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Abstract

We classify the semi-Riemannian submersions from a pseudo-hyperbolic space onto a Riemannian manifold
under the assumption that the fibres are connected and totally geodesic. Also we obtain the classification of the
semi-Riemannian submersions from a complex pseudo-hyperbolic space onto a Riemannian manifold under the
assumption that the fibres are complex, connected and totally geodesic submanifolds. 2002 Published by Elsevier
Science B.V.
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Introduction

The theory of Riemannian submersions was initiated by O’Neill [13] and Gray [8]. Presently, there
is an extensive literature on the Riemannian submersions with different conditions imposed on the total
space and on the fibres. A systematic exposition could be found in Besse’s book [2]. Semi-Riemannian
submersions were introduced by O’Neill in his book [14].

The class of harmonic Riemannian submersions, and in particular of those with totally geodesic
fibres, is contained in the class of horizontally homothetic harmonic morphisms. For important
results concerning the geometry of harmonic morphisms we refer to [1]. Wood constructs examples
of harmonic morphisms from Riemannian submersions with totally geodesic fibres by horizontally
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conformal deformation of the metric. Recently, Fuglede studied harmonic morphisms between semi-
Riemannian manifolds (see [7]). In this paper we solve the classification problem of the semi-Riemannian
submersions with totally geodesic fibres from real and complex pseudo-hyperbolic spaces.

Escobales [5,6] and Ranjan [15] classified Riemannian submersions with totally geodesic fibres from
a sphereSn and from a complex projective spaceCPn. Magid [12] classified the semi-Riemannian
submersions with totally geodesic fibres from an anti-de Sitter space onto a Riemannian manifold. In
Section 2 we classify the semi-Riemannian submersions with totally geodesic fibres from a pseudo-
hyperbolic space onto a Riemannian manifold. Also we obtain the classification of the semi-Riemannian
submersions with connected, complex, totally geodesic fibres from a complex pseudo-hyperbolic space
onto a Riemannian manifold.

1. Preliminaries and examples

Definition 1. Let (M,g) be anm-dimensional connected semi-Riemannian manifold of indexs (0� s �
m), let (B,g′) be ann-dimensional connected semi-Riemannian manifold of indexs′ � s (0 � s′ � n).
A semi-Riemannian submersion (see [14]) is a smooth mapπ :M → B which is onto and satisfies the
following three axioms:

(a) π∗|p is onto for allp ∈M ;
(b) the fibresπ−1(b), b ∈ B are semi-Riemannian submanifolds ofM ;
(c) π∗ preserves scalar products of vectors normal to fibres.

We shall always assume that the dimension of the fibres dimM − dimB is positive and the fibres are
connected.

The tangent vectors to fibres are called vertical and those normal to fibres are called horizontal. We
denote byV the vertical distribution and byH the horizontal distribution.

O’Neill [13] has characterized the geometry of a Riemannian submersion in terms of the tensor fields
T ,A defined by

AEF = h∇hEvF + v∇hEhF , TEF = h∇vEvF + v∇vEhF ,
for everyE, F tangent vector fields toM . Here∇ is the Levi-Civita connection ofg, the symbolsv
andh are the orthogonal projections onV andH, respectively. The lettersU , V will always denote
vertical vector fields,X, Y , Z horizontal vector fields. Notice thatTUV is the second fundamental form
of each fibre andAXY is a naturalobstruction to integrability of horizontal distributionH. The tensorA
is called O’Neill’s integrability tensor. For basic properties of Riemannian submersions and examples see
[2,8,13]. A vector fieldX onM is said to bebasic if X is horizontal andπ -related to a vector fieldX′
onB. Notice that every vector fieldX′ onB has a unique horizontal liftingX toM andX is basic. The
following lemma is well known (see [13]).

Lemma 1.1. We suppose X and Y are basic vector fields on M which are π -related to X′ and Y ′. Then

(a) h[X,Y ] is basic and π -related to [X′, Y ′];
(b) h∇XY is basic and π -related to ∇′

X′Y ′ , where ∇′ is the Levi-Civita connection on B;
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The O’Neill’s integrability tensorA has the following properties (see [13] or [2]).

Lemma 1.2. Let X, Y be horizontal vector fields and E, F be vector fields on M . Then each of the
following holds:

(a) AXY = −AYX;
(b) AhEF =AEF ;
(c) AE maps the horizontal subspace into the vertical one and the vertical subspace into the horizontal

one;
(d) g(AXE,F)= −g(E,AXF);
(e) If moreover X is basic then AXV = h∇VX for every vertical vector field V ;
(f) g((∇YA)XE,F)= g(E, (∇YA)XF).

Let ĝ be the induced metric on fibreπ−1(π(p)), p ∈M . We denote byR, R′, R̂ the Riemann tensors
of the metricsg, g′, ĝ respectively.

The following equations, usually calledO’Neill’s equations, characterize the geometry of a semi-
Riemannian submersion (see [2,8,13]).

Proposition 1.3. For every vertical vector fields U,V,W,W ′ and for every horizontal vector fields
X,Y,Z,Z′, we have the following formulae:

(i) R(U,V,W,W ′)= R̂(U,V,W,W ′)− g(TUW,TVW ′)+ g(TVW,TUW ′),
(ii) R(U,V,W,X)= g((∇V T )UW,X)− g((∇UT )VW,X),

(iii) R(X,U,Y,V )= g((∇XT )UV,Y )− g(TUX,TV Y )+ g((∇UA)XY,V )+ g(AXU,AYV ),
(iv) R(U,V,X,Y )= g((∇UA)XY,V )− g((∇VA)XY,U)+ g(AXU,AYV )− g(AXV,AYU)

−g(TUX,TV Y )+ g(TVX,TUY ),
(v) R(X,Y,Z,U)= g((∇ZA)XY,U)+ g(AXY,TUZ)− g(AYZ,TUX)− g(AZX,TUY ),
(vi) R(X,Y,Z,Z′)=R′(π∗X,π∗Y,π∗Z,π∗Z′)− 2g(AXY,AZZ′)+ g(AYZ,AXZ′)− g(AXZ,AYZ′).

Using O’Neill’s equations, we get the following lemma.

Lemma 1.4. If π : (M,g)→ (B,g′) is a semi-Riemannian submersion with totally geodesic fibres then:

(a) R(U,V,U,V )= R̂(U,V,U,V );
(b) R(X,U,X,U)= g(AXU,AXU);
(c) R(X,Y,X,Y )=R′(π∗X,π∗Y,π∗X,π∗Y )− 3g(AXY,AXY ).

