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Abstract We study certain ergodic properties of equilibrium measures of hyperbolic
non-invertible maps f on basic sets with overlaps �. We prove that if the equilibrium
measure μφ of a Holder potential φ, is 1-sided Bernoulli, then f is expanding from
the point of view of a pointwise section dimension of μφ . If the measure of maximal
entropy μ0 is 1-sided Bernoulli, then f is shown to be distance expanding on �; and
if μφ is 1-sided Bernoulli for f expanding, then μφ must be the measure of maximal
entropy. These properties are very different from the case of hyperbolic diffeomor-
phisms. Another result is about the non 1-sided Bernoullicity for certain equilibrium
measures for hyperbolic toral endomorphisms. We also prove the non-existence of
generating Rokhlin partitions for measure-preserving endomorphisms in several cases,
among which the case of hyperbolic non-expanding toral endomorphisms with Haar
measure. Nevertheless the system (�, f, μφ) is shown to have always exponential
decay of correlations on Holder observables and to be mixing of any order.
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242 E. Mihailescu

1 Introduction and outline of main results

We investigate some ergodic properties of equilibrium measures on folded basic sets,
i.e on locally maximal invariant sets for non-reversible smooth dynamical systems.
Such systems appear naturally in statistical mechanics or in fractal theory. One cen-
tral property in ergodic theory is the 1-sided (2-sided) Bernoullicity, or lack of it,
i.e the possibility to code the measure-preserving system with a shift on a space of
sequences. In a sense, 1-sided Bernoulli shifts represent the most chaotic and unpre-
dictable non-reversible systems (see [15]). Parry and Walters showed in [18] that
measurable endomorphisms of Lebesgue spaces behave very differently than auto-
morphisms. Indeed for automorphisms Ornstein proved a famous result, namely that
two invertible Bernoulli shifts on Lebesgue spaces are isomorphic if and only if they
have the same measure theoretic entropy (see eg. [15]). However as Parry and Walters
showed in [18] for measure-preserving endomorphisms f : (X,B, μ) → (X,B, μ),
the entropy alone hμ( f ) does not determine the conjugacy class. So the problem of
coding for endomorphisms of Lebesgue spaces (in particular for 1-sided Bernoulli
shifts) is subtle and there are no exhaustive classifications.

Hyperbolic diffeomorphisms on basic sets have Markov partitions (see [2]), and
these are fundamental in establishing a coding to a 2-sided Bernoulli shift, of the
diffeomorphism with an equilibrium measure of a Holder potential [2,3]; however
such Markov partitions lack in general for endomorphisms. Endomorphisms on Le-
besgue spaces present important differences from the automorphism/diffeomorphism
case (for example [4,5,9–12,16,18,22,28], etc.) In [9] Mane proved that some iterate
f m of a rational map f is 1-sided Bernoulli with respect to the measure of maximal
entropy on the Julia set of f .

In this paper we consider the significantly different case of equilibrium measures
for smooth noninvertible maps (referred to also as endomorphisms) which are hyper-
bolic on basic sets with overlaps �; in general the map may have both stable and
unstable directions on �. Here the local unstable manifolds do not form necessarily a
foliation (unlike for hyperbolic diffeomorphisms), as they depend on the whole past.
There are many examples of interesting and/or unexpected dynamical behaviour for
endomorphisms, for instance: examples from statistical mechanics (see [22]); horse-
shoes with overlaps [1]; hyperbolic toral endomorphisms (see [8,27]), and endomor-
phisms on infranilmanifolds [8]; strange attractors and strange repellers with overlaps
[11,12,24]; holomorphic maps in one complex variable and measures on their Julia
sets [9]; holomorphic maps in higher dimension, hyperbolic on certain sets [12]; skew
product endomorphisms with overlaps in fibers, having Cantor sets of points in fibers
with infinitely many prehistories, as in [10]; parameterized families of skew products,
satisfying a transversality condition [14], etc.

We denote by B(�) the σ -algebra of borelian sets on �; all our measures are bor-
elian. In Theorem 1 we will show that, if the system (�, f, μφ) is 1-sided Bernoulli,
with f a hyperbolic endomorphism and μφ the equilibrium measure of a Holder con-
tinuous potential φ, then f must be “expanding” on � from the point of view of μφ .
In the proof of Theorem 1 we will use the notion of folding entropy introduced by
Ruelle in [22]. Then in Theorem 2 we show that if the hyperbolic endomorphism f is
1-sided Bernoulli with respect to the measure of maximal entropy μ0, then f must
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On some coding and mixing properties for a class of chaotic systems 243

in fact be (distance)-expanding in the usual sense on �. And that, if f is expanding
on � and if the equilibrium measure μφ is 1-sided Bernoulli, then μφ must be the
measure of maximal entropy μ0. Thus there exists a strong relation between 1-sided
Bernoullicity, the distance expanding property and the measure of maximal entropy
on �. In particular from Corollary 1 it will follow that no hyperbolic non-expanding
toral endomorphism can be 1-sided Bernoulli with respect to the Lebesgue (Haar)
measure.

In Theorem 3, we study hyperbolic toral endomorphisms and families of Holder
potentials φ whose respective equilibrium measures μφ are not 1-sided Bernoulli.
To do this we will employ commuting automorphisms in the case when the Jaco-
bian-generated σ -algebra βμφ ( f ) is equal to B(�) (see [18,28]). The lack of 1-sided
Bernoullicity above is in clear contrast to the case of hyperbolic toral automorphisms
(for these see [6]); and in contrast with a class of 1-sided Bernoulli toral discontinuous
skew-products given in [16].

