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Abstract

We classify the semi-Riemannian submersions from a pseudo-hyperbolic space onto a Riemannian
under the assumption that the fibres are connected and totally geodesic. Also we obtain the classificati
semi-Riemannian submersions from a complex pseudo-hyperbolic space onto a Riemannian manifold |
assumption that the fibres are complex, connected and totally geodesic submani2fld2.Published by Elsevi
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Introduction

The theory of Riemannian submersions was initiated by O’Neill [13] and Gray [8]. Presently,
is an extensive literature on the Riemannian submersions with different conditions imposed on
space and on the fibres. A systematic exposition could be found in Besse’s book [2]. Semi-Rier
submersions were introduced by O’Neill in his book [14].

The class of harmonic Riemannian submersions, and in particular of those with totally ge
fibres, is contained in the class of horizontally homothetic harmonic morphisms. For img
results concerning the geometry of harmonic morphisms we refer to [1]. Wood constructs ex
of harmonic morphisms from Riemannian submersions with totally geodesic fibres by horiz
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conformal deformation of the metric. Recently, Fuglede studied harmonic morphisms betwee
Riemannian manifolds (see [7]). In this paper we solve the classification problem of the semi-Rien
submersions with totally geodesic fibres from real and complex pseudo-hyperbolic spaces.

Escobales [5,6] and Ranjan [15] classified Riemannian submersions with totally geodesic fibr
a sphereS” and from a complex projective spadeP”. Magid [12] classified the semi-Riemanni
submersions with totally geodesic fibres from an anti-de Sitter space onto a Riemannian man
Section 2 we classify the semi-Riemannian submersions with totally geodesic fibres from a |
hyperbolic space onto a Riemannian manifold. Also we obtain the classification of the semi-Rien
submersions with connected, complex, totally geodesic fibres from a complex pseudo-hyperbol
onto a Riemannian manifold.

1. Preliminaries and examples

Definition 1. Let (M, g) be anm-dimensional connected semi-Riemannian manifold of indX< s <
m), let (B, g’) be ann-dimensional connected semi-Riemannian manifold of indexs (0 < s’ < n).
A semi-Riemannian submersion (see [14]) is a smooth map: M — B which is onto and satisfies
following three axioms:

(a) m.|, is onto for allp € M,
(b) the fibrest~1(b), b € B are semi-Riemannian submanifoldsiat
(c) m, preserves scalar products of vectors normal to fibres.

We shall always assume that the dimension of the fibres\imdim B is positive and the fibres a
connected.

The tangent vectors to fibres are called vertical and those normal to fibres are called horizot
denote byy the vertical distribution and b${ the horizontal distribution.

O’Neill [13] has characterized the geometry of a Riemannian submersion in terms of the tens
T, A defined by

AEF:thEUF+UVhEhF, TEF:hVUEUF+UVUEhF,

for every E, F tangent vector fields t@/. HereV is the Levi-Civita connection o, the symbolsv
and h are the orthogonal projections dnhand H, respectively. The letter&, V will always denote
vertical vector fieldsX, Y, Z horizontal vector fields. Notice thdy, V is the second fundamental for
of each fibre andi Y is a naturabbstruction to integrability of horizontal distributiofi{. The tensorA
is called O’Neill's integrability tensor. For basic properties of Riemannian submersions and exam
[2,8,13]. A vector fieldX on M is said to bebasic if X is horizontal andr-related to a vector field”’
on B. Notice that every vector field@’ on B has a unique horizontal liftin to M and X is basic. The
following lemma is well known (see [13]).

Lemma 1.1. We suppose X and Y are basic vector fields on M which are r-related to X’ and Y’'. Then

(@) h[X,Y]isbasicand r-related to [ X', Y'];
(b) AVxY isbasic and 7-related to Vi, Y’ , where V' isthe Levi-Civita connection on B;
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The O’Neill's integrability tensorA has the following properties (see [13] or [2]).

Lemma 1.2. Let X, Y be horizontal vector fields and E, F be vector fields on M. Then each of the
following holds:

(@) AxY = —AyX;

(b) ApeF =ApF

(c) Ar mapsthe horizontal subspace into the vertical one and the vertical subspace into the horizontal
one;

(d) g(AxE, F)=—g(E, AxF);

(e) If moreover X isbasicthen AxV =hVy X for every vertical vector field V;

() g(VyA)xE,F)=g(E, (VyA)xF).

Let g be the induced metric on fibre (7 (p)), p € M. We denote byR, R’, R the Riemann tenso
of the metricsg, g/, g respectively.

The following equations, usually calle@ Neill’s equations, characterize the geometry of a sel
Riemannian submersion (see [2,8,13]).

Proposition 1.3. For every vertical vector fields U, V, W, W’ and for every horizontal vector fields
X,Y,Z, 7, we have the following formulae:

i) R(U,V, W, W’)=§(U, V.W, W) —g(TyW, TyW') + g(TyW, Ty W),

(i) RWU,V,W,X)=g(VvT)yW,X)—-g((VyT)yW, X),

(i) RX,U,Y,V)=g((VxT)yV,Y)—g(TuX,TyY) + g(VyA)xY, V) + g(AxU, AyV),

(iv) R(U,V,X,Y)=g((VyA)xY,V) —g((VyA)xY,U) + g(AxU, AyV) — g(AxV, AyU)
—g(TyX,TvY)+ g(TvX, TyY),

(V) R(X,Y,Z,U)=g((VzA)xY,U)+g(AxY, Ty Z) — g(AyZ, Ty X) — g(Az X, TyY),

Vi) R(X,Y,Z,Zy=R (n. X, n,Y, m.Z, 7. Z') —28(AxY,A;Z")+ g(AyZ, AxZ") — g(AxZ, Ay Z').