We recall the definitions of real and complex pseudo-hyperbolic spaces (see [14] and [3]).

Definition 2. Let 〈·, ·〉 be the symmetric bilinear form onRm+1 given by

〈x, y〉 = −
s∑
i=0

xiyi +
m∑

i=s+1

xiyi

for x = (x0, . . . , xm), y = (y0, . . . , ym) ∈ R
m+1. For s > 0 let Hm

s = {x ∈ R
m+1 | 〈x, x〉 = −1} be the
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semi-Riemannian submanifold of

R
m+1
s+1 = (

R
m+1, ds2 = −dx0 ⊗ dx0 − · · · − dxs ⊗ dxs + dxs+1 ⊗ dxs+1 + · · · + dxm ⊗ dxm)

.

Hm
s is called them-dimensional (real) pseudo-hyperbolic space of index s. We notice thatHm

s has
constant sectional curvature−1 and the curvature tensor is given by

R(X,Y,X,Y )= −g(X,X)g(Y,Y )+ g(X,Y )2.
Hm
s can be written as homogeneous space, namely we have

Hm
s = SO(s + 1,m− s)/SO(s,m− s),

H 2m+1
2s+1 = SU(s + 1,m− s)/SU(s,m− s),

H 4m+3
4s+3 = Sp(s + 1,m− s)/Sp(s,m− s)

(see [16]).

Definition 3. Let (·, ·) be the hermitian scalar product onC
m+1 given by

(z,w)= −
s∑
i=0

ziw̄i +
m∑

i=s+1

ziw̄i

for z = (z0, . . . , zm),w = (w0, . . . ,wm) ∈ C
m+1. Let M be the real hypersurface ofCm+1 given by

M = {z ∈ C
m+1 | (z, z)= −1} and endowed with the induced metric of(

C
m+1, ds2 = −dz0 ⊗ dz̄0 − · · · − dzs ⊗ dz̄s + dzs+1 ⊗ dz̄s+1 + · · · + dzm ⊗ dz̄m)

.

The natural action ofS1 = {eiθ | θ ∈ R} on C
m+1 induces an action onM . Let CHm

s =M/S1 endowed
with the unique indefinite Kähler metric of index 2s such that the projectionM →M/S1 becomes a
semi-Riemannian submersion (see [3]).CHm

s is called thecomplex pseudo-hyperbolic space. Notice that
CHm

s has constant holomorphic sectional curvature−4 and the curvature tensor is given by

R(X,Y,X,Y )= −g(X,X)g(Y,Y )+ g(X,Y )2 − 3g(I0X,Y )
2,

whereI0 is the natural complex structure onCHm
s . CHm

s is a homogeneous space, namely we have
(see [16])CHm

s = SU(s + 1,m− s)/S(U(1)U(s,m− s)) and

CH 2m+1
2s+1 = Sp(s + 1,m− s)/U(1)Sp(s,m− s).

We denote byHn(−4) the hyperbolic space with sectional curvature−4, by HHn the quaternionic
hyperbolic space of real dimension 4n with quaternionic sectional curvature−4.

Many explicit examples of semi-Riemannian submersions with totally geodesic fibres can be given
following a standard construction (see [2] for Riemannian case). LetG be a Lie group andK,H two
compact Lie subgroups ofGwithK ⊂H . Letπ :G/K →G/H be the associated bundle with fibreH/K
to theH -principal bundlep :G→ G/H . Let g be the Lie algebra ofG andk ⊂ h the corresponding
Lie subalgebras ofK andH . We choose anAd(H)-invariant complementm to h in g, and anAd(K)-
invariant complementp to k in h. An ad(H)-invariant nondegenerate bilinear symmetric form onm
defines aG-invariant semi-Riemannian metricg′ onG/H and anad(K)-invariant nondegenerate bilinear
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symmetric form onp defines aH -invariant semi-Riemannian metriĉg onH/K . The orthogonal direct
sum for these nondegenerate bilinear symmetric forms onp⊕m defines aG-invariant semi-Riemannian
metricg onG/K . The following theorem is proved in [2].

Theorem 1.5. The map π : (G/K,g) → (G/H,g′) is a semi-Riemannian submersion with totally
geodesic fibres.

Using this theorem we get the following examples.

Example 1. Let G = SU(1, n), H = S(U(1)U(n)), K = SU(n). We have the semi-Riemannian
submersion

H 2n+1
1 = SU(1, n)/SU(n)→ CHn = SU(1, n)/S

(
U(1)U(n)

)
.

Example 2. LetG= Sp(1, n),H = Sp(1)Sp(n),K = Sp(n). We get the semi-Riemannian submersion

H 4n+3
3 = Sp(1, n)/Sp(n)→ HHn = Sp(1, n)/Sp(1)Sp(n).

Example 3. LetG= Spin(1,8),H = Spin(8), K = Spin(7). We have the semi-Riemannian submersion

H 15
7 = Spin(1,8)/Spin(7)→H 8(−4)= Spin(1,8)/Spin(8).

Example 4. Let G = Sp(1, n), H = Sp(1)Sp(n), K = U(1)Sp(n). We obtain the semi-Riemannian
submersion

CH 2n+1
1 = Sp(1, n)/U(1)Sp(n)→ HHn = Sp(1, n)/Sp(1)Sp(n).

Definition 4. Two semi-Riemannian submersionsπ,π ′ : (M,g)→ (B,g′) are calledequivalent if there
is an isometryf of M which induces an isometrỹf of B so thatπ ′ ◦ f = f̃ ◦ π . In this case the pair
(f, f̃ ) is called abundle isometry.

We shall need the following theorem, which is the semi-Riemannian version of Theorem 2.2 in [5].

Theorem 1.6. Let π1, π2 :M → B be semi-Riemannian submersions from a connected complete semi-
Riemannian manifold onto a semi-Riemannian manifold. Assume the fibres of these submersions are
connected and totally geodesic. Suppose f is an isometry of M which satisfies the following two
properties at a given point p ∈M :

(1) f∗p :TpM → Tf (p)M maps H1p onto H2f (p), where Hi denotes the horizontal distribution of πi ,
i ∈ {1,2};

(2) for every E, F ∈ TpM , f∗A1EF = A2f∗Ef∗F , where Ai are the integrability tensors associated
with πi .

