{\infty} f \cdot p_{j}
$$

We finish the proof by the following remark
If A and B are in \mathcal{B} whave

$$
\mathbb{1}_{A}\left(\mathbb{1}_{B} \cdot p\right)=\left(\mathbb{1}_{A} \mathbb{1}_{B}\right) \cdot p=\mathbb{1}_{A \cap B} \cdot p
$$

(see corollary 2.4.5)

CHAPTER 3

DARBOUX-STIELTJES CALCULUS ON BANACH SPACES

The purpose of this chapter is to extend in the vector case the study of Darboux-Stieltjes integrability as it was initiated in [18] , then studied by I. Bucur [13], [14] and to give some new results. Among them we note: the symmetry principle, the formula of integration by parts, the extension integrability principle, a convergence theorem. At the end we give an application of this type of integration in describing the duality in a particular case of H - cones .

3.1. PRELIMINARIES AND FIRST RESULTS

For a given interval $[a, b]$ of \mathbb{R} we denote by $D[a, b]$ the set of all divisions $d=\left(a=x_{0} \leq x_{1} \leq x_{2} \leq \ldots \leq x_{n}=b\right)$ of this interval. The norm of this division is denoted by $v(d)$, i.e. $v(d)=\max \left\{x_{i+1}-x_{i} \mid i=0,1, \ldots, n-1\right\}$.

By intermediary system of d we shall understand a new divison ξ of $[a, b]$,

$$
\xi=\left(a=\xi_{0} \leq \xi_{1} \leq \xi_{2} \leq \ldots \leq \xi_{n} \leq \xi_{n+1}=b\right)
$$

where $\xi_{1} \in\left[x_{0}, x_{1}\right], \xi_{2} \in\left[x_{1}, x_{2}\right], \ldots \xi_{n} \in\left[x_{n-1}, x_{n}\right]$. The set of all intermediary systems of d will be noted by $\mathcal{L}(d)$. Obviously we have $\xi \in \mathcal{L}(d) \Rightarrow d \in \mathcal{L}(\xi)$ and $v(\xi) \leq 2 v(d), v(d) \leq 2 v(\xi)$.

Let X be a Banach space over \mathbb{R}, let $f:[a, b] \rightarrow X, g:[a, b] \rightarrow \mathbb{R}$ be two arbitrary bounded functions. For $d \in D[a, b], \xi \in \mathcal{L}(d)$ as below we denote by $\sigma(f, g ; d, \xi)$ the element of X given by

$$
\sigma(f, g ; d, \xi)=\sum_{i=1}^{n} f\left(\xi_{i}\right)\left(g\left(x_{i}\right)-g\left(x_{i-1}\right)\right)
$$

The following reciprocity formula may be easily verified

$$
\sigma(f, g ; d, \xi)=f(b) g(b)-f(a) g(a)-\sigma(f, g ; \xi, d)
$$

If $d_{1}, d_{2} \in D[a, b]$ we say that d_{2} is finer than d_{1} and we write $d_{1} \leq d_{2}$ if for any element of d_{1} belongs to d_{2}

Definition 3.1.1. We say that the function f is Riemann-Stieltjes integrable with respect to the function g if there exists an element $I \in X$ such that for any $\epsilon>0$ there exists $\eta_{\epsilon}>0$ such that

$$
\|\sigma(f, g ; d, \xi)-I\|<\epsilon, \forall d \in D[a, b] \text { with } v(d) \leq \eta_{\epsilon}, \forall \xi \in \mathcal{L}(d)
$$

The element I of the Banach space X is uniquely determined and it is called the Riemann-Stieltjes integral of f with respect to g.

We write $f \in R S(g)$ instead of $" f$ is Riemann-Stieltjes integrable with respect to g " and

$$
I=(R S) \int_{a}^{b} f d g=R S \int_{a}^{b} f d g
$$

It is well known that the function f is Riemann-Stieltjes integrable with respect to g if and only if for any sequence $\left(d_{n}\right)_{n}$ in $D[\mathrm{a}, \mathrm{b}]$ with $\lim _{n \rightarrow \infty} v\left(d_{n}\right)=0$ and any $\xi^{n} \in \mathcal{L}\left(d_{n}\right)$, the sequence $\left(\sigma\left(f, g ; d_{n}, \xi^{n}\right)\right)_{n}$ is convergent in X. One can see that the above limit does not depend on the sequences $\left(d_{n}\right)_{n},\left(\xi^{n}\right)_{n}, \xi^{n} \in \mathcal{L}\left(d_{n}\right)$ with $\lim _{n \rightarrow \infty} v\left(d_{n}\right)=0$.

Also we have the following
Proposition 3.1.2. (Cauchy criterion). One has $f \in R S(g)$ if and only if $\epsilon>0$ there exists $\eta_{\epsilon}>0$ such that

$$
\left\|\sigma\left(f, g ; d^{\prime}, \xi^{\prime}\right)-\sigma\left(f, g ; d^{\prime \prime}, \xi^{\prime \prime}\right)\right\|<\epsilon
$$

for all $d^{\prime}, d^{\prime \prime}$ with $v\left(d^{\prime}\right)<\eta_{\epsilon}, v\left(d^{\prime \prime}\right)<\eta_{\epsilon}, \xi^{\prime} \in \mathcal{L}\left(d^{\prime}\right), \xi^{\prime \prime} \in \mathcal{L}\left(d^{\prime \prime}\right)$.
As in the real case one can show that the set $R S(g)$ is a linear vector space over \mathbb{R} and we have: $\alpha, \beta \in \mathbb{R}, f_{1}, f_{2} \in R S(g) \Rightarrow \alpha f_{1}+\beta f_{2} \in R S(g)$ and

$$
(R S) \int_{a}^{b}\left(\alpha f_{1}+\beta f_{2}\right) d g=\alpha(R S) \int_{a}^{b} f_{1} d g+\beta(R S) \int_{a}^{b} f_{2} d g
$$

Using the above reciprocity formula, we have $f \in R S(g) \Rightarrow g \in R S(f)$ and

$$
(R S) \int_{a}^{b} f d g=f(b) g(b)-f(a) g(a)-(R S) \int_{a}^{b} g d f
$$

and moreover, if $f \in R S\left(g_{1}\right) \cap R S\left(g_{2}\right)$ and $\alpha, \beta \in \mathbb{R}$ we have:

$$
f \in R S\left(\alpha g_{1}+\beta g_{2}\right)
$$

and

$$
(R S) \int_{a}^{b} f d\left(\alpha g_{1}+\beta g_{2}\right)=\alpha(R S) \int_{a}^{b} f d g_{1}+\beta(R S) \int_{a}^{b} f d g_{1}
$$

