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Introduction 

       The origins of potential theory may be situated in the 18
th

 century when 

Lagrange remarked in 1773 that the gravitational forces have as components 

the partial derivatives of function( which was called potential function or 

potential by Green in (1828) respectively Gauss (1840) and when Laplace 

(1782) showed that outside the mass generating these forces, this function 

satisfies the partial differential equation ∆= 0 , so called Laplace equation 

        The fundamental principles of potential theory were elaborated during 

the 19
th

 century and constitutes so called “Classical potential theory”. 

Essential contributions to this classical potential theory were made by 

1. S. D. Poisson (1823) with his famous formula which solve the 

Dirichlet Problem in the sphere 

2. G. Green who introduce so called “Green Function “ for domains 

with sufficiently smooth boundary and applied such kind of 

functions to solve the same Dirichlet Problem for much more 

complicated open subset of ℝ� 

3. S. Earnshow (1839) who discovered the minimum principal for the 

harmonic function, solutions of the Laplace equation 

4. C. F. Gauss who solved (1840) the equilibrium problem 

5. W. Thomson , H.A. Schwarz (1870) , L. Dirichlet and B. Riemann: 

studied the behaviour at the boundary of the Poisson Integral in the 

plane 

6. A. Poincaré who invented the balayage method (1887) for solving 

the Dirichlet problem in ℝ� and A. Harnak (1986) who discovered 

his famous inequality and applied it in the studied of convergence 

for monotone sequences of harmonic functions  

    These three principles: minimum principles, existence of a sufficiently 

large class (for instance the ball) of the solutions for Dirichlet problem and 

the principle of convergence for monotone sequences of harmonic functions 

turned out to be axioms that allow obtaining the main results from the study 

of harmonic functions and these principles are also fulfilled by the solutions 

of any elliptic or parabolic equation. 

     So in the middle of the 20
th

 century G. Tautz, J.L. Doob, M. Brelot and 

H. Bauer developed their axiomatic potential theory starting with the above 

three principles. The difference between them consists essentially in 

formulating the axiom of convergence for monotone sequences. The 

stronger of them is Brelot convergence which asserts that an increasing 

sequence of harmonic functions which converges only in one point of a 

domain, has as limit a harmonic function on this domain. For the same result 

we arrive if we suppose the sequence converging uniformly on compact 

subsets ( Bauer axiomatic) or on a dense subset (Doob axiomatic). 
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     In this line of development of potential theory we remember the 

remarkable contribution of Romanian mathematician who elaborated the 

theory of poliharmonic and policaloric functions ( M. Nicolescu) which are 

solutions of the 	 − iterated Laplace operator or heat operator and also 

constructed their own axiomatic theory (N. Boboc, C. Constantinescu, A. 

Cornea) and published the Springer monograph” Potential theory on 

harmonic spaces (1972). In order to cover the harmonic theory for the 

parabolic equation their starting point was a sheaf of hyperharmonic 

functions instead of a sheaf of harmonic functions.  

     Besides the studies of potential theory on harmonic spaces, starting with 

6
th

 decade of 19
th

 century and based essentially on the new achievements in 

mathematics as for example : The Choquet theory of capacity, Choquet 

theory of convexity allowing the integral representation on the set of 

extremal points of a compact convex sets, Hunt potential theory for Markov 

processes, the achievements of R-M Hervé in the carrier theory, etc… many 

mathematicians began to study some type of ordered convex cones which 

have similar  properties as  the convex cone of positive  superharmonic  

functions  or supermedinan functions with respect to a kernel or with respect 

to a supermedian function associated with a resolvent family of kernels. The 

cones of potentials introduced by G. Mokobodzki turned out to be useful 

tool for developing an abstract potential theory on the line of above 

potential theory on harmonic spaces of N. Boboc, C. Constantinescu and A. 

Cornea. 

     Among the mathematicians who contributed at this new axiomatic 

potential theory we mention G. Mokobodzki, D. Sibony, A. de la Pradel, D. 

Feyel, W. Hansen, I. Bliedtner, K. Jansen, Sewinking, I. Netuke, J. Vessely, 

J. Lukes, B. Fuglede and others . 

     Again the Romanian School in  potential theory has an important role. 

We remark here the theory of duality they managed to build and publish it 

in  the springer monograph “ order and convexity: H-cone” 1982 written by 

N. Boboc, Gh. Bucur and A. Cornea that illustrate their remarkable 

contribution. Later, in a more general frame N. Boboc and L. Beznea 

published a kluwer academic publishers  monograph “Potential Theory and 

Right Processes” 2004.  

     In this new frame of potential theory, the réduite (resp. balayage) 

operator play an important role which may be justified just from its origin 

method for solving Dirichlet problem. Also the regular elements in this 

theory which replace the continuous potentials in the theory of  harmonic 

spaces are important since they may be the origin of some associated kernels 

with complete maximum principle. 

    To those elements we may associate a carrier theory and to build a 

specific multiplication i.e. an integral on a measurable space with respect to 

a measure with values in the cone of regular elements. 

  The thesis presented here mainly concerns with this objects. 

    Chapter 1. In the first chapter we present a summary of the well known 

results in the theory of “Cones of Potentials” or more precisely cones of 

excessive or supermedian functions with respect to a sub-Markovian 
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resolvent family of kernels on a measurable space. Among the results 

obtained here we mention: 

1. A Choquet type assertion in the frame of supermedian functions as 

well as in the frame of excessive functions with respect to this 

resolvent. 

2. A decomposition of supermedian function as a sum of two 

supermedians which are stable with respect to the réduite operation 

on a borel set respectively its complement. 

3. For any finite supermedian function 
 we associate a map �
 from � 

into � given by: �
 = sup{� ∈ � �⁄ ≤   �	� � ≼ �
  ��� ���  � > 0}      

and we prove that this map is a pseudo-balayage i.e. it is increasing, 

additive, idempotent, contractive and�

 = 
. 

    We prove that �
 is the smallest increasing, additive, idempotent 

and contractive map # from � into � such that #
 = 
. 

    Similar assertions are valid replacing � by the cone ℰ of excessive 

functions. 

4. We develop a fine carrier theory on the set ℰ of excessive functions 

in the following conditions: (&, ℬ) is a measurable space, * =(+,),-. is a proper sub-Markovian resolvent, the convex cone ℰ is 

min-stable, contains the positive constant functions, and the space & 

is supposed to be nearly saturated i.e. any balayage � on ℰ is 

representable. 

5. Among others we characterize the regular excessive elements as 

being those excessives for which the pseudo-balayages associated 

with are balayages.  

Many assertions presented in this chapterhave similar versions in 

varius monographs, such as, e.g.  [4], [5], [8], [10],[16],[17], [19], 

[20], [21],[22],[23] 

    Chapter 2. In the second chapter we present a theory of Lebesgue integral 

on a measurable space with respect to a measure having its values in the 

cone of regular excessive functions with respect to a standard resolvent on 

this measurable space i.e. * = (+,),-. is a resolvent family of kernels on (&, ℬ) such that: 

a. * is a proper sub-Markovian  resolvent  

b. The convex cone ℰ of all excessive functions with respect to * is 

min-stable and contains the positive constant functions  

c. There exists a distance � on & such that the associated topology /0 

is smaller than the fine topology on & ( i.e. the coarsest topology / 

on & making continuous all functions of  ℰ) 

d. The Borel structure associated with the distance � coincides with ℬ 

e. The space (&, ℬ) is nearly saturated with respect to ℰ i.e. any � −balayage on ℰ is representable on &. 

   We construct a map (�, 
) ↦ �. 
 from 34ℬ × ℰ6 → ℰ6  such that it is 

bilinear and has the following properties: 

1. The sequence (��. 
)� is specifically increasing (resp. decreasing) to �. 
 whenever (��)� increases (resp. decreases) to �  
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2. If (��)� is uniformly bounded and (��)� is pointwisely convergent 

to � then the sequence (��. 
)� converges to �. 
 with respect to the 

specific order relation in ℰ. 

3. If 3� ∈ ℰ and ∑3� ∈ ℰ6then we have �. 
 = ∑ �. 3��  ∀� ∈ 34ℬ 

4. :��� �. 
 ⊂ <� > 0=>>>>>>>>>> ∩ :��� 
 (@A means the fine closure of @) 

5.  ≥ �. 
  whenever  ∈ ℰ and  ≥ �. 
 on the set  <� > 0= 
6. If 
 ∈ ℰ. and �. > 0 is such that +�. is bounded then the kernel C
: 34ℬ → ℰ6 by C
(�) = �. (
 + +�.) has the complete maximum 

principle, ℰF
 ≡ ℰ* and 
 is a C − 3� 	H�I. 
7. �. (J. 
) = (�J). 
 for any �, J ∈ 34ℬ  and any 
 ∈ ℰ6 

This construction generalize a similar one given in [7] , [11] 

Similar results presented in this chapter may be found in [6], [7], [8], 

[9],[10],[11],[12],[16],[17]. 

   Chapter 3. In this chapter we present a study of so called Darboux-

Stieltjes integral for the functions taking values in a Banach space with 

respect to a real function. For the scalar case this notion was introduce by 

[15] and deepened by I. Bucur [13], [14] , [15]  

    Here we give the proof of some well known assertions in the particular 

case of Riemann-Stieltjes integrability but which are not so trivial in our 

case.  At the end of this chapter we suggest by an example how to use this 

type of integration in potential theory ( the duality in a particular case of 

potential  theory)
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CHAPTER 1 

 

 

 
NEARLY SATURATION, BALAYAGE AND FINE 

 CARRIER IN EXCESSIVE STRUCTURES 

 
 

 
    In this chapter, we give minimal conditions on the space K, such that a good part 

of potential theory in the frame of excessive structure, associated with a proper 

submarkovian resolvent family of kernels on K , may be developed. We characterize 

the regular excessive elements as being those excessive functions for which the 

pseudo-balayages associated with, are balayages and we construct a fine carrier 

theory without using any kind of compactification.  

     

 

 

1.1. PRELIMINARIES AND FIRST RESULTS 

    In this paragraph * = (vM),N. is a proper sub-Markovian resolvent of 

kernels on a measurable space(Χ, ℬ). As usually we denote by � = �* the set 

of all positive ℬ − measurable functions  
 ∶  Χ ⟶ <0, +∞= such that αvM
 ≤ 
 for all � > 0 and by �T the set of all finite elements of �. In 

addition, we denote by ℰ = ℰ* the set off all excessive, ℬ −measurable 

functions, which are finite  * − �.  . i.e. 

ℰ = {
 ∈ �/ sup, αvM
 = 
   �	�   v,(V<
WX=) = 0     ∀� ∈ ℝY} 

     It is known that for any 
 ∈ � the family (αvM
)M∈ℝZis increasing and the 

function 
 [  defined by: 


 [ = lim,⟶X αvM
 = lim�⟶X 	v�
 = sup� 	v�
 

called the regularized of 
 (w. r  to * ) is dominated by 
 and the set  <
 [ < �= is * − negligible i.e. v,(V<
 [bc=) = 0  for any � ∈ ℝY or for some �. ∈ ℝY. Moreover, the following properties hold: 
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1. �
d + e
fg =  � 
dh + e 
fh  ∀ �, e ∈ ℝY, 
d, 
f ∈ � whenever the 

algebraic operations make sense 

2. 
d ≤ 
f  ⟹   
dh ≤ 
fh   ∀ 
d, 
f ∈ � 

3. 
 [j =  
 [      ∀
 ∈ �  and 
 = 
 [  ∀
 ∈ ℰ 

4. 
�h  ↑ 
 [     ∀
, 
� ∈ � such that 
� ↑ 
 

5. If   
d, 
f ∈ � and   
d + 
f ∈ ℰT  then   
d, 
f ∈ ℰ 

6. For any increasing sequence (
�)� from � (respectively ℰ) the 

function ��3� 
� belongs to �(respectively ℰ, H� ��3� 
� < ∞ *. �.  . ) 

7. For any sequence (
�)�from �, the function H	�� 
� belongs to � 

8. For any sequences (
�)� from ℰ the function l	�� 
�g  is the infimum 

in ℰ of the set {
�/ 	 ∈ ℕ} and will be denoted by  ⋀� 
� 

We have    
 + ⋀� 
� = ⋀�(
 + 
�)         ∀
 ∈ ℰ 

9. For any ℬ − measurable function � on Χ the set {
 ∈ � / 
 ≥ �} 

possesses the smallest element denoted by o��  or o� 

Particularly if � is of the form 
f − 
d with 
d, 
f ∈ � then we have: o(
f − 
d) = o(
f − 
d) ≼� 
f�  

where we have written � ≼� q if there exists 
 ∈ � such that: 

q = � + 
, � and q being positive functions on K. 

The relation ≼�  is so called the specific order given by � 

If @ ∈ ℬ and 
 ∈ � then the element o(Vr. 
) is called the réduite of 
 on the set A and will be noted by or
. The following properties of 

the reduite operation are well known: 

a. The map 
 ⟶ or
 from � to � is a � − 4�I�s�J  on � i.e. 

it is additive, increasing, σ −continous in order from below (o
�)u ↑ o
 whenever  
� ∈ �, 
� ↑ 
) 

b. If (@�)� is an increasing sequence from ℬ and @ = y @��    

then we have: orz
 ↑ or
   ∀
 ∈ � 

c. or
 = 
 on @ and or{ y r| + or{ } r| ≤ or{
 + or|
 for 

any  @d, @d ∈ ℬ and any 
 ∈ � 

10.  If 
d, 
f ∈ ℰ*  then or(
f − 
d) ∈ ℰ* and or(
f − 
d) ≼ℰ* 
f 

where ≼ℰ* is the specific order given by ℰ* 

11. The set (ℰ* , ≼ℰ*) is a conditionally � − :��3I   I�H:  H.  . for any 

sequence (
�)� ∈ ℰ*  there exists the greatest lower bound noted by ⋏� 
� and we have: 
 + ⋏� 
� = ⋏�(
 + 
�)  ∀
 ∈ ℰ 

If (
�)� ∈ ℰ* is specifically dominated in ℰ there exists the smaller 

upper bound noted by ⋎� 
� and we have: 
 + ⋎� 
� = ⋎�(
 + 
�)  ∀
 ∈ ℰ 

Moreover, if the sequence (
�)� is specifically increasing (resp. 

decreasing) then we have:  ⋎� 
� = ��p� 
�  (� �3. ⋏� 
� = H	�� 
�) 
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where ��3� 
�  (� �3. H	�� 
�) is the pointwise supremum ( resp. 

infimum) of the sequence of functions (
�)� on K. 