Then f induces an isometry f̃ of B so that the pair (f, f̃ ) is a bundle isometry between π1 and π2. In
particular, π1 and π2 are equivalent.
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2. Semi-Riemannian submersions with totally geodesic fibres

Proposition 2.1. If π :Hm
s → Bn is a semi-Riemannian submersion with totally geodesic fibres from an

m-dimensional pseudo-hyperbolic space of index s onto an n-dimensional Riemannian manifold then
m= n+ s, the induced metrics on fibres are negative definite and B has negative sectional curvature.

Proof. By Lemma 1.4(b), we getg(AXV,AXV )= −g(X,X)g(V,V )� 0 for every horizontal vectorX
and for every vertical vectorV . Thereforeg(V,V ) � 0 for every vertical vectorV . By Lemma 1.4(c),
we have

R′(π∗X,π∗Y,π∗X,π∗Y )= −g′(π∗X,π∗X)g′(π∗Y,π∗Y )+ g′(π∗X,π∗Y )2 + 3g(AXY,AXY ) < 0

for every linearly independent horizontal vectorsX andY . ✷
Proposition 2.2. Let π : (Mn+s

s , g) → (Bn, g′) be a semi-Riemannian submersion from an (n + s)-
dimensional semi-Riemannian manifold of index s � 1 onto an n-dimensional Riemannian manifold. We
suppose M is geodesically complete and simply connected. Then B is complete and simply connected. If
moreover B has nonpositive curvature then the fibres are simply connected.

Proof. SinceM is geodesically complete, the base spaceB is complete.
Let g̃ be the Riemannian metric onM defined by

g̃(E,F )= g(hE,hF)− g(vE,vF)
for everyE,F vector fields onM . Sinceg̃ is a horizontally complete Riemannian metric (this means
that any maximal horizontal geodesic is defined on the entire real line) andB is a complete Riemannian
manifold thenH is an Ehresmann connection forπ (see Theorem 1 in [17]). By Theorem 9.40 in [2], it
follows π :M → B is a locally trivial fibration and we have an exact homotopy sequence

· · · → π2(B)→ π1(fibre)→ π1(M)→ π1(B)→ 0.

SinceM is simply connected, we haveπ1(B)= 0.
If B has nonpositive curvature, thenπ2(B)= 0 by theorem of Hadamard. It followsπ1(fibre)= 0. ✷

Theorem 2.3. If π :Hm
s → Bn is a semi-Riemannian submersion with totally geodesic fibres from a

pseudo-hyperbolic space of index s > 1 onto a Riemannian manifold then B is a Riemannian symmetric
space of rank one, noncompact and simply connected, any fibre is diffeomorphic to Ss and s ∈ {3,7}.
Proof. In order to prove thatB is a locally symmetric space we need to check that∇′R′ ≡ 0.

LetX′
0,X

′, Y ′,Z′ be vector fields onB and letX0,X,Y,Z be the horizontal liftings ofX′
0,X

′, Y ′,Z′
respectively. By definition of the covariant derivative we have

(∇′
X′

0
R′)(X′, Y ′,Z′)

(2.1)= ∇′
X′

0
R′(X′, Y ′)Z′ −R′(∇′

X′
0
X′, Y ′)Z′ −R′(X′,∇′

X′
0
Y ′)Z′ −R′(X′, Y ′)∇′

X′
0
Z′.

In order to prove that the curvature tensorR′ of the base space is parallel, we have to lift all vector fields
in relation (2.1). By Lemma 1.1, the horizontal liftings of∇′

X′
0
X′,∇′

X′
0
Y ′ and∇′

X′
0
Z′ areh∇X0X,h∇X0Y

andh∇X0Z, respectively.



G. Bădiţoiu, S. Ianuş / Differential Geometry and its Applications 16 (2002) 79–94 85

We denote byRh(X,Y )Z the horizontal lifting ofR′(X′, Y ′)Z′. The convention for Riemann tensor
used here isR(X,Y )= ∇X∇Y − ∇Y∇X − ∇[X,Y ]. O’Neill’s equation (vi) gives us the following relation

Rh(X,Y )Z = h(R(X,Y )Z) + 2AZAXY −AXAYZ −AYAZX.
Using this relation we compute

(∇′
X0
R′)(X′, Y ′,Z′)

= π∗
[
h∇X0

(
Rh(X,Y )Z

) −Rh(h∇X0X,Y )Z−Rh(X,h∇X0Y )Z−Rh(X,Y )h∇X0Z
]

= π∗
[
h∇X0h

(
R(X,Y )Z

) − hR(h∇X0X,Y )Z− hR(X,h∇X0Y )Z− hR(X,Y )h∇X0Z

+ 2(h∇X0AZAXY −Ah∇X0Z
AXY −AZAh∇X0X

Y −AZAXh∇X0Y )

− (h∇X0AXAYZ−Ah∇X0X
AYZ −AXAh∇X0Y

Z−AXAYh∇X0Z)

(2.2)− (h∇X0AYAZX−Ah∇X0Y
AZX−AYAh∇X0Z

X−AYAZh∇X0X)
]
.

SinceHm
s has constant curvature, we haveR(X,Y,Z,U) = 0 for every vertical vectorU and for

every horizontal vector fieldsX,Y,Z. This impliesR(X,Y )Z is horizontal andR(X,U)Y,R(U,X)Y,
R(X,Y )U are vertical. Hence

π∗
(∇X0h

(
R(X,Y )Z

) − hR(h∇X0X,Y )Z− hR(X,h∇X0Y )Z− hR(X,Y )h∇X0Z
)

= π∗
(∇X0R(X,Y )Z

)− π∗
(
R(∇X0X,Y )Z−R(v∇X0X,Y )Z

)
− π∗

(
R(X,Y )∇X0Z−R(X,Y )v∇X0Z

)
= π∗

[
(∇X0R)(X,Y,Z)

]
.

SinceHm
s has constant curvature, we get(∇X0R)(X,Y,Z)= 0. So the sum of the first four terms in

relation (2.2) is zero.
We have

h∇X0AZAXY −Ah∇X0Z
AXY −AZAh∇X0X

Y −AZAXh∇X0Y

= h((∇X0A)Z(AXY )
) −AZ

(
v(∇X0A)XY

)
.