In Theorem 4 we prove the mixing of arbitrary orders for equilibrium measures of
Holder potentials for hyperbolic endomorphisms on folded basic sets. We obtain also
Exponential Decay of Correlations on Holder observables.

We give then several classes of examples of hyperbolic saddle-type endomorphisms
with equilibrium measures for which we check 1-sided Bernoullicity or lack of it.

Finally in Corollary 2 we prove the non-existence of generating Rokhlin parti-
tions for certain endomorphisms with equilibrium measures. In particular an arbitrary
hyperbolic non-expanding toral endomorphism with Haar measure does not have a
generating Rokhlin partition.

2 Coding and mixing on folded basic sets

We will work with smooth (say C2), non-invertible maps f : M → M defined on a
smooth Riemannian manifold M . A locally maximal set � is an invariant compact set
which has a neighbourhood U ⊂ M with � = ∩n∈Z f n(U ). By basic set for f we
mean here a locally maximal set � such that f is topologically mixing on �. As the
map f is non-invertible on �, we will sometimes say that � is a folded basic set (or
a basic set with overlaps, or folded fractal).

Our endomorphisms will be assumed hyperbolic on basic sets; the definition
of hyperbolicity for endomorphisms (see [19,24]) is different than the one for
diffeomorphisms and involves the various prehistories of points x ∈ � with
respect to f , namely sequences x̂ = (x, x−1, x−2, . . .) consisting of consecu-
tive preimages, i. e f (x−i ) = x−i+1, i ≥ 1. We need therefore the inverse
limit (or natural extension) �̂ := {x̂, x̂ = (x, x−1, x−2, . . .), x−i ∈ �, i ≥
0, s. t x̂ is a prehistory of x ∈ �}; this is a compact metric space with the canon-
ical metric, d(x̂, ŷ) := ∑

i≥0
d(x−i ,y−i )

2i , x̂, ŷ ∈ �̂. Notice that the canonical pro-

jection π : �̂ → �,π(x̂) = x , is Lipschitz continuous in the above metric.
We have also the shift homeomorphism f̂ : �̂ → �̂, f̂ (x̂) = ( f (x), x, x−1, . . .),

x̂ ∈ �̂.
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244 E. Mihailescu

Definition 1 Let � be a basic set for the smooth endomorphism f : M → M . Then
we say that f is hyperbolic on � if there exists a splitting of the tangent bundle over
�̂, T

�̂
M = {(x̂, v), x̂ ∈ �̂, v ∈ Tx M} into a direct sum Tx̂ M = Es

x ⊕ Eu
x̂ such that

D fx (Es
x ) ⊂ Es

f (x), D fx (Eu
x̂ ) ⊂ Eu

f̂ x̂
, x̂ ∈ �̂ and D f contracts uniformly on Es

x and

D f expands uniformly on Eu
x̂ .

Associated to each prehistory we have local unstable manifolds W u
r (x̂) and local

stable manifolds W s
r (x) (the local stable manifolds depend only on the base point).

Since the unstable tangent spaces Eu
x̂ depend on the whole past, there may exist many

unstable manifolds going through the same point; this changes the dynamics on �, as
compared with diffeomorphisms (see for instance [10,11,13,19,24], etc).

We adopt in this paper the above definition for basic set (where f |� is assumed
topologically mixing), which is somewhat more restrictive than the usual one requiring
that f be only topologically forward transitive on �. However for hyperbolic locally
maximal sets this is not crucial. Indeed, if f were only transitive on �, then every
point in � is nonwandering; hence by the same proof as in Corollary 6.4.19 from [7],
it follows that: if f is hyperbolic on �, then its periodic points are dense in �. Thus
as in the Spectral Decomposition Theorem ([7,24], etc.), there exists a finite partition
of �,� = �1 ∪ . . . ∪ �k s.t for each i = 1, . . . , k there is a positive integer mi s.t
the iterate f mi invariates and is topologically mixing on �i .

Now by n-preimage of x ∈ � we consider any point y ∈ f −n(x) ∩ �; a word of
caution is in place here: the set � is not necessarily totally f -invariant, so there may
exist points z ∈ M \ � such that f n(z) = x ∈ �. However we work only with the
restriction of f to � and will consider only those preimages remaining in �.

Since we work with a hyperbolic endomorphism f on �, we can lift it to the shift
homeomorphism f̂ : �̂ → �̂. One can notice quickly that f̂ is expansive. Indeed let us
take ε > 0 small enough and assume that x̂, ŷ ∈ �̂ such that d( f̂ n x̂, f̂ n ŷ) ≤ ε, n ∈ Z.
Then we would have d( f n x, f n y) ≤ ε, n ≥ 0, thus y ∈ W s

ε (x) and d(x−n, y−n) ≤
ε, n ≥ 0, so y ∈ W u

ε (x̂). But from [7, p. 272], one obtains that any hyperbolic locally
maximal set has local product structure; hence from above it follows that y = x , and
similarly y−n = x−n, n ≥ 0. Thus f̂ : �̂ → �̂ is expansive.