Using O’Neill’'s equations, we get the following lemma.
Lemmald. Ifr:(M, g)— (B, g') isasemi-Riemannian submersion with totally geodesic fibres then:
(@) R(U,V,U,V)=R(U,V,U,V);
(b) R(X,U,X,U)=g(AxU, AxU);
() R(X,Y,X,Y)=R(m,X,m.Y, m.X,mY)—3g(AxY, AxY).

We recall the definitions of real and complex pseudo-hyperbolic spaces (see [14] and [3]).

Definition 2. Let (-, -) be the symmetric bilinear form dR”** given by

nyHr nyz

i=s+1
for x = (x0, ..., Xw), ¥y = (Yo, - .-, Ym) € R"*L. Fors > 0 let H" = {x € R"*1 | (x,x) = —1} be the
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semi-Riemannian submanifold of
Rg’fll = (R ds?* = —dx°®@dx® — - —dx* @dx* +dx* TP @dx"T 4. +dx" @ dx™).

H!" is called them-dimensional i(gal) pseudo-hyperbolic space of index s. We notice thatH!" has
constant sectional curvaturel and the curvature tensor is given by

R(X,Y,X,Y)=—g(X,X)g(Y,Y)+ (X, V)%
H]" can be written as homogeneous space, namely we have
H"=0(+1,m —s5)/S0(s,m —s),

Hﬂtlzw(s +1m—s5)/V(s,m—s),

H 3 = (s + 1,m — 5)/(s, m — 5)
(see [16]).

Definition 3. Let (-, -) be the hermitian scalar product @+ given by

N m
(z,w) = _Zziu_)i + Z ZiW;
i=0 i=s+1

for z = (zo,...,zm), w = (wo, ..., wy,) € C"L. Let M be the real hypersurface @”*! given by
M = {z e C"*1| (z, z) = —1} and endowed with the induced metric of

(Cm+1’dS2: _dzo®d20 .. _dZS ®dzs +dZS+1®dZS+1+ . +dZm ®dzm).

The natural action of* = {€’ | § € R} on C"*! induces an action oM. Let CH" = M /S* endowec
with the unique indefinite Kéhler metric of index Buch that the projection — M/S* becomes
semi-Riemannian submersion (see [8]H" is called thecomplex pseudo-hyperbolic space. Notice that
CH!" has constant holomorphic sectional curvatd#eand the curvature tensor is given by

R(X,Y,X,Y)=—g(X,X)g(Y,Y)+ g(X,Y)? — 3g(IoX, Y)?,

where [y is the natural complex structure dH;". CH!" is a homogeneous space, namely we |
(see [16]))CH" =SU(s +1,m —s5)/S(WU DU (s,m —s)) and

CHZ™ = (s + 1,m — 5)/ U (D) (s, m — 5).

We denote byH"(—4) the hyperbolic space with sectional curvaturd, by HH”" the quaternionit
hyperbolic space of real dimension with quaternionic sectional curvature4.

Many explicit examples of semi-Riemannian submersions with totally geodesic fibres can b
following a standard construction (see [2] for Riemannian case)GLbe a Lie group and, H two
compact Lie subgroups of with K ¢ H.Letr : G/K — G/H be the associated bundle with fikie K
to the H-principal bundlep: G — G/H. Let g be the Lie algebra o andk c h the correspondin
Lie subalgebras oK and H. We choose a®\d(H )-invariant complementnto h in g, and anAd(K)-
invariant complemenp to k in h. An ad(H)-invariant nondegenerate bilinear symmetric formr
defines & -invariant semi-Riemannian metrg¢ on G/ H and arad(K)-invariant nondegenerate biline
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symmetric form orp defines aH -invariant semi-Riemannian metricon H/K. The orthogonal direc
sum for these nondegenerate bilinear symmetric forms @mdefines aG-invariant semi-Riemannia
metricg on G/ K. The following theorem is proved in [2].

Theorem 1.5. The map 7 :(G/K,g) — (G/H, g') is a semi-Riemannian submersion with totally
geodesic fibres.

Using this theorem we get the following examples.

Example 1. Let G = U, n), H = SWUQ)U®n)), K = V((rn). We have the semi-Riemanni
submersion

HP' =9U(1,n)/U(n) - CH" =U(1,n)/S(UQDU @n)).

Example2. LetG = (1, n), H = L) P®), K = P(n). We get the semi-Riemannian submersic
H3"** = (1, n)/Sp(n) — HH" = (L, n) /L) P(n).

Example 3. Let G = Spin(1, 8), H = Suin(8), K = Sin(7). We have the semi-Riemannian submers
H3®=Spin(1, 8)/pin(7) — H(—4) = Sin(1, 8)/pin(8).

Example 4. Let G = S(1,n), H = L) F(n), K = U(1H)J(rn). We obtain the semi-Riemanni
submersion

CHE"™ = Sp(1,n)/ U (VSp(n) — HH" = (L, n)/SPLISH(n).

Definition 4. Two semi-Riemannian submersionsz’: (M, g) — (B, g') are calledequivalent if there
is an isometryf of M which induces an isometry of B so thatz’ o f = f o . In this case the pa
(f, f) is called abundle isometry.

We shall need the following theorem, which is the semi-Riemannian version of Theorem 2.2 ir

Theorem 1.6. Let 7y, m2: M — B be semi-Riemannian submersions from a connected complete semi-
Riemannian manifold onto a semi-Riemannian manifold. Assume the fibres of these submersions are
connected and totally geodesic. Suppose f is an isometry of M which satisfies the following two
properties at a given point p € M:

(1) fup:TyM — Ty,)M maps Hy, onto Hay(,), Where H; denotes the horizontal distribution of r;,
iel{l 2},
(2) for every E, F € T,M, f.A1eF = Aysp fi.F, Where A; are the integrability tensors associated

Then f induces an isometry f of B so that the pair (£, f) is a bundle isometry between 71 and 7. In
particular, r; and 7, are equivalent.
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2. Semi-Riemannian submersionswith totally geodesic fibres

Proposition 2.1. If 7 : H" — B" is a semi-Riemannian submersion with totally geodesic fibres from an
m-dimensional pseudo-hyperbolic space of index s onto an n-dimensional Riemannian manifold then
m = n + s, the induced metrics on fibres are negative definite and B has negative sectional curvature.