For the case of totally geodesic fibres, O’Neill’s equation (v) becomes

R(X,Y,Z,U)= g((∇ZA)XY,U)
.

By Lemma 1.2(f) and by the hypothesis of constant curvature total space we get

g
(
(∇ZA)XU,Y

) = g((∇ZA)XY,U) = 0

for every horizontal vector fieldsX,Y,Z and for every vertical vector fieldU . It follows h(∇ZA)XU = 0
and v(∇ZA)XY = 0 for every horizontal vector fieldsX,Y,Z and for every vertical vector fieldU .
Thereforeh((∇X0A)Z(AXY ))= 0 andv((∇X0A)XY )= 0. This implies

h∇X0AZAXY −Ah∇X0Z
AXY −AZAh∇X0X

Y −AZAXh∇X0Y = 0.

By circular permutations of(X,Y,Z) in the last relation we get

h∇X0AXAYZ−Ah∇X0X
AYZ −AXAh∇X0Y

Z−AXAYh∇X0Z = 0,

h∇X0AYAZX−Ah∇X0Y
AZX−AYAh∇X0Z

X−AYAZh∇X0X = 0.
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So the sum of all terms in relation (2.2) is zero.
We proved that(∇′

X′
0
R′)(X′, Y ′,Z′) = 0 for every vector fieldsX′

0,X
′, Y ′,Z′, so B is a locally

symmetric space. By Proposition 2.2,B is simply connected and complete. ThereforeB is a Riemannian
symmetric space. By Proposition 2.1,B has negative sectional curvature. HenceB is a noncompact
Riemannian symmetric space of rank one.

Let b ∈ B. Sinceπ−1(b) is a totally geodesic submanifold of a geodesically complete manifold,
π−1(b) is itself geodesically complete. SinceR′(X′, Y ′,X′, Y ′) � 0 for everyX′, Y ′ tangent vectors
to B, we haveπ1(fibre) = 0, by Proposition 2.2. Since(π−1(b), ĝ) is a complete, simply connected
semi-Riemannian manifold of dimensionr and of indexr and with constant sectional curvature−1,
it follows (π−1(b), ĝ) is isometric toHs

s (see Proposition 23 from p. 227 in [14]). Hence any fibre is
diffeomorphic toSs .

We shall prove below that the tangent bundle of any fibre is trivial. From a well known result of Adams
it follows thats ∈ {1,3,7}.

Lemma 2.4. The tangent bundle of any fibre is trivial.

Proof. Sinceg(AXV,AXV )= −g(X,X)g(V,V ), we have thatAX :V → H, V �→AXV is an injective
map and dimV � dimH, if g(X,X) �= 0.

For any horizontal vector fieldX, we denote byA∗
X :H → V the map given byA∗

X(Y ) = AXY . By
O’Neill’s equation (iv), we haveg(AXV,AXW)= −g(X,X)g(V,W) for every vertical vector fieldsV
andW . Hence, by Lemma 1.2(d), we getA∗

XAXV = g(X,X)V for every vertical vector fieldV . If
g(X,X) �= 0 anywhere thenA∗

X is surjective and hence dimV = dimH− dim kerA∗
X . By Lemma 1.2(d),

we haveAXX= 0. This implies dim kerA∗
X � 1.

Let b ∈ B andx ∈ TbB with g(x, x)= 1. We denote byX the horizontal lifting along the fibreπ−1(b)

of the vectorx. Let p an arbitrary point inπ−1(b) and let{X(p), y1, . . . , yl} be an orthonormal basis of
the vector space kerA∗

X(p). Sinceπ∗p sends isometricallyHp into TbB we have{π∗X(p),π∗y1, . . . , π∗yl}
is a linearly independent system which can be completed to a basis ofTbB with a system of vectors
{xl+1, . . . , xn−1}. Let X,X1,X2, . . . ,Xn−1 be the horizontal liftings along the fibreπ−1(b) of x =
π∗X(p),π∗y1, . . . , π∗yl, xl+1, . . . , xn−1, respectively.

By Lemma 1.4, we have for everyq ∈ π−1(b) and for everyi ∈ {1, . . . , l}
3g

(
AX(q)Xi(q),AX(q)Xi(q)

)
=R′(π∗X(q),π∗Xi(q),π∗X(q),π∗Xi(q)

) −R(
X(q),Xi(q),X(q),Xi(q)

)
=R′(x,π∗yi, x,π∗yi)+ g

(
X(q),X(q)

)
g
(
Xi(q),Xi(q)

) − g(X(q),Xi(q))2

=R′(x,π∗yi, x,π∗yi)+ g′(π∗X(q),π∗X(q)
)
g′(π∗Xi(q),π∗Xi(q)

) − g′(π∗X(q),π∗Xi(q)
)2

= 3g
(
AX(p)Xi(p),AX(p)Xi(p)

)
= 0.

Since the induced metrics on fibreπ−1(b) are negative definite, we getAX(q)Xi(q)= 0.
By Lemma 1.2(a), we haveAX(q)X(q) = 0. We proved that{X(q),X1(q), . . . ,Xl(q)} ⊂ kerA∗

X(q).
Sinceπ∗q sends isometricallyHq into TbB, we get{X(q),X1(q), . . . ,Xl(q)} is a basis of the vector
space kerA∗

X(q) for every pointq ∈ π−1(b).
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Let Vl+1 = A∗
XXl+1, . . . , Vn−1 = A∗

XXn−1 be tangent vector fields to the fibreπ−1(b). We denote
byQq the vector subspace ofHq spanned by{Xl+1(q),Xl+2(q), . . . ,Xn−1(q)}. Let g̃ be the Riemannian
metric onπ−1(b) given byg̃(V ,W)= −g(V,W) for everyV,W vector fields tangent toπ−1(b). Since
dimVq = dimQq andg(AXV,AXV ) = g̃(V ,V ), we getAX(q) : (Vq, g̃)→ (Qq, g) is an isometry for
everyq ∈ π−1(b).

So {Vl+1, . . . , Vn−1} is a global frame for the tangent bundle ofπ−1(b). It follows the tangent bundle
of the fibreπ−1(b) is trivial. ✷

This ends the proof of Theorem 2.3.✷
By the classification of the Riemannian symmetric spaces of rank one of noncompact type, we haveB

is isometric to one of the following spaces:

(1) Hn(c) real hyperbolic space with constant sectional curvaturec;
(2) CHk(c) complex hyperbolic space with holomorphic sectional curvaturec;
(3) HHk(c) quaternionic hyperbolic space with quaternionic sectional curvaturec;
(4) CaH 2(c) Cayley hyperbolic plane with Cayley sectional curvaturec.