  Particularly the Riesz decomposition property holds in ℰ and � i.e. 

for any 
, �d, �f belonging to ℰ (resp. �)  with 
 ≼ �d + �f there 

exist 
d, 
f in ℰ (resp. �) such that 
d ≼ �d,  
f ≼ �f, 
 = 
d + 
f. 

In fact the same � −Riesz decomposition property may be 

immediately shown 


 ≼ � ��
X

�Wd
⟹ 
 = � 
�

X

�Wd
 , 
� ≼ ��      ∀H ∈ ℕ 

  Other well known assertion from the � − vector lattices may be 

restated in the convex cones ℰ  and �. 

  Among them the following one will be used in the sequel: For any 
d, 
f in ℰ (resp. �) we have 

 
d ⋏ 
f + 
d ⋎ 
f = 
d + 
f 
 

12. The Riesz decomposition property with respect to the pointwise order 

relation holds in �(respectively ℰ) i.e. for any 
, �d, �f in � (resp. ℰ) 

with 
 ≤ �d + �f there exist 
d, 
f in � (resp. ℰ ) such that 

 
 = 
d + 
f, 
d ≤ �d,  
f ≤ �f . 

   The following decomposition property is inspired by similar one used by 

Mokobodzki in the study of subordination resolvents (see [22] ) 

    Lemma1.1.1. For any 
 ∈ �T, and any @ ∈ ℬ there exist 
r and  
r�  in � 

such that 


 = 
r + 
r�   �	�  or
r = 
r, o�∖r
r� = 
r�  

 

Proof: We define inductively two sequences (
�� )� and (
���)� in � as 

follows: 


d�� = o(
 − or
),     
d� = 
 − o(
 − or
)                    

�Yd�� = o(
�� − or
�� ),     
�Yd� = 
�� − o(
�� − or
�� ) 

       Obviously, we  have   
�� = 
�Yd� + 
�Yd ��  and  one may show that 
�Yd� ≤ or
�� ≤ 
��  and 
�Yd�� = o�∖r
�Yd�� . So the sequence (
�� )� is 

specifically decreasing in � and the sequence (∑ 
�����Wd )� is specifically 

increasing in � and we have  


 = 
�� + � 
���
�

�Wd
      ∀	 ∈ ℕ∗ 

Therefore, 
 = 
r + 
r�  where we have noted  


r = H	�� 
�� = ⋏� 
��  , 
r� = � 
���
X

�Wd
∶= ��3� � 
���

�

�Wd
= ⋎� � 
���

�

�Wd
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From the preceding considerations we deduce  

 

or �⋏� 
�� � = ⋏� or
�� = ⋏� 
��   , or
r = 
r                                          
 o�∖r(∑ 
���X�Wd ) = ∑ o�∖r
��� = ∑ 
���X�WdX�Wd , o�∖r
r� = 
r�          ∎ 

1.2. A CHOQUET TYPE LEMMA 

Lemma 1.2.1.  Let (
�)� be a sequence in � and for any 	 ∈ ℕ let (
��)�� 

be a sequence in � which is specifically increasing to 
� . 

1. We have  ⋎�  {
�/ 	 ∈ ℕ}  = ⋎�  { � / 	 ∈ ℕ } 

where � = : ⋎�,��� 
�,� 

2. If 
� < ∞ and for any sequence � = (��)�∈ℕ in ℕ we denote 
� = ⋏�  {
��z / 	 ∈ ℕ} 

then we have  ⋏� {
� / 	 ∈ ℕ}  = sup{
� /� ∈ ∑ℕ} 

where  sup  stands for the pointwise supremum and  ∑ℕ  for the set 

of all sequences of natural numbers. 

Proof. 1.  Obviously we have 


� = ⋎� {
�� /� ∈ ℕ} ≼ ⋎� {� /� ∈ ℕ} ≼ ⋎� {
� /� ∈ ℕ} 

and therefore  ⋎� {
� /	 ∈ ℕ} = ⋎� {� /	 ∈ ℕ} 

 

             2.  Let � ∈ & and let � be a real number, � > 0. Since the sequence (
��)� is specifically increasing (in �) to the element 
� of �  we have  


�(�) = ��3� 
�� (�) = lim�→X 
�� (�) 

and therefore we may consider �� ∈ ℕ such that  


�(�) ≤ 
��z(�) +  �fz    �� �(�) <  �2� 

where � ∈ � is such that 
� = 
��z + � 

     If we denote 
. = ⋏�{
� / 	 ∈ ℕ} , from the preceding consideration we 

have  


. ≼ 
��z + 
. ⋏ �� �
�

�Wd
�   ∀	 ∈ ℕ, 



    NEARLY SATURATION, BALAYAGE AND FINE CARRIER IN                                     

EXCESSIVE STRUCTURES 

 

12 

 

   
. ≼ 
��z + ⋎� {
. ⋏ �� �
�

�Wd
�   /� ∈ ℕ}, 


. ≼ ⋏� {
��z /	 ∈ ℕ} + ⋎� {
. ⋏ �� �
�

�Wd
� /� ∈ ℕ} 

    On the other hand at the point � ∈ & the following inequality holds  

⋎� {
. ⋏ �� �
�

�Wd
�   /� ∈ ℕ}(�) =  lim�→X �
. ⋏ �� �

�

�Wd
� � (�) 

                                             ≤ lim�→X � �
�

�Wd
 (�) ≤  �  

and therefore  


.(�) ≤ 
�(�) +  �       where   � = (��)�∈ℕ. 

The number  � being arbitrary we get  


.(�) = sup�∈∑ℕ 
� (�)      ∀� ∈ &                        ∎ 

Lemma 1.2.2. Let (
�)� be a sequence in ℰ and for any 	 ∈ ℕ let (
��)�  

be a sequence in ℰ which is ℰ- specifically increasing to 
�  

1. If the sequence (
�)� has a specific majorant in ℰ then 

 ⋎ ℰ 
� = ⋎ ℰ � 

where 

 � =: ⋎ ℰ{
�� /H, � ≤ 	} 

2. If  
� < ∞ and for any sequence � = (��)�∈ℕ , in ℕ, we denote  
� = ⋏ℰ {
�� /� ∈ ℕ} 

 

then we have  

 ⋏ℰ {
� / 	 ∈ ℕ}  = sup{
� /� ∈ ∑ℕ} 

where  sup  stands for the pointwise supremum and  ∑ℕ  for the set of 

all sequences of natural numbers. 

Proof.  We apply Lemma 1.2.2.  we have  

1.     ⋎ ℰ 
� = ⋎ � 
� , ⋎ ℰ � = ⋎ � � 

 2.       ⋏ℰ {
�� /� ∈ ℕ} = ⋏� {
�� /� ∈ ℕ}                  ∎  
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We remember also the following definition 

     A map �: ℰ ⟶ ℝ� Y which is additive ,increasing, � −continuous in order 

from below and for any 
 ∈ ℰ there exists a sequence (
�)� in ℰ, increasing 

to 
 such that �(
�) < ∞ for all n, is called � − � − H	 J��I. 
 

 

1.3. PSEUDO-BALAYAGES ASSOCIATED WITH 

SUPERMEDIAN FUNCTIONS 

 

    We remember that a map �: � ⟶ � is called pseudo-balayage on � if it is 

increasing (with respect to the pointwise order relation), additive, 

contractive (�
 ≤ 
) and idempotent (�f
 = �(�
) = �
 for all ∈ � . 

A pseudo-balayage B is called balayage if it is � − continuous in order from 

below i.e. the sequence (�
�)� increases to �
 whenever the sequence (
�)� increases to 
. 

  A  typical example of balayage on � is the map: 


 ⟶ or
 

where @ ∈ ℬ. 

    In the sequel, for any element 
 ∈ �T we associate a pseudo-balayage �
such that �

 = 
. The procedure is inspired from a similar one developed 

in the frame of satandard H-cones. 

 

    Proposition 1.3.1.  Let 
 ∈ � be a finite element. Then for any  ∈ � the 

set  

�� ≔ {� ∈ � �⁄ ≤   �	� � ≼ �
  ��� ���  � > 0} 

has an upper bound in � with respect to the pointwise order relation and the 

map 

 ⟶ ��3� �� ≔ �
 

Is a pseudo-balayage with �
(
) = 
. Moreover if � is a pseudo-balayage 

with �(
) = 
 we have �
 ≤ � i.e. �
 ≤ �   ∀ ∈ �  

 

 

   Proof. We consider the subset ��. of �� given by  

 ��. = {	
 − o(	
 − )/	 ∈ ℕ∗} 

 

The set ��. is countable an co-final in �� i.e. for any � ∈ �� there exists 	 ∈ ℕ such that  
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� ≤ 	
 − o(	
 − �) 

Indeed, let � ∈ ℝYsuch that � ≼ �
 and ≤  . We have � ≼ 	
 for 	 ∈ℕ, 	 ≥ � and we remark that  � = 	
 − o(	
 − �) 

On the other hand we notice that the sequence (	
 − o(	
 − ))� is 

increasing. Hence, the supremum of the set ��. belongs to � and we have 

 �
 = ��3�� = ��3��. ≤  

   If = 
 , obviously 
 ∈ �
 and therefore �

 = 
 

   The fact that the map �
 is increasing follows from the definition of �
 

because if d ≤ f then ��{ ⊂ ��|  

Using the definition of the sets ��{ , ��|and ��{Y�|for d, f ∈ � we deduce, 

using Riesz decomposition property(with respect to the pointwise order 

relation) that  ��{ +  ��| = ��{Y�|  

So we have  

 �
(d + f) = ��3��{Y�| = ��3��{ + ��3��| = �
(d) + �
(f) 

For any  ∈ � and any � ∈ �� we have � ≤ �
 and by the definition of ��
� 

we have � ∈ ��
�. Hence  � ≤ �
(�
),    �
() ≤ �
��
() , �
() = �
f     

 

If � is a pseudo-balayage on � such that �
 = 
, then for any � ∈ �, � ≼ �
 

for some � > 0 we have 

 �(�
) = ��
 = �
 ,                                                          �(�) + �(�
 − �) = �(�
) = �
 = � + (�
 − �),   �� ≤ �, �(�
 − �) ≤ �� − 
                                  
And therefore �� = �, �(�
 − �) = �
 − � 

Let now  ∈ � and � ∈ ��. From the preceding consideration we deduce  

 �� = �    ∀� ∈ ��, �
 = ��3¡∈¢£
� = ��3¡∈¢£

�� ≤ �                ∎ 

     Remark 1.3.2.  For the convex cone ℰ we have similar definition of the 

pseudo-balayge or balayage operator �: ℰ ⟶ ℰ 

     Corollary 1.3.3. For any element 
 ∈ ℰT, the restriction of the map �
 

defined as above is a pseudo-balayage on ℰ . 

   Proof. We remark that for any  ∈ � which is finite * − �.   we have �
 ∈ ℰ. Indeed, we have �� ⊂ ℰ and therefore the supremum of the 

increasing and dominated sequence (	
 − o(	
 − ))� is an element of ℰ ∎     
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1.4. FINE CARRIER FOR EXCESSIVE FUNCTIONS 

    In the sequel we shall denote by ℰ. the set of all finite excessive functions 
 on Χ such that for any specific minorant � ∈ ℰ (� ≼ 
) the associated 

pseudo-balayage �¡ is a balayage on ℰ. 

   As in the introduction of this chapter for any subset @ of Χ and any element  ∈ ℰ we denote  orℰ  ≔ inf{� ∈ ℰ /� ≥   �	 @ } 

  Generally, the function orℰ  is not ℬ − measurable but if it is then this 

function belongs to �* and the function � ⟼ sup �+, � orℰ  (�) 

is denoted by �r. Obviously  �r ∈ ℰ. 

    Definition 1.4.1. The set @ is called subbasic if the function �r is 

defined for all 
 ∈ ℰ and we have �r
 = 
 on @. 

A subbasic set ¦ is called � 4��H: �  if we have  

¦ = {� ∈ Χ / �§
(�) = 
(�), ∀
 ∈ ℰ}  
Remark 1.4.2. It is obvious that a subset ¦ of K is a subbasic if and only if 

the function orℰ 
 belongs to ℰ and therefore orℰ  = �r
 for all 
 ∈ ℰ.  

Remark 1.4.3. If ¦ is subbasic then the map on ℰ  


 ⟼ �§
 

is a balayage on ℰ. 

Remark 1.4.4.  If ¦ is a subbasic set and 4(¦) is given by 

4(¦) = {� ∈ Χ / �§
(�) = 
(�)  ∀
 ∈ ℰ}                         
then �¨(§)
 = 
 for all 
 ∈ ℰ and 4(¦) ∈ ℬ. 

  The last assertion follows immediately from the fact that  

4(¦) = <�§+�. = V�.= 
where �. is a ℬ −measurable, 0 < �. < 1 and +�. < ∞. 

     On the space K, we consider as usually the fine topology i.e. the coarsest 

topology / on K making continuous all functions of the vector lattice ℰ¨ − ℰ¨ of bounded functions on K. We suppose here that ℰ is min-stable 

and V� ∈ ℰ. 
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   We remember that all elements 
 ∈ ℰ are continuous with respect to / and 

any point �. ∈ K has a base of neighbourhoods of the form �. ∈ <
 −  > 0= 
with 
,  ∈ ℰ,  ≤ 
 ≤ 1. Obviously, the elements of this base belong to ℬ. 

  Definition 1.4.5. We say that a balayage � on ℰ is representable if there 

exists a basic set in K denoted by 4(�) such that 

�
 = �¨(�)
 

for all 
 ∈ ℰ. 

     The space K is called nearly saturated if all balayages on ℰ are 

representable. 

From now on, we suppose that K is nearly saturated and the convex cone ℰ is 

min-stable and contains the constant functions. 

   Definition 1.4.6.  For any element 
 ∈ ℰ. we associate the subset 4(�
) 

the base of the balayage �
. We shall denote it by :��� 
 and we shall call it 

the (fine) carrier of 
 (with respect to ℰ). 

From the preceding remark 1.4.4., we deduce that the set :��� 
 is fine 

closed and we have :��� 
 = ∅ ⟺ 
 = 0 

   Proposition 1.4.7. The following assertions hold 

1. ℰ. is a solid convex sub-cone of  ℰ with respect to the specific order  

2. :��� (
d + 
f) = :��� 
d y :��� 
f          ∀
d, 
f ∈ ℰ. 