Definition 3.1.3. The function f is called Darboux-Sieltjes integrale with respect to g if there exists $I \in X$ and for any $\epsilon>0$ there exists $d_{\epsilon} \in D[a, b]$ such that

$$
\|\sigma(f, g ; d, \xi)-I\| \leq \epsilon, \forall d \in D[a, b], d_{\epsilon} \leq d, \forall \xi \in \mathcal{L}(d)
$$

It is not difficult to show that the element $I \in X$ in the above definition is uniquely determined and it will be called the Darboux-Stieltjes integral of f with respect to g.
We write $f \in D S(g)$ instead of " the function f is Darboux-Stieltjes integrable with respect to g " and we denote the element I as follows

$$
I=(D S) \int_{a}^{b} f d g \text { or } I=\int_{a}^{b} f d g
$$

The following assertion generalizes a well-known Riemann-Stieltjes integrability criterion using sequences of divisions.

Proposition 3.1.4. The function f is a Darboux-Stieltjes integrable with respect to g if and only if there exists a sequence $\left(d_{n}\right)_{n}$ in $D[a, b]$ such that for any sequence $\left(d_{n}^{\prime}\right)_{n}$ in $D[a, b]$, with $d_{n} \leq d_{n}^{\prime} \quad(\forall n \in \mathbb{N})$ and any $\xi_{n}^{\prime} \in \mathcal{L}\left(d_{n}^{\prime}\right) \quad($ $\forall n \in \mathbb{N}$) the sequence $\left(\sigma\left(f, g ; d_{n}^{\prime}, \xi_{n}^{\prime}\right)\right)_{n}$ converges in the Banach space X.

Proof. We suppose that $f \in D S(g)$. Just from the definition we deduce that there exists $I \in X$ such that for any $n \in \mathbb{N}^{*}$, there exists $d_{n} \in D[a, b]$ for which we have

$$
\left\|\sigma\left(f, g ; d_{n}^{\prime}, \xi_{n}^{\prime}\right)-I\right\|<\frac{1}{n^{\prime}}, \forall d_{n}^{\prime} \in D[a, b], d_{n} \leq d_{n}^{\prime}, \forall \xi_{n}^{\prime} \in \mathcal{L}\left(d_{n}^{\prime}\right)
$$

Hence, we deduce

$$
\lim _{n \rightarrow \infty} \sigma\left(f, g ; d_{n}^{\prime}, \xi_{n}^{\prime}\right)=I
$$

Conversely, we suppose the existence of a sequence $\left(d_{n}\right)_{n}$ in $D[a, b]$ such that for any sequence $\left(d_{n}^{\prime}\right)_{n}$ in $D[a, b]$, with $d_{n} \leq d_{n}^{\prime}$, for any $\forall n \in \mathbb{N}$ and any $\xi_{n}^{\prime} \in \mathcal{L}\left(d_{n}^{\prime}\right)$ the sequence $\left(\sigma\left(f, g ; d_{n}^{\prime}, \xi_{n}^{\prime}\right)\right)_{n}$ converges in X. Using a mixing procedure we deduce that that the element $\lim _{n \rightarrow \infty} \sigma\left(f, g ; d_{n}^{\prime}, \xi_{n}^{\prime}\right)$ of X does not depend on the above sequences $\left(d_{n}^{\prime}\right)_{n}$ and $\left(\xi_{n}^{\prime}\right)_{n}$. We denote by I this limit and we show that for any $\epsilon>0$ there exists $n_{\epsilon} \in \mathbb{N}$ such that

$$
\left\|\sigma\left(f, g ; d^{\prime}, \xi^{\prime}\right)-I\right\|<\epsilon, \forall d^{\prime} \in D[a, b], d^{\prime} \leq d_{n_{\epsilon}}, \forall \xi^{\prime} \in \mathcal{L}\left(d^{\prime}\right)
$$

In the contrary case ther exists $\epsilon_{0}>0$ such that for any $n \in \mathbb{N}$ there exists $d_{n}^{\prime} \in D[a, b], d_{n} \leq d_{n}^{\prime}$ and $\xi_{n}^{\prime} \in \mathcal{L}\left(d_{n}^{\prime}\right)$ such that

$$
\left\|\sigma\left(f, g ; d^{\prime}, \xi^{\prime}\right)-I\right\| \geq \epsilon_{0}
$$

The contradiction we have arrived shows that $f \in D S(g)$
The following assertion, the Cauchy criterion, is almost obvious:
Proposition 3.1.5. The function f is Darboux-Stieltjes integrable with respect to g if and only if for any $\epsilon>0$ there exists a division d_{ϵ} of $[a, b]$ such that

$$
\left\|\sigma\left(f, g ; d^{\prime}, \xi^{\prime}\right)-\sigma\left(f, g ; d^{\prime \prime}, \xi^{\prime \prime}\right)\right\|<\epsilon
$$

for any $d^{\prime}, d^{\prime \prime} \in D[a, b], d_{\epsilon} \leq d^{\prime}, d_{\epsilon} \leq d^{\prime \prime}$ and for any $\xi^{\prime} \in \mathcal{L}\left(d^{\prime}\right), \xi^{\prime \prime} \in \mathcal{L}\left(d^{\prime \prime}\right)$.

Remark 3.1.6. It is easy to see that for $X=\mathbb{R}$ and g an increasing function on $[a, b]$ the fact that $f \in D S(g)$ is equivalent with the relation

$$
\int_{\underline{a}}^{b} f d g=\int_{a}^{\bar{b}} f d g
$$

where $\int_{\underline{a}}^{b} f d g$ (respectively $\int_{a}^{\bar{b}} f d g$) means the lower (respectively upper) Darboux-Stieltjes integral of f with respect to g; that is we get the well known classical situation.

3.2. RELATION BETWEEN $R S$ AND $D S$ INTEGRABILITY

The function f and g will be as before. If the function f is Riemann-Stieltjes integrable with respect to g then we consider an arbitrary sequence $\left(d_{n}\right)_{n}$ in $D[a, b]$ such that $\lim _{n \rightarrow \infty} v\left(d_{n}\right)=0$.

