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HAUSDORFF DIMENSION OF THE LIMIT SET

OF CONFORMAL ITERATED FUNCTION SYSTEMS

WITH OVERLAPS

EUGEN MIHAILESCU AND MARIUSZ URBAŃSKI

(Communicated by Bryna Kra)

Abstract. We give a new approach to the study of conformal iterated func-
tion systems with arbitrary overlaps. We provide lower and upper estimates for
the Hausdorff dimension of the limit sets of such systems; these are expressed
in terms of the topological pressure and the function d, counting overlaps. In
the case when the function d is constant, we get an exact formula for the
Hausdorff dimension. We also prove that in certain cases this formula holds if
and only if the function d is constant.

1. Introduction

The geometry of limit sets of conformal iterated function systems satisfying the
open set condition, that is, with no overlaps, is fairly well understood in the case
of a finite alphabet as well as an infinite one; see [2] and the references therein. In
particular, the classical version of Bowen’s formula holds, identifying, in the case
of a finite alphabet, the Hausdorff dimension of the limit set as the unique zero of
the pressure function.

It is however a notoriously difficult task to find a formula, or at least to get some
good estimates for the Hausdorff dimension of the limit set of a conformal iterated
function system with overlaps. All attempts known to us aimed to neutralize the
effects of overlaps and to get the classical form of Bowen’s formula. The most
successful of them was the one based on the concept of transversality (see [8], [7])
when the results were only generic, holding for almost all members of parametrized
families of iterated function systems.

Our approach in this paper is drastically different. Firstly, we deal with one fixed
conformal iterated function system having arbitrary overlaps. Secondly, we fully
acknowledge the existence of overlaps and recognize their influence on the value of
the Hausdorff dimension of the limit set. We get two estimates, namely lower and
upper bounds in Theorem 3.1 and Theorem 4.1, both quantitatively incorporating
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overlaps. In the case when the function d, counting overlaps, is constant, we get an
exact formula (Corollary 4.2) for the Hausdorff dimension.

Corollary 4.2 also says that this formula holds if and only if the function d is
constant. We would like to add that in the case of a smooth dynamical system
f : M → M , where M is a smooth Riemannian manifold, we obtained somewhat
analogous estimates for the stable dimension on a hyperbolic basic set Λ ⊂ M ; see
[5] and [6]. Also in [4], one of us studied the dynamics of a class of skew products
with overlaps in fibers.

2. IFS preliminaries

Fix an integer q ≥ 1 and a real number s ∈ (0, 1). Let X be a compact subset
of Rq such that X = IntX. Suppose that V is a bounded connected open subset of
R

q such that X ⊂ V .
Also fix an arbitrary finite set E called in the sequel an alphabet. A system

S = {φe : V → V }e∈E of C1+ε conformal injective maps from V to V is called
a conformal iterated function system if φe(X) ⊂ X for all e ∈ E and ||φ′

e|| =
sup{|φ′

e(x)| : x ∈ V } ≤ s < 1 for all e ∈ E. Here, φ′
e(x) : R

q → R
q is the derivative

of the map φe : V → V evaluated at the point x; it is a similarity map, and |φ′
e(x)|

is its operator norm or, equivalently, its scaling factor.
Note that we do not assume any version of the open set condition, i.e. allow any

overlaps of the sets φa(X) and φb(X), where a, b ∈ E with a �= b. Let

E∗ =
∞⋃

n=0

En and E∞ = {(ωn)
∞
n=1 : ∀n≥1 ωn ∈ E}.

If τ ∈ E∞ and n ≥ 0, we put τ |n = τ1 . . . τn. Now fix ω ∈ E∞ and notice that(
φω|n(X)

)∞
n=1

is a descending sequence of compact sets such that diam
(
φω|n(X)

)
≤

D̃sndiam(X), where the number D̃ ≥ 1 is due to the fact that we do not assume
the set X to be convex. Therefore, the intersection

⋂∞
n=1 φω|n(X) is a singleton,

and we denote its only element by π(ω). So, we have defined a map π : E∞ → X
which is Lipschitz continuous if E∞ is endowed with the metric ds(ω, τ ) = s|ω∧τ |,
where ω ∧ τ is the longest common initial block of ω and τ ; we also set s∞ = 0.