In the sequel we shall use also the specification property for homeomorphisms
as defined in [7, p. 578]. The proof of the Specification Theorem 18.3.9 from [7]
can be repeated for endomorphisms to show that if f is hyperbolic on the basic set
�, then f |� has the specification property. From this we see easily that f̂ has the
specification property on �̂ too; this follows since for a given specification Ŝ =
{x̂1 = (x1, x1−1, . . .), . . . , x̂ k = (xk, xk−1, . . .)} in �̂ we can apply the specification
property of f |� to a specification S in �, formed with iterates of certain preimages
x1−m, . . . , xk−m for m > 0 large enough.

So from the discussion above, we know that f̂ is an expansive homeomorphism
with the specification property on the inverse limit space �̂.

Let now an f -invariant probability measure μ on the invariant set �. We always
consider the compact set � endowed with the σ -algebra of its borelian subsets, denoted
by B(�). All measures considered are borelian and probabilistic.

Consider a real valued Holder continuous potential φ on �. Then from [2] or
[7, p. 635], there exists a unique equilibrium measure μ̂φ◦π on �̂ for the Holder
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On some coding and mixing properties for a class of chaotic systems 245

potential φ ◦ π , where π : �̂ → � is the canonical projection π(x̂) = x . But any
f̂ -invariant measure μ̂ on �̂ has a unique push forward μ = π∗(μ̂) and viceversa (see
[25, p. 118]); also topological pressure is preserved by the canonical projection. So
we obtain a unique equilibrium measure μφ on � for the non-invertible map f , and
μφ = π∗μ̂φ◦π .

By using the canonical metric on �̂, we form the Bowen balls B̂n(x̂, ε) := {ŷ ∈
�̂, d( f̂ i ŷ, f̂ i x̂) < ε, i = 0, . . . , n − 1}. Then as in [7, p. 630], we can estimate μ̂φ◦π

on these Bowen balls. But there exists a positive constant T depending on f such that
Bn(x, ε

T ) ⊂ π(B̂n(x̂, ε)) ⊂ Bn(x, ε), x̂ ∈ �̂; and π−1π(B̂n(x̂, ε)) is contained in a

finite union of balls of type B̂n(x̂ i , T ε) for some prehistories x̂ i of x . On the other
hand we have P(φ) = P(φ ◦π). Hence from the estimates on B̂n(x̂, ε) obtained in [7,
p. 630], and since μφ = π∗μ̂φ◦π , we conclude that for any ε > 0 there are constants
Aε, Bε > 0 s.t:

AεeSnφ(x)−n P(φ) ≤ μφ(Bn(x, ε)) ≤ BεeSnφ(x)−n P(φ), x ∈ �, n > 0, (1)

where P(φ) is the topological pressure of φ, Bn(x, ε) := {y ∈ �, d( f i x, f i y) ≤
ε, i = 0, . . . , n −1} is a Bowen ball and Snφ(x) := φ(x)+· · ·+φ( f n−1x). Inspired
by (1), we give the following:

Definition 2 Two quantities Q1(n, x), Q2(n, x) depending on the variables n >

1, x ∈ �, are said to be comparable, i.e Q1(n, x) ≈ Q2(n, x), if there exist posi-
tive constants A, B such that A · Q1(n, x) ≤ Q2(n, x) ≤ B · Q1(n, x) for all n, x .

Let us now denote by �+
d := {1, . . . , d}Z+

the space of sequences ω of 1, . . . , d,
indexed by the nonnegative integers. On �+

d we consider the shift σd : �+
d → �+

d ;
also for a probability vector p = (p1, . . . , pd) we define the σd -invariant product mea-
sure νp, with the initial probabilities νp({ω,ω0 = i}) = pi , i = 1, . . . , d. The triple
(�+

d , σd , νp) is called a (model) 1-sided Bernoulli shift. By extension we call 1-sided
Bernoulli shift any triple (X, f, μ), with μ f -invariant, which is measure-theoretically
isomorphic to (�+

d , σd , νp), for some d ≥ 1 and p = (p1, . . . , pd) a probabilistic
vector.

In the sequel we will use the important notions of Jacobian of an invariant
measure introduced by Parry in [17], and that of index of a countable-to-one
endomorphism of Lebesgue spaces (see [18]). In short, the Jacobian of the f -invariant
probability measure μ on the Lebesgue space (X, f, μ) is the Radon-Nikodym deriva-
tive of μ◦ f with respect to μ. If (X, f, μ) is a measure-preserving system (with some
σ -algebra B), and if ε is the point partition, one can form the fiber partition ξ = f −1ε

which is a measurable partition if f is countable-to-1 on (X, μ); let also π : X → X/ξ

be the canonical projection. This partition induces a factor space (X/ξ, g, ν), where
an arbitrary point z of X/ξ is a fiber f −1(x), x ∈ X, g(z) := π(x), z ∈ X/ξ

and ν(E) := μ(π−1(E)), E measurable in X/ξ . Now from the Rokhlin theory of
measurable partitions (see [17,21], etc.), ξ induces a family of conditional mea-
sures on the fibers of f, {μz}z∈X/ξ such that μ(A) = ∫

X/ξ
μz(A ∩ z)dν(z), for

A measurable in X . This family of conditional measures is unique modulo ν. Notice
that μz is a probability measure on the (at most countable) fiber z = f −1x ; its support
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246 E. Mihailescu

supp μz is a subset of f −1x . Then the index of (X, f, μ) is the measurable func-
tion

indμ( f )(x) := card(supp μz), z = f −1x, for μ − a.e x ∈ X

For an f -invariant probability measure μ on �, let λ1(x) < · · · < λS(x)(x) < 0
be the negative Lyapunov exponents of μ with respect to f , which are defined
for μ-a.e x ∈ �; let also the i-th partial stable manifold W s

i (x) := {y ∈
M, lim supn→∞ 1

n log d( f n x, f n y) ≤ λi (x)}, 1 ≤ i ≤ S(x). It is clear that the
(usual) stable manifold of x , namely W s(x) is actually W s

S(x)(x). We also denote
for r > 0 small, by W s

i,r the i-th partial stable manifold of radius r . In our
case since we work with uniformly hyperbolic maps, r can be chosen independent
of x .