Proof. By Lemma 1.4(b), we gej(AxV,AxV)=—g(X, X)g(V, V) > 0 for every horizontal vectaX
and for every vertical vectov. Thereforeg(V, V) < 0 for every vertical vecto. By Lemma 1.4(c)
we have

R(m. X, mY mX, mY)=—g X 1.X)g (n.Y, m.Y) + g (. X, 7. Y)* + 3g(AxY, AxY) <0
for every linearly independent horizontal vectéfandY. 0O

Proposition 2.2. Let 7 : (M, g) — (B",g’) be a semi-Riemannian submersion from an (n + s)-
dimensional semi-Riemannian manifold of index s > 1 onto an n-dimensional Riemannian manifold. We
suppose M is geodesically complete and simply connected. Then B is complete and simply connected. If
moreover B has nonpositive curvature then the fibres are simply connected.

Proof. SinceM is geodesically complete, the base sp&de complete.
Let g be the Riemannian metric oW defined by

g(E,F)=g(hE,hF)—g(E,vF)

for every E, F vector fields onM. Sinceg is a horizontally complete Riemannian metric (this me
that any maximal horizontal geodesic is defined on the entire real linepas@ complete Riemannie
manifold then{ is an Ehresmann connection for(see Theorem 1 in [17]). By Theorem 9.40 in [2]
follows 7 : M — B is a locally trivial fibration and we have an exact homotopy sequence

-+ —> m2(B) > nl(fibre) — m1(M) - m(B) —> 0.
SinceM is simply connected, we havg (B) =0
If B has nonpositive curvature, thea(B) = 0 by theorem of Hadamard. It follows (fibre) =0. O

Theorem 2.3. If 7 : H" — B" is a semi-Riemannian submersion with totally geodesic fibres from a
pseudo-hyperbolic space of index s > 1 onto a Riemannian manifold then B isa Riemannian symmetric
space of rank one, noncompact and simply connected, any fibre is diffeomorphic to S* and s € {3, 7}.

Proof. In order to prove thaB is a locally symmetric space we need to check #at’ = 0.

Let X, X', Y', Z' be vector fields orB and letXy, X, Y, Z be the horizontal liftings ok, X', Y', Z’
respectively. By definition of the covariant derivative we have

(Vﬁ%R/)(X/, Y',Z')
=V RX YVZ =RV X, Y)Z —R(X',Vi, YNZ —R(X, YV} Z. (2.1)
0 0 0 0
In order to prove that the curvature tenggrof the base space is parallel, we have to lift all vector fi
in relation (2.1). By Lemma 1.1, the horizontal litings @, X', V., Y" andV,, Z" arehVx X, hVy,Y
0 0 0

andhVy,Z, respectively.
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We denote byR" (X, Y)Z the horizontal lifting of R’(X’, Y')Z'. The convention for Riemann tens
used here iR (X, Y) = VxVy — VyVx — Vix.r). O'Neill's equation (vi) gives us the following relatio

R'(X,Y)Z=h(R(X,Y)Z)+2A;AxY — AxAyZ — AyAzX.
Using this relation we compute
(Vy,R)(X', Y, Z)
=1, [hVxo(R"(X,Y)Z) — R"(hVx,X,Y)Z — R"(X,hVx,Y)Z — R*(X,Y)hVx,Z]
= [hVxh(R(X,Y)Z) = hR(hVx,X,Y)Z — hR(X,hVx,Y)Z — hR(X,Y)hVx,Z
+2(hVxyAzAxY — Apvy zAxY — Az Apyy xY — AzAxhVx,Y)
— (hVxoAxAyZ — Apvy xAyZ — AxApvy v Z — AxAyhVx,Z)
— (hVxo,AyAzX — Apvy v AzX — Ay Apvy zX — Ay AzhVx, X)). (2.2)

Since H" has constant curvature, we hak¢X, Y, Z, U) = 0 for every vertical vecto/ and for
every horizontal vector field¥, Y, Z. This impliesR(X, Y)Z is horizontal andR(X, U)Y, R(U, X)Y,
R(X,Y)U are vertical. Hence

7 (Vxoh(R(X,Y)Z) — hR(hVx,X,Y)Z — hR(X, hVx,Y)Z — hR(X,Y)hVx,Z)
= (VxoR(X,Y)Z) — 1. (R(Vx,X,Y)Z — R(vVx,X,Y)Z)
— 1 (R(X,Y)VxyZ — R(X, Y)vVx,Z)
=m[(Vx,R)(X.Y, 2)].

Since H" has constant curvature, we gélx,R)(X, Y, Z) = 0. So the sum of the first four terms
relation (2.2) is zero.
We have

hVx,AzAxY — Apvy 7AxY — Az Apvy xY — AzAxhVx,Y
=h((Vx,A)z(AxY)) — Az(v(Vx,A)xY).
For the case of totally geodesic fibres, O’Neill’'s equation (v) becomes
R(X,Y,Z,U)=g((VzA)xY,U).
By Lemma 1.2(f) and by the hypothesis of constant curvature total space we get
g((VzA)xU,Y)=g((VzA)xY,U)=0

for every horizontal vector fieldX, Y, Z and for every vertical vector field . It follows A (VzA)xU =0
and v(VzA)xY = 0 for every horizontal vector fieldX, Y, Z and for every vertical vector field’ .
Thereforeh((Vyx,A)z(AxY)) =0 andv((Vx,A)xY) = 0. This implies

hVx,AzAxY — AWXOZAXY — AZAWXOXY — AzAxhVx,Y =0.
By circular permutations ofX, Y, Z) in the last relation we get
hVx,AxAyZ — AWXOXAYZ — AXAhVXOYZ — AxAyhVx,Z =0,

thoAyAzx — AhvxoyAzx — AyAhvxozx — AyAthXOX =0.
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So the sum of all terms in relation (2.2) is zero.