3. If (
�)� is a sequence in ℰ. such that the function ∑ 
�X�Wd  is finite 

then this function belongs to ℰ. and the set :���( ∑ 
�X�Wd ) is the 

closure (with respect to /) of the set y :��� 
�X�Wd  

 

Proof. 1. and 2. We remark firstly that ¦d ∪ ¦f is also a basic set and for 

any element  ∈ ℰ we have  

�§{∪§| = �§{ ∨ �§| 

Hence if we take ¦d = :��� 
d, ¦f = :��� 
f then  


d + 
f = �§{
d + �§{
f ≤ �§{∪§|
d + �§{∪§|
f = �§{∪§|(
d + 
f)                                                                                   ≤ 
d + 
f, �§{∪§|(
d + 
f) = 
d + 
f 

 

And therefore for any � ∈ ℰ, � ≼ �(
d + 
f) we have 

�§{∪§|� = � 

  Hence for any  ∈ ℰ and any � ∈ ℰ, � ≤ , � ≼ �(
d + 
f) for some � > 0 

we have  � = �§{∪§|� ≤ �§{∪§|, �
{Y
| ≤ �§{∪§| 

   We have also �§{∪§| ≤  �
{Y
|  because  �
® ≤ �
{Y
| for H =1, 2 . 
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Hence the map on ℰ   ⟼ �
{Y
| = �§{∪§| 

Is a balayage on ℰ. The preceding considerations show that 
d + 
f ∈ ℰ. for 

all 
d, 
f ∈ ℰ. and  

:��� (
d + 
f) = 4��
{Y
|  = 4(�
{) ∪ 4��
|  = :��� 
d ∪ :��� 
f 

The last assertion may be proved using the proposition 1.3.1 and the fact that 

a countable union of basic set is a subbasic set          ∎ 

 

 

      Proposition 1.4.8. For any element � ∈ ℰ. we have 

a. 
 ≥ � on  :��� � ⟹ 
 ≥ � on &   

b. The set :��� �  is fine closed and ℬ-measurable subset of  & 

c. If  F is a fine closed subset of & such that  
 ∈ ℰ, 
 ≥¯ �  ⟹ 
 ≥ �  on & 

then we have :��� � ⊂ ° 

d. :���� = {� ∈ &/� � − � − H	 J��I, � ≤ℰ �±, �(�) = �(�)                                                                                   ⇒ � =ℰ �± }         
Proof. a) We have  

� = �¡� = �³´66 ¡� ≤ �³´66 ¡
 ≤ 
  if   ∈ ℰ, 
 ≥³´66 ¡ � 

The assertion b) follows from the fact that  

:��� � = 4(�¡) = {� ∈ &/�¡
(�) = 
(�)   ∀
 ∈ ℰ}                     = {� ∈ &/�¡+�(�) = +�(�)} 

where � is a ℬ −measurable 0 < � < 1, +� < ∞. 

c) Let us denote for simplicity by o∘r
 = or
ℰ . 

Using the hypothesis, we have 

� ≥ o∘¯� ≥ �, o∘¯� = �, o∘¯�� = ��       ∀� ∈ ℝY 

Since generally we have o∘¯
 ≤ 
 we deduce that  

o∘¯q = q       ∀q ∈ ℰ, q ≼ � 

and therefore for any q ∈ ℰ, q ≤ 
, q ≼ �� for some � > 0 we have  

o∘¯
 ≥ o∘¯q = q 

The element q being arbitrary we get �¡
 ≤ �¯
 for any 
 ∈ ℰ.  

   Let now �. ∈ :��� � ∖ ° and let 
d, 
f ∈ ℰ, 
� ≤ 1 be such that 


d ≤ 
f, 
d(�.) < 
f(�.), 
d = 
f  �	 ° 

   From the preceding considerations, we have the contradictory relations: 
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o¯
d = o¯
f    on K 

 0 < 
f(�.) − 
d(�.) = �³´66 ¡
f(�.) − �³´66 ¡
d(�.) 
 
� ≥ o¯
� ≥ �¡
�  H = 1,2   
�(�.) ≥ o¯
�(�.) ≥ �¡
�(�.) = 
�(�.)    

Hence :��� � ∖ ° = ∅. 

d) let �. ∈ & such that if � is an � − � − integral on ℰ with � ≤ �±¹  on ℰ 

and �(�) = �(�.) then � = �±¹  on  ℰ. 

  If �. ∉ :��� � then using  b) we may consider two functions  


d, 
f ∈ ℰ, 
d ≤ 
f on &, 
d(�.) < 
f(�.) and 
d = 
f on :��� � 

   We take as a � − � − H	 J��I � on ℰ the map  


 ⟼ �¡
(�.) = �(
) 

   Obviously we have �(
) ≤ 
(�.) for all 
 ∈ ℰ and �(�) = �(�.) and 

therefore, using the hypothesis �(
) = 
(�.) for all 
 ∈ ℰ 

  The last assertion gives us  

�¡
d = �¡
f  �	  &, �¡
� = �(
�) = 
�(�.)    H = 1,2 

                     
d(�.) = 
f(�.), 
This contradicts the choice of 
d and 
f. 

Let now �. ∈ :��� � and let � be an � − ℎ − integral such that � ≤�±¹on ℰ, �(�) = �(�.). We get the relation  

�(q) = q(�.) for all q ∈ ℰ, q ≼ �� for some � ∈ ℝY 

Hence taking 
 ∈ ℰ, q ∈ ℰ, q ≤ 
, q ≼ �� for some � ∈ ℝY we have  

�(
) ≥ �(q) = q(�.) 

The element q being arbitrary we get  

�(
) ≥ �¡
(�.) = 
(�.), � = �±¹   �	 ℰ                             ∎ 

1.5. THE REGULAR EXCESSIVE ELEMENTS  

    Definition 1.5.1. An element 
 ∈ ℰT is called regular if for any increasing 

sequence (
�)� with sup 
� = 
 we have  

⋀� o(
 − 
�) = 0 

   The potentials are regular elements. 



    NEARLY SATURATION, BALAYAGE AND FINE CARRIER IN                                     

EXCESSIVE STRUCTURES 

 

19 

 

The following result is well known in standard H-cones .A similar result may 

be found in [6] (therem 3.2.9) 

    Proposition 1.5.2. If 
 is a regular element of ℰ then the associated 

pseudo-balayage �
 is a balayage. 

Proof. Let (
�)� be a sequence in ℰ increasing to 
 and for any 	 ∈ ℕ  let �� ∈ ℰ be such that  o(
 − 
�) + �� = 
 

The sequence (o(
 − 
�))� is decreasing and the sequence (��)� is 

increasing with respect to the pointwise order relation.  

Therefore, we have  

� ≔ sup� �� ∈ ℰ   and infu R(
 − 
�) ∈ � 

But since  � + infu R(
 − 
�) = 
 

We deduce that infu R(
 − 
�) ∈ ℰ. Hence using the regularity of 
 we have  

inf� o(
 − 
�) = ∧� o(
 − 
�) = 0,   � = 
 

With the above notations we have  

�� ≤ 
� ≤ 
, �� = �
�� ≤ �

�   ∀	 ∈ ℕ 

Therefore sup �
 
� = 
. Obviously for any � ∈ ℝY and any sequence (
�) 

in ℰ increasing to �
 we have  sup �
 
� = �
 

   Now if � ∈ ℰ, � ≼ 
 and (��)� is a sequence in ℰ increasing to � we have  

sup �
�� = � 

Indeed if we denote q = 
 − � then the sequence (�� + q)� increases to 
 

and therefore  

sup� �
(�� + q) = 
, sup� �
�� + q = 
, sup� �
�� = � 

To finish the proof we consider an arbitrary element  of ℰ and a sequence (�)� in ℰ increasing to . Let � ∈ �� where 

�� ≔ {� ∈ � �⁄ ≤   �	� � ≼ �
  ��� ���  � > 0} 

Since � ≤  then the sequence (inf(�, �))�is in ℰ and increases to inf(�, ) = � 

But  � ≼ �
 for some � ∈ ℝY. From the preceding considerations we have  

sup� �
(inf(�, �)) = �
� = � 
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Hence  

sup� �
� ≥ sup� �
(inf(�, �)) = �
� = � 

But � being arbitrary we get  

sup� �
� ≥ �
, sup �
� = �
                                       ∎ 

Theorem  1.5.3. The element 
 ∈ ℰT is regular if and if for any � ∈ ℰ, � ≼ 
 the pseudo-balayage �¡ is a balayage on ℰ i.e. 
 ∈ ℰ.  

   Proof. let 
 ∈ ℰ. and let (
�)�be a sequence in ℰ increasing to 
. For ¿ ∈ ℝ, � > 0 and 	 ∈ ℕ, 	 > 0 we denote by A� the subset of K given by  

A� = Á
 < 
� + Â1 − 1	Ã ¿Ä = {� ∈ K/
(�) < 
�(�) + Â1 − 1	Ã ¿} 

Obviously we have A�� ⊂ A�Ydand A� is fine open for every 	 ∈ ℕ, 	 > 0. 

Moreover  y A�X�Wd = K . 

Let us denote �� = o �
 − 
� − �1 − d
�� ¿� and q� = 
 − ��, obviously  

�� = oÅ∖Æz�� = oÅ∖Æzℰ ��  since Á
 > 
� + Â1 − 1	Ã ¿Ä ⊂ K ∖ A� 

And therefore  

��Y� = oÅ∖ÆzZÈ��Y� ≤ oÅ∖Æz��Y�       ∀	, � ∈ ℕ∗ 

 ��Y� = oÅ∖Æz��Y�       ∀	, � ∈ ℕ∗                                 
Since �� + q� = 
, and the sequence (��)� is decreasing it follows that the 

sequence (q�)� is increasing to an element q ∈ ℰ, and if we denote � =inf� ��, we have  

� ∈ �, � + q = 
, � [ + q [ = 
 [ , � [ + q = 
, � = � [  

Hence � ∈ ℰ.and from the preceding consideration, it follows  

oÅ∖Æz(��Y� + q�Y�) = oÅ∖Æz
     ∀	, � ∈ ℕ∗, 
��Y� + oÅ∖Æz(q�Y�) = oÅ∖Æz
     ∀	, � ∈ ℕ∗, 

Making � ⟶ ∞ we obtain 

� + oÅ∖Æzq = oÅ∖Æz
 

But on the other hand  

oÅ∖Æz� + oÅ∖Æzq = oÅ∖Æz
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And therefore oÅ∖Æz� = �. The set K ∖ A� being finely closed we deduce :��� � ⊂ K ∖ A�for any 	 ∈ ℕ. But } K ∖ A� X�Wd = ∅ and therefore � = 0, 

inf� o �
 − 
� − �1 − d
�� ¿� = 0  

The relations  

o(
 − 
�) ≤ o(
 − 
� − (1 − d�ℰ )¿) ℰ + (1 − d�)¿    ∀	 ≥ 1 �	� ¿ > 0 

give us the relations 

inf� o(� − 
�) ≤ ¿,ℰ  inf� o(� − 
�) = 0 ℰ  

that is 
 is a regular element of ℰ                                

    Conversely, if 
  is regular then any element � ∈ ℰ, � ≼ 
 is regular and 

by proposition 1.5.2. the pseudo-balayage �¡ is a balayage i.e. 
 ∈ ℰ.∎   

Remark 1.5.4. In their papers concerning the semi-polar sets and regular 

excessive functions respectively balayages on excessive measures L. Beznea 

and N. Boboc (see [4] and [5]) show that for any basic set ¦ which is 

analytic there exists a bounded regular excessive function É such that its fine 

carrier, is contains in ¦ 

Remark 1.5.5. We may prove the following assertion : 

If  * = (+,),-. is a standard resolvent family of kernels on a measurable 

space  (&, ℬ) i.e.  

a. * is a proper sub-Markovian  resolvent  

b. The convex cone ℰ of all excessive functions with respect to * is min-stable and contains the positive constant functions  

c. There exists a distance � on & such that the associated 

topology /0 is smaller than the fine topology on & ( i.e. the 

coarsest topology / on & making continuous all functions of  ℰ) 

d. The Borel structure associated with the distance � coincides 

with ℬ 

 

and if the space (&, ℬ) is such that for any regular and bounded excessive 

function 3 with respect to the resolvent * , the balayage associated as above 

to 3 is representable then all balayages on ℰ are representable.
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CHAPTER 2 

 

 

THE SPECIFIC MULTIPLICATION IN EXCESSIVE 

STRUCTURE 

 

     In this chapter, we construct so called specific multiplication in the frame of  

excessive structure i.e. if  * = (+,),-.  is a standard resolvent on a measurable space (K, ℬ) then noting by ℰ6 the set of all regular excessive elements of the convex cone ℰ of 

all excessive functions we construct a map (�, 
) ↦ �. 
 from 34ℬ × ℰ6 → ℰ6  such that 

it is bilinear and has the following properties: 

1. The sequence (��. 
)� is specifically increasing (resp. decreasing) to �. 
 whenever (��)� increases (resp. decreases) to �  

2. If (��)� is uniformly bounded and (��)� is pointwisely convergent 

to � then the sequence (��. 
)� converges to �. 
 with respect to the 

specific order relation in ℰ. 

3. If 3� ∈ ℰ and ∑3� ∈ ℰ6then we have �. 
 = ∑ �. 3��  ∀� ∈ 34ℬ 

4. :��� �. 
 ⊂ <� > 0=>>>>>>>>>> ∩ :��� 
 (@A means the fine closure of @) 

5.  ≥ �. 
  whenever  ∈ ℰ and  ≥ �. 
 on the set  <� > 0= 
6. If 
 ∈ ℰ. and �. > 0 is such that +�. is bounded then the kernel C
: 34ℬ → ℰ6 by C
(�) = �. (
 + +�.) has the complete maximum 

principle, ℰF
 ≡ ℰ* and 
 is a C − 3� 	H�I. 
7. �. (J. 
) = (�J). 
 for any �, J ∈ 34ℬ  and any 
 ∈ ℰ6 

 

      

2.1. PRELIMINARIES AND FIRST RESULTS 

Definition 2.1.1. If (&, ℬ) is a measurable space and * = (+,),-. is a resolvent family 

of kernels on (&, ℬ) we shall say that * is a standard resolvent if  

a. * is a proper sub-Markovian resolvent  

b. The convex cone ℰ of all excessive functions with respect to * is min-

stable and contains the positive constant functions 

c. There exists a distance � on & such that the associated topology /0 is 

smaller than the fine topology on & ( i.e. the coarsest topology / on & 

making continuous all functions of  ℰ) 

d. The Borel structure associated with the distance � coincides with ℬ 

e. The space (&, ℬ) is nearly saturated with respect to ℰ i.e. any � −balayage on ℰ is representable. 
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    Remark 2.1.2.  In the case where the above properties a), b) are fulfilled and ℬ 

is separable and ℬ coincides with the � −algebra generated by ℰ then there exists 

a distance � as before. 