One can find a measurable partition ξ of �, subordinate to the partial stable mani-
folds W s

i (see for instance [26]) and can define the i-th pointwise stable dimension
of μ, or the dimension of μ on W s

i -manifolds as

δs
i (μ, x, ξ) := lim inf

r→0

log μ
ξ
x (Bi (x, r))

log r
,

where {μξ
x }x is the system of conditional measures of μ associated to the partition

ξ and Bi (x, r) is the ball of radius r centered at x inside W s
i . It can be shown that

δs
i (μ, x, ξ) does not depend on ξ and it is constant along orbits.

Moreover we have δs
i (μ, x, ξ) = lim supr→0

log μ
ξ
x (Bi (x,r))
log r .

So if μ is ergodic, then the pointwise i-th stable dimension of μ, denoted by
δs

i (μ), is defined by δs
i (μ) = δs

i (μ, x, ξ), μ-a.a x ∈ �, and 1 ≤ i ≤ S(x) = S.
We show now that if the triple (�, f, μφ) is coded by a 1-sided Bernoulli shift, then

f must be expanding on � from a certain measure-theoretical point of view. This is in
contrast with the hyperbolic diffeomorphism case, where all equilibrium measures
of Holder potentials can be coded with 2-sided Bernoulli shifts.

In general for a measurable partition ξ of � denote by ξ(x) the unique (modulo
μ) set of ξ which contains x . For a measurable partition ξ subordinated to the stable
manifolds W s

S , we can define the stable dimension of μ on ξ(x) as:

H Ds(μ, x) := H D(μξ
x ) = inf{H D(Z), Z ⊂ ξ(x), μξ

x (Z) = 1}, μ − a.e x ∈ �

We remind the definition of expanding map from [7, p. 71]; the metric considered on
� is the one induced from the Riemannian metric on M .

Theorem 1 Let f be a smooth hyperbolic endomorphism on a connected basic set
�; let also φ be a Holder continuous potential on � and μφ the unique equilibrium
measure of φ. Then, if the measure-preserving system (�, f, μφ) is 1-sided Bernoulli,
it follows that either f is distance-expanding on �, or the stable dimension of μφ is
zero, i.e H Ds(μφ, x) = 0 for μφ-a.e x ∈ �.
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On some coding and mixing properties for a class of chaotic systems 247

Proof Let us assume that (�, f, μφ) is 1-sided Bernoulli, i.e isomorphic to
(�+

d , σd , νp) for some d > 1 and probability vector p. Now the equilibrium mea-
sure of a Holder potential μφ is supported everywhere, since the μφ-measure of any
ball is positive, from estimate (1). Thus, as the index function is preserved by isomor-
phisms (see [18]) and since any point from � has finitely many preimages, it follows
that the fiber f −1(x) must contain d points for μφ-almost all x ∈ �. Also since
we have an isomorphism with a 1-sided Bernoulli shift, we know from [17] that the
Jacobian Jμφ ( f ) of μφ , must be equal a.e with the Jacobian of the product measure νp.

Let us consider now a measurable partition ξ of � subordinated to the local stable
manifolds W s ; by ξ(x) we shall denote the set of ξ that contains x . We recall that
W s

S,r = W s
r notationally.

Since f is uniformly hyperbolic on � and thus the local stable/unstable manifolds
have a fixed positive radius, it follows that we may take the partition ξ to be with
borelian subsets of the stable manifolds which contain a smaller stable set of fixed
radius, i. e there exist r0, r1 > 0 s.t W s

r1
(x) ⊂ ξ(x) ⊂ W s

r0
(x), μφ-a.a x ∈ �. To this

measurable partition ξ , we can associate (uniquely) a family of conditional measures
of μφ ; a generic element of this family is denoted by μ

ξ
φ,x and it is a probability

measure on the subset ξ(x) of ξ (containing the point x).
We want to show now that for μφ-almost all points x ∈ � we have that the con-

ditional measure μ
ξ
φ,x gives positive measure to any non-empty open subset in the

local stable manifold ξ(x). First we notice that if A is the intersection of a Bowen ball
Bm(y, ε) with a neighbourhood of the local unstable manifold W u

ε (ζ̂ ), ζ̂ ∈ �̂, then
the measure μ

ξ
φ induced on the factor space �/ξ has the property that:

μ
ξ
φ(A/ξ) = μφ(Bm(y, ε))

But we know from the definition of conditional measures that

μφ(A) =
∫

A/ξ

μ
ξ
φ,x (A ∩ ξ(x))dμ

ξ
φ(ξ(x)),

where ξ(x) are the leaves of the measurable partition ξ which intersect A (in the factor
space �/ξ these leaves are identified with points). But μφ(A) > 0, since A is an open

set in � (thus contains some Bowen ball); also μ
ξ
φ(A/ξ) = μφ(Bm(y, ε)) > 0. Thus

from the essential uniqueness of the conditional measures, and since the sets of type
A as above form a basis for open sets, we obtain that for μ