We proved that(V’,, R")(X',Y’, Z") = 0 for every vector fieldsX,, X', Y’, Z’, so B is a locally
symmetric space. By Igroposition 2R js simply connected and complete. Therefres a Riemannial
symmetric space. By Proposition 2.B, has negative sectional curvature. Her®ds a noncompac
Riemannian symmetric space of rank one.

Let b € B. Sincer~1(b) is a totally geodesic submanifold of a geodesically complete man
771(b) is itself geodesically complete. Sind (X', Y’, X', Y’) < 0 for every X', Y’ tangent vector
to B, we havern(fibre) = 0, by Proposition 2.2. Sincer—1(b), ) is a complete, simply connects
semi-Riemannian manifold of dimensienand of indexr and with constant sectional curvaturel,
it follows (7 ~1(b), g) is isometric toH?* (see Proposition 23 from p. 227 in [14]). Hence any fibr
diffeomorphic toS*.

We shall prove below that the tangent bundle of any fibre is trivial. From a well known result of A
it follows thats € {1, 3, 7}.

Lemma 2.4. The tangent bundle of any fibreistrivial.

Proof. Sinceg(AxV,AxV)=—g(X,X)g(V,V),we havethaidy:V — H, V> AxV is an injective
map and din¥ < dimH, if g(X, X) #0.

For any horizontal vector field, we denote byA} : H — V the map given byd% (Y) = AxY. By
O’Neill's equation (iv), we haveg(AxV, AxW) = —g(X, X)g(V, W) for every vertical vector field¥
and W. Hence, by Lemma 1.2(d), we gdt; AxV = g(X, X)V for every vertical vector field/. If
g(X, X) # 0 anywhere ther%, is surjective and hence dith= dimH — dimkerA%}. By Lemma 1.2(d)
we haveAx X = 0. This implies dimkeA?% > 1.

Letbh € B andx € T, B with g(x, x) = 1. We denote by the horizontal lifting along the fibre ~1(b)
of the vectorx. Let p an arbitrary point int ~(b) and let{X (p), y1, ..., y;} be an orthonormal basis
the vector space ker;((p). Sincer,, sends isometricall§,, into 7, B we have{m. X (p), m.y1, ..., T i)
is a linearly independent system which can be completed to a bagisBofvith a system of vector
(X141, ..., Xu_1}. Let X, X1, Xo, ..., X,,_1 be the horizontal liftings along the fibre~1(b) of x =
T X(P), TeY1, -« o, TVl Xi41, - - - » Xn—1, FESPECtively.

By Lemma 1.4, we have for evegye w~1(b) and for everyi € {1, ...,[}

38(AX(q)Xi(6])» AX(q)Xi(q))
=R (7.X(¢q), 1. Xi(q), 1. X (). 7. Xi (@) — R(X(q), X:(q), X (), Xi(q))
= R'(x, 7rayi, %, yi) + 2(X (@), X (@) 2(Xi (), Xi (@) — g(X (@), Xi(@))*
= R'0x, i, %, ) + 8/ (1X (@), 1. X (@) 8 (X (9), 1.X:(9)) — &' (7. X (@), 7. X (9))
=3g(Ax(n Xi(p), Ax(n Xi(P))
=0.
Since the induced metrics on fibrel(b) are negative definite, we 0dty ) Xi(q) =0.

By Lemma 1.2(a), we havé x )X (¢) = 0. We proved thatX(¢), X1(q), ..., X;(q)} C kerA’;((q).

Sincer,, sends isometrically, into 7, B, we get{X(q), X1(q), ..., X;(¢)} is a basis of the vectc

space keA}(q) for every pointg € 7 71(b).
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Let Vis1 = Ay Xi41, ..., Va1 = A% X,,—1 be tangent vector fields to the fibre (). We denote
by Q, the vector subspace &, spanned byX;,1(¢), X;12(q), ..., X,—1(¢q)}. Let g be the Riemannia
metric onzr —1(b) given byg(V, W) = —g(V, W) for everyV, W vector fields tangent ta —1(b). Since
dimV, =dimQ, andg(AxV,AxV) =g(V, V), we getAx):(V,;,8) — (Qy, g) is an isometry fo
everyg e m1(b).

So{Vi41,..., V,_1} is a global frame for the tangent bundlesof(b). It follows the tangent bundl
of the fibrex ~1(b) is trivial. O

This ends the proof of Theorem 2.3

By the classification of the Riemannian symmetric spaces of rank one of noncompact type, e
is isometric to one of the following spaces:

(1) H"(c) real hyperbolic space with constant sectional curvatyre

(2) CH*(c) complex hyperbolic space with holomorphic sectional curvatyre

(3) HH*(c) quaternionic hyperbolic space with quaternionic sectional curvature
(4) CaH?(c) Cayley hyperbolic plane with Cayley sectional curvattire

This will give us more information about the relation between the dimension of fibres and the ge
of base space.

Proposition 2.5. Let 7 : H'™ — B”" be a semi-Riemannian submersion with totally geodesic fibres.

(@) If s =3 then n = 4k and B" isisometric to HH*.
(b) If s =7 then we have one of the following situations:
() n=8and B" isisometricto H8(—4); or
(i) n=16and B" isisometric to CaH?.

Proof. Let Y, Z be two linear independent horizontal vectors and ¥ét= n.Y, Z' = n,.Z. By
Proposition 2.1, the metric induced on fibres are negative definite. This inggliesY, A,Y) < 0. By
Lemma 1.4, we get

R(Z,Y,Z,Y 3g(AzY, AzY
K/(Z/’ Y/) = ’ (/ ’ /) T yn2 -1+ g( - . ) 2 S -1
8'(Z',2)g'(Y',Y') = g'(Z',Y") 8(Z,2)g(Y,Y)—g(Z,Y)
By Schwartz inequality applied to the positive definite scalar product inducéd, eve have
—g(AZY, AzY)=g(AzALY,Y) <g(AzALY, AzA;Y)/g(Y,Y).