If we consider another sequence $\left(d_{n}^{\prime}\right)_{n}$ in $D[a, b]$ with $d_{n} \leq d_{n}^{\prime}$ for any $n \in \mathbb{N}$ then we have $v\left(d_{n}^{\prime}\right) \leq v\left(d_{n}\right)$ and therefore $\lim _{n \rightarrow \infty} v\left(d_{n}^{\prime}\right)=0$. In this case we have

$$
\lim _{n \rightarrow \infty} \sigma\left(f, g ; d_{n}^{\prime}, \xi_{n}^{\prime}\right)=(R S) \int_{a}^{b} f d g, \quad \forall \xi_{n}^{\prime} \in \mathcal{L}\left(d_{n}^{\prime}\right)
$$

and therefore, using proposition 3.1.4 we deduce $f \in D S(g)$.
Hence we have the following assertion
Proposition 3.2.1. if $f \in R S(g)$ then $f \in D S(g)$ and

$$
(D S) \int_{a}^{b} f d g=(R S) \int_{a}^{b} f d g
$$

Remark 3.2.2. The converse of thee above proposition is not always true. Indeed, we consider an element $y \in X, y \neq 0_{X}$ and the functions $f:[0,2] \rightarrow X, f:[0,2] \rightarrow$ \mathbb{R} given by
$f(x)=\left\{\begin{array}{ll}y, & \text { if } 1 \leq x \leq 2 \\ 0_{X}, & \text { if } 0 \leq x \leq 1\end{array}, g(x)= \begin{cases}1, & \text { if } 1 \leq x \leq 2 \\ 0, & \text { if } 0 \leq x \leq 1\end{cases}\right.$

Let $d_{0} \in D[0,2], d_{0}=\left(0=x_{0}<x_{1}<x_{2}=2\right)$ be such that $x_{1}=1$ and let $d^{\prime} \in D[0,2], d^{\prime} \geq d_{0}$ be of the form

$$
d^{\prime}=\left(0=x_{0}^{\prime}<x_{1}^{\prime}<x_{2}^{\prime}<\cdots<x_{k}^{\prime}<1<x_{k+2}^{\prime}<\cdots x_{n}^{\prime}=2\right)
$$

If we consider

$$
\xi^{\prime} \in \mathcal{L}\left(d^{\prime}\right), \xi^{\prime}=\left(0=\xi_{0}^{\prime} \leq \xi_{1}^{\prime} \leq \xi_{2}^{\prime} \leq \cdots \leq \xi_{k}^{\prime} \leq \cdots \leq \xi_{n+1}^{\prime}=2\right)
$$

where
$\sigma\left(f, g ; d^{\prime}, \xi^{\prime}\right)=\sum_{i=1}^{n} f\left(\xi_{i}^{\prime}\right)\left(g\left(x_{i}^{\prime}\right)-g\left(x_{i-1}^{\prime}\right)\right)=f\left(\xi_{k+2}^{\prime}\right)\left(g\left(x_{k+2}^{\prime}\right)-g(1)\right)=y$,
$\left\|\sigma\left(f, g ; d^{\prime}, \xi^{\prime}\right)-y\right\|=0$.

From the definition we deduce $f \in D S(g)$ and (DS) $(D S) \int_{a}^{b} f d g=y$. On the other hand, if we consider an arbitrary division d of $[0,2]$,

$$
d=\left(0=x_{0}<x_{1}<x_{2}<\cdots<x_{p}<x_{p+1}<\cdots<x_{m}=2\right.
$$

such that $x_{p}<1<x_{p+1}$ and $\xi^{\prime} \in \mathcal{L}(d), \xi^{\prime \prime} \in \mathcal{L}(d)$,

$$
\begin{aligned}
\xi^{\prime} & =\left(0=\xi_{0}^{\prime} \leq \xi_{1}^{\prime} \leq \xi_{2}^{\prime} \leq \cdots \leq \xi_{m+1}^{\prime}=2\right), \xi_{i}^{\prime} \in\left[x_{i-1}, x_{i}\right], i \in \overline{1, m}, \\
\xi^{\prime \prime} & =\left(0=\xi_{0}^{\prime \prime} \leq \xi_{1}^{\prime \prime} \leq \xi_{2}^{\prime \prime} \leq \cdots \leq \xi_{m+1}^{\prime \prime}=2\right), \xi_{i}^{\prime \prime} \in\left[x_{i-1}, x_{i}\right], i \in \overline{1, m}
\end{aligned}
$$

and $\xi_{p+1}^{\prime} \in\left(x_{p}, 1\right), \xi_{p+1}^{\prime \prime} \in\left(1, x_{p+1}\right)$, we have

$$
\sigma\left(f, g ; d, \xi^{\prime}\right)=0_{X}, \sigma\left(f, g ; d, \xi^{\prime \prime}\right)=y, \quad y \neq 0_{X}
$$

Using now the Cauchy criterion of Riemann-Stieltjes integrability we deduce that f is not Riemann-Stieltjes integrable with respect to g.

The non-(RS)-integrability in our previous remark is an immediate consequence of the next result. The interested reader can easily find more examples using our technique. The following statement shows how far is Riemann-Stieltjes integrability from the Darboux- Stieltjes integrability

Proposition 3.2.3 a. If the functions f and g have a common point of discontinuity on the left hand side (or on the right hand side) then the function f is not Darboux-Stieltjes integrable with respect to g.
b. If the functions f and g have a common point of discontinuity then the function f is not Riemann-Stieltjes integrable with respect to g.

Proof. a. We suppose that f and g are discontinuous on the left at the point $c \in(a, b]$. In this case there exists $r^{\prime}>0, r^{\prime \prime}>0$ and two sequences $\left(x_{n}^{\prime}\right)_{n}$, $\left(x_{n}^{\prime \prime}\right)_{n}$ which increase to c and such that for any $n \in \mathbb{N}$ we have

$$
x_{n}^{\prime}<x_{n}^{\prime \prime}<x_{n+1}^{\prime}<c,\left\|f\left(x_{n}^{\prime}\right)-f(c)\right\|>r^{\prime},\left\|g\left(x_{n}^{\prime \prime}\right)-g(c)\right\|>r^{\prime \prime} .
$$

Let now d be an arbitray division of $[a, b]$,

$$
d=\left(a=x_{0}<x_{1}<\cdots<x_{k_{0}}<\cdots<x_{n}=b\right)
$$

such that $x_{k_{0}}=c$. For n sufficiently large we have

$$
x_{k_{0}-1}<x_{n}^{\prime \prime}<x_{n+1}^{\prime}<c
$$

and we consider the division d^{\prime} of $[a, b]$ obtained from d adding the point $x_{n_{0}}^{\prime \prime}$ with $x_{k_{0}-1}<x_{n_{0}}^{\prime \prime}<c$. We consider now ξ, ξ^{\prime} in $\mathcal{L}\left(d^{\prime}\right)$ which differ between them only by the points $\xi_{k_{0}}=x_{n_{0}+1}^{\prime}, \xi_{k_{0}}^{\prime}=c$ of the interval $\left[x_{n_{0}}^{\prime \prime}, c\right]$ of the division d^{\prime}.