This will give us more information about the relation between the dimension of fibres and the geometry
of base space.

Proposition 2.5. Let π :Hn+s
s →Bn be a semi-Riemannian submersion with totally geodesic fibres.

(a) If s = 3 then n= 4k and Bn is isometric to HHk.
(b) If s = 7 then we have one of the following situations:

(i) n= 8 and Bn is isometric to H 8(−4); or
(ii) n= 16 and Bn is isometric to CaH 2.

Proof. Let Y,Z be two linear independent horizontal vectors and letY ′ = π∗Y , Z′ = π∗Z. By
Proposition 2.1, the metric induced on fibres are negative definite. This impliesg(AZY,AZY )� 0. By
Lemma 1.4, we get

K ′(Z′, Y ′)= R′(Z′, Y ′,Z′, Y ′)
g′(Z′,Z′)g′(Y ′, Y ′)− g′(Z′, Y ′)2

= −1+ 3g(AZY,AZY )

g(Z,Z)g(Y,Y )− g(Z,Y )2 � −1.

By Schwartz inequality applied to the positive definite scalar product induced onH, we have

−g(AZY,AZY )= g(AZAZY,Y )�
√
g(AZAZY,AZAZY )

√
g(Y,Y ).

By Lemma 1.4, we get

−g(AZY,AZY )�
√−g(AZY,AZY )g(Z,Z)

√
g(Y,Y ).

Thus−g(AZY,AZY )� g(Z,Z)g(Y,Y ). Therefore

K ′(Z′, Y ′)= −1+ 3g(AZY,AZY )

g(Z,Z)g(Y,Y )
� −4

for every orthogonal vectorsZ′ andY ′.
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We proved that−4�K ′ � −1.
We shall prove that if the base spaceB has constant curvaturec thenc = −4. It is sufficient to see

that for any pointb ∈ B there is a 2-planeα ∈ TbB such thatK(α)= −4. We chooseα = {π∗Z,π∗AZV }
whereZ is a horizontal vector andV is a vertical vector. By Lemma 1.4, we have

(2.3)R′(π∗Z,π∗AZV,π∗Z,π∗AZV )=R(Z,AZV,Z,AZV )+ 3g
(
AZ(AZV ),AZ(AZV )

)
.

We notice thatZ andAZV are orthogonal, because, by Lemma 1.2, we have

g(Z,AZV )= −g(AZZ,V )= 0.

By Lemma 1.4, we have

g(AXU,AXU)= −g(X,X)g(U,U)
for every horizontal vectorX and for every vertical vectorU . By Lemma 1.2(d), we getg(AXAXU,U)=
g(X,X)g(U,U). Hence, by polarization, we findAXAXU = g(X,X)U for every horizontal vectorX
and for every vertical vectorU . Therefore relation (2.3) becomes

R′(π∗Z,π∗AZV,π∗Z,π∗AZV )= −g(Z,Z)g(AZV,AZV )+ 3g(Z,Z)2g(V,V )

= 4g(Z,Z)2g(V,V )

= −4
(
g′(π∗Z,π∗Z)g′(π∗AZV,π∗AZV )− g′(π∗Z,π∗AZV )2

)
.

ThenK ′(π∗Z,π∗AZV )= −4. Therefore if the base spaceB has constant curvaturec thenc= −4.
LetX be a horizontal vector field. By Lemma 1.4,Y ∈ kerA∗

X if and only if

R′(π∗X,π∗Y,π∗X,π∗Y )= −g′(π∗X,π∗X)g′(π∗Y,π∗Y )+ g′(π∗X,π∗Y )2.

For everyX′ ∈ Tπ(p)B, we denote by

LX′ = {
Y ′ ∈ Tπ(p)B |R′(X′, Y ′,X′, Y ′)= −g′(X′,X′)g′(Y ′, Y ′)+ g′(X′, Y ′)2

}
.

With this notation,π∗(kerA∗
X(p)) = Lπ∗X(p). Sinceπ∗ sends isometricallyHp into Tπ(p)B, we have

dimH − dimV = dim kerA∗
X(p) = dimLπ∗X(p).

We compute dimLX′ from the geometry ofB. We have the following possibilities forB:

Case 1. B =Hk(−4).
The curvature tensor of hyperbolic spaceHk(−4) is given by

R′(X′, Y ′,X′, Y ′)= −4
(
g′(X′,X′)g′(Y ′, Y ′)− g′(X′, Y ′)2

)
.

We haveLX′ = {λX′ | λ ∈ R}. Hence dimLX′ = 1. It follows dimH = dimV + 1.
If s = 3 thenBn is isometric toH 4(−4), which falls in the case (a), sinceH 4(−4) is isometric toHH 1.
If s = 7 then dimH = 8 and this is the case b(ii).

Case 2. B = CHk.
Let I0 be the natural complex structure onCHk. The curvature tensor of complex hyperbolic space

CHk with −4 �K ′ � −1 is given by

R′(X′, Y ′,X′, Y ′)= −(
g′(X′,X′)g′(Y ′, Y ′)− g′(X′, Y ′)2 + 3g′(I0X′, Y ′)2

)
.

We getLX′ = {I0X′}⊥. So dimLX′ = 2k − 1 = dimH− 1. It follows dimV = 1.
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Case 3. B = HHk.
Let {I0, J0,K0} be local almost complex structures which rise to the quaternionic structure onHHk.

The curvature tensor of the quaternionic hyperbolic spaceHHk with −4�K ′ � −1 (see [9]) is given by

R′(X′, Y ′,X′, Y ′)= −g′(X′,X′)g′(Y ′, Y ′)+ g′(X′, Y ′)2

− 3g′(I0X′, Y ′)2 − 3g′(J0X
′, Y ′)2 − 3g′(K0X

′, Y ′)2.

It follows that Y ′ ∈ LX′ if and only if g′(I0X′, Y ′) = g′(J0X
′, Y ′) = g′(K0X

′, Y ′) = 0. Therefore
LX′ = {I0X′, J0X

′,K0X
′}⊥. Hence dimLX′ = 4k − 3= dimH− 3. We get dimV = 3.