By Lemma 1.4, we get

—8(AzY, AzY) < V—g(AzY, AzY)g(Z, 2)\/g(Y, Y).
Thus—g(AzY,AzY)< g(Z,Z)g(Y,Y). Therefore
3g(AzY, AzY) S
g(Z, 2)g(x,Y) "~
for every orthogonal vectorg” andY’.

K'(Z,Y)=—-1+
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We proved that-4 < K’ < —1.

We shall prove that if the base spaBehas constant curvatukethenc = —4. It is sufficient to se
that for any poind € B there is a 2-plane € T, B such thatk («) = —4. We chooser = {7, Z, 7, Az V}
whereZ is a horizontal vector an¥#t is a vertical vector. By Lemma 1.4, we have

R(m.Z, m A7V, 0 Z, 1, AzV)=R(Z, A7V, Z,A7V) +3g(Az(AzV), Az(AZV)). (2.3)
We notice thatZz and A,V are orthogonal, because, by Lemma 1.2, we have
8(Z,AzV)=—g(AzZ,V)=0.
By Lemma 1.4, we have
8(AxU, AxU) = —g(X, X)g(U, U)

for every horizontal vectok and for every vertical vectdy . By Lemma 1.2(d), we get(Ax Ax U, U) =
g(X,X)g(U, U). Hence, by polarization, we findy AxU = g(X, X)U for every horizontal vectoX
and for every vertical vectd. Therefore relation (2.3) becomes

R (m.Z, m,AzV, 0,2, m,AzV)=—g(Z,Z)g(A;V, A, V) +3g(Z, Z)zg(V, V)
=4g(Z,2)%g(V, V)
= —4(g’(7r*Z, 1. 2)g (m AV, AZV) — g (o Z, m Ay V)z).

ThenK'(r.Z,n.A;zV) = —4. Therefore if the base spadehas constant curvatutethenc = —4.
Let X be a horizontal vector field. By Lemma 11 e ker A% if and only if

R(m X, nY, mX, mY)=—g (nX,1.X)g (.Y, n.Y) + g (m. X, m.Y)>.
For everyX’ € T, () B, we denote by
Ly =Y €Typ»BIRX,Y X Y)=—-g (X, Xg ¥ Y)+g X ¥}

With this notation,n*(kerA§(p)) = Ly xp- Sincer, sends isometrically/, into 7, B, we have
dimH* —dimV =dimkerAy ,, =dimLy; x ().
We compute dinCy. from the geometry oB. We have the following possibilities fas:

Case l. B = H*(—4).
The curvature tensor of hyperbolic spagé(—4) is given by
R/(X/, Y/, X/, Y/) — _4(g/(X/, X/)g/(Y/, Y/) _ g/(X/, Y/)Z)‘
We havely = {AX'| A € R}. Hence dimCy = 1. It follows dimH* =dimV + 1.

If s = 3 thenB" is isometric toH *(—4), which falls in the case (a), sindé&*(—4) is isometric taH H .
If s =7 then dinfH = 8 and this is the case b(ii).

Case2. B=CH*.
Let Io be the natural complex structure @H*. The curvature tensor of complex hyperbolic sp
CH* with —4 < K’ < —1is given by

R/(X/, Y/, X/, Y/) — _(g/(X/, X/)g/(Y/, Y/) _ g/(X/, Y/)Z + 3g/(IOX/, Y/)Z)‘
We getLy = {loX'}* . So dimly = 2k — 1 =dimH — 1. It follows dimV = 1.
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Case 3. B =HH*.
Let {1y, Jo, Ko} be local almost complex structures which rise to the quaternionic structubeHdn
The curvature tensor of the quaternionic hyperbolic sfigeeé with —4 < K’ < —1 (see [9]) is given by

R/(X/, Y/, X/, Y/) — —g/(X/, X/)g/(Y/, Y/) + g/(X/, Y/)Z
—3¢'(IoX', Y2 = 3g'(JoX',Y)? =3¢/ (Ko X', Y")2.
It follows that Y' € Ly if and only if g'(IpX',Y') = g'(JoX',Y') = g'(KoX',Y’) = 0. Therefore
Lx ={IpX', JoX', KoX'}*. Hence dinCy = 4k — 3=dimH — 3. We get dinV = 3.

Case4. B =CaH?>.

Let {1y, Jo, Ko, Mo, Molo, MoJo, MoK} be local almost complex structures which rise to the Ca
structure onCaH? Cayley hyperbolic plane. The curvature tensor of the Cayley plam&? with
-4 <K' < —1 (see [4]) is given by

RX,Y X, Y=g (X, X (Y, Y)+ g (X', Y)? =3¢ (I.X, Y')?
—3¢/(JoX', Y)? = 3¢'(KoX', Y')? = 3¢/ (Moo X', Y')?
— 3¢/ (Mo JoX', Y")? — 3¢ (MoKoX', Y')2.
We get
Ly ={IoX', JoX', KoX', MoX', MoIoX', MoJoX', MoKoX'}™ .
SodimLy =dimH — 7. It follows dmy =7. O

Summarizing all of the above, we obtain our main classification result.

Main Theorem 2.6. Let 7 : H" — B be a semi-Riemannian submersion with totally geodesic fibres
from a pseudo-hyperbolic space onto a Riemannian manifold. Then the semi-Riemannian submersion
is equivalent to one of the following canonical semi-Riemannian submersions, given by Examples (1)—(3)

(a) H{*' — CH*,
(b) HF*®— HH,
(c) H}®— H8(-4).

Proof. The index of the pseudo-hyperbolic space cannot be0. Indeed, by Lemma 1.4, for=0,
we get 0< g(AxV, AxV) = —g(X, X)g(V, V) <0 for every horizontal vectok and for every vertica
vector V. But this is not possible.