ξ
φ-almost all partition leaves

ξ(x) ∈ �,μ
ξ
φ,x (V ) > 0, for V a neighbourhood of z and z ∈ ξ(x). This implies that

suppμ
ξ
φ,x = ξ(x) ∩ �,μφ − a.e

We will now use Theorem 1.1 of [26] translated to our case, for the ergodic equilib-
rium measure μφ . In this case the Lyapunov exponents are all constant a.e and will be
denoted simply by λi . Denote also by
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248 E. Mihailescu

γ1 := δs
1(μφ), γ2 := δs

2(μφ) − δs
1(μφ), . . . , γS := δs

S(μφ) − γS−1

Recall now the notion of folding entropy Fμ( f ) of an arbitrary f -invariant probability
measure μ (see [22]), which is defined as the conditional entropy

Fμ( f ) := Hμ(ε| f −1ε),

where ε is the partition of M into single points.
We can consider thus the folding entropy Fμφ ( f ) of an equilibrium measure μφ .

From [17,22] it follows that the folding entropy Fμφ ( f ) is equal to the integral of the
logarithm of the Jacobian of μφ , i. e

Fμφ ( f ) =
∫

�

log Jμφ ( f )dμφ

And from [26] we have that:

hμφ ( f ) = Fμφ ( f ) −
∑

1≤i≤S

λiγi (μφ), (2)

Since (�, f, μφ) is isomorphic to (�+
m , σm, νp) and since the Jacobian is preserved

by isomorphisms of Lebesgue spaces (see [17]), it follows that

Fμφ ( f ) =
∫

�

log Jμφ ( f )dμφ =
∫

�+
m

log Jνp (σm)dνp = hνp (σm) = hμφ ( f )

Thus from (2) we obtain
∑

1≤i≤S λiγi (μφ) = 0. But since we have a uniformly
hyperbolic system, either f is distance-expanding on � (i. e it does not have stable
directions), or λi < 0, 1 ≤ i ≤ S and γi (μφ) = δs

i (μφ) = 0, 1 ≤ i ≤ S.
Thus for a measurable partition ξ subordinated to the stable manifolds W s = W s

S ,

δs
S = lim sup

r→0

log μ
ξ
φ,x (B(y, r))

log r
= 0, for μφ − a.e x, and μ

ξ
φ,x − a.e y ∈ ξ(x)

So there exists a set E ⊂ � with μφ(E) = 1 so that for any small β > 0, there exists
r(y, β) > 0, y ∈ E such that

μ
ξ
φ,x (B(y, r)) > rβ, 0 < r < r(y, β), y ∈ E ∩ ξ(x), (3)

for μφ-a.e x ∈ �. From the definition of conditional measures (see [17,21]), we

deduce that if μφ(E) = 1 then for almost all x, μ
ξ
φ,x (E ∩ ξ(x)) = 1. So for almost

all leaves ξ(x) of ξ, μ
ξ
φ,x -almost all points y ∈ ξ(x) satisfy (3).

Now using the Vitali Covering Theorem, we can cover a set E ′ ⊂ E ∩ ξ(x) having
μ

ξ
φ,x (E ′) = 1, with mutually disjoint balls B(y, ρ(y)) where ρ(y) < r(y, β). Thus we
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obtain a cover with a family of mutually disjoint balls B(y, ρ(y)), y ∈ F ⊂ E ∩ ξ(x)

and

1 ≥
∑

y∈F

μ
ξ
φ,x (B(y, ρ(y))) ≥

∑

y∈F

ρ(y)β

Hence H D(E ′) ≤ β for μφ-almost all x ∈ �. But β > 0 is arbitrarily small; hence

recalling also that μ
ξ
φ,x (E ∩ ξ(x)) = μ

ξ
φ,x (E ′) = 1 we obtain

H Ds(μφ, x) = 0, μφ − a.e x ∈ �

��
For a system endowed with the measure of maximal entropy, we can say more:

Theorem 2 (a) Let f be a smooth endomorphism on a Riemannian manifold M
such that f is hyperbolic on the basic set � and the critical set C f does not intersect
�. Then if the system (�, f, μ0) given by the measure of maximal entropy μ0 is
1-sided Bernoulli, it follows that f is expanding on �.
(b) Assume f is an expanding endomorphism on �. If μφ is the equilibrium mea-
sure of the Holder potential φ and if (�, f, μφ) is 1-sided Bernoulli, then μφ = μ0,
where μ0 is the unique measure of maximal entropy for f on �.

Proof (a) In the sequel we work with the restriction of f to �, f |� : � → �. From
(1) and Definition 2 it follows that, for ε > 0 small enough,

μ0(Bn(x, ε)) ≈ 1

enhtop( f )
, n > 0, x ∈ �,

and the comparability constants do not depend on n, x .
Assume that (�, f, μ0) is isomorphic to (�+

d , σd , νp) for a certain probability vec-
tor p = (p1, . . . , pd). Hence since the measure-theoretic entropy is preserved by
isomorphisms (see [18]), it follows that

hμ0( f ) = htop( f ) = hνp (σd) ≤ log d (4)

Also we know that the index is preserved by isomorphisms (see [18,28]), thus f is
at least d-to-1 on �μ0-a.e.