    Throughout this chapter * will be a standard resolvent on (&, ℬ) and we shall 

mark by � or �* the convex cone of all *-supermedian functions i.e. all positive ℬ − measurable functions  
 ∶  Χ ⟶ <0, +∞= such that αvM
 ≤ 
 for all � > 0 

and by �T the set of all finite elements of �. 

    We remember that an element 
. ∈ ℰ is called weak unit  in ℰ if for any 
 ∈ ℰ 

the sequence 
� = 
⋀(	
.) increases to 
. Obviously 
. is a weak unit in ℰ if 

and only if 
. > 0 on Χ. 

     If 
. is a weak unit then an element 
 of ℰ is called 
. −bounded if there 

exists � ∈ ℝY such that 
 ≤ �
.. 
     Lemma 2.1.3.  For any element 
 ∈ ℰT and any subset @ of ℬ there exist 
r 

and 
r�  in ℰ such that  
 = 
r + 
r� ,      o∘r
r = or
r = 
r, o∘�∖r
r� = o�∖r
r� = 
r�  

where for any  ∈ ℰ and  @ ∈ ℬ we have noted  

o∘r = inf{� ∈ ℰ �⁄ ≥    �	 @} 

  or = inf{� ∈ �* �⁄ ≥    �	 @} 

Proof.  Using lemma 1.1.1. we deduce that for the function 
 ∈ ℰT we may 

construct 
r and 
r�  in �* with the following properties  


 = 
r + 
r� ,      or
r = 
r, o�∖r
r� = 
r�  

   Since 
 ∈ ℰ and 
r, 
r�  are in �* we deduce that 
r = 
rh, 
r� = 
r�Ê and 

therefore 
r ∈ ℰ, 
r� ∈ ℰ. Obviously we have  


r = or
r ≤ o∘r
r ≤ 
r, o∘r
r = 
r = or
r 

                       
r� = o�∖r
r� ≤ o∘�∖r
r� ≤ 
r� , o∘�∖r
r� = 
r� = o�∖r
r�     ∎ 

   We remember that an element 3 ∈ ℰ is called regular if for any sequence (
�)� in ℰ which increases to 3 we have 

⋀� o(3 − 
�) = 0 

     We denote by ℰ6 the convex cone of all regular elements of ℰ and by ℰT the 

convex cone of all regular finite element of ℰ. 

   The following statement shows that generally in the study of regular elements 

we may restrict our self to the finite regular elements. 

    Lemma 2.1.4. For any weak unit 
. in  ℰ and any regular element 3 of  ℰ there 

exists a sequence (3�)� ⊂ ℰ6such that 3� is 
. −bounded for any 	 ∈ ℕ and 3 = ∑ 3	X�Wd  
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Proof. For any 	 ∈ ℕ, 	 ≥ 1 we consider the regular element 
� which is 
. −bounded given by  


� + o(3 − 	
.) = 3, 
� ≤ 	
. 

    Since the sequence (�)� of � given by  

� = 3⋀(	
.) 

increases to 3, the sequence  

o(3 − 	
.) = o(3 − �) 

decreases to zero in ℰ. 

   For any 	 ∈ ℕ, 	 ≥ 1 we put  

�� = ⋎�Wd� 
� ,   q� =⋏�Wd� o(3 − �) 

   Obviously, �� + q� = 3 for any H ≥ 1, the sequence (��)� is specifically 

increasing, the sequence (q�)� is specifically decreasing and since 

                           q� ≤ o(3 − �) we get ∧� q� = 0 

   Hence the sequence (��)� is specifically increasing to  3. We put now  

3d = �d = 
d          3�Yd = ��Yd − �� 

  We have  

� 3�
�

�Wd
= ��, � 3�

X

�Wd
= ⋎� �� = 3 

and for any 	 ∈ ℕ we have  

3� ≤ �� ≤ � 3�
�

�Wd
≤ � H
. = 	(	 + 1)2

�

�Wd

.     ∎ 

     Corollary2.1.5.  Any regular element 3 of  ℰ is a sum of sequence (3�)� of  ℰ6 

with 3�bounded for any 	 ∈ ℕ 

   We choose a weak unit the constant function Ë. 
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2.2 THE SPECIFIC RESTRICTION TO THE OPEN SETS OF 

REGULAR ELEMENTS 

 

Lemma 2.2.1. For any 3 ∈ ℰ�
 and any G ∈ τ0 there exist 3Î and 3Î�  in ℰ6such   

that  

3Î + 3Î� = 3, :��� 3Î� ⊂ & ∖ G 

                 3Î ⋏ É = 0    ∀É ∈ ℰ6  ÏHℎ  :��� É ⊂ & ∖ G 

  Such a decomposition is unique. Moreover there exists a sequence (3�)� in ℰ6 

specifically increasing and a sequence (°�)�  of  τ0 −closed subsets of  & such 

that 

°� ⊂ °∘�Yd ⊂ G       and  R z̄3� = 3�. 
     Proof. We consider the sequence (G�)� in τ0 defined by  

G� = {� ∈ G/ �(�, X ∖ G) > d�} 

One can easily verify that (G�)� is increasing to G and G�� ⊂ G�Yd for all 	 ∈ ℕ, 	 ≥ 1. (we denoted by @ �  the closer of the set @ with respect to the 

topology τ0). 

    Using lemma 2.1.3. there exist 3� and 3��  in ℰ6 such that  

3 = 3� + 3�� , oÎz3� = 3�,   o�∖Îz3�� = 3��  

   Since   3� ≥ oÎ�z3� ≥ oÎz3� = 3� we deduce, using lemma 2.1.3. , that :��� 3� ⊂ G�� ⊂ G�Yd. Analogously we deduce that :��� 3�� ⊂ & ∖ G�. 

   The sequence (3�)�, respectively (3�� )�, is specifically increasing, respectively 

specifically decreasing. Indeed, from the equality 

3� + 3�� = 3�Yd + 3�Yd� = 3 

we deduce that there exist �, q in ℰ6 such that  

3� = � + q, � ≼ 3�Yd, q ≼ 3�Yd�  

   Since :��� q ⊂ & ∖ G�Yd ⊂ & ∖ G�� and :��� q ⊂ :��� 3� ⊂ G�� we get :��� q = ∅ and therefore  q = 0, 3� = � ≼ 3�Yd 

   We denote  

 3Î ≔ ⋎�  3� = ⋁�  3� = sup�  3� 

3Î� ≔ ⋏�  3�� = ∧� 3�� = inf�  3��  
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We have 

3 = 3Î + 3Î� , :���3Î� ⊂ Ò 3��
X

�Wd
⊂ & ∖ G 

   Let now É ∈ ℰ6 be such that :��� É ⊂ & ∖ G 

For any 	 ∈ ℕ we have 

:��� (É ⋏ 3�) ⊂ :���É } :��� 3� ⊂ (& ∖ G) ∩ G�� = ∅ 

Hence É ⋏ 3� = 0 for any 	 ∈ ℕ and therefore 

É ⋏  3Î = ⋎�(É ⋏ 3�) = 0 

    As for the uniqueness, we consider , �  ∈ ℰ6 such that 3 =  + �, :��� � ⊂& ∖ G (or o�∖Î� = �) and  ⋏ É = 0 for any É ∈ ℰ6 with :��� É ⊂ & ∖ G. 

     From the equality  

3Î + 3Î� = 3 =  + � 
and from the hypotheses we get  

3Î ⋏ � = 0, 3Î ≼ ; 
3Î� ⋏  = 0,  ≼ 3Î 

and therefore 3Î = , 3Î� = �. 
   We finish the proof taking as °� the set G��    ∎ 

2.3. CALCULUS WITH SPECIFIC RESTRICTION OF A 

REGULAR ELEMENT 

    In the sequel, for any element 3 ∈ ℰ6, any closed subset F of & we shall denote 

by 3Õ the element 3Î�  where G = & ∖ F from lemma 2.2.1. uniquely determined by 

the properties : 

3 = 3Î + 3Õ ;  3Î, 3Õ ∈ ℰ, :��� 3Õ ⊂ F, 3Î ⋏ É = 0 for É ∈ ℰ6 with :��� É ⊂ F. 

  Proposition  2.3.1.  

     a.   Let 3 ∈ ℰ6 and  Gd, Gf be open subsets of & such that Gd ⊂ Gf. We have 

3Î{ ≼ 3Î| 

     b.   If  Fd, Ff are closed subsets of  & such that Fd ⊂ Ff, we have  

3Õ{ ≼ 3Õ| 

      c.   For any sequence (G�)� of open sets of & ( resp. any sequence (F�)�  of   

           closed subset of &) we have 



          THE SPECIFIC MULTIPLICATION IN EXCESSIVE STRUCTURE 

 

27 

 

3y ÎzÖ{ = ⋎� 3Îz  (� �3. 3} ÕzÖ{ = ⋏� 3Õz  ) 

      d.   For any G ∈ τ0 we have  

3Î =⋎ {É ∈ ℰ/É ≼ 3, :��� É ⊂ G} =⋎ {3Õ/F = F> ⊂ G} 

            and there exists an increasing  sequence (F�)� of closed sets of &, F� ⊂ G  

            such that the sequence (3Õz)� is specifically increasing to 3Î 

             

       e.    For any closed set F of  & we have  

3Õ =⋏ {3Î/G  open , F ⊂ G}  
             and there exists a decreasing sequence (G�)� of open sets in & such that                 F ⊂ G� for any 	 ∈ ℕ and such that the sequence (3Îz)�is specifically 

              decreasing to 3Õ 

        f.    If  Gd, Gf are open and if  Fd, Ff are closed then we have  

3Î{ ⋏ 3Î| = 3Î{}Î| , 3Õ{ ⋎  3Õ| = 3Õ{yÕ| 

    Proof. a. From the relations  

3 = 3Î{ + 3Î{
� = 3Î| + 3Î|

�  

and using the fact that for any É ∈ ℰ, É ≼ 3 and :��� É ⊂ & ∖ G, we have 3Î{ ⋏ É = 0 (lemma 2.2.1) 

we deduce that 3Î{ ⋏ 3Î{� = 0 and therefore 3Î{ ≼ 3Î| 

   b. This assertion follows from a. because if Fd ⊂ Fd then taking Gd = & ∖ Fd, Gf = & ∖ Ff we have Gf ⊂ Gd and therefore 3Î| ≼ 3Î{ ≼ 3. Hence we have  

3 − 3Î{ ≼ 3 − 3Î| i.e. 3Õ{ ≼ 3Õ| 

    c.  Since G� ⊂ y G�X�Wd  for any � ∈ ℕ we deduce 3Î× ≼ 3y ÎzÖ{  and therefore ⋎� 3Îz ≼ 3y ÎzÖ{ . On the other hand using the relation  

3 = 3Îz + 3Îz�   ∀	 ∈ ℕ 

we deduce  

3 = ⋎� 3Îz + ⋏� 3Îz�  

  Since for any � ∈ ℕ we have :��� ⋏� 3Îz� ⊂ :��� 3Î×� ⊂ & ∖ G� 

we deduce  

:��� ⋏� 3Îz� ⊂ } (& ∖ G�)X�Wd = & ∖ (y G�� )    
Using again lemma 2.2.1. and the preceding considerations, from the relation 
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3y Îzz ≼ 3 = ⋎� 3Îz + ⋏� 3Îz�  

we  deduce  

3y Îzz ⋏ �⋏� 3Îz� � = 0,    3y Îzz ≼ ⋎� 3Îz 

and finally 3y Îzz = ⋎� 3Îz 

   If (°�)� is a sequence of closed subsets of & and if we denote G� = & ∖ °� we 

have  

3y Îzz + 3} z̄z = 3 = 3Îz + 3Õz    ∀	 ∈ ℕ 

and  therefore  

3y Îzz + 3} z̄z = ⋎� 3Îz + ⋏� 3Õz 

 The equality 3} z̄z = ⋏� 3Õz follows now from the equality 3y Îzz = ⋎� 3Îz  

    d.  let É ∈ ℰ , É ≼ 3 with :��� É ⊂ G. From the relations  

É ≼ 3 = 3Î + 3Î�   �	� :��� É ∩ (& ∖ G) = ∅, carr 3Î� ⊂ & ∖ G 

we get  É ≼ 3Î 

   From lemma 2.2.1. there exists a sequence (3�)� in ℰ6, a sequence (F�)�of 

closed subsets of & , F� ⊂ G such that :��� 3� ⊂ F� for any 	 ∈ ℕ  and 

 ⋎� 3� = 3Î. Much more than this we have, using again the same lemma,  3� ≼ 3 z̄ ≼ 3Î 

and  therefore ⋎� 3 z̄ = 3Î. 

    e.  Let ° = °> be a closed subset of & and G = & ∖ °. 