The limit set (or the attractor) J = JS of the system S is, by definition, equal
to π(E∞). Clearly, we have

JS =
∞⋂

n=1

⋃
|ω|=n

φω(X),

and JS is the unique compact set contained in X satisfying the following self-
conformality condition

JS =
⋃
e∈E

φe(JS),

and, by induction,

JS =
⋃

|ω|=n

φω(JS), n ≥ 1.

Let σ : E∞ → E∞ be the (one-sided) shift map, i.e. σ
(
(ωn)

∞
n=1

)
=

(
(ωn+1)

∞
n=1

)
.

Let ψ : E∞ → R be the function defined by the formula

ψ(ω) = log |φ′
ω1
(π(σ(ω)))|, ω ∈ E∞.



HAUSDORFF DIMENSION OF THE LIMIT SET 2769

As all the maps φe, e ∈ E, are C1+ε and ||φ′
e|| ≤ s < 1 for all e ∈ E, and since

the alphabet E is finite, one can easily prove the following two lemmas.

Lemma 2.1. The function ψ : E∞ → R is Hölder continuous.

Lemma 2.2. If g : E∞ → R is Hölder continuous, then there exists a constant
Cg > 0 such that ∣∣∣∣∣∣

n−1∑
j=0

g(σj(ω))−
n−1∑
j=0

g(σj(τ ))

∣∣∣∣∣∣ ≤ Cg,

for all n ≥ 1 and all ω, τ ∈ E∞ such that ω|n = τ |n.

Now, let us define a function d : J → N by the formula

d(x) = #{e ∈ E : x ∈ φe(J)}.

Immediately from this definition we get the trivial, but very useful, formula

(2.1)
∑

e∈E:x∈φe(J)

d−1(x) = 1

for all x ∈ J .
Now let κ : E∞ → [1,+∞) be a Hölder continuous function and, for an arbitrary

parameter t ∈ R, consider the potentials ψκ,t : E
∞ → R defined as follows:

ψκ,t(ω) = tψ(ω)− log κ(ω) = t log |φ′
ω1
(π(σ(ω)))| − log κ(ω), ω ∈ E∞.

One can check easily that ψκ,t is Hölder continuous by using Lemma 2.1 and the
Hölder continuity of κ.

Let P(t) := P(ψκ,t) be the topological pressure of the potential ψκ,t with respect
to the dynamical system σ : E∞ → E∞. Since log |φ′

ω1
(π(σ(ω)))| ≤ log s < 0, there

exists a unique hκ ∈ R such that P(ψκ,hκ
) = 0. Let μ̃t be the unique shift-invariant

Gibbs (equilibrium) state of the Hölder continuous potential ψκ,t : E
∞ → R, and

let

μt = μ̃t ◦ π−1.

Clearly, μt(J) = 1. For every ω ∈ E∗, say ω ∈ En, let

[ω] = {τ ∈ E∞ : τ |n = ω}.

This set is called the (initial) cylinder generated by ω. The Gibbs property means
that

(2.2) μ̃t([ω|n]) � e−P(t)n||φ′
ω|n ||

t
n−1∏
j=0

κ−1(π(σj(ω))).

If A is an arbitrary Borel subset of J and F ⊂ E∗ is a family of mutually incom-
parable words such that π−1(A) ⊂

⋃
ω∈F [ω], then

(2.3) μt(A) ≤
∑
ω∈F

μ̃t([ω]).



2770 EUGEN MIHAILESCU AND MARIUSZ URBAŃSKI

3. Lower bound

In this section we shall prove the following:

Theorem 3.1. If S = {φe}e∈E is a conformal iterated function system and κ̂ :
J → [1,+∞) is a continuous function such that d(x) ≤ κ̂(x) for all x ∈ J , then
HD(J) ≥ hκ, where κ = κ̂ ◦ π : E∞ → R.