Case 4. B = CaH 2.
Let {I0, J0,K0,M0,M0I0,M0J0,M0K0} be local almost complex structures which rise to the Cayley

structure onCaH 2 Cayley hyperbolic plane. The curvature tensor of the Cayley planeCaH 2 with
−4 �K ′ � −1 (see [4]) is given by

R′(X′, Y ′,X′, Y ′)= −g′(X′,X′)g′(Y ′, Y ′)+ g′(X′, Y ′)2 − 3g′(I0X′, Y ′)2

− 3g′(J0X
′, Y ′)2 − 3g′(K0X

′, Y ′)2 − 3g′(M0I0X
′, Y ′)2

− 3g′(M0J0X
′, Y ′)2 − 3g′(M0K0X

′, Y ′)2.

We get

LX′ = {I0X′, J0X
′,K0X

′,M0X
′,M0I0X

′,M0J0X
′,M0K0X

′}⊥.

So dimLX′ = dimH − 7. It follows dimV = 7. ✷
Summarizing all of the above, we obtain our main classification result.

Main Theorem 2.6. Let π :Hm
s → B be a semi-Riemannian submersion with totally geodesic fibres

from a pseudo-hyperbolic space onto a Riemannian manifold. Then the semi-Riemannian submersion π
is equivalent to one of the following canonical semi-Riemannian submersions, given by Examples (1)–(3)

(a) H 2k+1
1 → CHk,

(b) H 4k+3
3 → HHk,

(c) H 15
7 →H 8(−4).

Proof. The index of the pseudo-hyperbolic space cannot bes = 0. Indeed, by Lemma 1.4, fors = 0,
we get 0� g(AXV,AXV )= −g(X,X)g(V,V )� 0 for every horizontal vectorX and for every vertical
vectorV . But this is not possible.

By [12], any semi-Riemannian submersion with totally geodesic fibres, from a pseudo-hyperbolic
space of index 1 onto a Riemannian manifold is equivalent to the canonical semi-Riemannian submersion
H 2k+1

1 → CHk.
It remains to study the cases > 1. By Theorem 2.3 and Proposition 2.5, any semi-Riemannian

submersion with totally geodesic fibres from a pseudo-hyperbolic space of indexs > 1 onto a Riemannian
manifold is one of the following types:

(1) H 4k+3
3 → HHk, or
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(2) H 15
7 →H 8(−4), or

(3) H 23
7 → CaH 2.

In order to prove that any two semi-Riemannian submersions in one of the categories (1) or (2) are
equivalent we shall modify Ranjan’s argument (see [15]) to our situation. In the category (3), we shall
prove there are no such semi-Riemannian submersions with totally geodesic fibres.

First, we shall prove the uniqueness in the caseH 4k+3
3 → HHk. Let p ∈ H 4k+3

3 and letU :Vp →
End(Hp) the map given byU(v)(x) = Axv for everyv ∈ Vp and for everyx ∈ Hp. We denoteU(v)
by Av . It is trivial to see thatAv is skew-symmetric (i.e.,g(Avx, y) = −g(x,Avy)). The O’Neill’s
equation g(Axv,Axv) = −g(x, x)g(v, v) becomesg(Avx,Avx) = −g(x, x)g(v, v). This implies
g(AvAvx, x) = g(x, x)g(v, v). Hence, by polarization inx, we haveg(AvAvx, y) = g(x, y)g(v, v) for
everyy ∈ Hp. SoAvAvx = g(v, v)x. Again by polarization we getAvAw +AwAv = 2g(v,w)Id. Let g̃
be the Riemannian metric given byg̃(v,w)= −g(v,w) for everyv,w ∈ Vp. It follows AvAw+AwAv =
−2g̃(v,w)IdVp . This is the condition which allows us to extendU to a representation of the Clifford
algebraCl(Vp, g̃p) of Vp. We also denote byU the extension ofU . Since dimVp = 3 and g̃p is
positive definite,Cl(Vp, g̃p) has at most two types of irreducible representations. We notice thatHp

is a Cl(Vp, g̃p)-module which splits in simple modules of dimension 4. The next step is to show that
any two such simple modules in decomposition ofHp are equivalent. Let{v1, v2, v3} be an orthonormal
basis of(Vp, g̃p). Since the affiliation of a simpleCl(Vp, g̃p)-module to one of the two possible types is
decided by the action ofv1v2v3, it is sufficient to check thatAv1Av2Av3 = IdVp .

Consider the functionx �→ g(Av1Av2Av3x, x) defined on the unit sphere inHp. We have

g
(
Av1Av2Av3x, x

) = −g(Av2Av3x,Av1x
) = g(AxAAxv3v2, v1).

A straightforward computation shows thatAxAAxv3v2 is orthogonal tov2 andv3. HenceAxAAxv3v2 is a
multiple of v1.

By polarization of the relationAxAxv = g(x, x)v, we getAxAy + AyAx = 2g(x, y)Id for every
horizontal vectorsx andy. In particular, we have

AxAAxv3v2 = −AAxv3Axv2 + 2g(x,Axv3)v2 = −AAxv3Axv2.

Let S be the vector subspace ofHp spanned by{x,Axv1,Axv2,Axv3}. By Lemma 1.4, we get
K ′(π∗x,π∗Axvi)= −4 for all i ∈ {1,2,3}. By geometry ofHHn, there exists a unique totally geodesic
hyperbolic lineHH 1 passing throughπ(p) such thatTπ(p)HH 1 = π∗S. Notice that for every orthonormal
vectors y, z ∈ Tπ(p)HH 1, K ′(y, z) = −4. In particular we haveK ′(π∗Axv2, π∗Axv3) = −4. Hence
g(AAxv3Axv2,AAxv3Axv2) = −1. It follows thatAxAAxv3v2 = ±v1. Henceg(Av1Av2Av3x, x) = ±1 for
all unit vectorsx. Since the functionx �→ g(Av1Av2Av3x, x) defined on the unit sphere inHp is
continuous, we get either

(i) g(Av1Av2Av3x, x)= 1 for any unit horizontal vectorx, or
(ii) g(Av1Av2Av3x, x)= −1 for any unit horizontal vectorx.