We have

$$
\begin{gathered}
\sigma\left(f, g ; d^{\prime}, \xi\right)-\sigma\left(f, g ; d^{\prime}, \xi^{\prime}\right)=f\left(x_{n_{0}+1}^{\prime}\right)\left(g\left(x_{n_{0}}^{\prime \prime}\right)-g(c)\right)-f(c)\left(g\left(x_{n_{0}}^{\prime \prime}\right)-g(c)\right), \\
\left\|\sigma\left(f, g ; d^{\prime}, \xi\right)-\sigma\left(f, g ; d^{\prime}, \xi^{\prime}\right)\right\|=\left\|f\left(x_{n_{0}+1}^{\prime}\right)-f(c)\right\| \cdot\left|g\left(x_{n_{0}}^{\prime \prime}\right)-g(c)\right|>r^{\prime} . r^{\prime \prime}
\end{gathered}
$$

Now, using proposition 3.1.5. and the fact that the division d of $[a, b]$ was arbitrary we deduce that the function f is not Darboux-Stieltjes integrable with respect to the function g.
An analogous treatement may be done for the case where f and g are discontinuous on the right at a point $c \in[a, b)$.
b. The function f and g are both discontinuous on the same side of a point $c \in[a, b]$; this is a trivial consequence of the assertion a. So, let $c \in(a, b)$ such that f is discontinuous on the left but it is continuous on the right at the point c whereas the function g is continuous on the left, but it is discontinuous on the right at the point c. In this case there exists $r^{\prime}>0, r^{\prime \prime}>0$ and there exist two sequences: $\left(x_{n}^{\prime}\right)_{n}$ strictly increasing to c and $\left(x_{n}^{\prime \prime}\right)_{n}$ strictly decreasing to c such that we have

$$
\left\|f\left(x_{n}^{\prime}\right)-f(c)\right\|>r^{\prime},\left\|g\left(x_{n}^{\prime \prime}\right)-g(c)\right\|>r^{\prime \prime}, \forall n \in \mathbb{N} .
$$

Let now $d \in D[a, b]$ be an arbitrary division such that c is not a point of d

$$
d=\left(a=x_{0}<x_{1}<\cdots<x_{k_{0}}<x_{k_{0}+1}<\cdots<x_{m}=b\right), x_{k_{0}}<c<x_{k_{0}+1} .
$$

For n_{0} sufficiently large we have $x_{k_{0}}<x_{n_{0}}^{\prime}<c<x_{n_{0}}^{\prime \prime}<x_{k_{0}+1}$. We add to the division d the point $x_{n}^{\prime}, x_{n}^{\prime \prime}$ with $n \geq n_{0}$ and we denote by d_{n} this new division of $[a, b]$. Further we consider $\xi^{\prime}, \xi^{\prime \prime}$ in $\mathcal{L}\left(d_{n}\right)$ which differ between them only intermediary point ξ_{n}^{\prime}, respectively $\xi_{1}^{\prime \prime}$ in the interval $\left[x_{n}^{\prime}, x_{n}^{\prime \prime}\right]$, namely $\xi_{n}^{\prime}=x_{n}^{\prime}$, $\xi^{\prime \prime}=x_{n}^{\prime \prime}$. We shall have

$$
\begin{aligned}
\sigma\left(f, g ; d_{n}, \xi^{\prime \prime}\right)-\sigma\left(f, g ; d_{n}, \xi^{\prime}\right) & =\left(f\left(\xi_{n}^{\prime}\right)-f\left(\xi_{n}^{\prime \prime}\right)\right) \cdot\left(g\left(x_{n}^{\prime}\right)-g\left(x_{n}^{\prime \prime}\right)\right)= \\
& =\left(f\left(x_{n}^{\prime}\right)-f\left(x_{n}^{\prime \prime}\right)\right) \cdot\left(g\left(x_{n}^{\prime}\right)-g\left(x_{n}^{\prime \prime}\right)\right)
\end{aligned}
$$

Since f is continuous ion the right and g is continuous on the left at the point c and $\left\|f\left(x_{n}^{\prime}\right)-f(c)\right\|>r^{\prime},\left\|g\left(x_{n}^{\prime \prime}\right)-g(c)\right\|>r^{\prime \prime}$, for all $n \in \mathbb{N}$, we deduce that

$$
\left\|f\left(x_{n}^{\prime}\right)-f\left(x_{n}^{\prime \prime}\right)\right\|>\frac{r^{\prime}}{2},\left\|g\left(x_{n}^{\prime \prime}\right)-g\left(x_{n}^{\prime}\right)\right\|>\frac{r^{\prime \prime}}{2}
$$

if n is sufficiently large. So we have

$$
\left\|\sigma\left(f, g ; d_{n}, \xi^{\prime \prime}\right)-\sigma\left(f, g ; d_{n}, \xi^{\prime}\right)\right\|>\left(\frac{r^{\prime} \cdot r^{\prime \prime}}{4}\right)
$$

for n is sufficiently large. Using the fact that the division d is arbitrary we can deduce that $f \notin R S(g)$ from the Cauchy criterion.

Proposition 3.2.4. If $f \in D S(g)$ and the function f and g have no common point of discontinuity then we have $f \in R S(g)$.

Proof. Let us denote

$$
\|f\|=\sup \{\|f(x)\| ; x \in[a, b]\},\|g\|=\sup \{|g(x)| ; x \in[a, b]\}
$$

and $\epsilon>0$ be arbitrary. We consider $d_{\epsilon} \in D[a, b]$ such that for any $d \in D[a, b]$, $d_{\epsilon} \leq d$ and any $\xi \in \mathcal{L}(d)$ we have

$$
\left\|\sigma(f, g ; d, \xi)-(D S) \int_{a}^{b} f d g\right\|<\epsilon
$$

If $d_{\epsilon}=\left(a=x_{0}<x_{1}<x_{2}<\cdots<x_{k}=b\right)$, then using hypothesis concerning the continuity we may consider $\eta>0$ such that for any $i \in\{0,1,2, \ldots, k\}$ we have at least one of the relations

$$
\left|z-x_{i}\right|<\eta \Rightarrow\left\|f(z)-f\left(x_{i}\right)\right\| \leq \frac{\epsilon}{r} \text { or }\left|g(z)-g\left(x_{i}\right)\right| \leq \frac{\epsilon}{r},
$$

where $r:=4 k(\|f\| \cdot\|g\|)$.
Let now $d_{0} \in D[a, b], d_{0}=\left(a=y_{0}<y_{1}<y_{2}<\cdots<y_{n}=b\right)$ with $v\left(d_{0}\right)<\eta$ and let $\xi=\left(a=\xi_{0}<\xi_{1} \leq \xi_{2} \leq \cdots \leq \xi_{n} \leq \xi_{n+1}=b\right), \quad \xi \in \mathcal{L}\left(d_{0}\right) \quad$ with $\xi_{i} \in\left[y_{i-1}, y_{i}\right]$ for all $i \in\{0,1,2, \ldots, n\}$.