Proof. Since every real-valued continuous function can be approximated uniformly
from above by Hölder (even Lipschitz) continuous functions and since the pressure
function is Lipschitz continuous with the Lipschitz constant 1, we may assume
without loss of generality that the function κ̂ : J → [1,+∞) is Hölder continuous.
Since HD(J) ≥ 0 we may also assume without loss of generality that hκ > 0. Then
fix an arbitrary t ∈ (0, hκ). So, P(t) > 0. Since the function κ̂−1 : J → (0, 1] is
uniformly countinuous, there exists η > 0 so small that

κ̂−1(y) ≤ eP(t)κ̂−1(x),

for all x, y ∈ J with ||y − x|| < η. Since the alphabet E is finite, for every z ∈ J
there exists R(z) ∈ (0, η) such that if B(z,R(z)) ∩ φe(J) �= ∅, then z ∈ φe(J).
Consider the open cover {B(z,R(z)/2)}z∈J of the set J . Since J is compact, there
exists a finite set F ⊂ J such that

(3.1) J ⊂
⋃
z∈F

B(z,R(z)/2).

Now fix x ∈ J and

0 < r < R∗ :=
1

5
min{diam(J), R(·)}.

By (3.1) there exists zx ∈ F such that x ∈ B(zx, R(zx)/2).
We say in the sequel that two words from E∗ are mutually incomparable if

neither is an extension of the other.
Now given a set B ⊂ B(x, r), we say that a family F ⊂ E∗ consisting of mutually

incomparable words is properly placed with respect to the triple (x,B, r) if for all
ω ∈ F we have that

(3.2) B ∩ φω(J) �= ∅.
Immediately from this definition, the definition of R and the restriction on r > 0,

we get that

(3.3) zx ∈ φω1
(J)

for all ω ∈ F .
Now fix an arbitrary τ ∈ E∞ and a family F ⊂ E∗ which is properly placed

with respect to (x,B, r) for some B ⊂ B(x, r). We then have

Σ(F) :=
∑
ω∈F

e−P(t)|ω|κ−1(ωτ )κ−1(σ(ωτ )) . . . κ−1(σ|ω|−1(ωτ ))

≤
∑
ω∈F

e−P(t)|ω|eP(t)κ̂−1(zx)κ
−1(σ(ωτ )) . . . κ−1(σ|ω|−1(ωτ ))

≤
∑
ω∈F

e−P(t)(|ω|−1)d−1(zx)κ
−1(σ(ωτ )) . . . κ−1(σ|ω|−1(ωτ ))

=
∑
e∈F1

d−1(zx) ·
∑

ω∈F(e)

e−P(t)|ω|κ−1(ωτ )κ−1(σ(ωτ )) . . . κ−1(σ|ω|−1(ωτ )),

(3.4)



HAUSDORFF DIMENSION OF THE LIMIT SET 2771

where

F1 := {ω1 ∈ E : ω ∈ F} ⊂ {e ∈ E : zx ∈ φe(J)},
and then for all e ∈ F1,

F(e) := {ω ∈ E∗ : eω ∈ F}.

Notice that for each e ∈ F1, the family F(e) consists of mutually incomparable
words and φ−1

e (zx) ∈ J . If ω ∈ F(e), then we have

∅ �= φ−1
e (φeω(J) ∩B) = φω(J) ∩ φ−1

e (B)

and

φ−1
e (B) ⊂ B(φ−1

e (xe), 2Kr||φ′
e||−1),

where xe is an arbitrary point in φe(J) ∩ B, independent of ω and K is a positive
constant depending on the finite alphabet E and the system S = {φe}e∈E . So, the
family F(e) is properly placed with respect to (φ−1