By [12], any semi-Riemannian submersion with totally geodesic fibres, from a pseudo-hyp
space of index 1 onto a Riemannian manifold is equivalent to the canonical semi-Riemannian suk
HZ - CH*.

It remains to study the case> 1. By Theorem 2.3 and Proposition 2.5, any semi-Rieman
submersion with totally geodesic fibres from a pseudo-hyperbolic space ofsind@&onto a Riemannia
manifold is one of the following types:

(1) H¥ — HH*, or
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(2) H;®>— H¥%—4), or
(3) HZ*— CaH?.

In order to prove that any two semi-Riemannian submersions in one of the categories (1) or
equivalent we shall modify Ranjan’s argument (see [15]) to our situation. In the category (3), w
prove there are no such semi-Riemannian submersions with totally geodesic fibres.

First, we shall prove the uniqueness in the cagf*® — HH*. Let p € H3*" and letid:V, —
End(H,) the map given by/(v)(x) = A,v for everyv € V, and for everyx € H,. We denote/(v)
by AY. It is trivial to see thatA” is skew-symmetric (i.e.g(A"x,y) = —g(x, A’y)). The O'Neill's
equation g(A,v, A,v) = —g(x,x)g(v,v) becomesg(A’x, A’x) = —g(x,x)g(v,v). This implies
g(A"A%x, x) = g(x, x)g(v, v). Hence, by polarization in, we haveg(A”Ax, y) = g(x, y)g(v, v) for
everyy € H,. SOA"Ax = g(v, v)x. Again by polarization we geA’A” + AV A" =2g(v, w)ld. Let g
be the Riemannian metric given Byv, w) = —g(v, w) for everyv, w € V,. It follows A" A¥ 4 AV AY =
—28(v, w)ldy,. This is the condition which allows us to extebdto a representation of the Cliffol
algebraCl(V,, g,) of V,. We also denote by/ the extension of/. Since dim/, =3 andg, is
positive definite,Cl(V,, g,) has at most two types of irreducible representations. We noticeHh:
is aCl(V,, g,)-module which splits in simple modules of dimension 4. The next step is to sho\
any two such simple modules in decompositiorgf are equivalent. Letvy, v,, v3} be an orthonorme
basis of(V,, g,). Since the affiliation of a simpl€l(V,, g,)-module to one of the two possible type:
decided by the action afjv,vs, it is sufficient to check thati®* A2 A™ = Id,,, .

Consider the function — g(A"1A"2A%x, x) defined on the unit sphere #i,. We have

g(ATA2ARY, x) = —g(A?A%Rx, A"x) = g(A Ay, 02, V1).

A straightforward computation shows th&t A 4 ,,v; is orthogonal taw, andvs. HenceA, A4 ,,v2 is a
multiple of v;.

By polarization of the relatiom, Av = g(x, x)v, we getA,A, + A,A, = 2g(x, y)ld for every
horizontal vectors andy. In particular, we have

AxAAxve,vZ = _AAXU;:,AXUZ + Zg(xs A v3)vp = _AAxngxUZ-

Let S be the vector subspace @f, spanned by{x, A,vi, A vz, Ayvz}. By Lemma 1.4, we ge
K'(m.x,m.Av;) =—4foralli € {1, 2, 3}. By geometry ofHH", there exists a unique totally geode
hyperbolic lineH H* passing through (p) such thatr’,,HHH! = r..S. Notice that for every orthonorm:
vectors y, z € Tﬂ(p)]HIHl, K'(y,z) = —4. In particular we haveK’(w, A vy, m,Ayv3) = —4. Hence
8(Aa, 03 A V2, Aa, pyAxv2) = —1. It follows that A, Ay, ,,v2 = £v1. HEnceg (A"t A"2A%x, x) = £1 for
all unit vectorsx. Since the functionx - g(A"*A"2A%x, x) defined on the unit sphere K, is
continuous, we get either

() g(A"1AY2A"x, x) =1 for any unit horizontal vector, or
(i) g(A“1A"2A%3x, x) = —1 for any unit horizontal vector.

We may assume the case (i) holds.
If the case (i) is happen, we replace the orthonormal Hasis),, vs} of (V,, g,) with the orthonorma
basis{vy, vo, —v3}. SO for this new basis we are in the case (i).
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SinceA"1 A"2 A3 is an isometry, we have

g(Ale”"’AU%C, Aleva”3x)g(x, x)=gx,x)>=1= g(A”lA”"’A”3x, x)2

for all unit horizontal vectors.
So the Schwartz inequality for the scalar prodgiet,

g(AmAZA%x, x)* < g(AMAZARx, A A A%X)g(x, X)

becomes equality. It follows that" A2 A3 x = Ax for some\. Becaused"1 A"2A"3 is an isometry and w
assumed the case (i), it follows= 1. We proved than*1 A*2A¥3x = x for all unit horizontal vectors:.
Obviously, A" A"2A%x = x for all x € H,,.

Let 7': Hy**® — HH* be another semi-Riemannian submersion with totally geodesic fibre:
an arbitrary chosen poinj € H§”‘+3, we consider horizontal and vertical subspag¢gsandV;. Let
{v], v3, v3} be an orthonormal basis W, such thatvjvyv; acts o asld. Let L1:V, — V), be the
isometry given byLq(v)) = v; for all i € {1,2, 3} and IetCI(Ll):CI(Vj]) — CI(V,) be the extensio
of L; to the Clifford algebras. The compositid o CI(Ll):CI(V[]) — End(H,) makesH, to be a
Cl(V,)-module of dimension# LetH, = H1& - - ®H andH, = H} & - - - ®H,, be the decompositio
of H, and#;, in simple Cl(V;)-modules, respectively. For eatlthere isf; :'H; — H; an equivalenc
of Cl(V,)-modules, which after a rescaling by a constant number is an isometry which preser
O’Neill’s integrability tensors. Taking the direct sum of all these isometries, we obtain an isc
L,:H,, — H, which preserves the O'Neill's integrability tensors. Therefbre: Ly & Lp: T, Hy* "> —
T,H;**% is an isometry which map#(, onto %, and A’ onto A. Since Hy**® is a simply connecte

complete symmetric space, there is an isomgtry;* 2 — H75™ such thatf(¢) = p and f,, = L
(see Corollary 2.3.14 in [16]). Therefore, by Theorem 1.6, wergahdx’ are equivalent.