Suppose that one point x_{i} of the division d_{ϵ} belongs to the interval $\left[y_{j_{0}}, y_{j_{0}+1}\right]$.
We choose $\xi_{j_{0}}^{\prime} \in\left[y_{j_{0}}, x_{i}\right], \xi_{j_{0}}^{\prime \prime} \in\left[x_{i}, y_{j_{0}+1}\right]$ and we consider the division $d_{x_{i}} \in$
$D[a, b]$ obtained by adding the point x_{i} to the division d_{0}. As an intermediary system $\xi^{*} \in \mathcal{L}\left(d_{x_{i}}\right)$ we take the following one

$$
\xi^{*}=\left\{a=\xi_{0} \leq \xi_{1} \leq \cdots \leq \xi_{j_{0}} \leq \xi_{j_{0}}^{\prime} \leq \xi_{j_{0}}^{\prime \prime} \leq \xi_{j_{0}+2} \leq \xi_{j_{0}+3} \leq \cdots \leq \xi_{n+1}=b\right\} .
$$

We shall have
$\sigma\left(f, g ; d_{0}, \xi\right)-\sigma\left(f, g ; d_{x_{i}}, \xi^{*}\right)=$
$=f\left(\xi_{j_{0}+1}\right)\left(g\left(y_{j_{0}+1}\right)-g\left(y_{j_{0}}\right)-f\left(\xi_{j_{0}}^{\prime}\right)\left(g\left(x_{i}\right)-g\left(y_{j_{0}}\right)\right)-f\left(\xi_{j_{0}}^{\prime \prime}\right)\left(g\left(y_{j_{0}+1}\right)-g\left(x_{i}\right)\right)=\right.$
$=\left(f\left(\xi_{j_{0}+1}\right)-f\left(\xi_{j_{0}}^{\prime}\right)\right)\left(g\left(x_{i}\right)-g\left(y_{j_{0}}\right)\right)+\left(f\left(\xi_{j_{0}+1}\right)-f\left(\xi_{j_{0}}^{\prime \prime}\right)\right)\left(g\left(y_{j_{0}+1}\right)-g\left(x_{i}\right)\right)$.
$\left\|\sigma\left(f, g ; d_{0}, \xi\right)-\sigma\left(f, g ; d_{x_{i}} \xi^{*}\right)\right\| \leq\left\|f\left(\xi_{j_{0}+1}\right)-f\left(\xi_{j_{0}}^{\prime}\right)\right\| \cdot\left|g\left(x_{i}\right)-g\left(y_{j_{0}}\right)\right|+$
$+\left\|f\left(\xi_{j_{0}+1}\right)-f\left(\xi_{j_{0}}^{\prime \prime}\right)\right\|\left|g\left(y_{j_{0}+1}\right)-g\left(x_{i}\right)\right| \leq 4(\|f\| \cdot\|g\|) \cdot \frac{\epsilon}{r}$
We start with the divisions d and ξ as before and taking $i=1$ we construct as above the division $d_{1}=d_{0} \cup\left\{x_{i}\right\}$ and the division $\xi^{1}:=\xi^{*}$. We have
$\left\|\sigma\left(f, g ; d_{0}, \xi\right)-\sigma\left(f, g ; d_{1}, \xi^{1}\right)\right\| \leq 4(\|f\| \cdot\|g\|) \cdot \frac{\epsilon}{r}$

Then starting with the divisions d_{1}, ξ^{1} we construct in a similar manner $d_{2}=d_{1} \cup\left\{x_{2}\right\}, \xi^{2}=\left(\xi^{1}\right)^{*} \in \mathcal{L}\left(d_{2}\right)$. We have
$\left\|\sigma\left(f, g ; d_{1}, \xi^{1}\right)-\sigma\left(f, g ; d_{2}, \xi^{2}\right)\right\| \leq 4(\|f\| \cdot\|g\|) \cdot \frac{\epsilon}{r}$
We continue this procedure $(k-1)$ - times and we construct the divisions $\left(d_{1}, \xi^{1}\right),\left(d_{2}, \xi^{2}\right),\left(d_{3}, \xi^{3}\right), \ldots,\left(d_{k-1}, \xi^{k-1}\right)$ such that $d_{i+1}=d_{i} \cup\left\{x_{i+1}\right\}, \xi^{i+1}=$ $\left(\xi^{i}\right)^{*}$. By construction we have
$\left\|\sigma\left(f, g ; d_{i}, \xi^{i}\right)-\sigma\left(f, g ; d_{i+1}, \xi^{i+1}\right)\right\| \leq 4(\|f\| \cdot\|g\|) \cdot \frac{\epsilon}{r}, \quad i+1 \leq k-1$
and therefore, applying this k-times and taking into account the fact that $r=4 k(\|f\|\|g\|)$, we get
$\left\|\sigma\left(f, g ; d_{0}, \xi\right)-\sigma\left(f, g ; d_{k-1}, \xi^{k-1}\right)\right\| \leq 4(\|f\| \cdot\|g\|) \cdot \frac{\epsilon}{r}=\epsilon$.
But $d_{\epsilon} \leq d_{k-1}$ and therefore we have
$\left\|\sigma\left(f, g ; d_{k-1}, \xi^{k-1}\right)-(D S) \int_{a}^{b} f d g\right\| \leq \epsilon$
From the last two inequalities follows
$\left\|\sigma\left(f, g ; d_{0}, \xi\right)-(D S) \int_{a}^{b} f d g\right\| \leq 2 \epsilon$
for any $d_{0} \in \mathcal{D}[a, b]$ with $v\left(d_{0}\right)<\eta$ and any $\xi \in \mathcal{L}\left(d_{0}\right)$
Corollary 3.2.5. If we have $f \in D S(g)$ and one of the functions f or g is continuous on $[a, b]$, then $f \in R S(g)$.