e (xe), φ
−1
e (B), 2Kr||φ′

e||−1)) as
long as 2Kr||φ′

e||−1 < R∗. Let us also remark that there exists a positive constant
K ′ so that, for any points x, y ∈ V , k ≥ 1 an integer and elements e1, . . . , ek ∈ E,
we have
(3.5)∣∣log |φ′

ek
|(φek−1

◦ . . . ◦ φe1(x))− log |φ′
ek
|(φek−1

◦ . . . ◦ φe1(y))
∣∣ ≤ D̃K ′sk−1|x− y|,

where we recall that |φ′
e|, e ∈ E are bounded by s < 1. From (3.5) we see (by

a classical argument involving the sum of a geometric series) that the derivatives
φ′
α have bounded distortion independent of α ∈ E∗; i.e., there exists a constant

(denoted for simplicity also by K) s.t.
|φ′

α(x)|
|φ′

α(y)| ≤ K,x, y ∈ V, α ∈ E∗. Proceeding

now by induction we see that, given elements α, β ∈ E∗ with l := |α| ≥ 2 such that
αβ ∈ F and

(3.6) 2Kr||φ′
α||−1 < R∗,

we can form similarly as above the family F(α1 . . . αl) := F(α1 . . . αl−1)(αl) which
is properly placed with respect to (φ−1

αl
(xα), φ

−1
α (B), 2Kr||φ′

α||−1), with xα :=

φ−1
αl−1

(φ−1
αl−2

(. . . (φ−1
α1

(xα1
)α2

) . . .).

Now fix the largest integer l ≥ 1 so that (3.6) holds for all the words αβ ∈ F
starting with α, and such that |α| ≤ l. Then, continuing (3.4), we can estimate as
follows:

(3.7)

Σ(F) ≤
∑

e1∈F1

d−1(zx)
∑

e2∈F(e1)1

d−1(zxe1
)

∑
e3∈F(e1e2)1

d−1(zxe1e2
) · . . . ·

·
∑

el+1∈F(e1...el)1

d−1(zxe1e2...el
)e−P(t)|ω| ·

·
∑

ω∈F(e1e2...elel+1)

κ−1(ωτ )κ−1(σ(ωτ )) . . . κ−1σ|ω|−1(ωτ )),

where we have that F(e1e2 . . . elel+1) = {ω ∈ E∗ : e1e2 . . . elel+1ω ∈ F}, for l ≥ 1.
Now we define a special family, which is properly placed with respect to the

triple (x,B(x, r), r), with r ∈ (0, R∗), namely:

F∗(x, r) :={ω ∈ E∗ : B(x, r)∩φω(J) �=∅, φω(J)⊂B(x, 2r), φω||ω|−1
(J) �⊂B(x, 2r)}.



2772 EUGEN MIHAILESCU AND MARIUSZ URBAŃSKI

Recall also that ||φ′
e|| ≤ s < 1, ∀e ∈ E. Hence if l ≥ 1 is associated to F∗(x, r) as

above and if ω ∈ F∗(x, r), then:

(3.8)
r ≤ diam

(
φω||ω|−1

(J)
)
≤ D̃diam(X)||φ′

ω||ω|−1
|| ≤ D̃diam(X)γ−1||φ′

ω||

≤ D̃diam(X)γ−1s|ω|−l||φ′
ω|l ||,

where

γ = min
e∈E

inf{|φ′
e(y)| : y ∈ J} ∈ (0, 1).

But since l ≥ 1 was taken to satisfy a maximality condition above, we infer
that there exists some ω ∈ F∗(x, r) such that r||φ′

ω|l+1
||−1 ≥ (2K)−1R∗. Hence

||φ′
ω|l || ≤ 2K(γR∗)

−1r. Combining this with (3.8), we obtain that

r ≤ 2KD̃diam(X)γ−2R−1
∗ s|ω|−lr

or equivalently:

(1/s)|ω|−l ≤ A := 2KD̃diam(X)(γ2R∗)
−1.

Hence we obtain

|ω| − l ≤ logA

log(1/s)
.