We may assume the case (i) holds.
If the case (ii) is happen, we replace the orthonormal basis{v1, v2, v3} of (Vp, g̃p)with the orthonormal

basis{v1, v2,−v3}. So for this new basis we are in the case (i).
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SinceAv1Av2Av3 is an isometry, we have

g
(
Av1Av2Av3x,Av1Av2Av3x

)
g(x, x)= g(x, x)2 = 1= g(Av1Av2Av3x, x

)2

for all unit horizontal vectorsx.
So the Schwartz inequality for the scalar productg|Hp

g
(
Av1Av2Av3x, x

)2 � g
(
Av1Av2Av3x,Av1Av2Av3x

)
g(x, x)

becomes equality. It follows thatAv1Av2Av3x = λx for someλ. BecauseAv1Av2Av3 is an isometry and we
assumed the case (i), it followsλ= 1. We proved thatAv1Av2Av3x = x for all unit horizontal vectorsx.
Obviously,Av1Av2Av3x = x for all x ∈Hp.

Let π ′ :H 4k+3
3 → HHk be another semi-Riemannian submersion with totally geodesic fibres. For

an arbitrary chosen pointq ∈ H 4k+3
3 , we consider horizontal and vertical subspacesH′

q and V ′
q . Let

{v′
1, v

′
2, v

′
3} be an orthonormal basis inV ′

q such thatv′
1v

′
2v

′
3 acts onH′

q as Id. Let L1 :V ′
q → Vp be the

isometry given byL1(v
′
i ) = vi for all i ∈ {1,2,3} and letCl(L1) : Cl(V ′

q)→ Cl(Vp) be the extension
of L1 to the Clifford algebras. The compositionU ◦ Cl(L1) : Cl(V ′

q) → End(Hp) makesHp to be a
Cl(V ′

q)-module of dimension 4k. LetHp = H1⊕· · ·⊕Hk andH′
q = H′

1⊕· · ·⊕H′
k be the decomposition

of Hp andH′
q in simpleCl(V ′

q)-modules, respectively. For eachi there isfi :H′
i → Hi an equivalence

of Cl(V ′
q)-modules, which after a rescaling by a constant number is an isometry which preserves the

O’Neill’s integrability tensors. Taking the direct sum of all these isometries, we obtain an isometry
L2 :H′

q → Hp which preserves the O’Neill’s integrability tensors. ThereforeL= L1 ⊕L2 :TqH
4k+3
3 →

TpH
4k+3
3 is an isometry which mapsH′

q ontoHp andA′ ontoA. SinceH 4k+3
3 is a simply connected

complete symmetric space, there is an isometryf :H 4k+3
3 → H 4k+3

3 such thatf (q) = p andf∗q = L
(see Corollary 2.3.14 in [16]). Therefore, by Theorem 1.6, we getπ andπ ′ are equivalent.

Now, we shall prove that any two semi-Riemannian submersionsπ,π ′ :H 15
7 →H 8(−4) with totally

geodesic fibres are equivalent. The proof is analogous to the case (1), but it is easier.
Let p,q ∈ H 15

7 and letHp, Vp be the horizontal and vertical subspaces inTpH 15
7 for π , let H′

q ,
V ′
q be the horizontal and vertical subspaces inTqH 15

7 for π ′. Let {v1, . . . , v7} be an orthonormal basis
of (Vp, g̃p) and {v′

1, . . . , v
′
7} be an orthonormal basis of(V ′

q, g̃q) such thatAv1Av2 . . .Av7 = Id and

Av
′
1Av

′
2 . . .Av

′
7 = Id. Since dimVp = 7, the irreducibleCl(Vp, g̃p)-modules are 8-dimensional. Since

dimHp = 8, we getHp is simple. BecauseAv1Av2 . . .Av7 = Id andAv
′
1Av

′
2 . . .Av

′
7 = Id we getH′

q

and Hp are Cl(V ′
q)-modules equivalent. Analogously to the case (1), we can construct an isometry

L = L1 ⊕ L2 :TqH 15
7 → TpH

15
7 , which mapH′

q onto Hp andA′ onto A. This produces an isometry
f :H 15

7 →H 15
7 such thatf (q) = p andf∗q = L (see Corollary 2.3.14 in [16]). Again by Theorem 1.6,

we getπ andπ ′ are equivalent.
Now, we prove that there are noπ :H 23

7 → CaH 2 semi-Riemannian submersions with totally geodesic
fibres. The proof is analogous to that of Ranjan (see Proposition 5.1 in [15]).

Hp becomes aCl(Vp)-module by considering the extension of the mapU :Vp → End(Hp),
U(V )(X) = AXV to the Clifford algebraCl(Vp). Here Cl(Vp, g̃p) denotes the Clifford algebra of
(Vp, g̃p), g̃(U,V ) = −g(U,V ) for everyU,V ∈ Vp. Sinceg̃p is positive definite, we haveCl(Vp) �
R(8)⊕ R(8). Hence,Hp splits into two 8-dimensional irreducibleCl(Vp)-modules. Since the induced
metrics on fibres are negative definite we getπ−1(CaH 1) is totally geodesic inH 23

7 and isometric toH 15
7 ,

by Theorem 2.5 in [6]. HereCaH 1 denotes the Cayley hyperbolic line throughπ∗X; we chooseS be
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the horizontal space of the restricted submersionπ̃ :H 15
7 → CaH 1 = H 8(−4). So for everyX ∈ Hp,

g(X,X) �= 0 we find an irreducibleCl(Vp)-submoduleS of Hp passing throughX. Since dimVp � 4,
we get a contradiction. ✷

Escobales [6] classified Riemannian submersions from complex projective spaces under the assump-
tion that the fibres are connected, complex, totally geodesic submanifolds. Using the Main Theorem 2.6,
we obtain a classification of semi-Riemannian submersions from a complex pseudo-hyperbolic space
onto a Riemannian manifold under the assumption that the fibres are connected, complex, totally geo-
desic submanifolds.

Proposition 2.7. If π :CHm
s → Bn is a semi-Riemannian submersion with complex, connected, totally

geodesic fibres then 2m = n+ 2s, the induced metrics on fibres are negative definite and the fibres are
diffeomorphic to CP s .

Proof. We denote byJ the natural almost complex structure onCHm
s . By Lemma 1.4, we have

(a) R̂(U,V,U,V )=R(U,V,U,V )= −(
g(U,U)g(V,V )− g(U,V )2 + 3g(U,JV )2

)
.

Hence the fibres have constant holomorphic curvature−4.