Remark 3.2.6. the PROPOSITION 3.2.4 and the COROLLARY 3.2.5 were previously considered in the scalar case for g increasing ([13], [14])

The concept of Darboux-Stieltjes integrability is much more related with the concept of Lebesgue(or Bochner) integrability than the Riemann-Stieltjes concept is.

Let g be increasing and continuous on the left and let μ_{g} be the measure on $([a, b], \mathcal{B})$ where \mathcal{B} is the set of all Borel subsets of $[a, b]$, for which we have

$$
\mu_{g}([c, d])=g(d)-g(c), \forall c, d \in \mathbb{R}, a \leq c<d \leq b
$$

If $f:[a, b] \rightarrow \mathbb{R}$ is a bounded function then, proceeding as in [14] and [15] we can prove the following results:

Proposition 3.2.7. If the function f is Darboux-Stieltjes integrable with respect to g then the function g is Bochner integrable and we have

$$
(D S) \int_{a}^{b} f d g=\int_{a}^{b} f d \mu_{g}
$$

Proposition 3.2.8. If $\left(f_{n}\right)_{n}$ is a sequence of uniformly bounded real functions on $[a, b]$ such that $f_{n} \in D S(g)$, for all n and this sequence is pointwise convergent to a function f such that $f \in D S(g)$, then we have

$$
\lim _{n \rightarrow \infty}(D S) \int_{a}^{b} f_{n} d g=D S \int_{a}^{b} f d g
$$

3.3 HEREDITARY PROPERTIES AND THE FORMULA OF INTEGRATION BY PARTS

It is well known that if a bounded real function f on the interval $[a, b]$ is Riemann Stieltjes integrable with respect to the function g defined on the same interval, then, for any $c, d \in[a, b], c<d$, the restriction of f to $[c, d]$ is RiemannStieltjes integrable with respect to the restriction of g to $[c, d]$. Generally the converse assertion is not true i.e. the Riemann-Stieltjes integrability of f with respect to g on the intervals $[a, c]$ and $[c, d]$ does not imply the RS-integrability of the function f with respect to g on the whole interval $[a, b]$. From this point of view the Darboux-Stieltjes integrale is more convenient.

Proposition 3.3.1. if $f:[a, b] \rightarrow X$ and $g:[a, b] \rightarrow \mathbb{R}$ are bounded functions then we have:
a. If f is Darboux-Stieltjes integrable with respect to g on $[a, b]$ then f is Darboux-Stieltjes integrable with respect to g on many subinterval $[c, d]$ of $[a, b]$ i.e. the restriction of f to $[c, d]$ is Darboux-Stieltjes integrable with respect to the restriction of g to $[c, d]$.
Moreover, we have
$(D S) \int_{a}^{b} f d g=(D S) \int_{a}^{c} f d g+(D S) \int_{c}^{d} f d g+(D S) \int_{d}^{b} f d g$.
b. If c is a point in $[a, b]$ and the function f is Darboux-Stieltjes integrable with respect to g on the interval $[a, c]$ and $[c, b]$, then f is DarbouxStieltjes integrable with respect to g on $[a, b]$.

Proof. For any divisions $d^{\prime} \in \mathcal{D}[a, b], d^{\prime \prime} \in \mathcal{D}[a, b]$ we denote by $d^{\prime} \vee d^{\prime \prime}$ the division of $[a, b]$ given by

$$
d^{\prime} \vee d^{\prime \prime}=\left(a=x_{0}<x_{1}<x_{2}<\cdots<x_{n}=c=y_{0}<y_{1}<y_{2}<\cdots<y_{n}=b\right)
$$

where

$$
d^{\prime}=\left(a=x_{0}<x_{1}<x_{2}<\cdots<x_{n}=c\right), d^{\prime \prime}=\left(a=y_{0}<y_{1}<y_{2}<\cdots<y_{n}=b\right)
$$

We use an analogous notation $\xi^{\prime} V \xi^{\prime \prime}$ for $\xi^{\prime} \in \mathcal{L}\left(d^{\prime}\right), \xi^{\prime \prime} \in \mathcal{L}\left(d^{\prime \prime}\right)$
Obviously we have

$$
\sigma\left(f, g ; d^{\prime} \vee d^{\prime \prime}, \xi^{\prime} \vee \xi^{\prime \prime}\right)=\sigma\left(f, g ; d^{\prime}, \xi^{\prime}\right)+\sigma\left(f, g ; d^{\prime \prime}, \xi^{\prime \prime}\right)
$$

a. The proof follows using Cauchy criterion of Darboux-Stieltjes integrability.
b. Let $\left(d_{n}^{\prime}\right)_{n},\left(d_{n}^{\prime \prime}\right)_{n}$ be two sequences in $[a, c]$, respectively $\mathcal{D}[c, b]$ such that for any sequences $\left(d_{n}^{\prime}\right)_{n} \in \mathcal{D}[a, c], d_{n}^{\prime}{ }^{0} \leq d_{n}^{\prime},\left(d_{n}^{\prime \prime}\right)_{n} \in \mathcal{D}[c, b],{d_{n}^{\prime \prime}}^{0} \leq$ $d_{n}^{\prime \prime}$ and for any $\xi_{n}^{\prime} \in \mathcal{L}\left(d_{n}^{\prime}\right)$, respectively any $\xi_{n}^{\prime \prime} \in \mathcal{L}\left(d_{n}^{\prime \prime}\right)$, we have

$$
\lim _{n \rightarrow \infty} \sigma\left(f, g ; d_{n}^{\prime}, \xi_{n}^{\prime}\right)=\int_{a}^{c} f d g, \lim _{n \rightarrow \infty} \sigma\left(f, g ; d_{n}^{\prime \prime}, \xi_{n}^{\prime \prime}\right)=\int_{c}^{b} f d g
$$