  We consider as in the preceding point d. a sequence (°�)� of closed subset of &, °� ⊂ G for all 	 ∈ ℕ and such that ⋎� 3 z̄ = 3Î. From the relations 

3 z̄ + 3�∖ z̄ = 3 = 3Î + 3¯    ∀	 ∈ ℕ   

we  deduce  

⋎� 3 z̄ + ⋏� 3�∖ z̄ = 3Î + 3¯ , 3¯ = ⋏� 3Îz   Ïℎ �  G� ≔ & ∖ °� 

  Obviously, For any G ∈ τ0 with ° ⊂ G we have, using the point d. 3¯ ≼ 3Î and 

from the preceding considerations  

3¯ = ⋏� 3Îz =⋏ {3Î/G  open , ° ⊂ G}. 

    f.  Since 3Î{}Î| ≼ 3Î® H =1,2 we get 3Î{}Î| ≼ 3Î{ ⋏ 3Î| 



          THE SPECIFIC MULTIPLICATION IN EXCESSIVE STRUCTURE 

 

29 

 

   Let now (3�)� be a sequence in ℰ6, 3� ≼ 3, :��� 3� ⊂ Gd, such that (3�)�is 

specifically increasing to 3Î{ and let (É�)� be a sequence in ℰ6, É� ≼3, :��� É� ⊂ Gf such that (É�)� is specifically increasing to 3Î|. We have  

3Î{ ⋏ 3Î| = ⋎�(3� ⋏ É�) 

   Since for any 	 ∈ ℕ we have :��� (3� ⋏ É�) ⊂ Gd}Gf, using the point d., we 

have 3� ⋏ É� ≼ 3Î{}Î| and therefore 

3Î{ ⋏ 3Î| ≼ 3Î{}Î| , 3Î{ ⋏ 3Î| = 3Î{}Î|  
   If °d, °f are two closed subsets of &, noting Gd = & ∖ °d, Gf = & ∖ °f and using 

the first part of the point f. and  the following relations  

3Î{ + 3 {̄ = 3 = 3Î| + 3 |̄  

we get 

3Î{ ⋏ 3Î| + 3 {̄ ⋎ 3 |̄ = 3 = 3Î{}Î| + 3 {̄∪ |̄, 3 {̄ ⋎ 3 |̄ = 3 {̄∪ |̄        ∎ 

   Preposition 2.3.2. 

       a.   If 3, É ∈ ℰ6 and Ø ∈ /0 respectively ° = ° �  then 

(3 + É)Î = 3Î + ÉÎ (� �3 :Hq Is. (3 + É)¯ = 3¯ + É¯ 

       b.   if Ø� ∈ τ0 (resp. °� = °Ù�) i=1,2  and 3 ∈ ℰ6 then we have  

                                               (3Î{)Î| = 3Î{ ⋏ 3Î| = 3Î{}Î| , 
     (3 {̄) |̄ = 3 {̄ ⋏ 3 |̄ = 3 {̄} |̄ , (3Î{) {̄ = 3Î{ ⋏ 3 {̄ = (3 {̄)Î{ 

       c.   If  (3�)� is a sequence in ℰ6 such that ∑�3� ∈ ℰ6then for any G ∈ τ0  

             (resp. ° = ° � ) we have (∑ 3�X�Wd )Î = ∑ 3�ÎX�Wd (� �3. (∑ 3�X�Wd )¯ = ∑ 3�¯X�Wd      
       d.   If a sequence (3�)� is in  ℰ6 specifically increasing and dominated in ℰ        

              then  for any G ∈ τ0  (resp. ° = ° � ) we have 

⋎� 3�Î = (⋎� 3�)Î (� �3. ⋎� 3�¯ = (⋎� 3�)¯ 

        e.   If a sequence (3�)� is in  ℰ6 specifically decreasing then for any G ∈ τ0 

              (resp. ° = ° � ) we have  

⋏� 3�Î = (⋏� 3�)Î (� �3. ⋏� 3�¯ = (⋏� 3�)¯ 

Proof. a.  Let 
,  be elements in ℰ6 such that 
 ≼ 3,  ≼ É and 

:��� 
 ⊂  :���  ⊂ G 
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Obviously we have  


 +  ≼ 3 + É, :���(
 + ) ⊂ G, 
 +  ≼ (3 + É)Î 

From the proposition 2.3.1 we deduce that  

3Î + ÉÎ ≼ (3 + É)Î 

  Let now � ∈ ℰ, � ≼ 3 + É, :��� � ⊂ G. Using Riesz decomposition property 

with respect to the specific order, we may choose 
,  ∈ ℰ, such that  


 ≼ 3,  ≼ É, � = 
 +  

   Since :��� 
 ⊂ :��� � ⊂ G, :���  ⊂ :��� � ⊂ G we get  


 ≼ 3Î,  ≼ ÉÎ 

and therefore, 
 and  being arbitrary  

(3 + É)Î ≼ 3Î + ÉÎ , (3 + É)Î = 3Î + ÉÎ 

  If ° = ° �  we take ° = X ∖ G and we remark that that we have  

(3 + É)Î + (3 + É)¯ = 3 + É = (3Î + 3¯) + (ÉÎ + É¯)= (3Î + ÉÎ) + (3¯ + É¯) 

and  therefore  

(3 + É)¯ = 3¯ + É¯ 

  b. Using the point a. we have successively  

3Î{ ≼ 3, (3Î{)Î| ≼ 3Î| , (3Î{)Î| ≼ 3Î{ , (3Î{)Î| ≼ 3Î{ ⋏ 3Î| 

  Since 3Î{ ⋏ 3Î| ≼ 3Î{and using a. we get  

(3Î{ ⋏ 3Î|)Î| ≼ (3Î{)Î| 

  But since (3Î|)Î| = 3Î| we deduce that for any É ∈ ℰ6, É ≼ 3Î| we have É + É� = 3Î| for some É� ∈ ℰ6  and therefore using a. we get  

É + É� = (É + É�)Î = ÉÎ + É�Î , ÉÎ = É, É�Î = É� 
  Particularly we have  

(3Î{ ⋏ 3Î|)Î| = 3Î{ ⋏ 3Î| , 3Î{ ⋏ 3Î| ≼ (3Î{)Î| , 3Î{ ⋏ 3Î| = (3Î{)Î| 

  The relations (3 {̄) |̄ = 3 {̄ ⋏ 3 |̄ = 3 {̄} |̄ and (3Î{) {̄ = 3Î{ ⋏ 3 {̄ = (3 {̄)Î{ may 

be similarly shown. 
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  c. Since for any � ∈ ℕ we have ∑ 3���Wd ≼ ∑ 3�X�Wd  we get �∑ 3���Wd  Î ≼(∑ 3�X�Wd )Î,  

∑ 3�Î��Wd ≼ (∑ 3�X�Wd )Î, ∑ 3�ÎX�Wd ≼ (∑ 3�X�Wd )Î  

 On the other hand, for any � ∈ ℕ we have  

(∑ 3�X�Wd )Î = (∑ 3���Wd )Î + (∑ 3�X�W�Yd )Î = ∑ 3�Î��Wd + (∑ 3�X�W�Yd )Î ; 

            (∑ 3�X�Wd )Î ≼ ∑ 3�ÎX�Wd + ∑ 3�X�W�Yd  

The last inequality holds for all � ∈ ℕ and therefore   

            (∑ 3�X�Wd )Î ≼ ∑ 3�ÎX�Wd + ⋏�∈ℕ (∑ 3�X�W�Yd ) = ∑ 3�ÎX�Wd  

            (∑ 3�X�Wd )Î = ∑ 3�ÎX�Wd   

  A similar arguments may be used for showing that  

            (∑ 3�X�Wd )¯ = ∑ 3�¯X�Wd   

for any closed subset ° of &. 

  The assertion d. follows from c. since ⋎dX 3� = ∑ (3� − 3�Úd)X�Wd  where 3. = 0  

and therefore 

(⋎dX 3�)Î = ∑ (3� − 3�Úd)ÎX�Wd =⋎dX (∑ (3� − 3�Úd)Î��Wd ) =⋎dX ((∑ 3� − 3�Úd)Î��Wd )  

                   = ⋎� 3�Î 

(⋎dX 3�)¯ = ∑ (3� − 3�Úd)¯X�Wd =⋎dX (∑ (3� − 3�Úd)¯��Wd ) =⋎dX ((∑ 3� − 3�Úd)¯��Wd )  

                  = ⋎� 3�¯ 

  f. If we denote 3 =⋏�WdX 3� and É� = 3d − 3� for any 	 ∈ ℕ then (É�)� is a 

sequence in ℰ6 specifically increasing to3d − 3.  Using the point d. we have 

successively 

   ⋎� É�Î = (⋎� É�)Î  , ⋎�(3dÎ − 3�Î) = 3dÎ − 3Î,⋏� 3�Î = 3Î = (⋏� 3�)Î 

Â� �3. ⋎� É�¯ = �⋎� É��¯   , ⋎�(3d¯ − 3�¯) = 3d¯ − 3Î,⋏� 3�¯ = 3¯ = (⋏� 3�)¯Ã   ∎ 
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2.4. Extension of specific restriction to the � −algebra of 

measurable sets 

Lemma 2.4.1. let us denote by Û(/0) the algebra of subsets of & generated by  /0. Then for any @ ∈ Û(/0)  there exists an increasing sequence (°�)� of closed 

subsets, °� ⊂ @ for any 	 ∈ ℕ and there exists a decreasing sequence (Ø�)� 

in /0, @ ⊂ Ø� for any 	 ∈ ℕ, such that 

⋎� 3 z̄ = sup�  3 z̄ = ⋏� 3Üz = inf�  3Üz   
    Proof.  If we denote by Û. the set of all subsets @ of & for which there exists 

an increasing sequence (°�)� of closed subsets, °� ⊂ @ for any 	 ∈ ℕ, and there 

exists a decreasing sequence (��)� in /0, @ ⊂ �� for any 	 ∈ ℕ such that  

⋎� 3 z̄ = sup�  3 z̄ = ⋏� 3¢z = inf�  3¢z   
then Û. is an algebra of subsets of &. Indeed, we remark that if @ ∈ Û. and the 

sequences (°�)� and (��)� are as before then the sequences (°��)�, (��� )� given 

by °�� = & ∖ �� , ��� = & ∖ °� are such that °�� = °��� ⊂ & ∖ @ ⊂ ��� ∈ /0, the 

sequence (°��)� is increasing, the sequence (��� )� is decreasing and from the 

relations  

3 z̄ + 3¢zÝ = 3 = 3 z̄Ý + 3¢z    ∀	 ∈ ℕ 

we obtain  

⋎� 3 z̄ + ⋏� 3¢zÝ = 3 = ⋎� 3 z̄Ý + ⋏� 3¢z , ⋎� 3 z̄ =  ⋏� 3¢zÝ  

i.e. & ∖ @ ∈ Û.. We show now that for @, � ∈ Û. we have @ ∪ � ∈ Û.. 

    Let (°��)�, (°���)� two increasing sequences of closed subsets with °�� ⊂ @,    °��� ⊂ � for any 	 ∈ ℕ, let (��� )�, (����)� be two decreasing sequences in /0 with @ ⊂ ���  , � ⊂  ���� for any 	 ∈ ℕ and such that  

⋎� 3 z̄Ý =  ⋏� 3¢zÝ , ⋎� 3 z̄ÝÝ =  ⋏� 3¢zÝÝ 

   Using proposition 2.3.1 c., f. we  have successively 

�⋎� 3 z̄Ý � ⋎ �⋎� 3 z̄ÝÝ� = �⋏� 3¢zÝ � ⋎ (⋏� 3¢zÝÝ) 

                     ⋎� ( 3 z̄Ý ⋎ 3 z̄ÝÝ) = ⋏�,�∈ℕ (3¢®Ý ⋎ 3¢ÞÝÝ) = ⋏� (3¢zÝ ⋎ 3¢zÝÝ), 
                                      ⋎� 3 z̄Ý y z̄ÝÝ = ⋏� 3¢zÝ y¢zÝÝ 

  The fact that the set @ ∪ � belongs to Û. follows now from the definition of Û. 

and from the fact that the sequence (°��y°���)� of closed subsets of & is increasing °��y°��� ⊂ @y� for any 	 ∈ ℕ and the sequence (��� y����)� from /0 is decreasing 

and @ ∪ � ⊂ ��� y���� for all 	 ∈ ℕ.  
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   The fact that /0 ⊂ Û. follows from Proposition 2.3.1. d. Hence Û(/0) ⊂ Û.. 

Lemma 2.4.2. If for any subset @ of & we denote  

        3(@) = sup {3¯/° = °> ⊂ @} 

              3(@) = inf {3¢/� ∈ /0 , @ ⊂ �} 

where 3 ∈ ℰ6 , 3 < ∞ we have  

a.     3(@) ≤ 3(@)     ∀@ ⊂ & 

b.     3(y @�X�Wd ) ≤ ∑ 3X�Wd (@�) for any sequence (@�)�of pairwise disjoint 

        subsets @�  in &     

c.     3(y @�X�Wd ) ≥ ∑ 3X�Wd (@�) for any sequence (@�)�of pairwise disjoint  

        subsets @�  in & 

d.    3(@) + 3(& ∖ @) = 3   for all @ ⊂ &  

e.    If 3� ∈ ℰ6 and 3 = ∑ 3� then  3(@) = ∑ 3�X�Wd (@), 3(@) = ∑ 3�X�Wd (@) 

   Proof.  This assertion follows from the definition of 3, 3 and using proposition 

2.3.1 .i.e. 3¯ ≼ 3¢  for any ° = °> ⊂ � ∈ /0 

d.  Let ° = °> be such that ° ⊂ @. Obviously & ∖ @ ⊂ & ∖ ° and therefore 3¯ + 3�∖¯ = 3. Hence if we fix �. ∈ /0 with & ∖ @ ⊂ �. and we denote 

 °. = & ∖ �. we have  

3 ¹̄ + 3¢¹ = 3, sup{3¯ °⁄ = °> ⊂ @} + 3¢¹ ≥ 3, 3(@) + 3¢¹ ≥ 3 

and since �. is arbitrary we get 3(@) + 3(& ∖ @) ≥ 3. 

    If we fix °. = °.>>> ⊂ @ we have    

3 ¹̄ + 3�∖ ¹̄ = 3, 3 ¹̄ + inf {3¢/� ∈ /0 , & ∖ @ ⊂ �} ≤ 3, 3 ¹̄ + 3(& ∖ @) ≤ 3 

    Since °. is arbitrary we deduce  

3(@) + 3(& ∖ @) ≤ 3,.   3(@) + 3(& ∖ @) = 3 

b.   Let � be a point in &, let ¿ ∈ ℝ, ¿ > 0 and for any Ø� be an open set such that @� ⊂ Ø� and 3Üz(�) ≤ 3(@�) + ß
fz  

   Obviously, y @�� ⊂ y Ø�� ∈ /0 and therefore using PROPOSITION 2.3.1. c.  

3(y @�� ) ≤ 3y Üzz = ⋎� 3Üz = ⋎�(⋎��� 3Ü×)  

   But for any 	 ∈ ℕ we have  

⋎��� 3Ü× ≼ � 3Ü×
�
�Wd , (⋎��� 3Ü×)(�) ≤ � 3Ü×(�) ≤ � 3Ü×(�)X

�Wd
�
�Wd  

and therefore  
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3y ÜzÖzà{ (�) = sup� 3y Ü×z×à{ (�) = sup� �⋎��� 3Ü×  (�) ≤ � 3Ü×(�)X
�Wd                                

                                                                                                   ≤ � 3(@�)(�)X
�Wd + ¿ 

   Hence we have  

3(y @�� )(�) ≤ ∑ 3� (@�)(�) + ¿  

   The number ¿ being arbitrary we get 

3(y @�� ) ≤ ∑ 3� (@�), 3(y @�� ) = ∑ 3� (@�)   
c. This assertion is equivalent with the inequality  

∑ 3��Wd (@�) ≤ 3(y @�X�Wd ) ∀� ∈ ℕ  

  Let now � ∈ ℕ and for any 	 ≤ � let °� be a closed subset of &, °� ⊂ @�. We 

remark now that if °�, °�� are two disjoint closed subsets of & we have  

3¯Ý∪¯ÝÝ = 3¯Ý + 3¯ÝÝ 

   Indeed, Using proposition 2.3.1 c. f. we have  

3¯Ý + 3¯ÝÝ = 3¯Ý ⋏ 3¯ÝÝ + 3¯Ý ⋎ 3¯ÝÝ = 3¯Ý}¯ÝÝ + 3¯Ýy¯ÝÝ = 3¯Ýy¯ÝÝ 

since °�}°�� = ∅ . 