Now, we shall prove that any two semi-Riemannian submersions : H3° — H&(—4) with totally
geodesic fibres are equivalent. The proof is analogous to the case (1), but it is easier.

Let p.q € H;® and letH,, V, be the horizontal and vertical subspacesTjjH;° for =, let H,,
V; be the horizontal and vertical subspacesT4m1}5 for 7’. Let {vy, ..., v7} be an orthonormal bas
of V,,g,) and{vy,...,v7} be an orthonormal basis @V, g,) such thatA">A"2... A" = Id and
AMAY2 .. A% =1d. Since dimV, = 7, the irreducibleCl(V,, §,)-modules are 8-dimensional. Sin
dimH, = 8, we getH, is simple. Becausel"1A"... A" = Id and A"1A%... A" = Id we getH,
and H,, are Cl(V;)-modules equivalent. Analogously to the case (1), we can construct an isc
L =Ly & Ly:T,H7* — T,H;°, which map, onto H, and A’ onto A. This produces an isomet
f 1 H}® — H3}® such thatf (g) = p and f., = L (see Corollary 2.3.14 in [16]). Again by Theorem 1
we getr andn’ are equivalent.

Now, we prove that there are na: H22 — Ca H? semi-Riemannian submersions with totally geod
fibres. The proof is analogous to that of Ranjan (see Proposition 5.1 in [15]).

H, becomes aCl(V,)-module by considering the extension of the méap), — End’H,),
UV)(X) = AxV to the Clifford algebraCl(V,). Here CI(V,, g,) denotes the Clifford algebra
Vp,8p), 8U,V)=—g(U,V) foreveryU,V e€V,. Sinceg, is positive definite, we havel(V,) ~
R(8) ® R(8). Hence,H, splits into two 8-dimensional irreduciblél(),)-modules. Since the induc
metrics on fibres are negative definite we get(Ca H?) is totally geodesic i3 and isometric ta7:>,
by Theorem 2.5 in [6]. Her€a H* denotes the Cayley hyperbolic line throughX; we chooseS be
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the horizontal space of the restricted submersiarfi;®> — CaH! = H8(—4). So for everyX € H,,
g(X, X) # 0 we find an irreducibleCl(),)-submoduleS of +, passing througlX. Since dimV, > 4,
we get a contradiction. O

Escobales [6] classified Riemannian submersions from complex projective spaces under the
tion that the fibres are connected, complex, totally geodesic submanifolds. Using the Main Theol
we obtain a classification of semi-Riemannian submersions from a complex pseudo-hyperboli
onto a Riemannian manifold under the assumption that the fibres are connected, complex, tot:
desic submanifolds.

Proposition 2.7. If 7 : CH" — B" is a semi-Riemannian submersion with complex, connected, totally
geodesic fibres then 2m = n + 2s, the induced metrics on fibres are negative definite and the fibres are
diffeomorphic to CP*.

Proof. We denote by the natural almost complex structure G#". By Lemma 1.4, we have
@ RWU,V,U,V)=R(U,V,U,V)=—(g(U,U)g(V,V)—g(U,V)*+3g(U, JV)?).
Hence the fibres have constant holomorphic curvatute
(b) g(AxU,AxU)=—(g(U,U)g(X,X)+3g(X, JU)?) = —g(U,U)g(X, X),
since the fibres are complex submanifolds. We ohgalih, U) < O for every vertical vector field/.
© R@mX mY mX mY)=R(X,Y,X,Y)+3g(AxY, AxY)
= —(g(X, X)g(Y,Y) — g(X, ¥)?+ 3¢(X, JY)?) + 3g(AxY, AxY) <O,

since the induced metrics on fibres are negative definite. By Proposition 2.2, it follows that the
are simply connected. Since the fibres are complete, simply connected, complex manifolds with
holomorphic curvature-4, we have that the fibres are isometricté/’. O

Theorem 2.8. If 7:CH" — B is a semi-Riemannian submersion with connected, complex, totally
geodesic fibres from a complex pseudo-hyperbolic space, then = is, up to equivalence, the canonical
semi-Riemannian submersion given by Example 4

CHZ™ — HH*.

Proof. Let6: Hﬂjl — CH!" be the canonical semi-Riemannian submersion with totally geodesic
given in the Definition 3 (see also [3] or [10]). We have= 7 0 6: Hf;'_fgl — B is a semi-Riemannia
submersion with totally geodesic fibres, by Theorem 2.5 in [6]. Since the dimension of fibfiesst
greater than or equal to 2, we get, by Main Theorem 2.6, the following possible situations:

() m=2k+1, 2 +1=3andB is isometric taHH* or
(i) m=7,2 +1=7andB is isometric toH®(—4).

First, we shall prove that any two semi-Riemannian submersions: Cle"” — HH* with connected
complex, totally geodesic fibres are equivalent.



G. Baditoiu, S lanus/ Differential Geometry and its Applications 16 (2002) 79-94 93

By proof of Proposition 2.7, we havg(AxU, AxU) = —g(U, U)g(X, X). Let p,q € CHZ"™. By
proof of the main theorem, this implied” A" + A A" = —2g(v, w)ld. The extension ol/:V, —
End(H,) constructed in proof of the main theorem, to the Clifford algett&V,, g,) makes’H,
a Cl(V,, g,)-module which splits ink irreducible modules of dimension 4. By classification
irreducible representation for case ditn= 2 andg, positive definite, we have any two such irreduci
Cl(V,, gp)-modules are equivalent. Like in proof of the main theorem, we may construct an isc
L =L@ L: T,CH**" > T,CH**, which mapsH, onto, and A’ onto A. This produces a

|sometryf.<CH2"+1 — (CHZ"J”1 with f(¢) = p and f., = L (see Corollary 2.3.14 in [16]). Again t
Theorem 1.6, we get andn/ are equivalent.