Since κ ≥ 1 and P(t) > 0, it follows from this, (3.7) and (2.1) that

(3.9) Σ(F∗(x, r)) ≤ #E
log A

log(1/s) .

We have from the definition of F∗(x, r) also that

(3.10) 4r ≥ diam(φω(J)) ≥ D̃−1||φ′
ω||.

Since F∗(x, r) consists of mutually incomparable words and π−1(B(x, r)) ⊂⋃
ω∈F∗(x,r)

[ω], we get from (2.3), (2.2), (3.9) and (3.10) that

μt(B(x, r)) �
∑

ω∈F∗(x,r)

e−P(t)|ω|||φ′
ω|n ||

t

|ω|−1∏
j=0

κ−1(π(σj(ωτ )))

≤ (4D̃)trt
∑

ω∈F∗(x,r)

e−P(t)|ω|
|ω|−1∏
j=0

κ−1(π(σj(ωτ )))

= (4D̃)trtΣ(F∗(x, r))

≤ (4D̃)t#E
log A

log(1/s) rt.

It therefore follows from the Converse Frostman Lemma (see [1]) that Ht(J) > 0;
consequently HD(J) ≥ t. Since t > 0 was an arbitrary number smaller than hκ, we
thus conclude that

HD(J) ≥ hκ.

The proof is then complete. �
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4. Upper bound

As an upper bound for the Hausdorff dimension, we shall prove the following:

Theorem 4.1. If S = {φe}e∈E is a conformal iterated function system and κ ≥ 1
is an integer satisfying d(x) ≥ κ for all x ∈ J , then HD(J) ≤ hκ.

Proof. Fix t > hκ. Then P(t) < 0 and therefore

(4.1)
∑
|ω|=n

||φ′
ω||te−κn ≤ e

1
2P(t)n

for all n ≥ 1 large enough, say n ≥ n0. For every ω ∈ En consider the smallest
closed ball Bω containing φω(X). Then

(4.2) diam(Bω) ≤ 2diam(φω(X)) ≤ 2D̃diam(X)||φ′
ω||.

Since {Bω}ω∈En is a cover of the limit set J by closed balls, by virtue of the 5r-
Covering Theorem (see [1] and compare [3], where 5r is improved to 4r and, more
importantly, totally bounded metric spaces are replaced by all metric spaces) there
exists a set I1 ⊂ En with the following properties:

(a) Bω ∩Bτ = ∅ for all ω, τ ∈ I1 with ω �= τ ;
(b)

⋃
ω∈I1

5Bω ⊃ J .

Suppose now by induction that the sets I1, I2, . . . , Il, 1 ≤ l < κn have been defined
with the following properties:

(c) Ii ∩ Ij = ∅ for all 1 ≤ i < j ≤ l,
(d) ∀(1 ≤ j ≤ l) ∀(ω, τ ∈ Ij) ω �= τ ⇒ Bω ∩Bτ = ∅,
(e) ∀(1 ≤ j ≤ l)

⋃
ω∈Ij

5Bω ⊃ J .

Because of (c) and (d), each point of J belongs to at most l elements of the family
{Bω : ω ∈ I1 ∪ . . .∪ Il}. But, as d ≥ κ, each element of J belongs to at least κn > l
elements of the family {φω(J) : |ω| = n} and, thus, to at least κn > l elements of
the family {φω(X) : |ω| = n}, and eventually to at least κn > l elements of the
family {Bω : |ω| = n}. Thus, the family {Bω : ω ∈ En \ (I1 ∪ . . . ∪ Il)} covers J ,
and it therefore follows from the 5r-Covering Theorem (see [1]) that one can find a
set Il+1 ⊂ En \ (I1 ∪ . . . ∪ Il) such that

(f) if ω, τ ∈ Il+1 and ω �= τ , then Bω ∩Bτ = ∅;
(g)

⋃
ω∈Il+1

5Bω ⊃ J .