    In our case the subsets °�, 	 ≤ � are pairwise disjoint since @�, 	 ≤ � are 

pairwise disjoint. Hence  

� 3 z̄
�

�Wd
= 3y z̄×zà{ ≤ 3(Ò @�

X

�Wd
) 

   Since the closed subset °� was arbitrary with °� ⊂ @� . We conclude that we 

have  

� 3
�

�Wd
(@�) ≤ 3 �Ò @�

X

�Wd
� , � 3

X

�Wd
(@�) ≤ 3 �Ò @�

X

�Wd
� 

   The assertion e. Follows from the definition and using Proposition 2.3.2. c.  

Theorem 2.4.3. With the above notation we have  

a. The set ℳâ defined by  ℳâ = {@ ⊂ &/3(@) = 3(@)} 

 

   is a � −algebra of subsets of  & and the map  @ → 3r ≔ 3(@) = 3(@) 
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   from ℳâ into the convex cone of positive real functions on & is countable  

   additive. 

b. If 3, É are finite regular elements then ℳâYÉ = ℳâ ∩ ℳÉ  and for any     @ ∈ ℳâYÉ we have (3 + É)r = 3r + Ér 

c.  If 3� ∈ ℰ are such that 3 = ∑ 3�X�Wd   then ℳâ = } ℳâzX�Wd  and for any 

     @ ∈ ℳâ we have  

 3r = � 3�r
X
�Wd  

  Proof. a. First we remark that @ ∈ ℳâ  if and only if & ∖ @ ∈ ℳâ because we 

have  

3(& ∖ @) + 3(@) = 3 = 3(& ∖ @) + 3(@) 

   We show that if @, � ∈ ℳâ then @ ∪ � ∈ ℳâ. Let � ∈ & be arbitrary and for ¿ ∈ ℝ, ¿ > 0 let °�, °�� be closed subset of &, ��, ��� open subsets of & such that 

°� ⊂ @ ⊂ ��, °�′ ⊂ � ⊂ ��� 
3¢Ý(�) − 3r(�) < ¿, 3r(�) < 3¯Ý(�) + ¿, 3¢ÝÝ(�) − 3�(�) < ¿, 3�(�) < 3¯ÝÝ(�) + ¿ 

  We have  

3¢Ý∪¢ÝÝ(�) − 3°′∪°′′(�) = (3¢Ý ⋎ 3¢ÝÝ − 3¯Ý ⋎ 3¯ÝÝ)(�)                
                                             ≤ �(3¢Ý − 3¯Ý) + (3¢ÝÝ − 3¯ÝÝ) (�) ≤ 4¿ 

And therefore  

3(@ ∪ �)(�) − 3(@ ∪ �)(�) ≤ 3¢Ý∪¢ÝÝ(�) − 3¯Ý∪¯ÝÝ(�) < 4¿ 

   Hence ¿ being arbitrary we deduce @ ∪ � ∈ ℳâ. From the preceding 

consideration it follows that ℳâ is an algebra of subsets of &. To finish the point 

a. we consider a sequence (@�)� inℳâ of pairwise disjoint subsets. We have  

3(y @�X�Wd ) ≤ ∑ 3X�Wd (@�) = ∑ 3X�Wd (@�) ≤ 3(y @�X�Wd ) ≤ 3(y @�X�Wd )  

∑ 3X�Wd (@�) = 3(y @�X�Wd ) = 3(y @�X�Wd )  

   So y @�X�Wd ∈ ℳâ and 3y rzÖzà{ = 3(y @�X�Wd ) = ∑ 3X�Wd (@�) = ∑ 3rzX�Wd   
b. From the definition of the maps 3, 3 we get  

    3 + É (@) = 3(@) + É(@), 3 + É(@) = 3(@) + É(@)  
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   So we have 

3 + É(@) −  3 + É (@) = Â3(@) − 3(@)Ã + (É(@) − É(@)) 

for any subsets @ of & and therefore  

@ ∈ ℳâYÉ ⟺ @ ∈ ℳâ ∩ ℳÉ 

  Moreover we have obviously  

@ ∈ ℳâYÉ ⟹ (3 + É)r = 3 + É(@) = 3(@) + É(@) = 3r + Ér 

c.  From the point b. We get ℳâ ⊂ ℳÉ whenever 3, É ∈ ℰ6 , É ≼ 3 and therefore  

ℳâ ⊂ å ℳâz
X

�Wd
 

   Let now @ be an element belonging to ℳâz for all 	 ∈ ℕ. 

   Using lemma 2.4.2., e. We have   

3(@) = � 3�
X

�Wd
(@) = � 3�

X

�Wd
(@) = 3(@) 

   Hence @ ∈ ℳâ and moreover  

3r = � 3�r
X
�Wd  

Theorem 2.4.4. If 3 ∈ ℰ6 , 3 < ∞ then the � −algebra ℬ (generated by /0) is 

included in ℳâ and for any @ ∈ ℬ the element 3r belongs to ℰ6and we have  

3r + 3�∖r = 3, 3r = sup {3¯/° = °, ° ⊂ @} = inf {3Ü/Ø ∈ /0 , @ ⊂ Ø} 

   Proof. First we show that the set ℳâ. defined by  

ℳâ. = {@ ∈ ℳâ/3r ∈ ℰ6 , 3�∖r ∈ ℰ6} 

is a monotone class of subsets of &. Indeed, let (@�)� be an increasing sequence 

in ℳâ.. Since 3rz ∈ ℰ6 and the sequence (3rz)� increases to 3y rzÖzà{  it follows 

that 3y rzÖzà{ ∈ ℰ6. On the other hand the sequence (3�∖rz)� of excessive 

functions decreases to 3�∖y rzz . Hence 3�∖y rzz   belongs to �*. But for any 	 ∈ ℕ we have  

3rz + 3�∖rz = 3 

and therefore  

3y rzÖzà{ + 3�∖y rzÖzà{ = 3, 3�∖y rzÖzà{ ∈ ℰ6 , y @�X�Wd ∈ ℳâ.  
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   Using now theorem 2.4.3.  we deduce that the algebra Û(/0) generated by /0 is 

a part of ℳâ.. But ℳâ. being a monotone class of subsets of & we deduce that the � −algebra generated by /0 (or Û(/0)) is included in ℳâ.. 
Corollary 2.4.5.  a. If  (3�)� is  a sequence in ℰ6such that the function 3 ≔∑ 3��  is finite. Then for any @ ∈ ℬ we have  

3r = � 3�r
X

�Wd
 

b. For any @, � in ℬ and any 3 ∈ ℰ6 , 3 < ∞ we have  (3r)� = (3�)r = 3r∩� = 3r ⋏ 3� 

  Proof. The point a. was already shown. For the assertion b. We start by showing 

that for any @ ∈ ℬ we have  

3r =⋎ {3¯/° = °, ° ⊂ @} =⋏ {3Ü/Ø ∈ /0, @ ⊂ Ø} 

   Indeed, for any ° = ° ⊂ @ we have 3¯ + 3r∖¯ = 3r and therefore  3¯ ≼ 3r. 

Let now É ∈ ℰ a specific majorant of 3¯ for any ° = ° ⊂ @. We shall have 3¯ ≼ 3r ⋏ É ≼ 3r .  

But  

sup¯W¯⊂r 3¯ = 3 (@) = 3r 

by the definition of 3(@) and 3r , and therefore we get  

3r ≤ 3r ⋏ É ≤ 3r, 3r ⋏ É = 3r, 3r ≼ É 

    Now for any @, � ∈ ℬ we have  

3r ≼ 3, (3r)� ≼ 3�, (3r)� ≼ 3r, (3r)� ≼ 3r ⋏ 3� 

   Let °�, °�� be two arbitrary closed subsets of & such that °� ⊂ @, °�� ⊂ �. We 

have °� ∩ °� ⊂ @ ∩ � and therefore  

3¯Ý ⋏ 3¯ÝÝ = 3¯Ý∩¯Ý  

   On the other hand if ° = ° ⊂ @ ∩ � we have  

3¯ ≼ 3r, 3¯ = (3¯)¯ ≼ (3r)¯ ≼ (3r)� 

and therefore  

3¯Ý ⋏ 3¯ÝÝ ≼ (3r)�, ⋎¯Ý⊂r¯ÝÝ⊂� 
(3¯Ý ⋏ 3¯ÝÝ) ≼ (3r)� 

3r ⋏ 3� = � ⋎¯Ý⊂r 3¯Ý� ⋏ � ⋎¯ÝÝ⊂� 3¯ÝÝ� =⋎ (3¯Ý ⋏ 3¯ÝÝ) ≼ (3r)� 
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  Hence  

3r ⋏ 3� = (3r)� = (3�)r 

   The relation  3r∩� ≼ 3r ⋏ 3� is obvious . 

If °� = °� ⊂ @, °�� = °�� ⊂ � we have °� ∩ °�� ⊂ @ ∩ � and therefore  3¯Ý∩¯ÝÝ ≼ 3r∩�, 3¯Ý ⋏ 3¯ÝÝ ≼ 3r∩�  

   Passing now to the supremum with respect to the specific order, we get  

� ⋎¯Ý⊂r 3¯Ý� ⋏ � ⋎¯ÝÝ⊂� 3¯ÝÝ� ≼ 3r∩� , 3r ⋏ 3� ≼ 3r∩�, 3r ⋏ 3� = 3r∩� 

2.5. THE SPECIFIC MULTIPLICATION WITH POSITIVE BOREL 

FUNCTIONS OF REGULAR ELEMENT 

 

Theorem 2.5.1. Let 3 ∈ ℰ6 , 3 < ∞ and let � be a positive ℬ −measurable and 

bounded function. For any � ∈ & we consider the finite positive measure 3±on ℬ 

given by 3±(@) = 3r(�) 

 The positive function �. 3 on & defined by  

(�. 3)(�) = æ ��3± 

belongs to ℰ6and the map � ⟼ �. 3 defined on  34ℬ with values in ℰ6is a kernel 

with the complete maximum principle and 1. 3 = 1. 

    Any element 
 ∈ ℰ is a dominant function with respect to this kernel. 

    Moreover, if  3 = ∑ 3��  , 3� ∈ ℰ we have  

                           �. 3 = ∑ �. 3� �      ∀� ∈ 34ℬ 

                           �(J. 3) = (�J). 3      ∀�, J ∈ 34ℬ            
  Proof. let � be a positive, bounded ℬ −measurable function on &. We consider 

an increasing sequence (��)� of positive ℬ −measurable functions of the form  

�� = � ���ËrÞz
�z

�Wd
, ��� ∈ ℝY, @�� ∈ ℬ  

which increases to �. The functions ��. 3 given by  

��. 3(�) = æ ���3± = � ���3rÞz
�z

�Wd
(�) 

are element of ℰ6 and this sequence increases to  

�. 3(�) ≔ lim� æ ���3± = sup� �� . 3(�) 
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And therefore �. 3 is a regular element of ℰ. We mention that � being dominated 

by the constant function è�è we have  

�. 3 ≼ ¦. 3 

  Let 
 be an element of ℰ such that �. 3 ≤ 
 on the <� > 0=. Certainly, using the 

above notations, we have  


 ≥ ��. 3 on <�� > 0=, 
 ≥ ∑ ���3rÞz
�z�Wd (�)  �	 y @���  

and therefore the function 
� = min(
, ∑ ���3rÞz
�z�Wd ) belongs to ℰ and we have 

and we have 
� = ∑ ���3rÞz
�z�Wd    �	 y @��� . 

   Since 
�  is dominated by ∑ ���3rÞz
�z�Wd   we decompose 
� under the form  


� = � 
��� , 
�� ≤ ���3rÞz    �	 &,    ∀� = 1,2, … . , �� 

  From the preceding considerations we have 
�� = ���3rÞz   �	  @��. If we consider 

a closed subset ° of @�� we have  

1��� 
�� ≥ 3¯  �	 ° 

and therefore from lemma 2.2.1 we get 
d

,Þz 
�� ≥ 3¯  �	 & . Hence ° being arbitrary 

we deduce   
�� ≥ ���3¯, 
�� ≥ ���3rÞz   �	 &, 
�� = ���3rÞz   �	 &, 

� ≥ 
 = � ���3rÞz

�z

�Wd
= ��. 3  �	 & 

   The number 	 ∈ ℕ being arbitrary we have 
 ≥ ��. 3   �	 &. 

    The fact that  �. (3 + É) = �. 3 + �. É     ∀3, É ∈ ℰ6 , � ∈ 34ℬ 

Follows from the equality (3 + É)± = 3± + É± 

   If 3� ∈ ℰ and ∑ 3�� ∈ ℰ, noting P� = ∑ 3���Wd , Q� = ∑ 3��-�  

we have  

�. �� 3�
X

d
� = �. P� + �. Q� ≥ � �. 3�

�

�Wd
, � �. 3�

X

�Wd
≤ �. �� 3�

X

d
� 

   Since ⋏� Q� =∧� Q� = 0 we have  

�. �� 3�
X

d
� ≤ �. P� + è�è. Q�  ∀	 ∈ ℕ, 
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�. �� 3�
X

d
� ≤ sup� �. P� + è�è. ∧� Q� = sup� �. 3� ≤ � �. 3�

X

�Wd
 

   We finish the proof by the following remark  

    If @ and � are in ℬ w have  Ër(Ë�. 3) = (ËrË�). 3 = Ër∩�. 3 

(see corollary 2.4.5)                                        ∎
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CHAPTER 3 

 

DARBOUX-STIELTJES CALCULUS ON BANACH SPACES 

 

      The purpose of this chapter is to extend in the vector case the study of  

Darboux-Stieltjes integrability as it was initiated in [18] , then studied by I. Bucur 

[13], [14] and to give some new results. Among them we note: the symmetry 

principle, the formula of integration by parts, the extension integrability principle, 

a convergence theorem. At the end we give an application of this type of 

integration in describing the duality in a particular case of  � − :�	 � . 

 

3.1. PRELIMINARIES AND FIRST RESULTS 

For a given interval <�, 4= of ℝ we denote by �<�, 4= the set of all divisions     � =  (� =  �.  ≤  �d  ≤  �f  ≤ . . . ≤  ��  =  4) of this interval. The norm of this 

division is denoted by ì(�), i.e. ì(�)  =  ��� {��Yd  −  ��| H =  0, 1, . . . , 	 −  1}. 