Let us now consider a Rokhlin partition of (�, f, μ0) with the sets A1, . . . , Ad

(see for example [17]); we have that f |Ai : Ai → � is bijective (modulo μ0) for any
i = 1, . . . , d. Denote G := {x ∈ �, | f −1(x) ∩ �| ≥ d}. From above, we know that
μ0(G) = 1. Let now G1 := f (G∩A1)∩. . .∩ f (G∩Ad); this can be viewed also as the
set of points x having at least d preimages in �, and such that each of its preimages has
at least d preimages in turn. Notice now that since μ0 ◦ f is absolutely continuous with
respect to μ0 (see [17]), we obtain μ0( f (G ∩ Ai )) = μ0( f (Ai )) = 1, i = 1, . . . , d.
Therefore μ0(G1) = 1. In general define inductively

G j := f (G j−1 ∩ A1) ∩ . . . ∩ f (G j−1 ∩ Ad), j ≥ 2
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Thus all points in G j have at least d j+1 f j+1-preimages in �, and by induction and
a similar argument as above, we have μ0(G j ) = 1, j ≥ 1. Also it is clear that
G j ⊂ G j−1, j ≥ 1 (mod μ0), where G0 := G.

But for any given x ∈ �, the set f −n(x) ∩ � is an (n, ε)-separated set for ε > 0
small enough, since C f ∩� = ∅; so if x ∈ Gn , then there exist at least dn f n-preimages
of x in � for n > 2. This implies that

htop( f |�) ≥ log d

This implies that hνp (σd) = hμ0( f ) = log d, hence νp is the measure of maximal
entropy on �+

d . Therefore the probability vector p is equal to ( 1
d , . . . , 1

d ). Hence

Jνp (σd) = d, νp − a.e

But the Jacobians are preserved by measure-theoretic isomorphisms, hence

Jμ0( f ) = d, μ0 − a.e, and Jμ0( f n) = dn, n > 0, μ0 − a.e

Thus from the properties of Jacobians from [17], we obtain that

μ0( f n(Bn(x, ε))) =
∫

Bn(x,ε)

Jμ0( f n)dμ0 = dn · μ0(Bn(x, ε)) ≈ dn

enhtop( f )
= 1,

where the comparability constants do not depend on n, x .
This means that for r > 0 sufficiently small, the intersection W s

r (x) ∩ � is equal
to {x}, for x ∈ �. Hence f can be considered to be expanding on � since on � there
are no points y close to x and forward-asymptotic to x , for any x ∈ �.

(b) Since f is assumed expanding on � now, we have from [23] or [8] that the
equilibrium measure μφ is the weak limit of the sequence of measures

μx
n :=

∑

y∈ f −n(x)∩�

δy · eSnφ(y)

en P(φ)
, n > 1,

i.e μx
n →n→∞ μφ for any x ∈ �. This implies easily that the Jacobian of μφ in the

expanding case is

Jμφ ( f )(x) = e−φ(x)+P(φ), (5)

for μφ-almost all x ∈ �.
On the other hand, the probability vector p = (p1, . . . , pd) gives the 1-sided

Bernoulli measure νp on �+
d , and we have the invariance of the Jacobians by the mea-

sure theoretic isomorphism. So Jμφ ( f ) = Jνp (σd) and Jμφ ( f ) must take the values
1
p1

, . . . , 1
pd

respectively, on the sets of a measurable partition of �. But we showed in

(5) that Jμφ ( f ) is in fact equal μφ-a. e with the continuous function e−φ+P(φ). Since
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μφ gives positive measure to open sets we obtain then that all the values p1, . . . , pd

must be equal, i.e p1 = · · · = pd = 1
d . Also it follows that the continuous function φ

must be constant a.e. Hence μφ = μ0, where μ0 is the measure of maximal entropy.
��

From the above Theorem we obtain immediately the following:

Corollary 1 Let f A be a hyperbolic endomorphism of the torus T
m (m ≥ 2), given

by the integer valued matrix A. Assume that A has both eigenvalues of absolute value
larger than 1 and eigenvalues of absolute value strictly less than 1. Then the mea-
sure-preserving system (Tm, f A, m) is not 1-sided Bernoulli, where m is the Lebesgue
(Haar) measure.

We study now other equilibrium measures μφ for hyperbolic toral endomor-
phisms.

Theorem 3 Consider a hyperbolic non-expanding toral endomorphism f A : T
m →

T
m associated to the integer valued matrix A. Assume |det(A)| = 2, let α �= (0, . . . , 0)

be a fixed point of fA, and let φ be a periodic Holder continuous function of period α on
T

m. Then (Tm, f A, μφ) is not isomorphic to (�+
2 , σ2, νp), for p = (p1, p2), p1 �= 1

2 .

Proof First remark that the number of f A-preimages of any point in T
m is constant

and equal to |det(A)|. So f A is 2-to-1 on T
m , then the only 1-sided Bernoulli shifts

which could possibly be isomorphic to (Tm, f A, μφ) live on (�+
2 , σ2). Assume then

that (Tm, f A, μφ) is isomorphic to (�+
2 , σ2, ν(p1,p2)) with p1 �= 1

2 .
Since A is hyperbolic, 1 is not an eigenvalue for A, so A−I is invertible. Now remark

that for an integer-valued matrix A, there exist exactly |det(A− I )| isolated fixed points
for f A on T

m . Since in our case A − I is invertible, we have that det(A − I ) �= 0, so
there exist isolated fixed points for f A.