Let now $\left(d_{n}^{\prime}{ }^{0}\right)_{n}$ be a sequence in $\mathcal{D}[a, b]$ such that $d_{n}^{0}=d_{n}^{\prime 0} \vee d_{n}^{\prime \prime 0}, \forall n \in \mathbb{N}$ and let $\left(d_{n}\right)_{n}$ be a sequence in $\mathcal{D}[a, b]$ such that $d_{n}^{0} \leq d_{n}$ for any n. If we choose $\xi_{n} \in \mathcal{L}\left(d_{n}\right)$ and we denote $d_{n}^{\prime}=d_{n} \cap[a, c], \xi_{n}^{\prime}=\xi_{n} \cap[a, c] d_{n}^{\prime \prime}=$ $d_{n} \cap[c, b] \quad \xi_{n}^{\prime \prime}=\xi_{n} \cap[c, b]$ we have $d_{n}^{\prime 0} \leq d_{n}^{\prime}, \quad \xi_{n}^{\prime} \in \mathcal{L}\left(d_{n}^{\prime}\right), d_{n}^{\prime \prime 0} \leq d_{n}^{\prime \prime}$, $\xi_{n}^{\prime \prime} \in \mathcal{L}\left(d_{n}^{\prime \prime}\right)$ and therefore

$$
\lim _{n \rightarrow \infty} \sigma\left(f, g ; d_{n}^{\prime}, \xi_{n}^{\prime}\right)=\int_{a}^{c} f d g, \lim _{n \rightarrow \infty} \sigma\left(f, g ; d_{n}^{\prime \prime}, \xi_{n}^{\prime \prime}\right)=\int_{c}^{b} f d g
$$

It is obvious that $d_{n}^{\prime} \bigvee d_{n}^{\prime \prime}=d_{n}, \xi_{n}^{\prime} \bigvee \xi_{n}^{\prime \prime}=\xi_{n}$. We have

$$
\begin{gathered}
\sigma\left(f, g ; d_{n}, \xi_{n}\right)=\sigma\left(f, g ; d_{n}^{\prime}, \xi_{n}^{\prime}\right)+\sigma\left(f, g ; d_{n}^{\prime \prime}, \xi_{n}^{\prime \prime}\right), \forall n \in \mathbb{N}, \\
\lim _{n \rightarrow \infty} \sigma\left(f, g ; d_{n}, \xi_{n}\right)=\int_{a}^{c} f d g+\int_{c}^{b} f d g
\end{gathered}
$$

Hence using proposition 3.1.4, the function f is Darboux-Stieltjes integrable with respect to g.

Definition 3.3.2 If $g:[a, b] \rightarrow \mathbb{R}$ and $f:[a, b] \rightarrow X$ we say that g is $D-S$ integrable with respect to f there exists an element $I^{*} \in X$ such that for any $\epsilon>0$ there exists $d_{\epsilon} \in \mathcal{D}[a, b]$ with the property

$$
\left\|I^{*}-\sigma(g, f ; d, \xi)\right\|<\epsilon
$$

whenever $d_{\epsilon} \leq d$ and for any intermediary system ξ in $d . I^{*}$ is called the Darboux-Stieltjes integral of g with respect to f.

Proposition 3.3.3. (Symmetry principle) If the function f is Darboux-Stieltjes integrable with respect to g is Darboux-Stieltjes integrable with respect to f and we have

$$
\int_{a}^{b} g d f=f .\left.g\right|_{a} ^{b}-\int_{a}^{b} f d g=f(b) g(b)-f(a) g(a)-\int_{a}^{b} f d g
$$

(Integration by parts)
Proof. For $\epsilon>0$ we consider $d_{\epsilon} \in \mathcal{D}[a, b], d_{\epsilon}=\left(a=y_{0}<y_{1}<y_{2}<\cdots<\right.$ $y_{k}=b$) such that for any $d \in \mathcal{D}[a, b], d_{\epsilon} \leq d$ and any $\xi \in \mathcal{L}(d)$ we have

$$
\left\|\sigma(f, g ; d, \xi)-\int_{a}^{b} f d g\right\|<\epsilon
$$

Using hypothesis and proposition 3.2.3- b. we deduce that for any y_{i}, $i \in\{1,2, \ldots, k\}$ at least one of the functions f and g is continuous on the left at the point y_{i}. Hence we may choose $\eta>0$ such that, for any $z \in[a, b]$, $z \in\left[y_{i}-\eta, y_{i}\right]$ we have

$$
\left\|f\left(y_{i}\right)-f(z)\right\|<\frac{\epsilon}{M} \quad \text { or }\left|g\left(y_{i}\right)-g(z)\right|<\frac{\epsilon}{M},
$$

where $M:=k(\|f\|+1)(\|g\|+1)$.
Let now d_{ϵ}^{\prime} be a division of $[a, b]$ such that $v\left(d_{\epsilon}^{\prime}\right)<\eta$ and such that $d_{\epsilon}^{\prime} \leq d_{\epsilon}$. We take an arbitrary division d of $[a, b]$ such that $d_{\epsilon}^{\prime} \leq d$ and we consider an arbitrary $\xi \in \mathcal{L}(d)$. We have
$d=\left(a=x_{0}=y_{0}<x_{1}<x_{2}<\cdots<x_{j_{1}}<y_{1}<x_{j_{1}+1}<\cdots<x_{j_{2}}<y_{2}\right.$
$<x_{j_{2}+1}<\cdots<x_{j_{k}}<y_{k}=b \quad, \quad \xi=\left(a=\xi_{0} \leq \xi_{1} \leq \cdots \leq \xi_{j_{k}+k}=b\right)$, $\xi \in \mathcal{L}(d)$ and we modify ξ replacing the element $\xi_{j_{p}}$ in the interval $\left[x_{j_{p}}, y_{p}\right]$ by the element y_{p}, for all $p=1,2, \ldots, k$. We obtain a new intermediary division ξ^{\prime} of d and we have

$$
\begin{aligned}
& \| f\left(\xi_{j_{p}}\right)\left(f\left(y_{p}\right)-f\left(x_{j_{p}}\right)-g\left(y_{p}\right)\left(f\left(y_{p}\right)-f\left(x_{j_{p}}\right) \|=\right.\right. \\
& \left\|f\left(y_{p}\right)-f\left(x_{j_{p}}\right)\right\| \cdot\left|g\left(y_{p}\right)-g\left(\xi_{j_{p}}\right)\right| \leq 2(\|f\|+1)(\|g\|+1) \cdot \frac{\epsilon}{M}
\end{aligned}
$$

We deduce the relation

$$
\begin{gathered}
\left\|\sigma(f, g ; d, \xi)-\sigma\left(f, g ; d, \xi^{\prime}\right)\right\| \leq \sum_{p=1}^{k}\left\|f\left(y_{p}\right)-f\left(x_{j_{p}}\right)\right\|\left|g\left(y_{p}\right)-g\left(\xi_{j_{p}}\right)\right| \\
\left\|\sigma(f, g ; d, \xi)-\sigma\left(f, g ; d, \xi^{\prime}\right)\right\| \leq 2(\|f\|+1)(\|g\|+1) \cdot \frac{\epsilon}{M}=\epsilon
\end{gathered}
$$