By intermediary system of � we shall understand a new divison î of <�, 4=,  
î =  (� =  î.  ≤  îd  ≤  îf  ≤ . . . ≤  î� ≤  î�Yd  =  4) 

where îd  ∈  <�., �d=, îf ∈  <�d, �f=, . . . î� ∈  <��Úd, ��=. The set of all intermediary 

systems of d will be noted by ℒ (d). Obviously we have î ∈  ℒ(�)⇒ � ∈  ℒ(î) 

and ì(î)  ≤  2ì(�), ì(�)  ≤  2ì(î). 
 

Let & be a Banach space over ℝ, let f : <�, 4= → X, g : <�, 4= → ℝ be two arbitrary  

bounded  functions.  For  d ∈ D<�, 4=,  î ∈ ℒ (d) as below  we  denote by �(�, J; �, î) the element of X given by 

�(�, J; �, î) = � �(î�)
�

�Wd
(J(�� ) − J( ��Úd )) 

   The following reciprocity formula may be easily verified  

�(�, J; �, î) = �(4)J(4) − �(�)J(�) − �(�, J;  î, �) 

  If �d, �f ∈ �<�, 4= we say that �f is finer than �d  and we write �d ≤ �f  if for 

any element of �d belongs to �f 
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Definition 3.1.1. We say that the function � is Riemann-Stieltjes integrable with 
respect to the function J if there exists an element ð ∈  & such that for any ¿ > 0  
there exists ñß  >  0 such that 

è�(�, J; �, î) − ðè < ¿, ∀� ∈ �<�, 4= with q(�) ≤ ñß , ∀î ∈ ℒ(�) 

The element I of the Banach space X is uniquely determined and it is called the 
Riemann-Stieltjes integral of f  with respect to g.  

We write � ∈  oò(J) instead of ”� is Riemann-Stieltjes integrable with 

respect to g” and 

ð = (oò) æ �¨
´ �J = oò æ �¨

´ �J 

    It is well known that the function  � is Riemann-Stieltjes integrable with respect 

to J if and only if for any sequence (��)� in D[a, b] with lim�→X q(��) = 0 and 

any î� ∈ ℒ(��), the sequence (�(�, J; ��, î�))� is convergent in &. One can see 

that the above limit does not depend on the sequences (��)�, (î�)�, î� ∈ ℒ(��) 

with lim�→X q(��) = 0. 

      Also we have the following  

Proposition 3.1.2. (Cauchy criterion ). One has � ∈ oò(J) if and only if ¿ > 0 

there exists ñß > 0 such that  

è�(�, J; ��, î�) − �(�, J; ���, î��)è < ¿, 
for all ��, ���with q(��) < ñß , q(���) < ñß , î� ∈ ℒ(��), î�� ∈ ℒ(���). 

     As in the real case one can show that the set oò(J) is a linear vector space 

over ℝ and we have:�, e ∈ ℝ, �d, �f ∈ oò(J) ⟹ ��d + e�f ∈ oò(J) and  

(oò) ó (��d + e�f)΅ �J = �(oò) ó �d΅ �J + e(oò) ó �f΅ �J. 

  Using the above reciprocity formula, we have � ∈ oò(J) ⟹ J ∈ oò(�) and  

(oò) æ �¨
´ �J = �(4)J(4) − �(�)J(�) − (oò) æ J��¨

´  

and moreover, if � ∈ oò(Jd) ∩ oò(Jf) and �, e ∈ ℝ we have:        

� ∈ oò(�Jd + eJf) 

and  

(oò) ó ��(�Jd + eJf)΅ = �(oò) ó �΅ �Jd + e(oò) ó �΅ �Jd. 

Definition 3.1.3. The function � is called Darboux-Sieltjes integrale with respect 

to J if there exists ð ∈ & and for any ¿ > 0 there exists �ß ∈ �<�, 4= such that  

è�(�, J; �, î) − ðè ≤ ¿, ∀� ∈ �<�, 4=, �ß ≤ �, ∀î ∈ ℒ(�). 
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    It is not difficult to show that the element ð ∈ & in the above definition is 

uniquely determined and it will be called the Darboux-Stieltjes integral of  � with 

respect to J. 

   We write � ∈ �ò(J) instead of “ the function � is Darboux-Stieltjes integrable 

with respect to J “ and we denote the element ð as follows  

ð = (�ò) æ �¨
´ �J  �� ð = æ �¨

´ �J 

   The following assertion generalizes a well-known Riemann-Stieltjes 

integrability criterion using sequences of divisions. 

Proposition 3.1.4. The function �  is a Darboux-Stieltjes integrable with respect 

to J if and only if there exists a sequence (��)� in D<�, 4=such that for any 

sequence (��� )� in D<�, 4=, with �� ≤ ���    ( ∀	 ∈ ℕ)    and any î�� ∈ ℒ(��� )   ( ∀	 ∈ ℕ) the sequence (�(�, J; ��� , î�� ))� converges in the Banach space &. 

   Proof.  We suppose that � ∈ �ò(J). Just from the definition we deduce that 

there exists ð ∈ & such that for any 	 ∈ ℕ∗, there exists �� ∈ �<�, 4= for which 

we have  

è�(�, J; ��� , î�� ) − ðè < {z, ∀��� ∈ �<�, 4=, �� ≤ ��� , ∀î�� ∈ ℒ(��� ). 

  Hence, we deduce 

lim�→X �(�, J; ��� , î�� ) = ð. 
   Conversely, we suppose the existence of a sequence (��)� in D<�, 4= such that 

for any sequence (��� )� in D<�, 4=, with �� ≤ ���  , for any  ∀	 ∈ ℕ and any î�� ∈ ℒ(��� ) the sequence (�(�, J; ��� , î�� ))� converges in &. Using a mixing 

procedure we deduce that that the element  lim�→X �(�, J; ��� , î�� ) of & does not 

depend on the above sequences (��� )� and (î�� )�. We denote by ð this limit and 

we show that for any ¿ > 0 there exists 	ß ∈ ℕ such that  

è�(�, J; ��, î�) − ðè < ¿, ∀�� ∈ �<�, 4=, �� ≤ ��ô , ∀î� ∈ ℒ(��) 

   In the contrary case ther exists ¿. > 0 such that for any 	 ∈ ℕ there exists ��� ∈ �<�, 4= , �� ≤ ���  and î�� ∈ ℒ(��� ) such that  

è�(�, J; ��, î�) − ðè ≥ ¿.. 
  The contradiction we have arrived shows that � ∈ �ò(J)                       ∎ 

  The following assertion, the Cauchy criterion, is almost obvious: 

Proposition 3.1.5. The function � is Darboux-Stieltjes integrable with respect to J if and only if for any ¿ > 0 there exists a division �ß of <�, 4= such that  

è�(�, J; ��, î�) − �(�, J; ���, î��)è < ¿ 

for any ��, ��� ∈ �<�, 4=, �ß ≤ ��, �ß ≤ ���and for any î� ∈ ℒ(��), î�� ∈ ℒ(���). 
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Remark 3.1.6. It is easy to see that for & = ℝ and J an increasing function on <�, 4= the fact that � ∈ �ò(J) is equivalent with the relation  

æ �¨
´ �J = æ �>̈

´ �J 

where ó �΅ �J  (respectively ó �>̈
´ �J) means the lower (respectively upper) 

Darboux-Stieltjes integral of � with respect to J; that is we get the well known 

classical situation. 

3.2. RELATION BETWEEN RS AND DS INTEGRABILITY 

  The function � and J will be as before. If the function � is Riemann-Stieltjes 

integrable with respect to J then we consider an arbitrary sequence (��)�in 

D<�, 4= such that lim�→X q(��) = 0. 

     If we consider another sequence (��� )� in D<�, 4= with �� ≤ ���  for any 	 ∈ ℕ 

then we have q(��� ) ≤ q(��) and therefore lim�→X q(��� ) = 0. In this case we 

have 

lim�→X �(�, J; ��� , î�� ) = (oò) æ �¨
´ �J, ∀î�� ∈ ℒ(��� ) 

and therefore, using proposition 3.1.4 we deduce � ∈ �ò(J). 
    Hence we have the following assertion 

Proposition 3.2.1. if � ∈ oò(J) then � ∈ �ò(J) and  

(�ò) ó �΅ �J = (oò) ó �΅ �J. 

Remark 3.2.2. The converse of thee above proposition is not always true. Indeed, 

we consider an element s ∈ &, s ≠ 0� and the functions �: <0,2= → &, �: <0,2= →ℝ given by  

�(�) = ö s,      H� 1 ≤ � ≤ 20� ,    H� 0 ≤ � ≤ 1 ÷, J(�) = ö1,        H� 1 ≤ � ≤ 20,       H� 0 ≤ � ≤ 1 ÷ 
 
      Let �. ∈ �<0, 2=, �. = (0 = �. < �d < �f = 2) be such that �d = 1 and let �� ∈ �<0, 2=, �� ≥ �. be of the form  

�� = (0 = �.� < �d� < �f� < ⋯ < ��� < 1 < ��Yf� < ⋯ ��� = 2) 

   If we consider 

î� ∈ ℒ(��), î� = (0 = î.� ≤ îd� ≤ îf� ≤ ⋯ ≤ î�� ≤ ⋯ ≤ î�Yd� = 2) 

where  �(�, J; ��, î�) = ∑ �(î��)(J(���)��Wd − J(��Úd� )) = �(î�Yf� )�J(��Yf� ) − J(1)  = s,  
è�(�, J; ��, î�) − sè = 0. 
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    From the definition we deduce � ∈ �ò(J) and (DS) (�ò) ó �¨
´ �J = s. On the 

other hand, if we consider an arbitrary division � of [0, 2], 

� = (0 = �. < �d < �f < ⋯ < �â < �âYd < ⋯ < �� = 2 

such that �â < 1 < �âYd and î� ∈ ℒ(�), î�� ∈ ℒ(�),  
î� = (0 = î.� ≤ îd� ≤ îf� ≤ ⋯ ≤ î�Yd� = 2), î�� ∈ [��Úd, ��], H ∈ 1, �>>>>>>, 

  î�� = (0 = î.�� ≤ îd�� ≤ îf�� ≤ ⋯ ≤ î�Yd�� = 2), î��� ∈ [��Úd, ��], H ∈ 1, �>>>>>> 

and îâYd� ∈ (�â, 1), îâYd�� ∈ (1, �âYd), we have  

�(�, J; �, î�) = 0� , �(�, J; �, î��) = s, s ≠ 0� . 
    Using now the Cauchy criterion of Riemann-Stieltjes integrability we deduce 

that � is not Riemann-Stieltjes integrable with respect to J. 
The non-(RS)-integrability in our previous remark is an immediate 

consequence of the next result. The interested reader can easily find more 

examples using our technique. The following statement shows how far is 

Riemann-Stieltjes integrability from the Darboux- Stieltjes integrability 

Proposition 3.2.3 a. If the functions � and J have a common point of 

discontinuity on the left hand side (or on the right hand side) then the function � is 

not Darboux-Stieltjes integrable with respect to J.  
b. If the functions � and g have a common point of discontinuity then the 

function � is not Riemann-Stieltjes integrable with respect to J. 
 

Proof. a. We suppose that � and J are discontinuous on the left at the point 

: ∈  (�, 4]. In this case there exists ��  >  0, ���  >  0 and two sequences (��� )�, 

(����)�which increase to : and such that for any 	 ∈  ℕ we have 

��� < ���� < ��Yd� < :, è�(��� ) − �(:)è > ��, èJ(����) − J(:)è > ���. 
 

  Let now � be an arbitray division of [�, 4], 
� = �� = �. < �d < ⋯ < ��¹ < ⋯ < �� = 4 , 

such that ��¹ = :. For 	 sufficiently large we have  

��¹Úd < ���� < ��Yd� < : 

and we consider the division �� of [�, 4] obtained from � adding the point ��¹
��   

with ��¹Úd < ��¹
�� < :. We consider now î, î�in ℒ(��) which differ between them  

only by the points î�¹ = ��¹Yd� , î�¹
� = :  of the interval [��¹

�� , :]of the division ��. 
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   We have 

 �(�, J; ��, î) − �(�, J; ��, î�) = ����¹Yd�   �J���¹
��   − J(:)� − �(:)(J���¹

��   − J(:)), 
è�(�, J; ��, î) − �(�, J; ��, î�)è = ù����¹Yd�   − �(:)ù. úJ���¹

��   − J(:)ú > �′. �′′.     
      Now, using proposition 3.1.5. and the fact that the division � of [�, 4] was 

arbitrary we deduce that the function � is not Darboux-Stieltjes integrable with 

respect to the function J. 

   An analogous treatement may be done for the case where � and J are 

discontinuous on the right at a point : ∈ [�, 4) . 
     b. The function � and J are both discontinuous on the same side of a point 

: ∈ [�, 4]; this is a trivial consequence of the assertion a.  So, let : ∈ (�, 4) such 

that � is discontinuous on the left but it is continuous on the right at the point : 

whereas the function J is continuous on the left, but it is discontinuous on the 

right at the point :. In this case there exists �� > 0, ��� > 0 and there exist two 

sequences: (��� )� strictly increasing to : and (����)� strictly decreasing to : such 

that we have  

è�(��� ) − �(:)è > ��, èJ(����) − J(:)è > ��� , ∀	 ∈ ℕ. 
   Let now � ∈ �[�, 4] be an arbitrary division such that : is not a point of �   

� = �� = �. < �d < ⋯ < ��¹ < ��¹Yd < ⋯ < �� = 4 , ��¹ < : < ��¹Yd. 
    For 	. sufficiently large we have ��¹ < ��¹

� < : < ��¹
�� < ��¹Yd. We add to the 

division � the point ��� , ���� with 	 ≥ 	. and we denote by ��this new division of 

[�, 4]. Further we consider î�, î��in ℒ(��) which differ between them only 

intermediary point î�� , respectively îd�� in the interval [��� , ����], namely î�� = ��� ,  
î�� = ����. We shall have  

�(�, J; ��, î��) − �(�, J; ��, î�) = ��(î�� ) − �(î���) . �J(��� ) − J(����)  = 

                                                            = ��(��� ) − �(����) . �J(��� ) − J(����) . 
     Since � is continuous ion the right and J is continuous on the left at the point :  

and è�(��� ) − �(:)è > ��, èJ(����) − J(:)è > ��� , for all 	 ∈ ℕ, we deduce that  

è�(��� ) − �(����)è > 6Ý
f , èJ(����) − J(��� )è > 6ÝÝ

f   
if 	 is sufficiently large. So we have  

è�(�, J; ��, î��) − �(�, J; ��, î�)è > (  ��. ���  
4 ) 

for 	 is sufficiently large. Using the fact that the division � is arbitrary we can 

deduce that � ∉ oò(J) from the Cauchy criterion.          ∎ 
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Proposition 3.2.4. If � ∈ �ò(J) and the function � and J have no common point 

of discontinuity then we have � ∈ oò(J). 