(b) g(AXU,AXU)= −(
g(U,U)g(X,X)+ 3g(X,JU)2

) = −g(U,U)g(X,X),
since the fibres are complex submanifolds. We obtaing(U,U)� 0 for every vertical vector fieldU .

(c) R′(π∗X,π∗Y,π∗X,π∗Y )=R(X,Y,X,Y )+ 3g(AXY,AXY )

= −(
g(X,X)g(Y,Y )− g(X,Y )2 + 3g(X,JY )2

) + 3g(AXY,AXY )� 0,

since the induced metrics on fibres are negative definite. By Proposition 2.2, it follows that the fibres
are simply connected. Since the fibres are complete, simply connected, complex manifolds with constant
holomorphic curvature−4, we have that the fibres are isometric toCHs

s . ✷
Theorem 2.8. If π :CHm

s → B is a semi-Riemannian submersion with connected, complex, totally
geodesic fibres from a complex pseudo-hyperbolic space, then π is, up to equivalence, the canonical
semi-Riemannian submersion given by Example 4

CH 2k+1
1 → HHk.

Proof. Let θ :H 2m+1
2s+1 → CHm

s be the canonical semi-Riemannian submersion with totally geodesic fibres
given in the Definition 3 (see also [3] or [10]). We haveπ̃ = π ◦ θ :H 2m+1

2s+1 → B is a semi-Riemannian
submersion with totally geodesic fibres, by Theorem 2.5 in [6]. Since the dimension of fibres ofπ̃ is
greater than or equal to 2, we get, by Main Theorem 2.6, the following possible situations:

(i) m= 2k + 1, 2s + 1 = 3 andB is isometric toHHk or
(ii) m= 7, 2s + 1= 7 andB is isometric toH 8(−4).

First, we shall prove that any two semi-Riemannian submersionsπ,π ′ :CH 2k+1
1 → HHk with connected,

complex, totally geodesic fibres are equivalent.
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By proof of Proposition 2.7, we haveg(AXU,AXU) = −g(U,U)g(X,X). Let p,q ∈ CH 2k+1
1 . By

proof of the main theorem, this impliesAvAw + AwAv = −2g̃(v,w)Id. The extension ofU :Vp →
End(Hp) constructed in proof of the main theorem, to the Clifford algebraCl(Vp, g̃p) makesHp

a Cl(Vp, g̃p)-module which splits ink irreducible modules of dimension 4. By classification of
irreducible representation for case dimVp = 2 andg̃p positive definite, we have any two such irreducible
Cl(Vp, g̃p)-modules are equivalent. Like in proof of the main theorem, we may construct an isometry
L = L1 ⊕ L2 :TqCH

2k+1
1 → TpCH

2k+1
1 , which mapsH′

q onto Hp andA′ onto A. This produces an

isometryf :CH 2k+1
1 → CH 2k+1

1 with f (q) = p andf∗q = L (see Corollary 2.3.14 in [16]). Again by
Theorem 1.6, we getπ andπ ′ are equivalent.

For the case (ii) we shall obtain that there are noπ :CH 7
3 →H 8(−4) semi-Riemannian submersions

with complex, connected, totally geodesic fibres.

Proposition 2.9. There are no π :CH 7
3 → H 8(−4) semi-Riemannian submersions with connected,

complex, totally geodesic fibres.

Proof. The proof is based on Ranjan’s argument (see proof of main theorem in [15]). Here, we show
how to modify Ranjan’s argument to our different situation.

Suppose there isπ :CH 7
3 →H 8(−4) a semi-Riemannian submersion with complex, connected, totally

geodesic fibres. By Main Theorem 2.6,π̃ = π ◦ θ :H 15
7 →H 8(−4) is equivalent to the canonical semi-

Riemannian submersionSpin(1,8)/Spin(7)→ Spin(1,8)/Spin(8) given by Example 3.
Let σ : Spin(1,8)→ SO(8,8) be the spin representation ofSpin(1,8). Spin(1,8) acts onH 8(−4) via

double covering mapSpin(1,8)→ SO(1,8) and transitively onH 15
7 ⊂ R

16
8 . We denote byCl0(R9

1) the
even component of Clifford algebraCl(R9

1). Notice thatCl0(R9
1)

∼=M(16,R), Cl(R9
1)

∼=M(16,R) ⊕
M(16,R) and the volume elementω in Cl(R9

1) satisfiesω2 = 1 (see [11]).
For anyb ∈ H 8(−4), let Gb be the isotropy group ofb in Spin(1,8). If we restrictσ |Gb thenσ |Gb

breaksR16
8 into two 1

2-spin representations. We will denote them byR
8±. HenceR

8+ ∩H 15
7 = π̃−1(b). Let

b⊥ = {x ∈ R
9
1 | 〈x, b〉 = 0}. We haveCl(b⊥)∩ Spin(1,8)=Gb, dimb⊥ = 8 and the following diagram is

commutative

Gb Cl0(b⊥)

Spin(1,8) Cl0(R9
1),

where all arrows are standard inclusions. Let{e1, . . . , e8} be an orientated basis ofb⊥. Thenz′ = e1 . . . e8

lies in the centre ofCl0(b⊥) andz′ acts byId on R
8+ and−Id on R

8−. We haveCl(σ )(z′)= ±1 onR
8±.

SinceR
8+ ∩H 15

7 = π̃−1(b), R
8+ is invariant underJ and so isR8−. HereJ denotes the natural complex

structure onR16 = C
8. HenceCl(σ )(z′) commutes withJ . Let z ∈ Cl(R9

1) be the generator of the center
of Cl(R9

1). We have eitherz = e1e2 . . . e8b or zb = −e1e2 . . . e8 = −z′. ThereforeCl(σ )(zb) commutes
with J for everyb ∈H 8(−4) and hence for everyb ∈ R

9.
Consider the linear mapα :R9 →M(16,R) given byb �→ Cl(σ )(zb). It has the following properties:

(i) It factors throughM(8,C)⊂M(16,R);
(ii) [Cl(σ )(zb)]2 = Cl(σ )((zb)2)= Cl(σ )(−|b|2)= −|b|2Id.
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Henceα extends to a homomorphismCl(α) : Cl(R9
1)→M(8,C). But Cl(R9

1)
∼=M(16,R)⊕M(16,R)

(see [11]). So the above homomorphism is impossible to exist. We get the required contradiction.✷
This ends the proof of Theorem 2.8.✷
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