Let α be such a fixed point for f A in T
m . Denote by Tα(x) := x − α = (x1 −

α1, . . . , xm − αm), x ∈ T
m . It can be seen easily that Tα is well defined and that it is

a bijection on T
m . Also since α is fixed point for f A, Tα commutes with f A, i.e

Tα ◦ f A = f A ◦ Tα (6)

We want to show now that Tα preserves the measure μφ if φ is periodic of period
α. For this recall how the equilibrium measure μφ was constructed: μφ is the weak
limit of a sequence of probability measures of type

μn :=
∑

y∈Fix( f n
A)∩�

eSnφ(y)δy
∑

y∈Fix( f n
A)∩� eSnφ(y)

Now if B is a borelian set in � with μφ(∂ B) = μφ(∂Tα(B)) = 0, then we

know that μn(B) → μφ(B). Now μn(B) = ∑
y∈Fix( f n

A)∩B
eSnφ(y)δy∑

y∈Fix( f n
A)∩�

eSnφ(y) and

μn(Tα(B)) = ∑
y∈Fix( f n

A)∩Tα(B)
eSnφ(y)δy∑

y∈Fix( f n
A)∩�

eSnφ(y) . But y ∈ Fix( f n
A) ∩ B if and
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only if Tα(y) ∈ Fix( f n
A) ∩ Tα(B), since f A is linear and α is a fixed point for f A;

at the same time notice that Snφ(y) = Snφ(y − α), n ≥ 1 since φ was chosen to be
periodic of period α. Therefore we obtain that μn(B) = μn(Tα(B)), n ≥ 1 and thus
for the type of sets B considered above, we have μφ(B) = μφ(Tα(B)). But the sets
B considered above form a sufficient family of borelians, hence

μφ(B) = μφ(Tα(B)),

for any borelian set B in �.
Hence we proved that the nontrivial automorphism Tα preserves the measure μφ and

commutes with f A. Let now βμφ ( f A) be the smallest σ -algebra contained in B(Tm)

with respect to which the Jacobian Jμφ ( f A) is measurable and s.t f −1
A βμφ ( f A) ⊂

βμφ ( f A). The fact that the system (Tm, f A, μφ) was assumed measure-theoretically
isomorphic to (�+

2 , σ2, ν(p1,p2)) with p1 �= 1
2 implies that:

βμφ ( f A) = B(Tm)

(see [28]). Notice that if p1 were 1
2 , then the last statement would not hold. Now

if βμφ ( f A) is equal to the σ -algebra of borelians on T
m and if we have a nontrivial

automorphism Tα commuting with f A and preserving μφ , we can apply [4] Theorem
2.21 (see also [18,28]) in order to get a contradiction. In conclusion we obtain that
(Tm, f A, μφ) is not a 1-sided {p1, p2} Bernoulli shift with p1 �= 1

2 . ��
We now prove mixing of any order (see [20] for definition) and Exponential Decay

of Correlations (see [2,3] for definitions) in general, for the triple (�, f, μφ).

Theorem 4 Let f be a smooth endomorphism on M, hyperbolic on a basic set � and
let φ be a Holder continuous potential defined on �; let μφ be the unique equilibrium
measure of φ. Then:

(a) the measure-preserving system (�, f, μφ) is mixing of any order.
(b) the measure μφ has Exponential Decay of Correlations on Holder observables.

Proof (a) By assumption the map f is uniformly hyperbolic on �, so as in [7, p. 272],
we obtain that f has local product structure on �, and similarly f̂ has local product
structure on �̂ with local stable sets (defined for some δ > 0 small enough):

V −
x̂ := {ŷ ∈ �̂, d( f̂ n ŷ, f̂ n x̂) < δ, n ≥ 0},

and local unstable sets

V +
x̂ := {ŷ ∈ �̂, d( f̂ −n ŷ, f̂ −n x̂) < δ, n ≥ 0}, x̂ ∈ �̂

This implies that (�̂, f̂ ) has a Smale space structure, as defined in [25].
Now since the potential φ on � is Holder continuous and as π : �̂ → � is Lips-

chitz continuous, it follows that φ̂ := φ ◦ π : �̂ → R is Holder continuous; so to the
unique equilibrium measure μφ of φ it corresponds the unique equilibrium measure
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μ
φ̂

of φ̂ on �̂ s.t μφ = π∗μφ̂
. We have that Pf (φ) = Pf̂ (φ̂) and hμφ ( f ) = hμ

φ̂
( f̂ ).

Also
∫
�

φdμφ = ∫
�̂

φ ◦ πdμ
φ̂
.

Now we assumed that f is topologically mixing on �, which implies easily that
f̂ is topologically mixing on �̂ (this is standard proof by considering certain pre-
images of large order). But from [25] Corollary 7.10 d) we have then, that (�̂, f̂ , μ

φ̂
)

is isomorphic to a Bernoulli automorphism. Hence as Bernoulli automorphisms are
Kolmogorov (by [8, p. 161], it follows that (�̂, f̂ , μ

φ̂
) is mixing of any order. Thus

(�, f, μφ) is mixing of any order (see [20]).
(b) We have Exponential Decay of Correlations on Holder observables, for the

inverse limit (�̂, f̂ , μ̂φ) since from a), this is a Bernoulli automorphism (see [2,3]).
Then due to the bijective correspondence between f -invariant probabilities on �

and f̂ -invariant probabilities on �̂, and by the invariance of measure-theoretic entro-
pies and integrals discussed above, we obtain Exponential Decay of Correlations on
Holder observables for the system (�, f, μφ) as well. ��

More Examples: Theorems 2 and 4 apply also to the examples of hyperbolic
skew-product endomorphisms constructed in [10] and in [14].