   Proof. Let us denote 

è�è = ��3�è�(�)è; � ∈ [�, 4]" , èJè = sup �|J(�)|; � ∈ [�, 4]" 

and ¿ > 0 be arbitrary. We consider �ß ∈ �[�, 4] such that for any  � ∈ �[�, 4] , 
�ß ≤ � and any î ∈ ℒ(�) we have  

û�(�, J; �, î) − (�ò) ó �¨
´ �Jû < ¿ . 

  If �ß = (� = �. < �d < �f < ⋯ < �� = 4), then using hypothesis concerning 

the continuity we may consider ñ > 0 such that for any H ∈ �0,1,2, … , �" we have 

at least one of the relations  

|ü − ��| < ñ ⟹ è�(ü) − �(��)è ≤ ß
6  or |J(ü) − J(��)| ≤ ß

6 , 
where � ≔ 4�(è�è. èJè). 
 Let now �. ∈ �[�, 4], �. = (� = s. < sd < sf < ⋯ < s� = 4) with q(�.) < ñ 

and   let   î = (� = î. < îd ≤ îf ≤ ⋯ ≤ î� ≤ î�Yd = 4),   î ∈ ℒ(�.)  with      

î� ∈ [s�Úd, s�] for all H ∈ �0,1,2, … , 	". 

    Suppose that one point �� of the division �ß belongs to the interval [s�¹ , s�¹Yd].  
We choose î�¹

� ∈ ýs�¹ , ��þ, î�¹
�� ∈ ý��, s�¹Ydþ and we consider the division �±® ∈ 

�[�, 4] obtained by adding the point �� to the division �.. As an intermediary 

system î∗ ∈  ℒ(�±®) we take the following one  

î∗ = �� = î. ≤ îd ≤ ⋯ ≤ î�¹ ≤ î�¹
� ≤ î�¹

�� ≤ î�¹Yf ≤ î�¹Y� ≤ ⋯ ≤ î�Yd = 4�. 
   We shall have  

�(�, J; �., î) − ���, J; �±® , î∗  = 

= ��î�¹Yd (J �s�0+1� − J(s�0) − ��î�¹
�   �J(��) − J�s�¹ � − ��î�¹

��   �J�s�¹Yd  − J(��)� =    

= ���î�¹Yd  − ��î�¹
�  � �J(��) − J�s�¹ � + ���î�¹Yd  − ��î�¹

��  � (J�s�¹Yd  − J(��)). 

ù�(�, J; �0, î) − ���, J; ��H , î∗ ù ≤ ù��î�¹Yd  − ��î�¹
�  ù. úJ(��) − J(s�¹)ú + 

+ û� �î�0+1� − �(î�0
′′ )û �J �s�0+1� − J(�H)� ≤ 4(è�è. èJè). ô

� 

   We start with the divisions � and î as before and taking H = 1 we construct as 

above the division �d = �. ∪ ���" and the division îd ≔ î∗. We have  

û�(�, J; �0, î) − � ��, J; �1, î1�û ≤ 4(è�è. èJè). ¿
� 
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  Then  starting  with  the  divisions  �d,  îd  we  construct in a similar manner  

�f = �d ∪ ��f", îf = (îd)∗ ∈ ℒ(�f). We have  

û� ��, J; �1, î1� − � ��, J; �2, î2�û ≤ 4(è�è. èJè). ¿
� 

   We continue this procedure (� − 1) − times and we construct the divisions 

(�d, îd), (�f, îf), (��, î�), … , (��Úd, î�Úd) such that ��Yd = �� ∪ ���Yd", î�Yd =
(î�)∗.  By construction we have  

û� ��, J; �H, îH� − � ��, J; �H+1, îH+1�û ≤ 4(è�è. èJè). ¿
�,    H + 1 ≤ � − 1 

and therefore, applying this � −times and taking into account the fact that 

� = 4�(è�èèJè), we get  

û�(�, J; �0, î) − � ��, J; ��−1, î�−1�û ≤ 4(è�è. èJè). ¿
� = ¿. 

   But �ß ≤ ��Úd and therefore we have  

û�(�, J; ��Úd, î�Úd) − (�ò) ó �¨
´ �Jû ≤ ¿  

   From the last two inequalities follows 

��(�, J; �., î) − (�ò) æ �
¨

´
�J� ≤ 2¿ 

for any �. ∈ �[�, 4] with q(�.) < ñ and any î ∈ ℒ(�.) 

Corollary 3.2.5. If we have � ∈ �ò(J)and one of the functions � or J is 

continuous on [�, 4], then � ∈ oò(J). 

Remark 3.2.6. the PROPOSITION 3.2.4 and the COROLLARY 3.2.5 were 

previously considered in the scalar case for J increasing ([13], [14]) 

            The concept of Darboux-Stieltjes integrability is much more related with 

the concept  of  Lebesgue(or Bochner) integrability than the Riemann-Stieltjes 

concept is. 

      Let  J be increasing and continuous on the left and let �� be the measure on 

([�, 4], ℬ) where ℬ is the set of all Borel subsets of [�, 4], for which we have  

��([:, �]) = J(�) − J(:), ∀:, � ∈ ℝ, � ≤ : < � ≤ 4. 
      If �: [�, 4] → ℝ is a bounded function then, proceeding as in [14] and [15] we 

can prove the following results: 

Proposition 3.2.7. If the function � is Darboux-Stieltjes integrable with respect to 

J then the function J is Bochner integrable and we have  

(�ò) æ �
¨

´
�J = æ �

¨

´
��� 
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Proposition 3.2.8. If (��)� is a sequence of uniformly bounded real functions on 

[�, 4] such that �� ∈ �ò(J), for all 	 and this sequence is pointwise convergent to 

a function � such that � ∈ �ò(J), then we have 

lim�→X(�ò) ó ��
¨

´ �J = �ò ó ��J¨
´ .  

 

3.3 HEREDITARY PROPERTIES AND THE FORMULA OF 

INTEGRATION BY PARTS 

         It is well known that if a bounded real function � on the interval [�, 4] is 

Riemann Stieltjes integrable with respect to the function J defined on the same 

interval, then, for any :, � ∈ [�, 4], : < �, the restriction of � to [:, �] is Riemann-

Stieltjes integrable with respect to the restriction of J  to [:, �]. Generally the 

converse assertion is not true i.e. the Riemann-Stieltjes integrability of � with 

respect to J on the intervals [�, :] and [:, �] does not imply the RS-integrability 

of the function � with respect to J on the whole interval [�, 4]. From this point of 

view the Darboux-Stieltjes integrale is more convenient. 

Proposition 3.3.1. if �: [�, 4] → & and J: [�, 4] → ℝ are bounded functions then 

we have:  

a. If � is Darboux-Stieltjes integrable with respect to J on [�, 4]then � is 

Darboux-Stieltjes integrable with respect to J on many subinterval [:, �]of 

[�, 4] i.e. the restriction of � to [:, �] is Darboux-Stieltjes integrable with 

respect to the restriction of J to [:, �] . 
Moreover, we have 

(�ò) æ ��J
¨

´
= (�ò) æ ��J

³

´
+ (�ò) æ ��J

0

³
+ (�ò) æ ��J

¨

0
. 

b. If  : is a point in [�, 4] and the function � is Darboux-Stieltjes integrable 

with respect to J on the interval [�, :] and [:, 4], then � is Darboux-

Stieltjes integrable with respect to J on [�, 4]. 
Proof. For any divisions �� ∈ �[�, 4], ��� ∈ �[�, 4] we denote by ��⋁��� the 

division of [�, 4] given by  

��⋁��� = (� = �. < �d < �f < ⋯ < �� = : = s. < sd < sf < ⋯ < s� = 4) 

where 

�� = (� = �. < �d < �f < ⋯ < �� = :), ��� = (� = s. < sd < sf < ⋯ < s� = 4) 

   We use an analogous notation î�⋁î��
 for î� ∈ ℒ ��′� , î�� ∈ ℒ(�′′) 

   Obviously we have  

���, J; �′⋁�′′, î′⋁î′′  = ���, J; �′, î′  + ���, J; �′′, î′′ . 
    a. The proof follows using Cauchy criterion of Darboux-Stieltjes 

integrability. 
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    b. Let (��� .)�, (����.)� be two sequences in [�, :] , respectively �[:, 4] such 

that for any sequences (��� )� ∈ �[�, :], ��� . ≤ ��� , (����)� ∈ �[:, 4],  ����. ≤
���� and for any î�� ∈ ℒ(��� ), respectively any  î��� ∈ ℒ(����), we have 

lim�→X �(�, J; ��� , î�� ) = æ ��J
³

´
, lim�→X �(�, J; ����, î���) = æ ��J

¨

³
 

   Let now (��� .)� be a sequence in �[�, 4] such that ��. = ��� .⋁ ����., ∀	 ∈ ℕ 

and let (��)� be a sequence in �[�, 4] such that ��. ≤ �� for any 	. If we 

choose î� ∈ ℒ(��) and we denote ��� = �� ∩ [�, :], î�� = î� ∩ [�, :] ���� =
�� ∩ [:, 4] î��� = î� ∩ [:, 4] we have ��� . ≤ ��� , î�� ∈ ℒ(��� ), ����. ≤ ����, 
î��� ∈ ℒ(����) and therefore  

lim�→X �(�, J; ��� , î�� ) = æ ��J
³

´
, lim�→X �(�, J; ����, î���) = æ ��J

¨

³
 

   It is obvious that ��� ⋁���� = ��, î�� ⋁î��� = î�. We have  

�(�, J; ��, î�) = �(�, J; ��� , î�� ) + �(�, J; ����, î���), ∀	 ∈ ℕ, 

lim�→X �(�, J; ��, î�) = æ ��J
³

´
+ æ ��J

¨

³
 

    Hence using proposition 3.1.4, the function � is Darboux-Stieltjes 

integrable with respect to J. 

Definition 3.3.2  If J: [�, 4] → ℝ and �: [�, 4] → & we say that J is D-S 

integrable with respect to � there exists an element ð∗ ∈ & such that for any 

¿ > 0 there exists �ß ∈ �[�, 4] with the property  

èð∗ − �(J, �; �, î)è < ¿ 

whenever �ß ≤ � and for any intermediary system î in �. ð∗ is called the 

Darboux-Stieltjes integral of J with respect to �. 

Proposition 3.3.3. (Symmetry principle) If the function � is Darboux-Stieltjes 

integrable with respect to J is Darboux-Stieltjes integrable with respect to � 

and we have    

 ó J��¨
´ = �.g�4�÷ − ó ��J¨

´ = �(4)J(4) − �(�)J(�) − ó ��J¨
´   

(Integration by parts) 

Proof.  For ¿ > 0 we consider �ß ∈ �[�, 4], �ß = (� = s. < sd < sf < ⋯ <
s� = 4) such that for any � ∈ �[�, 4],�ß ≤ � and any î ∈ ℒ(�) we have  

��(�, J; �, î) − æ ��J
¨

´
� < ¿ 
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    Using hypothesis and proposition 3.2.3- b. we deduce that for any s� , 

H ∈ �1,2, … , �" at least one of the functions � and J is continuous on the left at 

the point s�. Hence we may choose ñ > 0 such that, for any ü ∈ [�, 4], 
ü ∈ [s� − ñ, s�] we have  

è�(s�) − �(ü)è < ¿
¦    ��  |J(s�) − J(ü)| < ¿

¦, 
where ¦ ≔ �(è�è + 1)(èJè + 1). 
   Let now �ß�  be a division of [�, 4] such that q(�ß� ) < ñ and such that 

�ß� ≤ �ß. We take an arbitrary division � of [�, 4] such that �ß� ≤ � and we 

consider an arbitrary î ∈ ℒ(�). We have  

� = (� = �. = s. < �d < �f < ⋯ < ��{ < sd < ��{Yd < ⋯ < ��| < sf 

< ��|Yd < ⋯ < ��× < s� = 4 , î = (� = î. ≤ îd ≤ ⋯ ≤ î�×Y� = 4), 

î ∈ ℒ(�) and we modify î replacing the element î�� in the interval 	��� , sâ
 
by the element sâ, for all 3 = 1,2, … , �. We obtain a new intermediary 

division î�  of  �  and we have  

û� �î��� (��sâ  − � ����� − J(sâ)(��sâ  − �(���)û = 

û��sâ  − �(���)û . �J�sâ  − J(î��) � ≤ 2(è�è + 1)(èJè + 1). ¿
¦ 

  We deduce the relation 

è�(�, J; �, î) − �(�, J; �, î�)è ≤ � û��sâ  − �(���)û
�

âWd
�J�sâ  − J(î��) � 

è�(�, J; �, î) − �(�, J; �, î�)è ≤ 2(è�è + 1)(èJè + 1). ¿
¦ = ¿ 

  We remark that �ß ≤ î� and therefore we have  

��(�, J; �, î) − æ ��J
¨

´
� < ¿ 

  On the other hand, using the reciprocity formula, we get  

��(�, J; �, î) − (�. J �4�÷ − æ ��J
¨

´
)� ≤ è�(�, J; �, î) − �(�, J; �, î�)è + 

+��(�, J; �, î�) − (�. J �4�÷ − æ ��J
¨

´
)� ≤ ¿ + �æ ��J

¨

´
− �(�, J; �, î�)� ≤ 2¿. 

   Hence the function J is Darboux-Stieltjes integrable with respect to � and 

we have the following rule 
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ó J��¨
´ = �.g�4�÷ − ó ��J¨

´                   ∎    

 

 

 

 

3.4. APPLICATIONS IN POTENTIAL THEORY 

   Let ℰ be the convex cone of all increasing and lower semi-continuous 

positive functions on the space & = (0,1). It is known that  ℰ is a standard 

� −cone ( see [7] ) and its dual ℰ∗ may be identified with the convex cone of 

all positive, decreasing and lower semi-continuous on (0,1). We may extend 

any function 
 ∈ ℰ by 
(0) = 0 and 
(1) = sup±bd 
(�) and also we extend 

the element 
∗ ∈ ℰ∗ by  


∗(0) = sup
±∈(.,d)


(�)    , 
∗(1) = 0 

  The duality between ℰ and ℰ∗ is the following one  

[
, 
∗] = (�ò) æ 
∗
d

.
�
 

   Generally, the function 
∗ is not (oò) integrable with respect to 
. But since 

the functions 
 and 
∗ has no one side common discontinuous points, the 

function 
∗ is (�ò) integrable with respect to 
.
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