We remark that $d_{\epsilon} \leq \xi^{\prime}$ and therefore we have

$$
\left\|\sigma(f, g ; d, \xi)-\int_{a}^{b} f d g\right\|<\epsilon
$$

On the other hand, using the reciprocity formula, we get

$$
\begin{aligned}
& \left\|\sigma(f, g ; d, \xi)-\left(\left.f \cdot g\right|_{a} ^{b}-\int_{a}^{b} f d g\right)\right\| \leq\left\|\sigma(f, g ; d, \xi)-\sigma\left(f, g ; d, \xi^{\prime}\right)\right\|+ \\
+ & \left\|\sigma\left(f, g ; d, \xi^{\prime}\right)-\left(\left.f \cdot g\right|_{a} ^{b}-\int_{a}^{b} f d g\right)\right\| \leq \epsilon+\left\|\int_{a}^{b} f d g-\sigma\left(f, g ; d, \xi^{\prime}\right)\right\| \leq 2 \epsilon .
\end{aligned}
$$

Hence the function g is Darboux-Stieltjes integrable with respect to f and we have the following rule

$$
\int_{a}^{b} g d f=\left.f \cdot g\right|_{a} ^{b}-\int_{a}^{b} f d g
$$

3.4. APPLICATIONS IN POTENTIAL THEORY

Let \mathcal{E} be the convex cone of all increasing and lower semi-continuous positive functions on the space $X=(0,1)$. It is known that \mathcal{E} is a standard H-cone (see [7]) and its dual \mathcal{E}^{*} may be identified with the convex cone of all positive, decreasing and lower semi-continuous on $(0,1)$. We may extend any function $s \in \mathcal{E}$ by $s(0)=0$ and $s(1)=\sup _{x<1} s(x)$ and also we extend the element $s^{*} \in \mathcal{E}^{*}$ by

$$
s^{*}(0)=\sup _{x \in(0,1)} s(x) \quad, s^{*}(1)=0
$$

The duality between \mathcal{E} and \mathcal{E}^{*} is the following one

$$
\left[s, s^{*}\right]=(D S) \int_{0}^{1} s^{*} d s
$$

Generally, the function s^{*} is not $(R S)$ integrable with respect to s. But since the functions s and s^{*} has no one side common discontinuous points, the function s^{*} is (DS) integrable with respect to s.

BIBLIOGRAPHY

[1] Benfriha, H., Bucur, I. and Nuic \breve{a}, A. Darboux-Stieltjes calculus on Banach spaces. Bulletin of the Transilvania University of Brasov Series III: Mathematics, informatics, physics, vol5(54)2012, special issue :
Proceedings Of The Seventh Congress of the Romanian Mathematicians, 43-54.
[2] Benfriha, H., Bucur, I., Nuică, A. and Vlădoiu, S.: A note on the excessive functions of a resistance form. REV. ROUMAINE MATH. PURES APPL., 54 (2009), 5-6, 407-415
[3] Benfriha, H. and Bucur, I.: Nearly saturation, balayage and fine carrier in excessive structures (will be published soon)
[4] Beznea, L. and Boboc, N.: Once more about the semipolar sets and regular excessive functions. Potential Theory-ICPT 94, Walter de Gruyter 1996, pp. 255-274
[5] Beznea, L. and Boboc, N.: Balayages on excessive measures, their representation the quasi-Lindelöf property. in: Potential Analysis 7 (1997), 805-825.
[6] Beznea, L and Boboc, N.: Potential Theory and Right Processes. Springer Series, Mathematics and its Application, Vol. 572. Kluwer, Dordrecht, 2004.
[7] Boboc, N. and Bucur, Gh.: Cones convexes ordonés. Rev. Roum. Math. Pures et Appl. 14, 283-309(1969)
[8] Boboc, N., Bucur, Gh. and Cornea, A.: H-cones and potential theory. Ann. Inst. Fourier 25, 71 - 108 (1975)
[9] Boboc, N., Bucur, Gh. and Cornea, A.: Carrier theory and negligible sets on a sets on a standard H-cone of functions. Rev. Roum. Pures Appl. 25 (2), 136-197 (1980)
[10] Boboc, N., Bucur, Gh. and Cornea, A.: Order and convexity in potential theory: H-cones (lectures notes in Math. 853), Springer-Verlag 1981.
[11] Boboc, N., Constantinescu, C. and Cornea, A.: Axiomatic theory of harmonic functions, balayage. Ann. Inst. Fourier (1965), 15, 2, 37-70
[12] Boboc, N., Constantinescu, C. and Cornea, A.: Nonnegative hyperharmonic functions, balayage and natural order. Rev. Roum. Math, Pures et Appl. 13, 933-947 (1968)
[13] Bucur, I. : Some more about Riemann-Stieltjes Integral, Séminaire d'espaces linéaires ordonnés topologiques, 16 (1997)
[14] Bucur, I.: Integrability criterion for Darboux-Stieltjes Integral, Séminaire d'espaces linéaires ordonnés topologiques, 17 (1998)
[15] Bucur, I. Convergence theorem for Darboux-Stieltjes Integral, Hyperion Scientific Journal A (mathematics, Physics and Electrical Engineering), vol.2, 2001
[16] Bliedtner, H. and Hansen, W.: Simplicial cones in potential theory. Invent. math. 29, 83 - 110 (1975)
[17] Bliedtner, H. and Hansen, W.: Simplicial cones in potential theory II. (Approximation theorems). Invent. math. 46, 255 - 275 (1978)
[18] Bradley, R.E.: The Riemann -Stieltjes Integral, Missouri Journal of Math. Sci.6, 20-28 (1994).
[19] Cornea, A., and Licea, G.: Order and potential. Resolvent families of kernels. Lecture Notes in Math. 454, Berlin-Heidelberg-New York: Springer 1975
[20] Meyer, P.A.: Probability and potentials. Ginn (Blaisdell), Boston 1966
[21] Mokobodzki, G.: Structure des cônes de potentiels. in : Sem. Bourbaki 377, 1969/1970 (Lecture Notes in Math. 180), Springer Verlag 1971, pp. 239-252
[22] Mokobodzki, G.: Operateurs de subordination des resolvents (manuscript)1983
[23] Hervé, R-M: Recherches axiomatiques sur la théorie des fonctions surharmoniques et du potentiel. Ann. Inst. Fourier (Grenoble), 12 (1962), 415-571