For the case (ii) we shall obtain that there arenrtcﬁHs? — H8(—4) semi-Riemannian submersio
with complex, connected, totally geodesic fibres.

Proposition 2.9. There are no « :(CH:Z — H&(—4) semi-Riemannian submersions with connected,
complex, totally geodesic fibres.

Proof. The proof is based on Ranjan’s argument (see proof of main theorem in [15]). Here, w
how to modify Ranjan’s argument to our different situation.

Suppose there is: CH,Q? — H®&(—4) a semi-Riemannian submersion with complex, connected, tc
geodesic fibres. By Main Theorem 2/6=r 0 0 : H;°> — H®(—4) is equivalent to the canonical ser
Riemannian submersidgpin(1, 8)/pin(7) — Spin(1, 8)/pin(8) given by Example 3.

Let o : Spin(1, 8) — S0O(8, 8) be the spin representation §fin(1, 8). Jin(1, 8) acts onH®(—4) via
double covering magpin(1, 8) — SO(1, 8) and transitively onH+°> c R1E. We denote byCI°(R?) the
even component of Clifford aIgebt@I(]Rg) Notice thatCIo(]R ) = M(16 R), CI(]R Y= M(6,R) &
M (16, R) and the volume elemeat in CI(R?) satisfiesw? = 1 (see [11]).

For anyb € H8(—4), let G, be the isotropy group db in Spin(1, 8). If we restricto|s, thenao|g,
breaksR3® into two 2-spin representations. We will denote themitfy. HenceRS N H7° =7 ~1(b). Let

={xe R? | (x, b) = 0}. We haveCl(b') N Sin(1, 8) = G;, dimb*+ =8 and the following diagram |
commutative

Gy cl°wh)

l

Sin(1, 8) ——CI°RY),

where all arrows are standard inclusions. [t . .., eg} be an orientated basis bf. Thenz' =e;...eg
lies in the centre o€1°(b+) andz’ acts byld onRR® and—Id onR8. We haveCl(0)(z) = £1 onRE.
SinceR8 N H3° = 7 1(b), R® is invariant under and so isR®. HereJ denotes the natural compl
structure oriRl6 C8. HenceCI (0)(z") commutes with/. Letz € Cl (]R ) be the generator of the cen
of CI(R ). We have eithet = eqes...egb Or zb = —eqes...eg = —7z'. ThereforeCl(o)(zb) commutes
with J for everyb € H8(—4) and hence for everyy € R®.
Consider the linear map:RR°® — M (16, R) given byb — Cl(c)(zb). It has the following properties

() It factors throughM (8, C) c M (16, R);
(i) [Cl(0)(zb)]?>=Cl(0)((zb)®) =Cl(o)(—|b[>) = —|b|?Id.
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Hencea extends to a homomorphis@i(a) : CI(RS) — M (8, C). But CI(RY) = M(16,R) & M(16,R)
(see [11]). So the above homomorphism is impossible to exist. We get the required contradiction

This ends the proof of Theorem 2.8

Acknowledgements

We would like to thank Dmitri Alekseevsky for the remarks and comments made to an earlier \
of this work. The second author thanks to Stefano Marchiafava for useful discussions on this toj
the occasion of his visit to Rome in autumn of 1999.

References

[1] P. Baird, J.C. Wood, Harmonic morphisms between Riemannian manifolds, London Math. Soc. Monogr. (N.S.),
Univ. Press (to appear).
[2] A.L. Besse, Einstein Manifolds, Springer, Berlin, 1987.
[3] M. Barros, A. Romero, Indefinite Kéhler manifolds, Math. Ann. 261 (1982) 55-62.
[4] P. Coulton, J. Glazebrook, Submanifolds of the Cayley projective plane with bounded second fundamental forn
Dedicata 33 (1990) 265-275.
[5] R. Escobales, Riemannian submersions with totally geodesic fibers, J. Differential Geom. 10 (1975) 253-276.
[6] R. Escobales, Riemannian submersions from complex projective spaces, J. Differential Geom. 13 (1978) 93-10°
[7] B. Fuglede, Harmonic morphisms between semi-Riemannian manifolds, Ann. Acad. Sci. Fenn. Math. 21 (1996)
[8] A. Gray, Pseudo-Riemannian almost product manifolds and submersions, J. Math. Mech. 16 (1967) 715-737.
[9] S. Ishihara, Quaternionic Kéhler manifolds, J. Differential Geom. 9 (1974) 483-500.
[10] J.K. Kwon, Y.J. Suh, On sectional and Ricci curvatures of semi-Riemannian submersions, Kodai Math. J. 20 (199°
[11] H.B. Lawson, M.-L. Michelsohn, Spin Geometry, Princeton Univ. Press, Princeton, 1989.
[12] M.A. Magid, Submersions from anti-de Sitter space with totally geodesic fibres, J. Differential Geom. 16 (1981) 3
[13] B. O'Neill, The fundamental equations of a submersion, Michigan Math. J. 13 (1966) 459-469.
[14] B. O’Neill, Semi-Riemannian Geometry with Applications to Relativity, Academic Press, New York, London, 198:
[15] A. Ranjan, Riemannian submersions of spheres with totally geodesics fibers, Osaka J. Math. 22 (1985) 243-26(
[16] J. Wolf, Spaces of Constant Curvature, McGraw-Hill, New York, 1967.
[17] N.I. Zhukova, Submersions with an Ehresmann connection, lzvestiya VUZ Matematika 32 (1988) 25-33.



	Semi-Riemannian submersions from real and complex pseudo-hyperbolic spaces
	Introduction
	Preliminaries and examples
	Semi-Riemannian submersions with totally geodesic fibres
	Acknowledgements
	References