For the nonlinear skew products with overlaps in fibers fα(x, y) = (g(x), hα(x, y))

and their basic sets �α from [10], we showed that there exist Cantor sets in fibers,
such that every point in such a set has uncountably many prehistories in �̂. We also
proved in Corollary 2 of [10] that the stable dimension in that case is non-zero, at
any point of �α , by using properties of the thickness of the intersection of Cantor
sets. In fact if α is small enough, we proved that this stable dimension is close to 1.
Thus the examples of [10] are non-invertible, hyperbolic and non-expanding on �α ,
since the stable dimension is strictly positive. Hence we can apply Theorem 2 to
prove that the system with the measure of maximal entropy (�, f, μ0) is not 1-sided
Bernoulli. More generally for the equilibrium measure μφ of an arbitrary Holder
potential φ, we know from Theorem 1 that the system (�, f, μφ) is not 1-sided
Bernoulli, as long as the stable dimension of μφ is non-zero a.e.

Also, for the family of parameterized hyperbolic skew products Fλ satisfying the
transversality condition from [14] we proved for almost all parameters λ, a Bowen-
type formula (on the natural extension) for the stable dimension of the respective basic
set �λ. One such example is

Fλ(x, y) = ( f (x), λi + �i (x, y, λ)), x ∈ Xi , i = 1, . . . , d,

where f and Xi are given by an iterated function system, and λi are real parameters.
Another example from [14] with transversality condition and defined on an open

set W ⊂ C
2, is:

Fλ(z, w) =
(

z2 + c, h(z) + 1

5
w2 + λz2

)

,

where |c| is small enough, h is a Lipschitz function satisfying a growth condition and
|λ| < 1

6 is a complex parameter. But since these examples satisfy the transversality
condition, we can find the stable dimension as the zero of the pressure function of a
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certain potential, on the natural extension �̂; but since htop( f |�) > 0, we obtain that
the stable dimension is positive, hence the function Fλ is not expanding on �. So the
system with the measure of maximal entropy (�λ, Fλ, μ0,λ) is not 1-sided Bernoulli.

Also from Theorem 4 we have Exponential Decay of Correlations on Holder observ-
ables and mixing of any order, for all equilibrium measures of Holder potentials for
the above examples of [10,14]. �

An important notion related to the coding problem for endomorphisms on Lebesgue
spaces is that of Rokhlin partition. Let ε be the point partition on the Lebesgue space
(X, f, μ), where μ is an f -invariant probability measure defined on the σ -algebra B
on X . We denote by P1 = {E1, . . . , Em−1} a partition of X into measurable subsets
so that f |Ei is a bijection a.e between Ei and X, i = 0, . . . , m − 1. Such a partition
exists and it is called a Rokhlin partition (see [5,17,20]). Clearly it is not uniquely
defined.

In general, given a Rokhlin partition P1, define the measurable partition

P :=
∨

i≥1

T −iP1

The measurable partition P1 is called a 1-sided generator for (X, f, μ) if the smallest
sub-σ -algebra of B(�) containing P and complete with respect to μ, is equal modulo
μ to the borelian σ -algebra B(�). In this case we will say also that P1 is a generating
partition.

Corollary 2 (a) Let an endomorphism f hyperbolic and non-expanding on a basic
set �. Then there exists no generating Rokhlin partition P1 of (�, f, μ0) s.t Jμ0

is piecewise constant a.e on the sets of P1 (where μ0 is the measure of maximal
entropy).
Also if f is expanding on � but μφ �= μ0, then there is no generating Rokhlin
partition P1 of (�, f, μφ) s.t Jμφ ( f ) piecewise constant a.e on the sets of P1.

(b) A hyperbolic non-expanding toral endomorphism f A : T
m → T

m, m ≥ 2, does
not have generating Rokhlin partitions with respect to the Lebesgue measure.

Proof (a) If there exists a generating Rokhlin partition P1 for (�, f, μφ) s.t the Jaco-
bian Jμφ is constant μφ-a.e on the sets of the partition P1, then from Proposition 3.7
of [5] it follows that (�, f, μφ) is isomorphic to a 1-sided Bernoulli shift. But this
gives then a contradiction with Theorem 2, since we assumed that f is non-expanding
on �.

Hence no Rokhlin partition can be a generator for hyperbolic non-expanding endo-
morphisms as above equipped with the measure of maximal entropy.

Same conclusion holds if f is expanding on �, but μφ is not the measure of maximal
entropy.

(b) This follows immediately from (a) for φ ≡ 0, since the Jacobian of the Lebes-
gue measure μ0 with respect to f A, is constant and equal to |det(A)| a.e. Thus if there
were generating Rokhlin partitions then from [5] it would follow that the system were
1-sided Bernoulli with respect to the Lebesgue measure, which is also the measure of
maximal entropy.

Thus we obtain a contradiction with respect to Corollary 1. ��
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