So, we have constructed by induction a family of sets I1, I2, . . . , Iκn ⊂ En such that
the conditions (c), (d), and (e) hold with l = κn.

Now choose 1 ≤ j ≤ κn so that the sum
∑

ω∈Ij
diamt(Bω) is the smallest. Then

by (4.2), (4.1) and (c), (d), (e), we get that

∑
ω∈Ij

diamt(5Bω) = 5t
∑
ω∈Ij

diamt(Bω) ≤
5t

κn

κn∑
i=1

∑
ω∈Ii

diamt(Bω)

≤ 5tκ−n
∑
|ω|=n

diamt(Bω) ≤ (10D̃diam(X))t
∑
|ω|=n

||φ′
ω||te− log κn

≤ (10D̃diam(X))te
1
2P(t)n.

Because of (e) and since P(t) < 0, we thus conclude that Ht(J) = 0, so HD(J) ≤ t.
By the arbitrariness of t > hκ, this yields HD(J) ≤ hκ. We are done. �
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As a consequence of Theorem 3.1 and Theorem 4.1, we get the following.

Corollary 4.2. Suppose that S = {φe}e∈E is a conformal iterated function system
and let D := max{d(x) : x ∈ JS}. Then HD(JS) = hD if and only if d(x) = D for
all x ∈ JS.

Proof. If d(x) = D for all x ∈ JS , then the equality HD(JS) = hD is a direct
consequence of Theorem 3.1 and Theorem 4.1.

In order to prove the converse, suppose that h := HD(JS) = hD. By way of
a contradiction suppose that there exists z ∈ J such that d(z) ≤ D − 1. Since
the alphabet E is finite, there thus exists an open neighborhood V of z such that
d(x) ≤ D − 1 for all x ∈ V . Fix a nonempty open set U ⊂ J such that U ⊂ V .
There then exists a Lipschitz function κ̂ : J → [1,+∞) such that κ̂(x) = D − 1 for
all x ∈ U and κ̂(x) = D for all x ∈ J \ V . In particular, d(y) ≤ κ̂ for all y ∈ J , and
it therefore follows from Theorem 3.1 that hD = h ≥ hκ; recall that κ = κ̂ ◦π. But
we also have

(4.3) κ≤D on E∞,

and thus hD ≤ hκ. Hence,

(4.4) hκ = hD.

Let μ̃D be the unique equilibrium (Gibbs) state on E∞ of the potential hdψ−logD.
Since P(hDψ − logD) = 0, we have

(4.5)

∫
E∞

(hDψ − logD)dμ̃D + hμ̃D
(σ) = 0,

where hμ̃D
(σ) is the Kolmogorov-Sinai metric entropy of the dynamical system

σ : E∞ → E∞ with respect to the σ-invariant measure μ̃D. By virtue of the
Variational Principle, we also have∫
E∞

(hDψ − log κ)dμ̃D + hμ̃D
(σ) =

∫
E∞

(hκψ−logD)dμ̃D+hμ̃D
(σ)≤P(hκψ − log κ)

= 0.

This, combined with (4.5), implies that

(4.6)

∫
E∞

(logD − log κ)dμ̃D ≤ 0.

Since the function logD− log κ is continuous and since the equilibrium state μ̃D

(as a Gibbs state of a Hölder continuous function) is positive on nonempty open
subsets of E∞, it follows from (4.6) and (4.3) that log κ = logD on E∞. So, κ̂ = D
on J , and this contradiction finishes the proof. �

Examples where the above estimates apply can be formed by taking a finite
number of conformal contractions φe, e ∈ E and checking the number of sets φe(V )
intersecting each other in a certain domain W , and seeing whether we may have
points of J in W or not. For the pressure on E∞, one can take canonical spanning
sets for the shift map in E∞, consider the behavior of κ on such sets and then
estimate the zero hκ of the pressure function. Or one may recall the fact that the
entropy of σ on E∞ is equal to log Card(E) and then use bounds on κ in order to
estimate hκ.
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